1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void rcu_barrier_tasks_rude(void);
41 void synchronize_rcu(void);
42 
43 #ifdef CONFIG_PREEMPT_RCU
44 
45 void __rcu_read_lock(void);
46 void __rcu_read_unlock(void);
47 
48 /*
49  * Defined as a macro as it is a very low level header included from
50  * areas that don't even know about current.  This gives the rcu_read_lock()
51  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
52  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
53  */
54 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
55 
56 #else /* #ifdef CONFIG_PREEMPT_RCU */
57 
58 #ifdef CONFIG_TINY_RCU
59 #define rcu_read_unlock_strict() do { } while (0)
60 #else
61 void rcu_read_unlock_strict(void);
62 #endif
63 
__rcu_read_lock(void)64 static inline void __rcu_read_lock(void)
65 {
66 	preempt_disable();
67 }
68 
__rcu_read_unlock(void)69 static inline void __rcu_read_unlock(void)
70 {
71 	preempt_enable();
72 	rcu_read_unlock_strict();
73 }
74 
rcu_preempt_depth(void)75 static inline int rcu_preempt_depth(void)
76 {
77 	return 0;
78 }
79 
80 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
81 
82 /* Internal to kernel */
83 void rcu_init(void);
84 extern int rcu_scheduler_active __read_mostly;
85 void rcu_sched_clock_irq(int user);
86 void rcu_report_dead(unsigned int cpu);
87 void rcutree_migrate_callbacks(int cpu);
88 
89 #ifdef CONFIG_RCU_STALL_COMMON
90 void rcu_sysrq_start(void);
91 void rcu_sysrq_end(void);
92 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)93 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)94 static inline void rcu_sysrq_end(void) { }
95 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
96 
97 #ifdef CONFIG_NO_HZ_FULL
98 void rcu_user_enter(void);
99 void rcu_user_exit(void);
100 #else
rcu_user_enter(void)101 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)102 static inline void rcu_user_exit(void) { }
103 #endif /* CONFIG_NO_HZ_FULL */
104 
105 #ifdef CONFIG_RCU_NOCB_CPU
106 void rcu_init_nohz(void);
107 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)108 static inline void rcu_init_nohz(void) { }
109 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
110 
111 /**
112  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
113  * @a: Code that RCU needs to pay attention to.
114  *
115  * RCU read-side critical sections are forbidden in the inner idle loop,
116  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
117  * will happily ignore any such read-side critical sections.  However,
118  * things like powertop need tracepoints in the inner idle loop.
119  *
120  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
121  * will tell RCU that it needs to pay attention, invoke its argument
122  * (in this example, calling the do_something_with_RCU() function),
123  * and then tell RCU to go back to ignoring this CPU.  It is permissible
124  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
125  * on the order of a million or so, even on 32-bit systems).  It is
126  * not legal to block within RCU_NONIDLE(), nor is it permissible to
127  * transfer control either into or out of RCU_NONIDLE()'s statement.
128  */
129 #define RCU_NONIDLE(a) \
130 	do { \
131 		rcu_irq_enter_irqson(); \
132 		do { a; } while (0); \
133 		rcu_irq_exit_irqson(); \
134 	} while (0)
135 
136 /*
137  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
138  * This is a macro rather than an inline function to avoid #include hell.
