1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void rcu_barrier_tasks_rude(void);
41 void synchronize_rcu(void);
42
43 #ifdef CONFIG_PREEMPT_RCU
44
45 void __rcu_read_lock(void);
46 void __rcu_read_unlock(void);
47
48 /*
49 * Defined as a macro as it is a very low level header included from
50 * areas that don't even know about current. This gives the rcu_read_lock()
51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
53 */
54 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
55
56 #else /* #ifdef CONFIG_PREEMPT_RCU */
57
58 #ifdef CONFIG_TINY_RCU
59 #define rcu_read_unlock_strict() do { } while (0)
60 #else
61 void rcu_read_unlock_strict(void);
62 #endif
63
__rcu_read_lock(void)64 static inline void __rcu_read_lock(void)
65 {
66 preempt_disable();
67 }
68
__rcu_read_unlock(void)69 static inline void __rcu_read_unlock(void)
70 {
71 preempt_enable();
72 rcu_read_unlock_strict();
73 }
74
rcu_preempt_depth(void)75 static inline int rcu_preempt_depth(void)
76 {
77 return 0;
78 }
79
80 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
81
82 /* Internal to kernel */
83 void rcu_init(void);
84 extern int rcu_scheduler_active __read_mostly;
85 void rcu_sched_clock_irq(int user);
86 void rcu_report_dead(unsigned int cpu);
87 void rcutree_migrate_callbacks(int cpu);
88
89 #ifdef CONFIG_RCU_STALL_COMMON
90 void rcu_sysrq_start(void);
91 void rcu_sysrq_end(void);
92 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)93 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)94 static inline void rcu_sysrq_end(void) { }
95 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
96
97 #ifdef CONFIG_NO_HZ_FULL
98 void rcu_user_enter(void);
99 void rcu_user_exit(void);
100 #else
rcu_user_enter(void)101 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)102 static inline void rcu_user_exit(void) { }
103 #endif /* CONFIG_NO_HZ_FULL */
104
105 #ifdef CONFIG_RCU_NOCB_CPU
106 void rcu_init_nohz(void);
107 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)108 static inline void rcu_init_nohz(void) { }
109 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
110
111 /**
112 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
113 * @a: Code that RCU needs to pay attention to.
114 *
115 * RCU read-side critical sections are forbidden in the inner idle loop,
116 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
117 * will happily ignore any such read-side critical sections. However,
118 * things like powertop need tracepoints in the inner idle loop.
119 *
120 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
121 * will tell RCU that it needs to pay attention, invoke its argument
122 * (in this example, calling the do_something_with_RCU() function),
123 * and then tell RCU to go back to ignoring this CPU. It is permissible
124 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
125 * on the order of a million or so, even on 32-bit systems). It is
126 * not legal to block within RCU_NONIDLE(), nor is it permissible to
127 * transfer control either into or out of RCU_NONIDLE()'s statement.
128 */
129 #define RCU_NONIDLE(a) \
130 do { \
131 rcu_irq_enter_irqson(); \
132 do { a; } while (0); \
133 rcu_irq_exit_irqson(); \
134 } while (0)
135
136 /*
137 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
138 * This is a macro rather than an inline function to avoid #include hell.
