1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "rcar_cmm.h"
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
34 
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)35 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
36 {
37 	struct rcar_du_device *rcdu = rcrtc->dev;
38 
39 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
40 }
41 
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)42 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
43 {
44 	struct rcar_du_device *rcdu = rcrtc->dev;
45 
46 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
47 }
48 
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)49 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
50 {
51 	struct rcar_du_device *rcdu = rcrtc->dev;
52 
53 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
54 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
55 }
56 
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)57 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
58 {
59 	struct rcar_du_device *rcdu = rcrtc->dev;
60 
61 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
62 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
63 }
64 
rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc * rcrtc,u32 clr,u32 set)65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66 {
67 	struct rcar_du_device *rcdu = rcrtc->dev;
68 
69 	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
70 	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 }
72 
73 /* -----------------------------------------------------------------------------
74  * Hardware Setup
75  */
76 
77 struct dpll_info {
78 	unsigned int output;
79 	unsigned int fdpll;
80 	unsigned int n;
81 	unsigned int m;
82 };
83 
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)84 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
85 				 struct dpll_info *dpll,
86 				 unsigned long input,
87 				 unsigned long target)
88 {
89 	unsigned long best_diff = (unsigned long)-1;
90 	unsigned long diff;
91 	unsigned int fdpll;
92 	unsigned int m;
93 	unsigned int n;
94 
95 	/*
96 	 *   fin                                 fvco        fout       fclkout
97 	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
98 	 *              +-> |  |                             |
99 	 *              |                                    |
100 	 *              +---------------- [1/N] <------------+
101 	 *
102 	 *	fclkout = fvco / P / FDPLL -- (1)
103 	 *
104 	 * fin/M = fvco/P/N
105 	 *
106 	 *	fvco = fin * P *  N / M -- (2)
107 	 *
108 	 * (1) + (2) indicates
109 	 *
110 	 *	fclkout = fin * N / M / FDPLL
111 	 *
112 	 * NOTES
113 	 *	N	: (n + 1)
114 	 *	M	: (m + 1)
115 	 *	FDPLL	: (fdpll + 1)
116 	 *	P	: 2
117 	 *	2kHz < fvco < 4096MHz
118 	 *
119 	 * To minimize the jitter,
120 	 * N : as large as possible
121 	 * M : as small as possible
122 	 */
123 	for (m = 0; m < 4; m++) {
124 		for (n = 119; n > 38; n--) {
125 			/*
126 			 * This code only runs on 64-bit architectures, the
127 			 * unsigned long type can thus be used for 64-bit
128 			 * computation. It will still compile without any
129 			 * warning on 32-bit architectures.
130 			 *
131 			 * To optimize calculations, use fout instead of fvco
132 			 * to verify the VCO frequency constraint.
133 			 */
134 			unsigned long fout = input * (n + 1) / (m + 1);
135 
136 			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
137 				continue;
138 
139 			for (fdpll = 1; fdpll < 32; fdpll++) {
140 				unsigned long output;
141 
142 				output = fout / (fdpll + 1);
143 				if (output >= 400 * 1000 * 1000)
144 					continue;
145 
146 				diff = abs((long)output - (long)target);
147 				if (best_diff > diff) {
148 					best_diff = diff;
149 					dpll->n = n;
150 					dpll->m = m;
151 					dpll->fdpll = fdpll;
152 					dpll->output = output;
153 				}
154 
155 				if (diff == 0)
156 					goto done;
157 			}
158 		}
159 	}
160 
161 done:
162 	dev_dbg(rcrtc->dev->dev,
163 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164 		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
165 }
166 
167 struct du_clk_params {
168 	struct clk *clk;
169 	unsigned long rate;
170 	unsigned long diff;
171 	u32 escr;
172 };
173 
rcar_du_escr_divider(struct clk * clk,unsigned long target,u32 escr,struct du_clk_params * params)174 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
175 				 u32 escr, struct du_clk_params *params)
176 {
177 	unsigned long rate;
178 	unsigned long diff;
179 	u32 div;
180 
181 	/*
182 	 * If the target rate has already been achieved perfectly we can't do
183 	 * better.
184 	 */
185 	if (params->diff == 0)
186 		return;
187 
188 	/*
189 	 * Compute the input clock rate and internal divisor values to obtain
190 	 * the clock rate closest to the target frequency.
191 	 */
192 	rate = clk_round_rate(clk, target);
193 	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
194 	diff = abs(rate / (div + 1) - target);
195 
196 	/*
197 	 * Store the parameters if the resulting frequency is better than any
198 	 * previously calculated value.
