1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
43 
44 #include <rdma/ib_verbs.h>
45 #include <rdma/ib_umem.h>
46 #include <rdma/ib_umem_odp.h>
47 
48 /*
49  * The ib_umem list keeps track of memory regions for which the HW
50  * device request to receive notification when the related memory
51  * mapping is changed.
52  *
53  * ib_umem_lock protects the list.
54  */
55 
node_start(struct umem_odp_node * n)56 static u64 node_start(struct umem_odp_node *n)
57 {
58 	struct ib_umem_odp *umem_odp =
59 			container_of(n, struct ib_umem_odp, interval_tree);
60 
61 	return ib_umem_start(umem_odp->umem);
62 }
63 
64 /* Note that the representation of the intervals in the interval tree
65  * considers the ending point as contained in the interval, while the
66  * function ib_umem_end returns the first address which is not contained
67  * in the umem.
68  */
node_last(struct umem_odp_node * n)69 static u64 node_last(struct umem_odp_node *n)
70 {
71 	struct ib_umem_odp *umem_odp =
72 			container_of(n, struct ib_umem_odp, interval_tree);
73 
74 	return ib_umem_end(umem_odp->umem) - 1;
75 }
76 
INTERVAL_TREE_DEFINE(struct umem_odp_node,rb,u64,__subtree_last,node_start,node_last,static,rbt_ib_umem)77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
78 		     node_start, node_last, static, rbt_ib_umem)
79 
80 static void ib_umem_notifier_start_account(struct ib_umem *item)
81 {
82 	mutex_lock(&item->odp_data->umem_mutex);
83 
84 	/* Only update private counters for this umem if it has them.
85 	 * Otherwise skip it. All page faults will be delayed for this umem. */
86 	if (item->odp_data->mn_counters_active) {
87 		int notifiers_count = item->odp_data->notifiers_count++;
88 
89 		if (notifiers_count == 0)
90 			/* Initialize the completion object for waiting on
91 			 * notifiers. Since notifier_count is zero, no one
92 			 * should be waiting right now. */
93 			reinit_completion(&item->odp_data->notifier_completion);
94 	}
95 	mutex_unlock(&item->odp_data->umem_mutex);
96 }
97 
ib_umem_notifier_end_account(struct ib_umem * item)98 static void ib_umem_notifier_end_account(struct ib_umem *item)
99 {
100 	mutex_lock(&item->odp_data->umem_mutex);
101 
102 	/* Only update private counters for this umem if it has them.
103 	 * Otherwise skip it. All page faults will be delayed for this umem. */
104 	if (item->odp_data->mn_counters_active) {
105 		/*
106 		 * This sequence increase will notify the QP page fault that
107 		 * the page that is going to be mapped in the spte could have
108 		 * been freed.
109 		 */
110 		++item->odp_data->notifiers_seq;
111 		if (--item->odp_data->notifiers_count == 0)
112 			complete_all(&item->odp_data->notifier_completion);
113 	}
114 	mutex_unlock(&item->odp_data->umem_mutex);
115 }
116 
117 /* Account for a new mmu notifier in an ib_ucontext. */
ib_ucontext_notifier_start_account(struct ib_ucontext * context)118 static void ib_ucontext_notifier_start_account(struct ib_ucontext *context)
119 {
120 	atomic_inc(&context->notifier_count);
121 }
122 
123 /* Account for a terminating mmu notifier in an ib_ucontext.
124  *
125  * Must be called with the ib_ucontext->umem_rwsem semaphore unlocked, since
126  * the function takes the semaphore itself. */
ib_ucontext_notifier_end_account(struct ib_ucontext * context)127 static void ib_ucontext_notifier_end_account(struct ib_ucontext *context)
128 {
129 	int zero_notifiers = atomic_dec_and_test(&context->notifier_count);
130 
131 	if (zero_notifiers &&
132 	    !list_empty(&context->no_private_counters)) {
133 		/* No currently running mmu notifiers. Now is the chance to
134 		 * add private accounting to all previously added umems. */
135 		struct ib_umem_odp *odp_data, *next;
136 
137 		/* Prevent concurrent mmu notifiers from working on the
138 		 * no_private_counters list. */
139 		down_write(&context->umem_rwsem);
140 
141 		/* Read the notifier_count again, with the umem_rwsem
142 		 * semaphore taken for write. */
143 		if (!atomic_read(&context->notifier_count)) {
144 			list_for_each_entry_safe(odp_data, next,
145 						 &context->no_private_counters,
146 						 no_private_counters) {
147 				mutex_lock(&odp_data->umem_mutex);
148 				odp_data->mn_counters_active = true;
149 				list_del(&odp_data->no_private_counters);
150 				complete_all(&odp_data->notifier_completion);
151 				mutex_unlock(&odp_data->umem_mutex);
152 			}
153 		}
154 
155 		up_write(&context->umem_rwsem);
156 	}
157 }
158 
ib_umem_notifier_release_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)159 static int ib_umem_notifier_release_trampoline(struct ib_umem *item, u64 start,
160 					       u64 end, void *cookie) {
161 	/*
162 	 * Increase the number of notifiers running, to
163 	 * prevent any further fault handling on this MR.