139 */
140 #ifdef CONFIG_TASKS_RCU_GENERIC
141
142 # ifdef CONFIG_TASKS_RCU
143 # define rcu_tasks_classic_qs(t, preempt) \
144 do { \
145 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
146 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
147 } while (0)
148 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
149 void synchronize_rcu_tasks(void);
150 # else
151 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
152 # define call_rcu_tasks call_rcu
153 # define synchronize_rcu_tasks synchronize_rcu
154 # endif
155
156 # ifdef CONFIG_TASKS_RCU_TRACE
157 # define rcu_tasks_trace_qs(t) \
158 do { \
159 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
160 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
161 smp_store_release(&(t)->trc_reader_checked, true); \
162 smp_mb(); /* Readers partitioned by store. */ \
163 } \
164 } while (0)
165 # else
166 # define rcu_tasks_trace_qs(t) do { } while (0)
167 # endif
168
169 #define rcu_tasks_qs(t, preempt) \
170 do { \
171 rcu_tasks_classic_qs((t), (preempt)); \
172 rcu_tasks_trace_qs((t)); \
173 } while (0)
174
175 # ifdef CONFIG_TASKS_RUDE_RCU
176 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
177 void synchronize_rcu_tasks_rude(void);
178 # endif
179
180 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
181 void exit_tasks_rcu_start(void);
182 void exit_tasks_rcu_finish(void);
183 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
184 #define rcu_tasks_qs(t, preempt) do { } while (0)
185 #define rcu_note_voluntary_context_switch(t) do { } while (0)
186 #define call_rcu_tasks call_rcu
187 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)188 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)189 static inline void exit_tasks_rcu_finish(void) { }
190 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
191
192 /**
193 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
194 *
195 * This macro resembles cond_resched(), except that it is defined to
196 * report potential quiescent states to RCU-tasks even if the cond_resched()
197 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
198 */
199 #define cond_resched_tasks_rcu_qs() \
200 do { \
201 rcu_tasks_qs(current, false); \
202 cond_resched(); \
203 } while (0)
204
205 /*
206 * Infrastructure to implement the synchronize_() primitives in
207 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
208 */
209
210 #if defined(CONFIG_TREE_RCU)
211 #include <linux/rcutree.h>
212 #elif defined(CONFIG_TINY_RCU)
213 #include <linux/rcutiny.h>
214 #else
215 #error "Unknown RCU implementation specified to kernel configuration"
216 #endif
217
218 /*
219 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
220 * are needed for dynamic initialization and destruction of rcu_head
221 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
222 * dynamic initialization and destruction of statically allocated rcu_head
223 * structures. However, rcu_head structures allocated dynamically in the
224 * heap don't need any initialization.
225 */
226 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
227 void init_rcu_head(struct rcu_head *head);
228 void destroy_rcu_head(struct rcu_head *head);
229 void init_rcu_head_on_stack(struct rcu_head *head);
230 void destroy_rcu_head_on_stack(struct rcu_head *head);
231 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)232 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)233 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)234 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)235 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
236 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
237
238 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
239 bool rcu_lockdep_current_cpu_online(void);
240 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)241 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
242 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
243
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245
rcu_lock_acquire(struct lockdep_map * map)246 static inline void rcu_lock_acquire(struct lockdep_map *map)
247 {
248 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
249 }
250
rcu_lock_release(struct lockdep_map * map)251 static inline void rcu_lock_release(struct lockdep_map *map)
252 {
253 lock_release(map, _THIS_IP_);
254 }
255
256 extern struct lockdep_map rcu_lock_map;
257 extern struct lockdep_map rcu_bh_lock_map;
258 extern struct lockdep_map rcu_sched_lock_map;
259 extern struct lockdep_map rcu_callback_map;
260 int debug_lockdep_rcu_enabled(void);
261 int rcu_read_lock_held(void);
262 int rcu_read_lock_bh_held(void);
263 int rcu_read_lock_sched_held(void);
264 int rcu_read_lock_any_held(void);
265
266 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
267
268 # define rcu_lock_acquire(a) do { } while (0)
269 # define rcu_lock_release(a) do { } while (0)
270
rcu_read_lock_held(void)271 static inline int rcu_read_lock_held(void)
272 {
273 return 1;
274 }
275
rcu_read_lock_bh_held(void)276 static inline int rcu_read_lock_bh_held(void)