139  */
140 #ifdef CONFIG_TASKS_RCU_GENERIC
141 
142 # ifdef CONFIG_TASKS_RCU
143 # define rcu_tasks_classic_qs(t, preempt)				\
144 	do {								\
145 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
146 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
147 	} while (0)
148 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
149 void synchronize_rcu_tasks(void);
150 # else
151 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
152 # define call_rcu_tasks call_rcu
153 # define synchronize_rcu_tasks synchronize_rcu
154 # endif
155 
156 # ifdef CONFIG_TASKS_RCU_TRACE
157 # define rcu_tasks_trace_qs(t)						\
158 	do {								\
159 		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
160 		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
161 			smp_store_release(&(t)->trc_reader_checked, true); \
162 			smp_mb(); /* Readers partitioned by store. */	\
163 		}							\
164 	} while (0)
165 # else
166 # define rcu_tasks_trace_qs(t) do { } while (0)
167 # endif
168 
169 #define rcu_tasks_qs(t, preempt)					\
170 do {									\
171 	rcu_tasks_classic_qs((t), (preempt));				\
172 	rcu_tasks_trace_qs((t));					\
173 } while (0)
174 
175 # ifdef CONFIG_TASKS_RUDE_RCU
176 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
177 void synchronize_rcu_tasks_rude(void);
178 # endif
179 
180 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
181 void exit_tasks_rcu_start(void);
182 void exit_tasks_rcu_finish(void);
183 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
184 #define rcu_tasks_qs(t, preempt) do { } while (0)
185 #define rcu_note_voluntary_context_switch(t) do { } while (0)
186 #define call_rcu_tasks call_rcu
187 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)188 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)189 static inline void exit_tasks_rcu_finish(void) { }
190 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
191 
192 /**
193  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
194  *
195  * This macro resembles cond_resched(), except that it is defined to
196  * report potential quiescent states to RCU-tasks even if the cond_resched()
197  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
198  */
199 #define cond_resched_tasks_rcu_qs() \
200 do { \
201 	rcu_tasks_qs(current, false); \
202 	cond_resched(); \
203 } while (0)
204 
205 /*
206  * Infrastructure to implement the synchronize_() primitives in
207  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
208  */
209 
210 #if defined(CONFIG_TREE_RCU)
211 #include <linux/rcutree.h>
212 #elif defined(CONFIG_TINY_RCU)
213 #include <linux/rcutiny.h>
214 #else
215 #error "Unknown RCU implementation specified to kernel configuration"
216 #endif
217 
218 /*
219  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
220  * are needed for dynamic initialization and destruction of rcu_head
221  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
222  * dynamic initialization and destruction of statically allocated rcu_head
223  * structures.  However, rcu_head structures allocated dynamically in the
224  * heap don't need any initialization.
225  */
226 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
227 void init_rcu_head(struct rcu_head *head);
228 void destroy_rcu_head(struct rcu_head *head);
229 void init_rcu_head_on_stack(struct rcu_head *head);
230 void destroy_rcu_head_on_stack(struct rcu_head *head);
231 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)232 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)233 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)234 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)235 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
236 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
237 
238 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
239 bool rcu_lockdep_current_cpu_online(void);
240 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)241 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
242 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245 
rcu_lock_acquire(struct lockdep_map * map)246 static inline void rcu_lock_acquire(struct lockdep_map *map)
247 {
248 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
249 }
250 
rcu_lock_release(struct lockdep_map * map)251 static inline void rcu_lock_release(struct lockdep_map *map)
252 {
253 	lock_release(map, _THIS_IP_);
254 }
255 
256 extern struct lockdep_map rcu_lock_map;
257 extern struct lockdep_map rcu_bh_lock_map;
258 extern struct lockdep_map rcu_sched_lock_map;
259 extern struct lockdep_map rcu_callback_map;
260 int debug_lockdep_rcu_enabled(void);
261 int rcu_read_lock_held(void);
262 int rcu_read_lock_bh_held(void);
263 int rcu_read_lock_sched_held(void);
264 int rcu_read_lock_any_held(void);
265 
266 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
267 
268 # define rcu_lock_acquire(a)		do { } while (0)
269 # define rcu_lock_release(a)		do { } while (0)