164 	 */
165 	ib_umem_notifier_start_account(item);
166 	item->odp_data->dying = 1;
167 	/* Make sure that the fact the umem is dying is out before we release
168 	 * all pending page faults. */
169 	smp_wmb();
170 	complete_all(&item->odp_data->notifier_completion);
171 	item->context->invalidate_range(item, ib_umem_start(item),
172 					ib_umem_end(item));
173 	return 0;
174 }
175 
ib_umem_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)176 static void ib_umem_notifier_release(struct mmu_notifier *mn,
177 				     struct mm_struct *mm)
178 {
179 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
180 
181 	if (!context->invalidate_range)
182 		return;
183 
184 	ib_ucontext_notifier_start_account(context);
185 	down_read(&context->umem_rwsem);
186 	rbt_ib_umem_for_each_in_range(&context->umem_tree, 0,
187 				      ULLONG_MAX,
188 				      ib_umem_notifier_release_trampoline,
189 				      true,
190 				      NULL);
191 	up_read(&context->umem_rwsem);
192 }
193 
invalidate_page_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)194 static int invalidate_page_trampoline(struct ib_umem *item, u64 start,
195 				      u64 end, void *cookie)
196 {
197 	ib_umem_notifier_start_account(item);
198 	item->context->invalidate_range(item, start, start + PAGE_SIZE);
199 	ib_umem_notifier_end_account(item);
200 	return 0;
201 }
202 
invalidate_range_start_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)203 static int invalidate_range_start_trampoline(struct ib_umem *item, u64 start,
204 					     u64 end, void *cookie)
205 {
206 	ib_umem_notifier_start_account(item);
207 	item->context->invalidate_range(item, start, end);
208 	return 0;
209 }
210 
ib_umem_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)211 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
212 						    struct mm_struct *mm,
213 						    unsigned long start,
214 						    unsigned long end,
215 						    bool blockable)
216 {
217 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
218 	int ret;
219 
220 	if (!context->invalidate_range)
221 		return 0;
222 
223 	if (blockable)
224 		down_read(&context->umem_rwsem);
225 	else if (!down_read_trylock(&context->umem_rwsem))
226 		return -EAGAIN;
227 
228 	ib_ucontext_notifier_start_account(context);
229 	ret = rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
230 				      end,
231 				      invalidate_range_start_trampoline,
232 				      blockable, NULL);
233 	up_read(&context->umem_rwsem);
234 
235 	return ret;
236 }
237 
invalidate_range_end_trampoline(struct ib_umem * item,u64 start,u64 end,void * cookie)238 static int invalidate_range_end_trampoline(struct ib_umem *item, u64 start,
239 					   u64 end, void *cookie)
240 {
241 	ib_umem_notifier_end_account(item);
242 	return 0;
243 }
244 
ib_umem_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)245 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
246 						  struct mm_struct *mm,
247 						  unsigned long start,
248 						  unsigned long end)
249 {
250 	struct ib_ucontext *context = container_of(mn, struct ib_ucontext, mn);
251 
252 	if (!context->invalidate_range)
253 		return;
254 
255 	/*
256 	 * TODO: we currently bail out if there is any sleepable work to be done
257 	 * in ib_umem_notifier_invalidate_range_start so we shouldn't really block
258 	 * here. But this is ugly and fragile.