277 {
278 return 1;
279 }
280
rcu_read_lock_sched_held(void)281 static inline int rcu_read_lock_sched_held(void)
282 {
283 return !preemptible();
284 }
285
rcu_read_lock_any_held(void)286 static inline int rcu_read_lock_any_held(void)
287 {
288 return !preemptible();
289 }
290
291 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
292
293 #ifdef CONFIG_PROVE_RCU
294
295 /**
296 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
297 * @c: condition to check
298 * @s: informative message
299 */
300 #define RCU_LOCKDEP_WARN(c, s) \
301 do { \
302 static bool __section(".data.unlikely") __warned; \
303 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
304 __warned = true; \
305 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
306 } \
307 } while (0)
308
309 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)310 static inline void rcu_preempt_sleep_check(void)
311 {
312 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
313 "Illegal context switch in RCU read-side critical section");
314 }
315 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)316 static inline void rcu_preempt_sleep_check(void) { }
317 #endif /* #else #ifdef CONFIG_PROVE_RCU */
318
319 #define rcu_sleep_check() \
320 do { \
321 rcu_preempt_sleep_check(); \
322 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
323 "Illegal context switch in RCU-bh read-side critical section"); \
324 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
325 "Illegal context switch in RCU-sched read-side critical section"); \
326 } while (0)
327
328 #else /* #ifdef CONFIG_PROVE_RCU */
329
330 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
331 #define rcu_sleep_check() do { } while (0)
332
333 #endif /* #else #ifdef CONFIG_PROVE_RCU */
334
335 /*
336 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
337 * and rcu_assign_pointer(). Some of these could be folded into their
338 * callers, but they are left separate in order to ease introduction of
339 * multiple pointers markings to match different RCU implementations
340 * (e.g., __srcu), should this make sense in the future.
341 */
342
343 #ifdef __CHECKER__
344 #define rcu_check_sparse(p, space) \
345 ((void)(((typeof(*p) space *)p) == p))
346 #else /* #ifdef __CHECKER__ */
347 #define rcu_check_sparse(p, space)
348 #endif /* #else #ifdef __CHECKER__ */
349
350 #define __rcu_access_pointer(p, space) \
351 ({ \
352 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353 rcu_check_sparse(p, space); \
354 ((typeof(*p) __force __kernel *)(_________p1)); \
355 })
356 #define __rcu_dereference_check(p, c, space) \
357 ({ \
358 /* Dependency order vs. p above. */ \
359 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
360 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
361 rcu_check_sparse(p, space); \
362 ((typeof(*p) __force __kernel *)(________p1)); \
363 })
364 #define __rcu_dereference_protected(p, c, space) \
365 ({ \
366 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
367 rcu_check_sparse(p, space); \
368 ((typeof(*p) __force __kernel *)(p)); \
369 })
370 #define rcu_dereference_raw(p) \
371 ({ \
372 /* Dependency order vs. p above. */ \
373 typeof(p) ________p1 = READ_ONCE(p); \
374 ((typeof(*p) __force __kernel *)(________p1)); \
375 })
376
377 /**
378 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
379 * @v: The value to statically initialize with.
380 */
381 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
382
383 /**
384 * rcu_assign_pointer() - assign to RCU-protected pointer
385 * @p: pointer to assign to
386 * @v: value to assign (publish)
387 *
388 * Assigns the specified value to the specified RCU-protected
389 * pointer, ensuring that any concurrent RCU readers will see
390 * any prior initialization.
391 *
392 * Inserts memory barriers on architectures that require them
393 * (which is most of them), and also prevents the compiler from
394 * reordering the code that initializes the structure after the pointer
395 * assignment. More importantly, this call documents which pointers
396 * will be dereferenced by RCU read-side code.
397 *
398 * In some special cases, you may use RCU_INIT_POINTER() instead
399 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
400 * to the fact that it does not constrain either the CPU or the compiler.
401 * That said, using RCU_INIT_POINTER() when you should have used
402 * rcu_assign_pointer() is a very bad thing that results in
403 * impossible-to-diagnose memory corruption. So please be careful.
404 * See the RCU_INIT_POINTER() comment header for details.
405 *
406 * Note that rcu_assign_pointer() evaluates each of its arguments only
407 * once, appearances notwithstanding. One of the "extra" evaluations
408 * is in typeof() and the other visible only to sparse (__CHECKER__),
409 * neither of which actually execute the argument. As with most cpp
410 * macros, this execute-arguments-only-once property is important, so
411 * please be careful when making changes to rcu_assign_pointer() and the
412 * other macros that it invokes.