199 	 */
200 	if (diff < params->diff) {
201 		params->clk = clk;
202 		params->rate = rate;
203 		params->diff = diff;
204 		params->escr = escr | div;
205 	}
206 }
207 
208 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
209 	{ .soc_id = "r8a7795", .revision = "ES1.*" },
210 	{ /* sentinel */ }
211 };
212 
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
214 {
215 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216 	struct rcar_du_device *rcdu = rcrtc->dev;
217 	unsigned long mode_clock = mode->clock * 1000;
218 	u32 dsmr;
219 	u32 escr;
220 
221 	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
222 		unsigned long target = mode_clock;
223 		struct dpll_info dpll = { 0 };
224 		unsigned long extclk;
225 		u32 dpllcr;
226 		u32 div = 0;
227 
228 		/*
229 		 * DU channels that have a display PLL can't use the internal
230 		 * system clock, and have no internal clock divider.
231 		 */
232 
233 		/*
234 		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
235 		 * We can work around them by configuring the DPLL to twice the
236 		 * desired frequency, coupled with a /2 post-divider. Restrict
237 		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
238 		 * no post-divider when a display PLL is present (as shown by
239 		 * the workaround breaking HDMI output on M3-W during testing).
240 		 */
241 		if (soc_device_match(rcar_du_r8a7795_es1)) {
242 			target *= 2;
243 			div = 1;
244 		}
245 
246 		extclk = clk_get_rate(rcrtc->extclock);
247 		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
248 
249 		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
250 		       | DPLLCR_FDPLL(dpll.fdpll)
251 		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
252 		       | DPLLCR_STBY;
253 
254 		if (rcrtc->index == 1)
255 			dpllcr |= DPLLCR_PLCS1
256 			       |  DPLLCR_INCS_DOTCLKIN1;
257 		else
258 			dpllcr |= DPLLCR_PLCS0
259 			       |  DPLLCR_INCS_DOTCLKIN0;
260 
261 		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
262 
263 		escr = ESCR_DCLKSEL_DCLKIN | div;
264 	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
265 		/*
266 		 * Use the LVDS PLL output as the dot clock when outputting to
267 		 * the LVDS encoder on an SoC that supports this clock routing
268 		 * option. We use the clock directly in that case, without any
269 		 * additional divider.
270 		 */
271 		escr = ESCR_DCLKSEL_DCLKIN;
272 	} else {
273 		struct du_clk_params params = { .diff = (unsigned long)-1 };
274 
275 		rcar_du_escr_divider(rcrtc->clock, mode_clock,
276 				     ESCR_DCLKSEL_CLKS, &params);
277 		if (rcrtc->extclock)
278 			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
279 					     ESCR_DCLKSEL_DCLKIN, &params);
280 
281 		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
282 			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
283 			params.rate);
284 
285 		clk_set_rate(params.clk, params.rate);
286 		escr = params.escr;
287 	}
288 
289 	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
290 
291 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
292 	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
293 
294 	/* Signal polarities */
295 	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
296 	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
297 	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
298 	     | DSMR_DIPM_DISP | DSMR_CSPM;
299 	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
300 
301 	/* Display timings */
302 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
303 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
304 					mode->hdisplay - 19);
305 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
306 					mode->hsync_start - 1);
307 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
308 
309 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
310 					mode->crtc_vsync_end - 2);
311 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
312 					mode->crtc_vsync_end +
313 					mode->crtc_vdisplay - 2);
314 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
315 					mode->crtc_vsync_end +
316 					mode->crtc_vsync_start - 1);
317 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
318 
319 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
320 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
321 }
322 
plane_zpos(struct rcar_du_plane * plane)323 static unsigned int plane_zpos(struct rcar_du_plane *plane)
324 {
325 	return plane->plane.state->normalized_zpos;
326 }
327 
328 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)329 plane_format(struct rcar_du_plane *plane)
330 {
331 	return to_rcar_plane_state(plane->plane.state)->format;
332 }
333 
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)334 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
335 {
336 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
337 	struct rcar_du_device *rcdu = rcrtc->dev;
338 	unsigned int num_planes = 0;
339 	unsigned int dptsr_planes;
340 	unsigned int hwplanes = 0;
341 	unsigned int prio = 0;
342 	unsigned int i;
343 	u32 dspr = 0;
344 
345 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
346 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
347 		unsigned int j;
348 
349 		if (plane->plane.state->crtc != &rcrtc->crtc ||
350 		    !plane->plane.state->visible)
351 			continue;
352 
353 		/* Insert the plane in the sorted planes array. */
354 		for (j = num_planes++; j > 0; --j) {
355 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
356 				break;
357 			planes[j] = planes[j-1];
358 		}
359 
360 		planes[j] = plane;
361 		prio += plane_format(plane)->planes * 4;
362 	}
363 
364 	for (i = 0; i < num_planes; ++i) {
365 		struct rcar_du_plane *plane = planes[i];
366 		struct drm_plane_state *state = plane->plane.state;
367 		unsigned int index = to_rcar_plane_state(state)->hwindex;
368 
369 		prio -= 4;
370 		dspr |= (index + 1) << prio;
371 		hwplanes |= 1 << index;
372 
373 		if (plane_format(plane)->planes == 2) {
374 			index = (index + 1) % 8;
375 
376 			prio -= 4;
377 			dspr |= (index + 1) << prio;
378 			hwplanes |= 1 << index;
379 		}
380 	}
381 
382 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
383 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
384 		if (rcdu->info->gen < 3) {
385 			dspr = (rcrtc->index % 2) + 1;
386 			hwplanes = 1 << (rcrtc->index % 2);
387 		} else {
388 			dspr = (rcrtc->index % 2) ? 3 : 1;
389 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
390 		}
391 	}
392 
393 	/*
394 	 * Update the planes to display timing and dot clock generator
395 	 * associations.