259 	 */
260 	down_read(&context->umem_rwsem);
261 	rbt_ib_umem_for_each_in_range(&context->umem_tree, start,
262 				      end,
263 				      invalidate_range_end_trampoline, true, NULL);
264 	up_read(&context->umem_rwsem);
265 	ib_ucontext_notifier_end_account(context);
266 }
267 
268 static const struct mmu_notifier_ops ib_umem_notifiers = {
269 	.release                    = ib_umem_notifier_release,
270 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
271 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
272 };
273 
ib_alloc_odp_umem(struct ib_ucontext * context,unsigned long addr,size_t size)274 struct ib_umem *ib_alloc_odp_umem(struct ib_ucontext *context,
275 				  unsigned long addr,
276 				  size_t size)
277 {
278 	struct ib_umem *umem;
279 	struct ib_umem_odp *odp_data;
280 	int pages = size >> PAGE_SHIFT;
281 	int ret;
282 
283 	umem = kzalloc(sizeof(*umem), GFP_KERNEL);
284 	if (!umem)
285 		return ERR_PTR(-ENOMEM);
286 
287 	umem->context    = context;
288 	umem->length     = size;
289 	umem->address    = addr;
290 	umem->page_shift = PAGE_SHIFT;
291 	umem->writable   = 1;
292 
293 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
294 	if (!odp_data) {
295 		ret = -ENOMEM;
296 		goto out_umem;
297 	}
298 	odp_data->umem = umem;
299 
300 	mutex_init(&odp_data->umem_mutex);
301 	init_completion(&odp_data->notifier_completion);
302 
303 	odp_data->page_list =
304 		vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
305 	if (!odp_data->page_list) {
306 		ret = -ENOMEM;
307 		goto out_odp_data;
308 	}
309 
310 	odp_data->dma_list =
311 		vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
312 	if (!odp_data->dma_list) {
313 		ret = -ENOMEM;
314 		goto out_page_list;
315 	}
316 
317 	down_write(&context->umem_rwsem);
318 	context->odp_mrs_count++;
319 	rbt_ib_umem_insert(&odp_data->interval_tree, &context->umem_tree);
320 	if (likely(!atomic_read(&context->notifier_count)))
321 		odp_data->mn_counters_active = true;
322 	else
323 		list_add(&odp_data->no_private_counters,
324 			 &context->no_private_counters);
325 	up_write(&context->umem_rwsem);
326 
327 	umem->odp_data = odp_data;
328 
329 	return umem;
330 
331 out_page_list:
332 	vfree(odp_data->page_list);
333 out_odp_data:
334 	kfree(odp_data);
335 out_umem:
336 	kfree(umem);
337 	return ERR_PTR(ret);
338 }
339 EXPORT_SYMBOL(ib_alloc_odp_umem);
340 
ib_umem_odp_get(struct ib_ucontext * context,struct ib_umem * umem,int access)341 int ib_umem_odp_get(struct ib_ucontext *context, struct ib_umem *umem,
342 		    int access)
343 {
344 	int ret_val;
345 	struct pid *our_pid;
346 	struct mm_struct *mm = get_task_mm(current);
347 
348 	if (!mm)
349 		return -EINVAL;
350 
351 	if (access & IB_ACCESS_HUGETLB) {
352 		struct vm_area_struct *vma;
353 		struct hstate *h;
354 
355 		down_read(&mm->mmap_sem);
356 		vma = find_vma(mm, ib_umem_start(umem));
357 		if (!vma || !is_vm_hugetlb_page(vma)) {
358 			up_read(&mm->mmap_sem);
359 			return -EINVAL;
360 		}
361 		h = hstate_vma(vma);
362 		umem->page_shift = huge_page_shift(h);
363 		up_read(&mm->mmap_sem);
364 		umem->hugetlb = 1;
365 	} else {
366 		umem->hugetlb = 0;
367 	}
368 
369 	/* Prevent creating ODP MRs in child processes */
370 	rcu_read_lock();
371 	our_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
372 	rcu_read_unlock();
373 	put_pid(our_pid);
374 	if (context->tgid != our_pid) {
375 		ret_val = -EINVAL;
376 		goto out_mm;
377 	}
378 
379 	umem->odp_data = kzalloc(sizeof(*umem->odp_data), GFP_KERNEL);
380 	if (!umem->odp_data) {
381 		ret_val = -ENOMEM;
382 		goto out_mm;
383 	}
384 	umem->odp_data->umem = umem;
385 
386 	mutex_init(&umem->odp_data->umem_mutex);
387 
388 	init_completion(&umem->odp_data->notifier_completion);
389 
390 	if (ib_umem_num_pages(umem)) {
391 		umem->odp_data->page_list =
392 			vzalloc(array_size(sizeof(*umem->odp_data->page_list),
393 					   ib_umem_num_pages(umem)));
394 		if (!umem->odp_data->page_list) {
395 			ret_val = -ENOMEM;
396 			goto out_odp_data;
397 		}
398 
399 		umem->odp_data->dma_list =
400 			vzalloc(array_size(sizeof(*umem->odp_data->dma_list),
401 					   ib_umem_num_pages(umem)));
402 		if (!umem->odp_data->dma_list) {
403 			ret_val = -ENOMEM;
404 			goto out_page_list;
405 		}
406 	}
407 
408 	/*
409 	 * When using MMU notifiers, we will get a
410 	 * notification before the "current" task (and MM) is
411 	 * destroyed. We use the umem_rwsem semaphore to synchronize.