413 */
414 #define rcu_assign_pointer(p, v) \
415 do { \
416 uintptr_t _r_a_p__v = (uintptr_t)(v); \
417 rcu_check_sparse(p, __rcu); \
418 \
419 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
420 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
421 else \
422 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
423 } while (0)
424
425 /**
426 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
427 * @rcu_ptr: RCU pointer, whose old value is returned
428 * @ptr: regular pointer
429 * @c: the lockdep conditions under which the dereference will take place
430 *
431 * Perform a replacement, where @rcu_ptr is an RCU-annotated
432 * pointer and @c is the lockdep argument that is passed to the
433 * rcu_dereference_protected() call used to read that pointer. The old
434 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
435 */
436 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
437 ({ \
438 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
439 rcu_assign_pointer((rcu_ptr), (ptr)); \
440 __tmp; \
441 })
442
443 /**
444 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
445 * @p: The pointer to read
446 *
447 * Return the value of the specified RCU-protected pointer, but omit the
448 * lockdep checks for being in an RCU read-side critical section. This is
449 * useful when the value of this pointer is accessed, but the pointer is
450 * not dereferenced, for example, when testing an RCU-protected pointer
451 * against NULL. Although rcu_access_pointer() may also be used in cases
452 * where update-side locks prevent the value of the pointer from changing,
453 * you should instead use rcu_dereference_protected() for this use case.
454 *
455 * It is also permissible to use rcu_access_pointer() when read-side
456 * access to the pointer was removed at least one grace period ago, as
457 * is the case in the context of the RCU callback that is freeing up
458 * the data, or after a synchronize_rcu() returns. This can be useful
459 * when tearing down multi-linked structures after a grace period
460 * has elapsed.
461 */
462 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
463
464 /**
465 * rcu_dereference_check() - rcu_dereference with debug checking
466 * @p: The pointer to read, prior to dereferencing
467 * @c: The conditions under which the dereference will take place
468 *
469 * Do an rcu_dereference(), but check that the conditions under which the
470 * dereference will take place are correct. Typically the conditions
471 * indicate the various locking conditions that should be held at that
472 * point. The check should return true if the conditions are satisfied.
473 * An implicit check for being in an RCU read-side critical section
474 * (rcu_read_lock()) is included.
475 *
476 * For example:
477 *
478 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
479 *
480 * could be used to indicate to lockdep that foo->bar may only be dereferenced
481 * if either rcu_read_lock() is held, or that the lock required to replace
482 * the bar struct at foo->bar is held.
483 *
484 * Note that the list of conditions may also include indications of when a lock
485 * need not be held, for example during initialisation or destruction of the
486 * target struct:
487 *
488 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
489 * atomic_read(&foo->usage) == 0);
490 *
491 * Inserts memory barriers on architectures that require them
492 * (currently only the Alpha), prevents the compiler from refetching
493 * (and from merging fetches), and, more importantly, documents exactly
494 * which pointers are protected by RCU and checks that the pointer is
495 * annotated as __rcu.
496 */
497 #define rcu_dereference_check(p, c) \
498 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
499
500 /**
501 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
502 * @p: The pointer to read, prior to dereferencing
503 * @c: The conditions under which the dereference will take place
504 *
505 * This is the RCU-bh counterpart to rcu_dereference_check().
506 */
507 #define rcu_dereference_bh_check(p, c) \
508 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
509
510 /**
511 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
512 * @p: The pointer to read, prior to dereferencing
513 * @c: The conditions under which the dereference will take place
514 *
515 * This is the RCU-sched counterpart to rcu_dereference_check().
516 */
517 #define rcu_dereference_sched_check(p, c) \
518 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
519 __rcu)
520
521 /*
522 * The tracing infrastructure traces RCU (we want that), but unfortunately
523 * some of the RCU checks causes tracing to lock up the system.
524 *
525 * The no-tracing version of rcu_dereference_raw() must not call
526 * rcu_read_lock_held().