270 
rcu_read_lock_held(void)271 static inline int rcu_read_lock_held(void)
272 {
273 	return 1;
274 }
275 
rcu_read_lock_bh_held(void)276 static inline int rcu_read_lock_bh_held(void)
277 {
278 	return 1;
279 }
280 
rcu_read_lock_sched_held(void)281 static inline int rcu_read_lock_sched_held(void)
282 {
283 	return !preemptible();
284 }
285 
rcu_read_lock_any_held(void)286 static inline int rcu_read_lock_any_held(void)
287 {
288 	return !preemptible();
289 }
290 
291 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
292 
293 #ifdef CONFIG_PROVE_RCU
294 
295 /**
296  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
297  * @c: condition to check
298  * @s: informative message
299  */
300 #define RCU_LOCKDEP_WARN(c, s)						\
301 	do {								\
302 		static bool __section(".data.unlikely") __warned;	\
303 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
304 			__warned = true;				\
305 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
306 		}							\
307 	} while (0)
308 
309 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)310 static inline void rcu_preempt_sleep_check(void)
311 {
312 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
313 			 "Illegal context switch in RCU read-side critical section");
314 }
315 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)316 static inline void rcu_preempt_sleep_check(void) { }
317 #endif /* #else #ifdef CONFIG_PROVE_RCU */
318 
319 #define rcu_sleep_check()						\
320 	do {								\
321 		rcu_preempt_sleep_check();				\
322 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
323 				 "Illegal context switch in RCU-bh read-side critical section"); \
324 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
325 				 "Illegal context switch in RCU-sched read-side critical section"); \
326 	} while (0)
327 
328 #else /* #ifdef CONFIG_PROVE_RCU */
329 
330 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
331 #define rcu_sleep_check() do { } while (0)
332 
333 #endif /* #else #ifdef CONFIG_PROVE_RCU */
334 
335 /*
336  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
337  * and rcu_assign_pointer().  Some of these could be folded into their
338  * callers, but they are left separate in order to ease introduction of
339  * multiple pointers markings to match different RCU implementations
340  * (e.g., __srcu), should this make sense in the future.
341  */
342 
343 #ifdef __CHECKER__
344 #define rcu_check_sparse(p, space) \
345 	((void)(((typeof(*p) space *)p) == p))
346 #else /* #ifdef __CHECKER__ */
347 #define rcu_check_sparse(p, space)
348 #endif /* #else #ifdef __CHECKER__ */
349 
350 #define __rcu_access_pointer(p, space) \
351 ({ \
352 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353 	rcu_check_sparse(p, space); \
354 	((typeof(*p) __force __kernel *)(_________p1)); \
355 })
356 #define __rcu_dereference_check(p, c, space) \
357 ({ \
358 	/* Dependency order vs. p above. */ \
359 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
360 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
361 	rcu_check_sparse(p, space); \
362 	((typeof(*p) __force __kernel *)(________p1)); \
363 })
364 #define __rcu_dereference_protected(p, c, space) \
365 ({ \
366 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
367 	rcu_check_sparse(p, space); \
368 	((typeof(*p) __force __kernel *)(p)); \
369 })
370 #define rcu_dereference_raw(p) \
371 ({ \
372 	/* Dependency order vs. p above. */ \
373 	typeof(p) ________p1 = READ_ONCE(p); \
374 	((typeof(*p) __force __kernel *)(________p1)); \
375 })
376 
377 /**
378  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
379  * @v: The value to statically initialize with.
380  */
381 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
382 
383 /**
384  * rcu_assign_pointer() - assign to RCU-protected pointer
385  * @p: pointer to assign to
386  * @v: value to assign (publish)
387  *
388  * Assigns the specified value to the specified RCU-protected
389  * pointer, ensuring that any concurrent RCU readers will see
390  * any prior initialization.
391  *
392  * Inserts memory barriers on architectures that require them
393  * (which is most of them), and also prevents the compiler from
394  * reordering the code that initializes the structure after the pointer
395  * assignment.  More importantly, this call documents which pointers
396  * will be dereferenced by RCU read-side code.
397  *
398  * In some special cases, you may use RCU_INIT_POINTER() instead
399  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
400  * to the fact that it does not constrain either the CPU or the compiler.
401  * That said, using RCU_INIT_POINTER() when you should have used
402  * rcu_assign_pointer() is a very bad thing that results in
403  * impossible-to-diagnose memory corruption.  So please be careful.
404  * See the RCU_INIT_POINTER() comment header for details.