412 	 */
413 	down_write(&context->umem_rwsem);
414 	context->odp_mrs_count++;
415 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
416 		rbt_ib_umem_insert(&umem->odp_data->interval_tree,
417 				   &context->umem_tree);
418 	if (likely(!atomic_read(&context->notifier_count)) ||
419 	    context->odp_mrs_count == 1)
420 		umem->odp_data->mn_counters_active = true;
421 	else
422 		list_add(&umem->odp_data->no_private_counters,
423 			 &context->no_private_counters);
424 	downgrade_write(&context->umem_rwsem);
425 
426 	if (context->odp_mrs_count == 1) {
427 		/*
428 		 * Note that at this point, no MMU notifier is running
429 		 * for this context!
430 		 */
431 		atomic_set(&context->notifier_count, 0);
432 		INIT_HLIST_NODE(&context->mn.hlist);
433 		context->mn.ops = &ib_umem_notifiers;
434 		/*
435 		 * Lock-dep detects a false positive for mmap_sem vs.
436 		 * umem_rwsem, due to not grasping downgrade_write correctly.
437 		 */
438 		lockdep_off();
439 		ret_val = mmu_notifier_register(&context->mn, mm);
440 		lockdep_on();
441 		if (ret_val) {
442 			pr_err("Failed to register mmu_notifier %d\n", ret_val);
443 			ret_val = -EBUSY;
444 			goto out_mutex;
445 		}
446 	}
447 
448 	up_read(&context->umem_rwsem);
449 
450 	/*
451 	 * Note that doing an mmput can cause a notifier for the relevant mm.
452 	 * If the notifier is called while we hold the umem_rwsem, this will
453 	 * cause a deadlock. Therefore, we release the reference only after we
454 	 * released the semaphore.
455 	 */
456 	mmput(mm);
457 	return 0;
458 
459 out_mutex:
460 	up_read(&context->umem_rwsem);
461 	vfree(umem->odp_data->dma_list);
462 out_page_list:
463 	vfree(umem->odp_data->page_list);
464 out_odp_data:
465 	kfree(umem->odp_data);
466 out_mm:
467 	mmput(mm);
468 	return ret_val;
469 }
470 
ib_umem_odp_release(struct ib_umem * umem)471 void ib_umem_odp_release(struct ib_umem *umem)
472 {
473 	struct ib_ucontext *context = umem->context;
474 
475 	/*
476 	 * Ensure that no more pages are mapped in the umem.
477 	 *
478 	 * It is the driver's responsibility to ensure, before calling us,
479 	 * that the hardware will not attempt to access the MR any more.
480 	 */
481 	ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem),
482 				    ib_umem_end(umem));
483 
484 	down_write(&context->umem_rwsem);
485 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
486 		rbt_ib_umem_remove(&umem->odp_data->interval_tree,
487 				   &context->umem_tree);
488 	context->odp_mrs_count--;
489 	if (!umem->odp_data->mn_counters_active) {
490 		list_del(&umem->odp_data->no_private_counters);
491 		complete_all(&umem->odp_data->notifier_completion);
492 	}
493 
494 	/*
495 	 * Downgrade the lock to a read lock. This ensures that the notifiers
496 	 * (who lock the mutex for reading) will be able to finish, and we
497 	 * will be able to enventually obtain the mmu notifiers SRCU. Note
498 	 * that since we are doing it atomically, no other user could register
499 	 * and unregister while we do the check.