527 */
528 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
529
530 /**
531 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
532 * @p: The pointer to read, prior to dereferencing
533 * @c: The conditions under which the dereference will take place
534 *
535 * Return the value of the specified RCU-protected pointer, but omit
536 * the READ_ONCE(). This is useful in cases where update-side locks
537 * prevent the value of the pointer from changing. Please note that this
538 * primitive does *not* prevent the compiler from repeating this reference
539 * or combining it with other references, so it should not be used without
540 * protection of appropriate locks.
541 *
542 * This function is only for update-side use. Using this function
543 * when protected only by rcu_read_lock() will result in infrequent
544 * but very ugly failures.
545 */
546 #define rcu_dereference_protected(p, c) \
547 __rcu_dereference_protected((p), (c), __rcu)
548
549
550 /**
551 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
552 * @p: The pointer to read, prior to dereferencing
553 *
554 * This is a simple wrapper around rcu_dereference_check().
555 */
556 #define rcu_dereference(p) rcu_dereference_check(p, 0)
557
558 /**
559 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
560 * @p: The pointer to read, prior to dereferencing
561 *
562 * Makes rcu_dereference_check() do the dirty work.
563 */
564 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
565
566 /**
567 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
568 * @p: The pointer to read, prior to dereferencing
569 *
570 * Makes rcu_dereference_check() do the dirty work.
571 */
572 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
573
574 /**
575 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
576 * @p: The pointer to hand off
577 *
578 * This is simply an identity function, but it documents where a pointer
579 * is handed off from RCU to some other synchronization mechanism, for
580 * example, reference counting or locking. In C11, it would map to
581 * kill_dependency(). It could be used as follows::
582 *
583 * rcu_read_lock();
584 * p = rcu_dereference(gp);
585 * long_lived = is_long_lived(p);
586 * if (long_lived) {
587 * if (!atomic_inc_not_zero(p->refcnt))
588 * long_lived = false;
589 * else
590 * p = rcu_pointer_handoff(p);
591 * }
592 * rcu_read_unlock();
593 */
594 #define rcu_pointer_handoff(p) (p)
595
596 /**
597 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
598 *
599 * When synchronize_rcu() is invoked on one CPU while other CPUs
600 * are within RCU read-side critical sections, then the
601 * synchronize_rcu() is guaranteed to block until after all the other
602 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
603 * on one CPU while other CPUs are within RCU read-side critical
604 * sections, invocation of the corresponding RCU callback is deferred
605 * until after the all the other CPUs exit their critical sections.
606 *
607 * Note, however, that RCU callbacks are permitted to run concurrently
608 * with new RCU read-side critical sections. One way that this can happen
609 * is via the following sequence of events: (1) CPU 0 enters an RCU
610 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
611 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
612 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
613 * callback is invoked. This is legal, because the RCU read-side critical
614 * section that was running concurrently with the call_rcu() (and which
615 * therefore might be referencing something that the corresponding RCU
616 * callback would free up) has completed before the corresponding
617 * RCU callback is invoked.
618 *
619 * RCU read-side critical sections may be nested. Any deferred actions
620 * will be deferred until the outermost RCU read-side critical section
621 * completes.
622 *
623 * You can avoid reading and understanding the next paragraph by
624 * following this rule: don't put anything in an rcu_read_lock() RCU
625 * read-side critical section that would block in a !PREEMPTION kernel.
626 * But if you want the full story, read on!
627 *
628 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
629 * it is illegal to block while in an RCU read-side critical section.
630 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
631 * kernel builds, RCU read-side critical sections may be preempted,
632 * but explicit blocking is illegal. Finally, in preemptible RCU
633 * implementations in real-time (with -rt patchset) kernel builds, RCU
634 * read-side critical sections may be preempted and they may also block, but
635 * only when acquiring spinlocks that are subject to priority inheritance.