405  *
406  * Note that rcu_assign_pointer() evaluates each of its arguments only
407  * once, appearances notwithstanding.  One of the "extra" evaluations
408  * is in typeof() and the other visible only to sparse (__CHECKER__),
409  * neither of which actually execute the argument.  As with most cpp
410  * macros, this execute-arguments-only-once property is important, so
411  * please be careful when making changes to rcu_assign_pointer() and the
412  * other macros that it invokes.
413  */
414 #define rcu_assign_pointer(p, v)					      \
415 do {									      \
416 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
417 	rcu_check_sparse(p, __rcu);					      \
418 									      \
419 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
420 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
421 	else								      \
422 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
423 } while (0)
424 
425 /**
426  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
427  * @rcu_ptr: RCU pointer, whose old value is returned
428  * @ptr: regular pointer
429  * @c: the lockdep conditions under which the dereference will take place
430  *
431  * Perform a replacement, where @rcu_ptr is an RCU-annotated
432  * pointer and @c is the lockdep argument that is passed to the
433  * rcu_dereference_protected() call used to read that pointer.  The old
434  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
435  */
436 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
437 ({									\
438 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
439 	rcu_assign_pointer((rcu_ptr), (ptr));				\
440 	__tmp;								\
441 })
442 
443 /**
444  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
445  * @p: The pointer to read
446  *
447  * Return the value of the specified RCU-protected pointer, but omit the
448  * lockdep checks for being in an RCU read-side critical section.  This is
449  * useful when the value of this pointer is accessed, but the pointer is
450  * not dereferenced, for example, when testing an RCU-protected pointer
451  * against NULL.  Although rcu_access_pointer() may also be used in cases
452  * where update-side locks prevent the value of the pointer from changing,
453  * you should instead use rcu_dereference_protected() for this use case.
454  *
455  * It is also permissible to use rcu_access_pointer() when read-side
456  * access to the pointer was removed at least one grace period ago, as
457  * is the case in the context of the RCU callback that is freeing up
458  * the data, or after a synchronize_rcu() returns.  This can be useful
459  * when tearing down multi-linked structures after a grace period
460  * has elapsed.
461  */
462 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
463 
464 /**
465  * rcu_dereference_check() - rcu_dereference with debug checking
466  * @p: The pointer to read, prior to dereferencing
467  * @c: The conditions under which the dereference will take place
468  *
469  * Do an rcu_dereference(), but check that the conditions under which the
470  * dereference will take place are correct.  Typically the conditions
471  * indicate the various locking conditions that should be held at that
472  * point.  The check should return true if the conditions are satisfied.
473  * An implicit check for being in an RCU read-side critical section
474  * (rcu_read_lock()) is included.
475  *
476  * For example:
477  *
478  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
479  *
480  * could be used to indicate to lockdep that foo->bar may only be dereferenced
481  * if either rcu_read_lock() is held, or that the lock required to replace
482  * the bar struct at foo->bar is held.
483  *
484  * Note that the list of conditions may also include indications of when a lock
485  * need not be held, for example during initialisation or destruction of the
486  * target struct:
487  *
488  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
489  *					      atomic_read(&foo->usage) == 0);
490  *
491  * Inserts memory barriers on architectures that require them
492  * (currently only the Alpha), prevents the compiler from refetching
493  * (and from merging fetches), and, more importantly, documents exactly
494  * which pointers are protected by RCU and checks that the pointer is
495  * annotated as __rcu.
496  */
497 #define rcu_dereference_check(p, c) \
498 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
499 
500 /**
501  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
502  * @p: The pointer to read, prior to dereferencing
503  * @c: The conditions under which the dereference will take place
504  *
505  * This is the RCU-bh counterpart to rcu_dereference_check().
506  */
507 #define rcu_dereference_bh_check(p, c) \
508 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
509 
510 /**
511  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
512  * @p: The pointer to read, prior to dereferencing
513  * @c: The conditions under which the dereference will take place
514  *
515  * This is the RCU-sched counterpart to rcu_dereference_check().
516  */
517 #define rcu_dereference_sched_check(p, c) \
518 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
519 				__rcu)
520 
521 /*
522  * The tracing infrastructure traces RCU (we want that), but unfortunately
523  * some of the RCU checks causes tracing to lock up the system.