396 	 *
397 	 * Updating the DPTSR register requires restarting the CRTC group,
398 	 * resulting in visible flicker. To mitigate the issue only update the
399 	 * association if needed by enabled planes. Planes being disabled will
400 	 * keep their current association.
401 	 */
402 	mutex_lock(&rcrtc->group->lock);
403 
404 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
405 		     : rcrtc->group->dptsr_planes & ~hwplanes;
406 
407 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
408 		rcar_du_group_write(rcrtc->group, DPTSR,
409 				    (dptsr_planes << 16) | dptsr_planes);
410 		rcrtc->group->dptsr_planes = dptsr_planes;
411 
412 		if (rcrtc->group->used_crtcs)
413 			rcar_du_group_restart(rcrtc->group);
414 	}
415 
416 	/* Restart the group if plane sources have changed. */
417 	if (rcrtc->group->need_restart)
418 		rcar_du_group_restart(rcrtc->group);
419 
420 	mutex_unlock(&rcrtc->group->lock);
421 
422 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
423 			    dspr);
424 }
425 
426 /* -----------------------------------------------------------------------------
427  * Page Flip
428  */
429 
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)430 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
431 {
432 	struct drm_pending_vblank_event *event;
433 	struct drm_device *dev = rcrtc->crtc.dev;
434 	unsigned long flags;
435 
436 	spin_lock_irqsave(&dev->event_lock, flags);
437 	event = rcrtc->event;
438 	rcrtc->event = NULL;
439 	spin_unlock_irqrestore(&dev->event_lock, flags);
440 
441 	if (event == NULL)
442 		return;
443 
444 	spin_lock_irqsave(&dev->event_lock, flags);
445 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
446 	wake_up(&rcrtc->flip_wait);
447 	spin_unlock_irqrestore(&dev->event_lock, flags);
448 
449 	drm_crtc_vblank_put(&rcrtc->crtc);
450 }
451 
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)452 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
453 {
454 	struct drm_device *dev = rcrtc->crtc.dev;
455 	unsigned long flags;
456 	bool pending;
457 
458 	spin_lock_irqsave(&dev->event_lock, flags);
459 	pending = rcrtc->event != NULL;
460 	spin_unlock_irqrestore(&dev->event_lock, flags);
461 
462 	return pending;
463 }
464 
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)465 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
466 {
467 	struct rcar_du_device *rcdu = rcrtc->dev;
468 
469 	if (wait_event_timeout(rcrtc->flip_wait,
470 			       !rcar_du_crtc_page_flip_pending(rcrtc),
471 			       msecs_to_jiffies(50)))
472 		return;
473 
474 	dev_warn(rcdu->dev, "page flip timeout\n");
475 
476 	rcar_du_crtc_finish_page_flip(rcrtc);
477 }
478 
479 /* -----------------------------------------------------------------------------
480  * Color Management Module (CMM)
481  */
482 
rcar_du_cmm_check(struct drm_crtc * crtc,struct drm_crtc_state * state)483 static int rcar_du_cmm_check(struct drm_crtc *crtc,
484 			     struct drm_crtc_state *state)
485 {
486 	struct drm_property_blob *drm_lut = state->gamma_lut;
487 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
488 	struct device *dev = rcrtc->dev->dev;
489 
490 	if (!drm_lut)
491 		return 0;
492 
493 	/* We only accept fully populated LUT tables. */
494 	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
495 		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
496 			drm_lut->length);
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
rcar_du_cmm_setup(struct drm_crtc * crtc)503 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
504 {
505 	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
506 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
507 	struct rcar_cmm_config cmm_config = {};
508 
509 	if (!rcrtc->cmm)
510 		return;
511 
512 	if (drm_lut)
513 		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
514 
515 	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
516 }
517 
518 /* -----------------------------------------------------------------------------
519  * Start/Stop and Suspend/Resume
520  */
521 
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)522 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
523 {
524 	/* Set display off and background to black */
525 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
526 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
527 
528 	/* Configure display timings and output routing */
529 	rcar_du_crtc_set_display_timing(rcrtc);
530 	rcar_du_group_set_routing(rcrtc->group);
531 
532 	/* Start with all planes disabled. */
533 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
534 
535 	/* Enable the VSP compositor. */
536 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
537 		rcar_du_vsp_enable(rcrtc);
538 
539 	/* Turn vertical blanking interrupt reporting on. */
540 	drm_crtc_vblank_on(&rcrtc->crtc);
541 }
542 
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)543 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
544 {
545 	int ret;
546 
547 	/*
548 	 * Guard against double-get, as the function is called from both the
549 	 * .atomic_enable() and .atomic_begin() handlers.