500 	 */
501 	downgrade_write(&context->umem_rwsem);
502 	if (!context->odp_mrs_count) {
503 		struct task_struct *owning_process = NULL;
504 		struct mm_struct *owning_mm        = NULL;
505 
506 		owning_process = get_pid_task(context->tgid,
507 					      PIDTYPE_PID);
508 		if (owning_process == NULL)
509 			/*
510 			 * The process is already dead, notifier were removed
511 			 * already.
512 			 */
513 			goto out;
514 
515 		owning_mm = get_task_mm(owning_process);
516 		if (owning_mm == NULL)
517 			/*
518 			 * The process' mm is already dead, notifier were
519 			 * removed already.
520 			 */
521 			goto out_put_task;
522 		mmu_notifier_unregister(&context->mn, owning_mm);
523 
524 		mmput(owning_mm);
525 
526 out_put_task:
527 		put_task_struct(owning_process);
528 	}
529 out:
530 	up_read(&context->umem_rwsem);
531 
532 	vfree(umem->odp_data->dma_list);
533 	vfree(umem->odp_data->page_list);
534 	kfree(umem->odp_data);
535 	kfree(umem);
536 }
537 
538 /*
539  * Map for DMA and insert a single page into the on-demand paging page tables.
540  *
541  * @umem: the umem to insert the page to.
542  * @page_index: index in the umem to add the page to.
543  * @page: the page struct to map and add.
544  * @access_mask: access permissions needed for this page.
545  * @current_seq: sequence number for synchronization with invalidations.
546  *               the sequence number is taken from
547  *               umem->odp_data->notifiers_seq.
548  *
549  * The function returns -EFAULT if the DMA mapping operation fails. It returns
550  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
551  *
552  * The page is released via put_page even if the operation failed. For
553  * on-demand pinning, the page is released whenever it isn't stored in the
554  * umem.
555  */
ib_umem_odp_map_dma_single_page(struct ib_umem * umem,int page_index,struct page * page,u64 access_mask,unsigned long current_seq)556 static int ib_umem_odp_map_dma_single_page(
557 		struct ib_umem *umem,
558 		int page_index,
559 		struct page *page,
560 		u64 access_mask,
561 		unsigned long current_seq)
562 {
563 	struct ib_device *dev = umem->context->device;
564 	dma_addr_t dma_addr;
565 	int stored_page = 0;
566 	int remove_existing_mapping = 0;
567 	int ret = 0;
568 
569 	/*
570 	 * Note: we avoid writing if seq is different from the initial seq, to
571 	 * handle case of a racing notifier. This check also allows us to bail
572 	 * early if we have a notifier running in parallel with us.
573 	 */
574 	if (ib_umem_mmu_notifier_retry(umem, current_seq)) {
575 		ret = -EAGAIN;
576 		goto out;
577 	}
578 	if (!(umem->odp_data->dma_list[page_index])) {
579 		dma_addr = ib_dma_map_page(dev,
580 					   page,
581 					   0, BIT(umem->page_shift),
582 					   DMA_BIDIRECTIONAL);
583 		if (ib_dma_mapping_error(dev, dma_addr)) {
584 			ret = -EFAULT;
585 			goto out;
586 		}
587 		umem->odp_data->dma_list[page_index] = dma_addr | access_mask;
588 		umem->odp_data->page_list[page_index] = page;
589 		umem->npages++;
590 		stored_page = 1;
591 	} else if (umem->odp_data->page_list[page_index] == page) {
592 		umem->odp_data->dma_list[page_index] |= access_mask;
593 	} else {
594 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
595 		       umem->odp_data->page_list[page_index], page);
596 		/* Better remove the mapping now, to prevent any further
597 		 * damage. */
598 		remove_existing_mapping = 1;
599 	}
600 
601 out:
602 	/* On Demand Paging - avoid pinning the page */
603 	if (umem->context->invalidate_range || !stored_page)
604 		put_page(page);
605 
606 	if (remove_existing_mapping && umem->context->invalidate_range) {
607 		invalidate_page_trampoline(
608 			umem,
609 			ib_umem_start(umem) + (page_index >> umem->page_shift),
610 			ib_umem_start(umem) + ((page_index + 1) >>
611 					       umem->page_shift),
612 			NULL);
613 		ret = -EAGAIN;
614 	}
615 
616 	return ret;
617 }
618 
619 /**
620  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
621  *
622  * Pins the range of pages passed in the argument, and maps them to
623  * DMA addresses. The DMA addresses of the mapped pages is updated in
624  * umem->odp_data->dma_list.
