1 /*
2 * Performance events ring-buffer code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 #include <linux/nospec.h>
18
19 #include "internal.h"
20
perf_output_wakeup(struct perf_output_handle * handle)21 static void perf_output_wakeup(struct perf_output_handle *handle)
22 {
23 atomic_set(&handle->rb->poll, EPOLLIN);
24
25 handle->event->pending_wakeup = 1;
26 irq_work_queue(&handle->event->pending);
27 }
28
29 /*
30 * We need to ensure a later event_id doesn't publish a head when a former
31 * event isn't done writing. However since we need to deal with NMIs we
32 * cannot fully serialize things.
33 *
34 * We only publish the head (and generate a wakeup) when the outer-most
35 * event completes.
36 */
perf_output_get_handle(struct perf_output_handle * handle)37 static void perf_output_get_handle(struct perf_output_handle *handle)
38 {
39 struct ring_buffer *rb = handle->rb;
40
41 preempt_disable();
42 local_inc(&rb->nest);
43 handle->wakeup = local_read(&rb->wakeup);
44 }
45
perf_output_put_handle(struct perf_output_handle * handle)46 static void perf_output_put_handle(struct perf_output_handle *handle)
47 {
48 struct ring_buffer *rb = handle->rb;
49 unsigned long head;
50
51 again:
52 head = local_read(&rb->head);
53
54 /*
55 * IRQ/NMI can happen here, which means we can miss a head update.
56 */
57
58 if (!local_dec_and_test(&rb->nest))
59 goto out;
60
61 /*
62 * Since the mmap() consumer (userspace) can run on a different CPU:
63 *
64 * kernel user
65 *
66 * if (LOAD ->data_tail) { LOAD ->data_head
67 * (A) smp_rmb() (C)
68 * STORE $data LOAD $data
69 * smp_wmb() (B) smp_mb() (D)
70 * STORE ->data_head STORE ->data_tail
71 * }
72 *
73 * Where A pairs with D, and B pairs with C.
74 *
75 * In our case (A) is a control dependency that separates the load of
76 * the ->data_tail and the stores of $data. In case ->data_tail
77 * indicates there is no room in the buffer to store $data we do not.
78 *
79 * D needs to be a full barrier since it separates the data READ
80 * from the tail WRITE.
81 *
82 * For B a WMB is sufficient since it separates two WRITEs, and for C
83 * an RMB is sufficient since it separates two READs.
84 *
85 * See perf_output_begin().
86 */
87 smp_wmb(); /* B, matches C */
88 rb->user_page->data_head = head;
89
90 /*
91 * Now check if we missed an update -- rely on previous implied
92 * compiler barriers to force a re-read.
93 */
94 if (unlikely(head != local_read(&rb->head))) {
95 local_inc(&rb->nest);
96 goto again;
97 }
98
99 if (handle->wakeup != local_read(&rb->wakeup))
100 perf_output_wakeup(handle);
101
102 out:
103 preempt_enable();
104 }
105
106 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)107 ring_buffer_has_space(unsigned long head, unsigned long tail,
108 unsigned long data_size, unsigned int size,
109 bool backward)
110 {
111 if (!backward)
112 return CIRC_SPACE(head, tail, data_size) >= size;
113 else
114 return CIRC_SPACE(tail, head, data_size) >= size;
115 }
116
117 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size,bool backward)118 __perf_output_begin(struct perf_output_handle *handle,
119 struct perf_event *event, unsigned int size,
120 bool backward)
121 {
122 struct ring_buffer *rb;
123 unsigned long tail, offset, head;
124 int have_lost, page_shift;
125 struct {
126 struct perf_event_header header;
127 u64 id;
128 u64 lost;
129 } lost_event;
130
131 rcu_read_lock();
132 /*
133 * For inherited events we send all the output towards the parent.
134 */
135 if (event->parent)
136 event = event->parent;
137
138 rb = rcu_dereference(event->rb);
139 if (unlikely(!rb))
140 goto out;
141
142 if (unlikely(rb->paused)) {
143 if (rb->nr_pages)
144 local_inc(&rb->lost);
145 goto out;
146 }
147
148 handle->rb = rb;
149 handle->event = event;
150
151 have_lost = local_read(&rb->lost);
152 if (unlikely(have_lost)) {
153 size += sizeof(lost_event);
154 if (event->attr.sample_id_all)
155 size += event->id_header_size;
156 }
157
158 perf_output_get_handle(handle);
159
160 do {
161 tail = READ_ONCE(rb->user_page->data_tail);
162 offset = head = local_read(&rb->head);
163 if (!rb->overwrite) {
164 if (unlikely(!ring_buffer_has_space(head, tail,
165 perf_data_size(rb),
166 size, backward)))
167 goto fail;
168 }
169
170 /*
171 * The above forms a control dependency barrier separating the
172 * @tail load above from the data stores below. Since the @tail
173 * load is required to compute the branch to fail below.
174 *
175 * A, matches D; the full memory barrier userspace SHOULD issue
176 * after reading the data and before storing the new tail
177 * position.
178 *
179 * See perf_output_put_handle().