550 	 */
551 	if (rcrtc->initialized)
552 		return 0;
553 
554 	ret = clk_prepare_enable(rcrtc->clock);
555 	if (ret < 0)
556 		return ret;
557 
558 	ret = clk_prepare_enable(rcrtc->extclock);
559 	if (ret < 0)
560 		goto error_clock;
561 
562 	ret = rcar_du_group_get(rcrtc->group);
563 	if (ret < 0)
564 		goto error_group;
565 
566 	rcar_du_crtc_setup(rcrtc);
567 	rcrtc->initialized = true;
568 
569 	return 0;
570 
571 error_group:
572 	clk_disable_unprepare(rcrtc->extclock);
573 error_clock:
574 	clk_disable_unprepare(rcrtc->clock);
575 	return ret;
576 }
577 
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)578 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
579 {
580 	rcar_du_group_put(rcrtc->group);
581 
582 	clk_disable_unprepare(rcrtc->extclock);
583 	clk_disable_unprepare(rcrtc->clock);
584 
585 	rcrtc->initialized = false;
586 }
587 
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)588 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
589 {
590 	bool interlaced;
591 
592 	/*
593 	 * Select master sync mode. This enables display operation in master
594 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
595 	 * actively driven).
596 	 */
597 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
598 	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
599 				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
600 				   DSYSR_TVM_MASTER);
601 
602 	rcar_du_group_start_stop(rcrtc->group, true);
603 }
604 
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)605 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
606 {
607 	struct rcar_du_device *rcdu = rcrtc->dev;
608 	struct drm_crtc *crtc = &rcrtc->crtc;
609 	u32 status;
610 
611 	/* Make sure vblank interrupts are enabled. */
612 	drm_crtc_vblank_get(crtc);
613 
614 	/*
615 	 * Disable planes and calculate how many vertical blanking interrupts we
616 	 * have to wait for. If a vertical blanking interrupt has been triggered
617 	 * but not processed yet, we don't know whether it occurred before or
618 	 * after the planes got disabled. We thus have to wait for two vblank
619 	 * interrupts in that case.
620 	 */
621 	spin_lock_irq(&rcrtc->vblank_lock);
622 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
623 	status = rcar_du_crtc_read(rcrtc, DSSR);
624 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
625 	spin_unlock_irq(&rcrtc->vblank_lock);
626 
627 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
628 				msecs_to_jiffies(100)))
629 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
630 
631 	drm_crtc_vblank_put(crtc);
632 }
633 
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)634 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
635 {
636 	struct drm_crtc *crtc = &rcrtc->crtc;
637 
638 	/*
639 	 * Disable all planes and wait for the change to take effect. This is
640 	 * required as the plane enable registers are updated on vblank, and no
641 	 * vblank will occur once the CRTC is stopped. Disabling planes when
642 	 * starting the CRTC thus wouldn't be enough as it would start scanning
643 	 * out immediately from old frame buffers until the next vblank.
644 	 *
645 	 * This increases the CRTC stop delay, especially when multiple CRTCs
646 	 * are stopped in one operation as we now wait for one vblank per CRTC.
647 	 * Whether this can be improved needs to be researched.
648 	 */
649 	rcar_du_crtc_disable_planes(rcrtc);
650 
651 	/*
652 	 * Disable vertical blanking interrupt reporting. We first need to wait
653 	 * for page flip completion before stopping the CRTC as userspace
654 	 * expects page flips to eventually complete.
655 	 */
656 	rcar_du_crtc_wait_page_flip(rcrtc);
657 	drm_crtc_vblank_off(crtc);
658 
659 	/* Disable the VSP compositor. */
660 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
661 		rcar_du_vsp_disable(rcrtc);
662 
663 	if (rcrtc->cmm)
664 		rcar_cmm_disable(rcrtc->cmm);
665 
666 	/*
667 	 * Select switch sync mode. This stops display operation and configures
668 	 * the HSYNC and VSYNC signals as inputs.