625  *
626  * Returns the number of pages mapped in success, negative error code
627  * for failure.
628  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
629  * the function from completing its task.
630  * An -ENOENT error code indicates that userspace process is being terminated
631  * and mm was already destroyed.
632  * @umem: the umem to map and pin
633  * @user_virt: the address from which we need to map.
634  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
635  *        bigger due to alignment, and may also be smaller in case of an error
636  *        pinning or mapping a page. The actual pages mapped is returned in
637  *        the return value.
638  * @access_mask: bit mask of the requested access permissions for the given
639  *               range.
640  * @current_seq: the MMU notifiers sequance value for synchronization with
641  *               invalidations. the sequance number is read from
642  *               umem->odp_data->notifiers_seq before calling this function
643  */
ib_umem_odp_map_dma_pages(struct ib_umem * umem,u64 user_virt,u64 bcnt,u64 access_mask,unsigned long current_seq)644 int ib_umem_odp_map_dma_pages(struct ib_umem *umem, u64 user_virt, u64 bcnt,
645 			      u64 access_mask, unsigned long current_seq)
646 {
647 	struct task_struct *owning_process  = NULL;
648 	struct mm_struct   *owning_mm       = NULL;
649 	struct page       **local_page_list = NULL;
650 	u64 page_mask, off;
651 	int j, k, ret = 0, start_idx, npages = 0, page_shift;
652 	unsigned int flags = 0;
653 	phys_addr_t p = 0;
654 
655 	if (access_mask == 0)
656 		return -EINVAL;
657 
658 	if (user_virt < ib_umem_start(umem) ||
659 	    user_virt + bcnt > ib_umem_end(umem))
660 		return -EFAULT;
661 
662 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
663 	if (!local_page_list)
664 		return -ENOMEM;
665 
666 	page_shift = umem->page_shift;
667 	page_mask = ~(BIT(page_shift) - 1);
668 	off = user_virt & (~page_mask);
669 	user_virt = user_virt & page_mask;
670 	bcnt += off; /* Charge for the first page offset as well. */
671 
672 	owning_process = get_pid_task(umem->context->tgid, PIDTYPE_PID);
673 	if (owning_process == NULL) {
674 		ret = -EINVAL;
675 		goto out_no_task;
676 	}
677 
678 	owning_mm = get_task_mm(owning_process);
679 	if (owning_mm == NULL) {
680 		ret = -ENOENT;
681 		goto out_put_task;
682 	}
683 
684 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
685 		flags |= FOLL_WRITE;
686 
687 	start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
688 	k = start_idx;
689 
690 	while (bcnt > 0) {
691 		const size_t gup_num_pages = min_t(size_t,
692 				(bcnt + BIT(page_shift) - 1) >> page_shift,
693 				PAGE_SIZE / sizeof(struct page *));
694 
695 		down_read(&owning_mm->mmap_sem);
696 		/*
697 		 * Note: this might result in redundent page getting. We can
698 		 * avoid this by checking dma_list to be 0 before calling
699 		 * get_user_pages. However, this make the code much more
700 		 * complex (and doesn't gain us much performance in most use
701 		 * cases).