636 */
rcu_read_lock(void)637 static __always_inline void rcu_read_lock(void)
638 {
639 __rcu_read_lock();
640 __acquire(RCU);
641 rcu_lock_acquire(&rcu_lock_map);
642 RCU_LOCKDEP_WARN(!rcu_is_watching(),
643 "rcu_read_lock() used illegally while idle");
644 }
645
646 /*
647 * So where is rcu_write_lock()? It does not exist, as there is no
648 * way for writers to lock out RCU readers. This is a feature, not
649 * a bug -- this property is what provides RCU's performance benefits.
650 * Of course, writers must coordinate with each other. The normal
651 * spinlock primitives work well for this, but any other technique may be
652 * used as well. RCU does not care how the writers keep out of each
653 * others' way, as long as they do so.
654 */
655
656 /**
657 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
658 *
659 * In most situations, rcu_read_unlock() is immune from deadlock.
660 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
661 * is responsible for deboosting, which it does via rt_mutex_unlock().
662 * Unfortunately, this function acquires the scheduler's runqueue and
663 * priority-inheritance spinlocks. This means that deadlock could result
664 * if the caller of rcu_read_unlock() already holds one of these locks or
665 * any lock that is ever acquired while holding them.
666 *
667 * That said, RCU readers are never priority boosted unless they were
668 * preempted. Therefore, one way to avoid deadlock is to make sure
669 * that preemption never happens within any RCU read-side critical
670 * section whose outermost rcu_read_unlock() is called with one of
671 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
672 * a number of ways, for example, by invoking preempt_disable() before
673 * critical section's outermost rcu_read_lock().
674 *
675 * Given that the set of locks acquired by rt_mutex_unlock() might change
676 * at any time, a somewhat more future-proofed approach is to make sure
677 * that that preemption never happens within any RCU read-side critical
678 * section whose outermost rcu_read_unlock() is called with irqs disabled.
679 * This approach relies on the fact that rt_mutex_unlock() currently only
680 * acquires irq-disabled locks.
681 *
682 * The second of these two approaches is best in most situations,
683 * however, the first approach can also be useful, at least to those
684 * developers willing to keep abreast of the set of locks acquired by
685 * rt_mutex_unlock().
686 *
687 * See rcu_read_lock() for more information.
688 */
rcu_read_unlock(void)689 static inline void rcu_read_unlock(void)
690 {
691 RCU_LOCKDEP_WARN(!rcu_is_watching(),
692 "rcu_read_unlock() used illegally while idle");
693 __release(RCU);
694 __rcu_read_unlock();
695 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
696 }
697
698 /**
699 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
700 *
701 * This is equivalent of rcu_read_lock(), but also disables softirqs.
702 * Note that anything else that disables softirqs can also serve as
703 * an RCU read-side critical section.
704 *
705 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
706 * must occur in the same context, for example, it is illegal to invoke
707 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
708 * was invoked from some other task.
709 */
rcu_read_lock_bh(void)710 static inline void rcu_read_lock_bh(void)
711 {
712 local_bh_disable();
713 __acquire(RCU_BH);
714 rcu_lock_acquire(&rcu_bh_lock_map);
715 RCU_LOCKDEP_WARN(!rcu_is_watching(),
716 "rcu_read_lock_bh() used illegally while idle");
717 }
718
719 /**
720 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
721 *
722 * See rcu_read_lock_bh() for more information.
723 */
rcu_read_unlock_bh(void)724 static inline void rcu_read_unlock_bh(void)
725 {
726 RCU_LOCKDEP_WARN(!rcu_is_watching(),
727 "rcu_read_unlock_bh() used illegally while idle");
728 rcu_lock_release(&rcu_bh_lock_map);
729 __release(RCU_BH);
730 local_bh_enable();
731 }
732
733 /**
734 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
735 *
736 * This is equivalent of rcu_read_lock(), but disables preemption.
737 * Read-side critical sections can also be introduced by anything else
738 * that disables preemption, including local_irq_disable() and friends.
739 *
740 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
741 * must occur in the same context, for example, it is illegal to invoke
742 * rcu_read_unlock_sched() from process context if the matching
743 * rcu_read_lock_sched() was invoked from an NMI handler.