524  *
525  * The no-tracing version of rcu_dereference_raw() must not call
526  * rcu_read_lock_held().
527  */
528 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
529 
530 /**
531  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
532  * @p: The pointer to read, prior to dereferencing
533  * @c: The conditions under which the dereference will take place
534  *
535  * Return the value of the specified RCU-protected pointer, but omit
536  * the READ_ONCE().  This is useful in cases where update-side locks
537  * prevent the value of the pointer from changing.  Please note that this
538  * primitive does *not* prevent the compiler from repeating this reference
539  * or combining it with other references, so it should not be used without
540  * protection of appropriate locks.
541  *
542  * This function is only for update-side use.  Using this function
543  * when protected only by rcu_read_lock() will result in infrequent
544  * but very ugly failures.
545  */
546 #define rcu_dereference_protected(p, c) \
547 	__rcu_dereference_protected((p), (c), __rcu)
548 
549 
550 /**
551  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
552  * @p: The pointer to read, prior to dereferencing
553  *
554  * This is a simple wrapper around rcu_dereference_check().
555  */
556 #define rcu_dereference(p) rcu_dereference_check(p, 0)
557 
558 /**
559  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
560  * @p: The pointer to read, prior to dereferencing
561  *
562  * Makes rcu_dereference_check() do the dirty work.
563  */
564 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
565 
566 /**
567  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
568  * @p: The pointer to read, prior to dereferencing
569  *
570  * Makes rcu_dereference_check() do the dirty work.
571  */
572 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
573 
574 /**
575  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
576  * @p: The pointer to hand off
577  *
578  * This is simply an identity function, but it documents where a pointer
579  * is handed off from RCU to some other synchronization mechanism, for
580  * example, reference counting or locking.  In C11, it would map to
581  * kill_dependency().  It could be used as follows::
582  *
583  *	rcu_read_lock();
584  *	p = rcu_dereference(gp);
585  *	long_lived = is_long_lived(p);
586  *	if (long_lived) {
587  *		if (!atomic_inc_not_zero(p->refcnt))
588  *			long_lived = false;
589  *		else
590  *			p = rcu_pointer_handoff(p);
591  *	}
592  *	rcu_read_unlock();
593  */
594 #define rcu_pointer_handoff(p) (p)
595 
596 /**
597  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
598  *
599  * When synchronize_rcu() is invoked on one CPU while other CPUs
600  * are within RCU read-side critical sections, then the
601  * synchronize_rcu() is guaranteed to block until after all the other
602  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
603  * on one CPU while other CPUs are within RCU read-side critical
604  * sections, invocation of the corresponding RCU callback is deferred
605  * until after the all the other CPUs exit their critical sections.
606  *
607  * Note, however, that RCU callbacks are permitted to run concurrently
608  * with new RCU read-side critical sections.  One way that this can happen
609  * is via the following sequence of events: (1) CPU 0 enters an RCU
610  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
611  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
612  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
613  * callback is invoked.  This is legal, because the RCU read-side critical
614  * section that was running concurrently with the call_rcu() (and which
615  * therefore might be referencing something that the corresponding RCU
616  * callback would free up) has completed before the corresponding
617  * RCU callback is invoked.
618  *
619  * RCU read-side critical sections may be nested.  Any deferred actions
620  * will be deferred until the outermost RCU read-side critical section
621  * completes.
622  *
623  * You can avoid reading and understanding the next paragraph by
624  * following this rule: don't put anything in an rcu_read_lock() RCU
625  * read-side critical section that would block in a !PREEMPTION kernel.
626  * But if you want the full story, read on!
627  *
628  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
629  * it is illegal to block while in an RCU read-side critical section.
630  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
631  * kernel builds, RCU read-side critical sections may be preempted,
632  * but explicit blocking is illegal.  Finally, in preemptible RCU
633  * implementations in real-time (with -rt patchset) kernel builds, RCU
634  * read-side critical sections may be preempted and they may also block, but
635  * only when acquiring spinlocks that are subject to priority inheritance.