669 	 *
670 	 * TODO: Find another way to stop the display for DUs that don't support
671 	 * TVM sync.
672 	 */
673 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
674 		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
675 					   DSYSR_TVM_SWITCH);
676 
677 	rcar_du_group_start_stop(rcrtc->group, false);
678 }
679 
680 /* -----------------------------------------------------------------------------
681  * CRTC Functions
682  */
683 
rcar_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)684 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
685 				     struct drm_crtc_state *state)
686 {
687 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
688 	struct drm_encoder *encoder;
689 	int ret;
690 
691 	ret = rcar_du_cmm_check(crtc, state);
692 	if (ret)
693 		return ret;
694 
695 	/* Store the routes from the CRTC output to the DU outputs. */
696 	rstate->outputs = 0;
697 
698 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
699 		struct rcar_du_encoder *renc;
700 
701 		/* Skip the writeback encoder. */
702 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
703 			continue;
704 
705 		renc = to_rcar_encoder(encoder);
706 		rstate->outputs |= BIT(renc->output);
707 	}
708 
709 	return 0;
710 }
711 
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)712 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
713 				       struct drm_crtc_state *old_state)
714 {
715 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
716 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
717 	struct rcar_du_device *rcdu = rcrtc->dev;
718 
719 	if (rcrtc->cmm)
720 		rcar_cmm_enable(rcrtc->cmm);
721 	rcar_du_crtc_get(rcrtc);
722 
723 	/*
724 	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
725 	 * the DU channel. We need to enable its clock output explicitly if
726 	 * the LVDS output is disabled.
727 	 */
728 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
729 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
730 		struct rcar_du_encoder *encoder =
731 			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
732 		const struct drm_display_mode *mode =
733 			&crtc->state->adjusted_mode;
734 		struct drm_bridge *bridge;
735 
736 		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
737 		rcar_lvds_clk_enable(bridge, mode->clock * 1000);
738 	}
739 
740 	rcar_du_crtc_start(rcrtc);
741 
742 	/*
743 	 * TODO: The chip manual indicates that CMM tables should be written
744 	 * after the DU channel has been activated. Investigate the impact
745 	 * of this restriction on the first displayed frame.
746 	 */
747 	rcar_du_cmm_setup(crtc);
748 }
749 
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)750 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
751 					struct drm_crtc_state *old_state)
752 {
753 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
754 	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
755 	struct rcar_du_device *rcdu = rcrtc->dev;
756 
757 	rcar_du_crtc_stop(rcrtc);
758 	rcar_du_crtc_put(rcrtc);
759 
760 	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
761 	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
762 		struct rcar_du_encoder *encoder =
763 			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
764 		struct drm_bridge *bridge;
765 
766 		/*
767 		 * Disable the LVDS clock output, see
768 		 * rcar_du_crtc_atomic_enable().
769 		 */
770 		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
771 		rcar_lvds_clk_disable(bridge);
772 	}
773 
774 	spin_lock_irq(&crtc->dev->event_lock);
775 	if (crtc->state->event) {
776 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
777 		crtc->state->event = NULL;
778 	}
779 	spin_unlock_irq(&crtc->dev->event_lock);
780 }
781 
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)782 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
783 				      struct drm_crtc_state *old_crtc_state)
784 {
785 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
786 
787 	WARN_ON(!crtc->state->enable);
788 
789 	/*
790 	 * If a mode set is in progress we can be called with the CRTC disabled.
791 	 * We thus need to first get and setup the CRTC in order to configure
792 	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
793 	 * kept awake until the .atomic_enable() call that will follow. The get
794 	 * operation in .atomic_enable() will in that case be a no-op, and the
795 	 * CRTC will be put later in .atomic_disable().
796 	 *
797 	 * If a mode set is not in progress the CRTC is enabled, and the
798 	 * following get call will be a no-op. There is thus no need to balance
799 	 * it in .atomic_flush() either.