744 */
rcu_read_lock_sched(void)745 static inline void rcu_read_lock_sched(void)
746 {
747 preempt_disable();
748 __acquire(RCU_SCHED);
749 rcu_lock_acquire(&rcu_sched_lock_map);
750 RCU_LOCKDEP_WARN(!rcu_is_watching(),
751 "rcu_read_lock_sched() used illegally while idle");
752 }
753
754 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)755 static inline notrace void rcu_read_lock_sched_notrace(void)
756 {
757 preempt_disable_notrace();
758 __acquire(RCU_SCHED);
759 }
760
761 /**
762 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
763 *
764 * See rcu_read_lock_sched() for more information.
765 */
rcu_read_unlock_sched(void)766 static inline void rcu_read_unlock_sched(void)
767 {
768 RCU_LOCKDEP_WARN(!rcu_is_watching(),
769 "rcu_read_unlock_sched() used illegally while idle");
770 rcu_lock_release(&rcu_sched_lock_map);
771 __release(RCU_SCHED);
772 preempt_enable();
773 }
774
775 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)776 static inline notrace void rcu_read_unlock_sched_notrace(void)
777 {
778 __release(RCU_SCHED);
779 preempt_enable_notrace();
780 }
781
782 /**
783 * RCU_INIT_POINTER() - initialize an RCU protected pointer
784 * @p: The pointer to be initialized.
785 * @v: The value to initialized the pointer to.
786 *
787 * Initialize an RCU-protected pointer in special cases where readers
788 * do not need ordering constraints on the CPU or the compiler. These
789 * special cases are:
790 *
791 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
792 * 2. The caller has taken whatever steps are required to prevent
793 * RCU readers from concurrently accessing this pointer *or*
794 * 3. The referenced data structure has already been exposed to
795 * readers either at compile time or via rcu_assign_pointer() *and*
796 *
797 * a. You have not made *any* reader-visible changes to
798 * this structure since then *or*
799 * b. It is OK for readers accessing this structure from its
800 * new location to see the old state of the structure. (For
801 * example, the changes were to statistical counters or to
802 * other state where exact synchronization is not required.)
803 *
804 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
805 * result in impossible-to-diagnose memory corruption. As in the structures
806 * will look OK in crash dumps, but any concurrent RCU readers might
807 * see pre-initialized values of the referenced data structure. So
808 * please be very careful how you use RCU_INIT_POINTER()!!!
809 *
810 * If you are creating an RCU-protected linked structure that is accessed
811 * by a single external-to-structure RCU-protected pointer, then you may
812 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
813 * pointers, but you must use rcu_assign_pointer() to initialize the
814 * external-to-structure pointer *after* you have completely initialized
815 * the reader-accessible portions of the linked structure.
816 *
817 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
818 * ordering guarantees for either the CPU or the compiler.
819 */
820 #define RCU_INIT_POINTER(p, v) \
821 do { \
822 rcu_check_sparse(p, __rcu); \
823 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
824 } while (0)
825
826 /**
827 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
828 * @p: The pointer to be initialized.
829 * @v: The value to initialized the pointer to.
830 *
831 * GCC-style initialization for an RCU-protected pointer in a structure field.
832 */
833 #define RCU_POINTER_INITIALIZER(p, v) \
834 .p = RCU_INITIALIZER(v)
835
836 /*
837 * Does the specified offset indicate that the corresponding rcu_head
838 * structure can be handled by kvfree_rcu()?
839 */
840 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
841
842 /*
843 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
844 */
845 #define __kvfree_rcu(head, offset) \
846 do { \
847 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
848 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
849 } while (0)
850
851 /**
852 * kfree_rcu() - kfree an object after a grace period.
853 * @ptr: pointer to kfree
854 * @rhf: the name of the struct rcu_head within the type of @ptr.
855 *
856 * Many rcu callbacks functions just call kfree() on the base structure.
857 * These functions are trivial, but their size adds up, and furthermore
858 * when they are used in a kernel module, that module must invoke the
859 * high-latency rcu_barrier() function at module-unload time.