636  */
rcu_read_lock(void)637 static __always_inline void rcu_read_lock(void)
638 {
639 	__rcu_read_lock();
640 	__acquire(RCU);
641 	rcu_lock_acquire(&rcu_lock_map);
642 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
643 			 "rcu_read_lock() used illegally while idle");
644 }
645 
646 /*
647  * So where is rcu_write_lock()?  It does not exist, as there is no
648  * way for writers to lock out RCU readers.  This is a feature, not
649  * a bug -- this property is what provides RCU's performance benefits.
650  * Of course, writers must coordinate with each other.  The normal
651  * spinlock primitives work well for this, but any other technique may be
652  * used as well.  RCU does not care how the writers keep out of each
653  * others' way, as long as they do so.
654  */
655 
656 /**
657  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
658  *
659  * In most situations, rcu_read_unlock() is immune from deadlock.
660  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
661  * is responsible for deboosting, which it does via rt_mutex_unlock().
662  * Unfortunately, this function acquires the scheduler's runqueue and
663  * priority-inheritance spinlocks.  This means that deadlock could result
664  * if the caller of rcu_read_unlock() already holds one of these locks or
665  * any lock that is ever acquired while holding them.
666  *
667  * That said, RCU readers are never priority boosted unless they were
668  * preempted.  Therefore, one way to avoid deadlock is to make sure
669  * that preemption never happens within any RCU read-side critical
670  * section whose outermost rcu_read_unlock() is called with one of
671  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
672  * a number of ways, for example, by invoking preempt_disable() before
673  * critical section's outermost rcu_read_lock().
674  *
675  * Given that the set of locks acquired by rt_mutex_unlock() might change
676  * at any time, a somewhat more future-proofed approach is to make sure
677  * that that preemption never happens within any RCU read-side critical
678  * section whose outermost rcu_read_unlock() is called with irqs disabled.
679  * This approach relies on the fact that rt_mutex_unlock() currently only
680  * acquires irq-disabled locks.
681  *
682  * The second of these two approaches is best in most situations,
683  * however, the first approach can also be useful, at least to those
684  * developers willing to keep abreast of the set of locks acquired by
685  * rt_mutex_unlock().
686  *
687  * See rcu_read_lock() for more information.
688  */
rcu_read_unlock(void)689 static inline void rcu_read_unlock(void)
690 {
691 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
692 			 "rcu_read_unlock() used illegally while idle");
693 	__release(RCU);
694 	__rcu_read_unlock();
695 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
696 }
697 
698 /**
699  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
700  *
701  * This is equivalent of rcu_read_lock(), but also disables softirqs.
702  * Note that anything else that disables softirqs can also serve as
703  * an RCU read-side critical section.
704  *
705  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
706  * must occur in the same context, for example, it is illegal to invoke
707  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
708  * was invoked from some other task.
709  */
rcu_read_lock_bh(void)710 static inline void rcu_read_lock_bh(void)
711 {
712 	local_bh_disable();
713 	__acquire(RCU_BH);
714 	rcu_lock_acquire(&rcu_bh_lock_map);
715 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
716 			 "rcu_read_lock_bh() used illegally while idle");
717 }
718 
719 /**
720  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
721  *
722  * See rcu_read_lock_bh() for more information.
723  */
rcu_read_unlock_bh(void)724 static inline void rcu_read_unlock_bh(void)
725 {
726 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
727 			 "rcu_read_unlock_bh() used illegally while idle");
728 	rcu_lock_release(&rcu_bh_lock_map);
729 	__release(RCU_BH);
730 	local_bh_enable();
731 }
732 
733 /**
734  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
735  *
736  * This is equivalent of rcu_read_lock(), but disables preemption.
737  * Read-side critical sections can also be introduced by anything else
738  * that disables preemption, including local_irq_disable() and friends.
739  *
740  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
741  * must occur in the same context, for example, it is illegal to invoke
742  * rcu_read_unlock_sched() from process context if the matching
743  * rcu_read_lock_sched() was invoked from an NMI handler.