800 	 */
801 	rcar_du_crtc_get(rcrtc);
802 
803 	/* If the active state changed, we let .atomic_enable handle CMM. */
804 	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
805 		rcar_du_cmm_setup(crtc);
806 
807 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
808 		rcar_du_vsp_atomic_begin(rcrtc);
809 }
810 
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)811 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
812 				      struct drm_crtc_state *old_crtc_state)
813 {
814 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
815 	struct drm_device *dev = rcrtc->crtc.dev;
816 	unsigned long flags;
817 
818 	rcar_du_crtc_update_planes(rcrtc);
819 
820 	if (crtc->state->event) {
821 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
822 
823 		spin_lock_irqsave(&dev->event_lock, flags);
824 		rcrtc->event = crtc->state->event;
825 		crtc->state->event = NULL;
826 		spin_unlock_irqrestore(&dev->event_lock, flags);
827 	}
828 
829 	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
830 		rcar_du_vsp_atomic_flush(rcrtc);
831 }
832 
833 static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)834 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
835 			const struct drm_display_mode *mode)
836 {
837 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
838 	struct rcar_du_device *rcdu = rcrtc->dev;
839 	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
840 	unsigned int vbp;
841 
842 	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
843 		return MODE_NO_INTERLACE;
844 
845 	/*
846 	 * The hardware requires a minimum combined horizontal sync and back
847 	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
848 	 */
849 	if (mode->htotal - mode->hsync_start < 20)
850 		return MODE_HBLANK_NARROW;
851 
852 	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
853 	if (vbp < 3)
854 		return MODE_VBLANK_NARROW;
855 
856 	return MODE_OK;
857 }
858 
859 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
860 	.atomic_check = rcar_du_crtc_atomic_check,
861 	.atomic_begin = rcar_du_crtc_atomic_begin,
862 	.atomic_flush = rcar_du_crtc_atomic_flush,
863 	.atomic_enable = rcar_du_crtc_atomic_enable,
864 	.atomic_disable = rcar_du_crtc_atomic_disable,
865 	.mode_valid = rcar_du_crtc_mode_valid,
866 };
867 
rcar_du_crtc_crc_init(struct rcar_du_crtc * rcrtc)868 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
869 {
870 	struct rcar_du_device *rcdu = rcrtc->dev;
871 	const char **sources;
872 	unsigned int count;
873 	int i = -1;
874 
875 	/* CRC available only on Gen3 HW. */
876 	if (rcdu->info->gen < 3)
877 		return;
878 
879 	/* Reserve 1 for "auto" source. */
880 	count = rcrtc->vsp->num_planes + 1;
881 
882 	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
883 	if (!sources)
884 		return;
885 
886 	sources[0] = kstrdup("auto", GFP_KERNEL);
887 	if (!sources[0])
888 		goto error;
889 
890 	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
891 		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
892 		char name[16];
893 
894 		sprintf(name, "plane%u", plane->base.id);
895 		sources[i + 1] = kstrdup(name, GFP_KERNEL);
896 		if (!sources[i + 1])
897 			goto error;
898 	}
899 
900 	rcrtc->sources = sources;
901 	rcrtc->sources_count = count;
902 	return;
903 
904 error:
905 	while (i >= 0) {
906 		kfree(sources[i]);
907 		i--;
908 	}
909 	kfree(sources);
910 }
911 
rcar_du_crtc_crc_cleanup(struct rcar_du_crtc * rcrtc)912 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
913 {
914 	unsigned int i;
915 
916 	if (!rcrtc->sources)
917 		return;
918 
919 	for (i = 0; i < rcrtc->sources_count; i++)
920 		kfree(rcrtc->sources[i]);
921 	kfree(rcrtc->sources);
922 
923 	rcrtc->sources = NULL;
924 	rcrtc->sources_count = 0;
925 }
926 
927 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)928 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
929 {
930 	struct rcar_du_crtc_state *state;
931 	struct rcar_du_crtc_state *copy;
932 
933 	if (WARN_ON(!crtc->state))
934 		return NULL;
935 
936 	state = to_rcar_crtc_state(crtc->state);
937 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
938 	if (copy == NULL)
939 		return NULL;
940 
941 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
942 
943 	return &copy->state;
944 }
945 
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)946 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
947 					      struct drm_crtc_state *state)
948 {
949 	__drm_atomic_helper_crtc_destroy_state(state);
950 	kfree(to_rcar_crtc_state(state));
951 }
952 
rcar_du_crtc_cleanup(struct drm_crtc * crtc)953 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
954 {
955 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
956 
957 	rcar_du_crtc_crc_cleanup(rcrtc);
958 
959 	return drm_crtc_cleanup(crtc);
960 }
961 
rcar_du_crtc_reset(struct drm_crtc * crtc)962 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
963 {
964 	struct rcar_du_crtc_state *state;
965 
966 	if (crtc->state) {
967 		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
968 		crtc->state = NULL;
969 	}
970 
971 	state = kzalloc(sizeof(*state), GFP_KERNEL);
972 	if (state == NULL)
973 		return;
974 
975 	state->crc.source = VSP1_DU_CRC_NONE;
976 	state->crc.index = 0;
977 
978 	__drm_atomic_helper_crtc_reset(crtc, &state->state);
979 }
980 
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)981 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
982 {
983 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
984 
985 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
986 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
987 	rcrtc->vblank_enable = true;
988 
989 	return 0;
990 }
991 
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)992 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
993 {
994 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
995 
996 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
997 	rcrtc->vblank_enable = false;
998 }
999 
rcar_du_crtc_parse_crc_source(struct rcar_du_crtc * rcrtc,const char * source_name,enum vsp1_du_crc_source * source)1000 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1001 					 const char *source_name,
1002 					 enum vsp1_du_crc_source *source)
1003 {
1004 	unsigned int index;
1005 	int ret;
1006 
1007 	/*
1008 	 * Parse the source name. Supported values are "plane%u" to compute the
1009 	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1010 	 * CRC on the composer (VSP) output.