860 *
861 * The kfree_rcu() function handles this issue. Rather than encoding a
862 * function address in the embedded rcu_head structure, kfree_rcu() instead
863 * encodes the offset of the rcu_head structure within the base structure.
864 * Because the functions are not allowed in the low-order 4096 bytes of
865 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
866 * If the offset is larger than 4095 bytes, a compile-time error will
867 * be generated in __kvfree_rcu(). If this error is triggered, you can
868 * either fall back to use of call_rcu() or rearrange the structure to
869 * position the rcu_head structure into the first 4096 bytes.
870 *
871 * Note that the allowable offset might decrease in the future, for example,
872 * to allow something like kmem_cache_free_rcu().
873 *
874 * The BUILD_BUG_ON check must not involve any function calls, hence the
875 * checks are done in macros here.
876 */
877 #define kfree_rcu(ptr, rhf) \
878 do { \
879 typeof (ptr) ___p = (ptr); \
880 \
881 if (___p) \
882 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
883 } while (0)
884
885 /**
886 * kvfree_rcu() - kvfree an object after a grace period.
887 *
888 * This macro consists of one or two arguments and it is
889 * based on whether an object is head-less or not. If it
890 * has a head then a semantic stays the same as it used
891 * to be before:
892 *
893 * kvfree_rcu(ptr, rhf);
894 *
895 * where @ptr is a pointer to kvfree(), @rhf is the name
896 * of the rcu_head structure within the type of @ptr.
897 *
898 * When it comes to head-less variant, only one argument
899 * is passed and that is just a pointer which has to be
900 * freed after a grace period. Therefore the semantic is
901 *
902 * kvfree_rcu(ptr);
903 *
904 * where @ptr is a pointer to kvfree().
905 *
906 * Please note, head-less way of freeing is permitted to
907 * use from a context that has to follow might_sleep()
908 * annotation. Otherwise, please switch and embed the
909 * rcu_head structure within the type of @ptr.
910 */
911 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
912 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
913
914 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
915 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
916 #define kvfree_rcu_arg_1(ptr) \
917 do { \
918 typeof(ptr) ___p = (ptr); \
919 \
920 if (___p) \
921 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
922 } while (0)
923
924 /*
925 * Place this after a lock-acquisition primitive to guarantee that
926 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
927 * if the UNLOCK and LOCK are executed by the same CPU or if the
928 * UNLOCK and LOCK operate on the same lock variable.
929 */
930 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
931 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
932 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
933 #define smp_mb__after_unlock_lock() do { } while (0)
934 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
935
936
937 /* Has the specified rcu_head structure been handed to call_rcu()? */
938
939 /**
940 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
941 * @rhp: The rcu_head structure to initialize.
942 *
943 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
944 * given rcu_head structure has already been passed to call_rcu(), then
945 * you must also invoke this rcu_head_init() function on it just after
946 * allocating that structure. Calls to this function must not race with
947 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
948 */
rcu_head_init(struct rcu_head * rhp)949 static inline void rcu_head_init(struct rcu_head *rhp)
950 {
951 rhp->func = (rcu_callback_t)~0L;
952 }
953
954 /**
955 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
956 * @rhp: The rcu_head structure to test.
957 * @f: The function passed to call_rcu() along with @rhp.
958 *
959 * Returns @true if the @rhp has been passed to call_rcu() with @func,
960 * and @false otherwise. Emits a warning in any other case, including
961 * the case where @rhp has already been invoked after a grace period.
962 * Calls to this function must not race with callback invocation. One way
963 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
964 * in an RCU read-side critical section that includes a read-side fetch
965 * of the pointer to the structure containing @rhp.
966 */
967 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)968 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
969 {
970 rcu_callback_t func = READ_ONCE(rhp->func);
971
972 if (func == f)
973 return true;
974 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
975 return false;
976 }
977
978 /* kernel/ksysfs.c definitions */
979 extern int rcu_expedited;
980 extern int rcu_normal;
981
982 #endif /* __LINUX_RCUPDATE_H */
983