744  */
rcu_read_lock_sched(void)745 static inline void rcu_read_lock_sched(void)
746 {
747 	preempt_disable();
748 	__acquire(RCU_SCHED);
749 	rcu_lock_acquire(&rcu_sched_lock_map);
750 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
751 			 "rcu_read_lock_sched() used illegally while idle");
752 }
753 
754 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)755 static inline notrace void rcu_read_lock_sched_notrace(void)
756 {
757 	preempt_disable_notrace();
758 	__acquire(RCU_SCHED);
759 }
760 
761 /**
762  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
763  *
764  * See rcu_read_lock_sched() for more information.
765  */
rcu_read_unlock_sched(void)766 static inline void rcu_read_unlock_sched(void)
767 {
768 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
769 			 "rcu_read_unlock_sched() used illegally while idle");
770 	rcu_lock_release(&rcu_sched_lock_map);
771 	__release(RCU_SCHED);
772 	preempt_enable();
773 }
774 
775 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)776 static inline notrace void rcu_read_unlock_sched_notrace(void)
777 {
778 	__release(RCU_SCHED);
779 	preempt_enable_notrace();
780 }
781 
782 /**
783  * RCU_INIT_POINTER() - initialize an RCU protected pointer
784  * @p: The pointer to be initialized.
785  * @v: The value to initialized the pointer to.
786  *
787  * Initialize an RCU-protected pointer in special cases where readers
788  * do not need ordering constraints on the CPU or the compiler.  These
789  * special cases are:
790  *
791  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
792  * 2.	The caller has taken whatever steps are required to prevent
793  *	RCU readers from concurrently accessing this pointer *or*
794  * 3.	The referenced data structure has already been exposed to
795  *	readers either at compile time or via rcu_assign_pointer() *and*
796  *
797  *	a.	You have not made *any* reader-visible changes to
798  *		this structure since then *or*
799  *	b.	It is OK for readers accessing this structure from its
800  *		new location to see the old state of the structure.  (For
801  *		example, the changes were to statistical counters or to
802  *		other state where exact synchronization is not required.)
803  *
804  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
805  * result in impossible-to-diagnose memory corruption.  As in the structures
806  * will look OK in crash dumps, but any concurrent RCU readers might
807  * see pre-initialized values of the referenced data structure.  So
808  * please be very careful how you use RCU_INIT_POINTER()!!!
809  *
810  * If you are creating an RCU-protected linked structure that is accessed
811  * by a single external-to-structure RCU-protected pointer, then you may
812  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
813  * pointers, but you must use rcu_assign_pointer() to initialize the
814  * external-to-structure pointer *after* you have completely initialized
815  * the reader-accessible portions of the linked structure.
816  *
817  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
818  * ordering guarantees for either the CPU or the compiler.
819  */
820 #define RCU_INIT_POINTER(p, v) \
821 	do { \
822 		rcu_check_sparse(p, __rcu); \
823 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
824 	} while (0)
825 
826 /**
827  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
828  * @p: The pointer to be initialized.
829  * @v: The value to initialized the pointer to.
830  *
831  * GCC-style initialization for an RCU-protected pointer in a structure field.
832  */
833 #define RCU_POINTER_INITIALIZER(p, v) \
834 		.p = RCU_INITIALIZER(v)
835 
836 /*
837  * Does the specified offset indicate that the corresponding rcu_head
838  * structure can be handled by kvfree_rcu()?
839  */
840 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
841 
842 /*
843  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
844  */
845 #define __kvfree_rcu(head, offset) \
846 	do { \
847 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
848 		kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
849 	} while (0)
850 
851 /**
852  * kfree_rcu() - kfree an object after a grace period.
853  * @ptr:	pointer to kfree
854  * @rhf:	the name of the struct rcu_head within the type of @ptr.
855  *
856  * Many rcu callbacks functions just call kfree() on the base structure.
857  * These functions are trivial, but their size adds up, and furthermore
858  * when they are used in a kernel module, that module must invoke the
859  * high-latency rcu_barrier() function at module-unload time.