1011 	 */
1012 
1013 	if (!source_name) {
1014 		*source = VSP1_DU_CRC_NONE;
1015 		return 0;
1016 	} else if (!strcmp(source_name, "auto")) {
1017 		*source = VSP1_DU_CRC_OUTPUT;
1018 		return 0;
1019 	} else if (strstarts(source_name, "plane")) {
1020 		unsigned int i;
1021 
1022 		*source = VSP1_DU_CRC_PLANE;
1023 
1024 		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1025 		if (ret < 0)
1026 			return ret;
1027 
1028 		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1029 			if (index == rcrtc->vsp->planes[i].plane.base.id)
1030 				return i;
1031 		}
1032 	}
1033 
1034 	return -EINVAL;
1035 }
1036 
rcar_du_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1037 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1038 					  const char *source_name,
1039 					  size_t *values_cnt)
1040 {
1041 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1042 	enum vsp1_du_crc_source source;
1043 
1044 	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1045 		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1046 		return -EINVAL;
1047 	}
1048 
1049 	*values_cnt = 1;
1050 	return 0;
1051 }
1052 
1053 static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc * crtc,size_t * count)1054 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1055 {
1056 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1057 
1058 	*count = rcrtc->sources_count;
1059 	return rcrtc->sources;
1060 }
1061 
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1062 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1063 				       const char *source_name)
1064 {
1065 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1066 	struct drm_modeset_acquire_ctx ctx;
1067 	struct drm_crtc_state *crtc_state;
1068 	struct drm_atomic_state *state;
1069 	enum vsp1_du_crc_source source;
1070 	unsigned int index;
1071 	int ret;
1072 
1073 	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1074 	if (ret < 0)
1075 		return ret;
1076 
1077 	index = ret;
1078 
1079 	/* Perform an atomic commit to set the CRC source. */
1080 	drm_modeset_acquire_init(&ctx, 0);
1081 
1082 	state = drm_atomic_state_alloc(crtc->dev);
1083 	if (!state) {
1084 		ret = -ENOMEM;
1085 		goto unlock;
1086 	}
1087 
1088 	state->acquire_ctx = &ctx;
1089 
1090 retry:
1091 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1092 	if (!IS_ERR(crtc_state)) {
1093 		struct rcar_du_crtc_state *rcrtc_state;
1094 
1095 		rcrtc_state = to_rcar_crtc_state(crtc_state);
1096 		rcrtc_state->crc.source = source;
1097 		rcrtc_state->crc.index = index;
1098 
1099 		ret = drm_atomic_commit(state);
1100 	} else {
1101 		ret = PTR_ERR(crtc_state);
1102 	}
1103 
1104 	if (ret == -EDEADLK) {
1105 		drm_atomic_state_clear(state);
1106 		drm_modeset_backoff(&ctx);
1107 		goto retry;
1108 	}
1109 
1110 	drm_atomic_state_put(state);
1111 
1112 unlock:
1113 	drm_modeset_drop_locks(&ctx);
1114 	drm_modeset_acquire_fini(&ctx);
1115 
1116 	return ret;
1117 }
1118 
1119 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1120 	.reset = rcar_du_crtc_reset,
1121 	.destroy = drm_crtc_cleanup,
1122 	.set_config = drm_atomic_helper_set_config,
1123 	.page_flip = drm_atomic_helper_page_flip,
1124 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1125 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1126 	.enable_vblank = rcar_du_crtc_enable_vblank,
1127 	.disable_vblank = rcar_du_crtc_disable_vblank,
1128 };
1129 
1130 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1131 	.reset = rcar_du_crtc_reset,
1132 	.destroy = rcar_du_crtc_cleanup,
1133 	.set_config = drm_atomic_helper_set_config,
1134 	.page_flip = drm_atomic_helper_page_flip,
1135 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1136 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1137 	.enable_vblank = rcar_du_crtc_enable_vblank,
1138 	.disable_vblank = rcar_du_crtc_disable_vblank,
1139 	.set_crc_source = rcar_du_crtc_set_crc_source,
1140 	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1141 	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1142 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1143 };
1144 
1145 /* -----------------------------------------------------------------------------
1146  * Interrupt Handling
1147  */
1148 
rcar_du_crtc_irq(int irq,void * arg)1149 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1150 {
1151 	struct rcar_du_crtc *rcrtc = arg;
1152 	struct rcar_du_device *rcdu = rcrtc->dev;
1153 	irqreturn_t ret = IRQ_NONE;
1154 	u32 status;
1155 
1156 	spin_lock(&rcrtc->vblank_lock);
1157 
1158 	status = rcar_du_crtc_read(rcrtc, DSSR);
1159 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1160 
1161 	if (status & DSSR_VBK) {
1162 		/*
1163 		 * Wake up the vblank wait if the counter reaches 0. This must
1164 		 * be protected by the vblank_lock to avoid races in
1165 		 * rcar_du_crtc_disable_planes().