702 		 */
703 		npages = get_user_pages_remote(owning_process, owning_mm,
704 				user_virt, gup_num_pages,
705 				flags, local_page_list, NULL, NULL);
706 		up_read(&owning_mm->mmap_sem);
707 
708 		if (npages < 0)
709 			break;
710 
711 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
712 		mutex_lock(&umem->odp_data->umem_mutex);
713 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
714 			if (user_virt & ~page_mask) {
715 				p += PAGE_SIZE;
716 				if (page_to_phys(local_page_list[j]) != p) {
717 					ret = -EFAULT;
718 					break;
719 				}
720 				put_page(local_page_list[j]);
721 				continue;
722 			}
723 
724 			ret = ib_umem_odp_map_dma_single_page(
725 					umem, k, local_page_list[j],
726 					access_mask, current_seq);
727 			if (ret < 0)
728 				break;
729 
730 			p = page_to_phys(local_page_list[j]);
731 			k++;
732 		}
733 		mutex_unlock(&umem->odp_data->umem_mutex);
734 
735 		if (ret < 0) {
736 			/* Release left over pages when handling errors. */
737 			for (++j; j < npages; ++j)
738 				put_page(local_page_list[j]);
739 			break;
740 		}
741 	}
742 
743 	if (ret >= 0) {
744 		if (npages < 0 && k == start_idx)
745 			ret = npages;
746 		else
747 			ret = k - start_idx;
748 	}
749 
750 	mmput(owning_mm);
751 out_put_task:
752 	put_task_struct(owning_process);
753 out_no_task:
754 	free_page((unsigned long)local_page_list);
755 	return ret;
756 }
757 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
758 
ib_umem_odp_unmap_dma_pages(struct ib_umem * umem,u64 virt,u64 bound)759 void ib_umem_odp_unmap_dma_pages(struct ib_umem *umem, u64 virt,
760 				 u64 bound)
761 {
762 	int idx;
763 	u64 addr;
764 	struct ib_device *dev = umem->context->device;
765 
766 	virt  = max_t(u64, virt,  ib_umem_start(umem));
767 	bound = min_t(u64, bound, ib_umem_end(umem));
768 	/* Note that during the run of this function, the
769 	 * notifiers_count of the MR is > 0, preventing any racing
770 	 * faults from completion. We might be racing with other
771 	 * invalidations, so we must make sure we free each page only
772 	 * once. */
773 	mutex_lock(&umem->odp_data->umem_mutex);
774 	for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
775 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
776 		if (umem->odp_data->page_list[idx]) {
777 			struct page *page = umem->odp_data->page_list[idx];
778 			dma_addr_t dma = umem->odp_data->dma_list[idx];
779 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
780 
781 			WARN_ON(!dma_addr);
782 
783 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
784 					  DMA_BIDIRECTIONAL);
785 			if (dma & ODP_WRITE_ALLOWED_BIT) {
786 				struct page *head_page = compound_head(page);
787 				/*
788 				 * set_page_dirty prefers being called with
789 				 * the page lock. However, MMU notifiers are
790 				 * called sometimes with and sometimes without
791 				 * the lock. We rely on the umem_mutex instead
792 				 * to prevent other mmu notifiers from
793 				 * continuing and allowing the page mapping to
794 				 * be removed.
795 				 */
796 				set_page_dirty(head_page);
797 			}
798 			/* on demand pinning support */
799 			if (!umem->context->invalidate_range)
800 				put_page(page);
801 			umem->odp_data->page_list[idx] = NULL;
802 			umem->odp_data->dma_list[idx] = 0;
803 			umem->npages--;
804 		}
805 	}
806 	mutex_unlock(&umem->odp_data->umem_mutex);
807 }
808 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
809 
810 /* @last is not a part of the interval. See comment for function
811  * node_last.
812  */
rbt_ib_umem_for_each_in_range(struct rb_root_cached * root,u64 start,u64 last,umem_call_back cb,bool blockable,void * cookie)813 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
814 				  u64 start, u64 last,
815 				  umem_call_back cb,
816 				  bool blockable,
817 				  void *cookie)
818 {
819 	int ret_val = 0;
820 	struct umem_odp_node *node, *next;
821 	struct ib_umem_odp *umem;
822 
823 	if (unlikely(start == last))
824 		return ret_val;
825 
826 	for (node = rbt_ib_umem_iter_first(root, start, last - 1);
827 			node; node = next) {
828 		/* TODO move the blockable decision up to the callback */
829 		if (!blockable)
830 			return -EAGAIN;
831 		next = rbt_ib_umem_iter_next(node, start, last - 1);
832 		umem = container_of(node, struct ib_umem_odp, interval_tree);
833 		ret_val = cb(umem->umem, start, last, cookie) || ret_val;
834 	}
835 
836 	return ret_val;
837 }
838 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
839 
rbt_ib_umem_lookup(struct rb_root_cached * root,u64 addr,u64 length)840 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
841 				       u64 addr, u64 length)
842 {
843 	struct umem_odp_node *node;
844 
845 	node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
846 	if (node)
847 		return container_of(node, struct ib_umem_odp, interval_tree);
848 	return NULL;
849 
850 }
851 EXPORT_SYMBOL(rbt_ib_umem_lookup);
852