860  *
861  * The kfree_rcu() function handles this issue.  Rather than encoding a
862  * function address in the embedded rcu_head structure, kfree_rcu() instead
863  * encodes the offset of the rcu_head structure within the base structure.
864  * Because the functions are not allowed in the low-order 4096 bytes of
865  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
866  * If the offset is larger than 4095 bytes, a compile-time error will
867  * be generated in __kvfree_rcu(). If this error is triggered, you can
868  * either fall back to use of call_rcu() or rearrange the structure to
869  * position the rcu_head structure into the first 4096 bytes.
870  *
871  * Note that the allowable offset might decrease in the future, for example,
872  * to allow something like kmem_cache_free_rcu().
873  *
874  * The BUILD_BUG_ON check must not involve any function calls, hence the
875  * checks are done in macros here.
876  */
877 #define kfree_rcu(ptr, rhf)						\
878 do {									\
879 	typeof (ptr) ___p = (ptr);					\
880 									\
881 	if (___p)							\
882 		__kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
883 } while (0)
884 
885 /**
886  * kvfree_rcu() - kvfree an object after a grace period.
887  *
888  * This macro consists of one or two arguments and it is
889  * based on whether an object is head-less or not. If it
890  * has a head then a semantic stays the same as it used
891  * to be before:
892  *
893  *     kvfree_rcu(ptr, rhf);
894  *
895  * where @ptr is a pointer to kvfree(), @rhf is the name
896  * of the rcu_head structure within the type of @ptr.
897  *
898  * When it comes to head-less variant, only one argument
899  * is passed and that is just a pointer which has to be
900  * freed after a grace period. Therefore the semantic is
901  *
902  *     kvfree_rcu(ptr);
903  *
904  * where @ptr is a pointer to kvfree().
905  *
906  * Please note, head-less way of freeing is permitted to
907  * use from a context that has to follow might_sleep()
908  * annotation. Otherwise, please switch and embed the
909  * rcu_head structure within the type of @ptr.
910  */
911 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
912 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
913 
914 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
915 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
916 #define kvfree_rcu_arg_1(ptr)					\
917 do {								\
918 	typeof(ptr) ___p = (ptr);				\
919 								\
920 	if (___p)						\
921 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
922 } while (0)
923 
924 /*
925  * Place this after a lock-acquisition primitive to guarantee that
926  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
927  * if the UNLOCK and LOCK are executed by the same CPU or if the
928  * UNLOCK and LOCK operate on the same lock variable.
929  */
930 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
931 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
932 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
933 #define smp_mb__after_unlock_lock()	do { } while (0)
934 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
935 
936 
937 /* Has the specified rcu_head structure been handed to call_rcu()? */
938 
939 /**
940  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
941  * @rhp: The rcu_head structure to initialize.
942  *
943  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
944  * given rcu_head structure has already been passed to call_rcu(), then
945  * you must also invoke this rcu_head_init() function on it just after
946  * allocating that structure.  Calls to this function must not race with
947  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
948  */
rcu_head_init(struct rcu_head * rhp)949 static inline void rcu_head_init(struct rcu_head *rhp)
950 {
951 	rhp->func = (rcu_callback_t)~0L;
952 }
953 
954 /**
955  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
956  * @rhp: The rcu_head structure to test.
957  * @f: The function passed to call_rcu() along with @rhp.
958  *
959  * Returns @true if the @rhp has been passed to call_rcu() with @func,
960  * and @false otherwise.  Emits a warning in any other case, including
961  * the case where @rhp has already been invoked after a grace period.
962  * Calls to this function must not race with callback invocation.  One way
963  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
964  * in an RCU read-side critical section that includes a read-side fetch
965  * of the pointer to the structure containing @rhp.
966  */
967 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)968 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
969 {
970 	rcu_callback_t func = READ_ONCE(rhp->func);
971 
972 	if (func == f)
973 		return true;
974 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
975 	return false;
976 }
977 
978 /* kernel/ksysfs.c definitions */
979 extern int rcu_expedited;
980 extern int rcu_normal;
981 
982 #endif /* __LINUX_RCUPDATE_H */
983