1166 		 */
1167 		if (rcrtc->vblank_count) {
1168 			if (--rcrtc->vblank_count == 0)
1169 				wake_up(&rcrtc->vblank_wait);
1170 		}
1171 	}
1172 
1173 	spin_unlock(&rcrtc->vblank_lock);
1174 
1175 	if (status & DSSR_VBK) {
1176 		if (rcdu->info->gen < 3) {
1177 			drm_crtc_handle_vblank(&rcrtc->crtc);
1178 			rcar_du_crtc_finish_page_flip(rcrtc);
1179 		}
1180 
1181 		ret = IRQ_HANDLED;
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 /* -----------------------------------------------------------------------------
1188  * Initialization
1189  */
1190 
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)1191 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1192 			unsigned int hwindex)
1193 {
1194 	static const unsigned int mmio_offsets[] = {
1195 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1196 	};
1197 
1198 	struct rcar_du_device *rcdu = rgrp->dev;
1199 	struct platform_device *pdev = to_platform_device(rcdu->dev);
1200 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1201 	struct drm_crtc *crtc = &rcrtc->crtc;
1202 	struct drm_plane *primary;
1203 	unsigned int irqflags;
1204 	struct clk *clk;
1205 	char clk_name[9];
1206 	char *name;
1207 	int irq;
1208 	int ret;
1209 
1210 	/* Get the CRTC clock and the optional external clock. */
1211 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1212 		sprintf(clk_name, "du.%u", hwindex);
1213 		name = clk_name;
1214 	} else {
1215 		name = NULL;
1216 	}
1217 
1218 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1219 	if (IS_ERR(rcrtc->clock)) {
1220 		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1221 		return PTR_ERR(rcrtc->clock);
1222 	}
1223 
1224 	sprintf(clk_name, "dclkin.%u", hwindex);
1225 	clk = devm_clk_get(rcdu->dev, clk_name);
1226 	if (!IS_ERR(clk)) {
1227 		rcrtc->extclock = clk;
1228 	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1229 		return -EPROBE_DEFER;
1230 	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1231 		/*
1232 		 * DU channels that have a display PLL can't use the internal
1233 		 * system clock and thus require an external clock.
1234 		 */
1235 		ret = PTR_ERR(clk);
1236 		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1237 		return ret;
1238 	}
1239 
1240 	init_waitqueue_head(&rcrtc->flip_wait);
1241 	init_waitqueue_head(&rcrtc->vblank_wait);
1242 	spin_lock_init(&rcrtc->vblank_lock);
1243 
1244 	rcrtc->dev = rcdu;
1245 	rcrtc->group = rgrp;
1246 	rcrtc->mmio_offset = mmio_offsets[hwindex];
1247 	rcrtc->index = hwindex;
1248 	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1249 
1250 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1251 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1252 	else
1253 		primary = &rgrp->planes[swindex % 2].plane;
1254 
1255 	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1256 					rcdu->info->gen <= 2 ?
1257 					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1258 					NULL);
1259 	if (ret < 0)
1260 		return ret;
1261 
1262 	/* CMM might be disabled for this CRTC. */
1263 	if (rcdu->cmms[swindex]) {
1264 		rcrtc->cmm = rcdu->cmms[swindex];
1265 		rgrp->cmms_mask |= BIT(hwindex % 2);
1266 
1267 		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1268 		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1269 	}
1270 
1271 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1272 
1273 	/* Register the interrupt handler. */
1274 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1275 		/* The IRQ's are associated with the CRTC (sw)index. */
1276 		irq = platform_get_irq(pdev, swindex);
1277 		irqflags = 0;
1278 	} else {
1279 		irq = platform_get_irq(pdev, 0);
1280 		irqflags = IRQF_SHARED;
1281 	}
1282 
1283 	if (irq < 0) {
1284 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1285 		return irq;
1286 	}
1287 
1288 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1289 			       dev_name(rcdu->dev), rcrtc);
1290 	if (ret < 0) {
1291 		dev_err(rcdu->dev,
1292 			"failed to register IRQ for CRTC %u\n", swindex);
1293 		return ret;
1294 	}
1295 
1296 	rcar_du_crtc_crc_init(rcrtc);
1297 
1298 	return 0;
1299 }
1300