180 */
181
182 if (!backward)
183 head += size;
184 else
185 head -= size;
186 } while (local_cmpxchg(&rb->head, offset, head) != offset);
187
188 if (backward) {
189 offset = head;
190 head = (u64)(-head);
191 }
192
193 /*
194 * We rely on the implied barrier() by local_cmpxchg() to ensure
195 * none of the data stores below can be lifted up by the compiler.
196 */
197
198 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
199 local_add(rb->watermark, &rb->wakeup);
200
201 page_shift = PAGE_SHIFT + page_order(rb);
202
203 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
204 offset &= (1UL << page_shift) - 1;
205 handle->addr = rb->data_pages[handle->page] + offset;
206 handle->size = (1UL << page_shift) - offset;
207
208 if (unlikely(have_lost)) {
209 struct perf_sample_data sample_data;
210
211 lost_event.header.size = sizeof(lost_event);
212 lost_event.header.type = PERF_RECORD_LOST;
213 lost_event.header.misc = 0;
214 lost_event.id = event->id;
215 lost_event.lost = local_xchg(&rb->lost, 0);
216
217 perf_event_header__init_id(&lost_event.header,
218 &sample_data, event);
219 perf_output_put(handle, lost_event);
220 perf_event__output_id_sample(event, handle, &sample_data);
221 }
222
223 return 0;
224
225 fail:
226 local_inc(&rb->lost);
227 perf_output_put_handle(handle);
228 out:
229 rcu_read_unlock();
230
231 return -ENOSPC;
232 }
233
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)234 int perf_output_begin_forward(struct perf_output_handle *handle,
235 struct perf_event *event, unsigned int size)
236 {
237 return __perf_output_begin(handle, event, size, false);
238 }
239
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)240 int perf_output_begin_backward(struct perf_output_handle *handle,
241 struct perf_event *event, unsigned int size)
242 {
243 return __perf_output_begin(handle, event, size, true);
244 }
245
perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)246 int perf_output_begin(struct perf_output_handle *handle,
247 struct perf_event *event, unsigned int size)
248 {
249
250 return __perf_output_begin(handle, event, size,
251 unlikely(is_write_backward(event)));
252 }
253
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)254 unsigned int perf_output_copy(struct perf_output_handle *handle,
255 const void *buf, unsigned int len)
256 {
257 return __output_copy(handle, buf, len);
258 }
259
perf_output_skip(struct perf_output_handle * handle,unsigned int len)260 unsigned int perf_output_skip(struct perf_output_handle *handle,
261 unsigned int len)
262 {
263 return __output_skip(handle, NULL, len);
264 }
265
perf_output_end(struct perf_output_handle * handle)266 void perf_output_end(struct perf_output_handle *handle)
267 {
268 perf_output_put_handle(handle);
269 rcu_read_unlock();
270 }
271
272 static void
ring_buffer_init(struct ring_buffer * rb,long watermark,int flags)273 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
274 {
275 long max_size = perf_data_size(rb);
276
277 if (watermark)
278 rb->watermark = min(max_size, watermark);
279
280 if (!rb->watermark)
281 rb->watermark = max_size / 2;
282
283 if (flags & RING_BUFFER_WRITABLE)
284 rb->overwrite = 0;
285 else
286 rb->overwrite = 1;
287
288 atomic_set(&rb->refcount, 1);
289
290 INIT_LIST_HEAD(&rb->event_list);
291 spin_lock_init(&rb->event_lock);
292
293 /*
294 * perf_output_begin() only checks rb->paused, therefore
295 * rb->paused must be true if we have no pages for output.
296 */
297 if (!rb->nr_pages)
298 rb->paused = 1;
299 }
300
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)301 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
302 {
303 /*
304 * OVERWRITE is determined by perf_aux_output_end() and can't
305 * be passed in directly.
306 */
307 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
308 return;
309
310 handle->aux_flags |= flags;
311 }
312 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
313
314 /*
315 * This is called before hardware starts writing to the AUX area to
316 * obtain an output handle and make sure there's room in the buffer.
317 * When the capture completes, call perf_aux_output_end() to commit
318 * the recorded data to the buffer.
319 *
320 * The ordering is similar to that of perf_output_{begin,end}, with
321 * the exception of (B), which should be taken care of by the pmu
322 * driver, since ordering rules will differ depending on hardware.
323 *
324 * Call this from pmu::start(); see the comment in perf_aux_output_end()
325 * about its use in pmu callbacks. Both can also be called from the PMI
326 * handler if needed.
327 */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)328 void *perf_aux_output_begin(struct perf_output_handle *handle,
329 struct perf_event *event)
330 {
331 struct perf_event *output_event = event;
332 unsigned long aux_head, aux_tail;
333 struct ring_buffer *rb;
334
335 if (output_event->parent)
336 output_event = output_event->parent;
337
338 /*
339 * Since this will typically be open across pmu::add/pmu::del, we
340 * grab ring_buffer's refcount instead of holding rcu read lock
341 * to make sure it doesn't disappear under us.
342 */
343 rb = ring_buffer_get(output_event);
344 if (!rb)
345 return NULL;
346
347 if (!rb_has_aux(rb))
348 goto err;
349
350 /*
351 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
352 * about to get freed, so we leave immediately.
353 *
354 * Checking rb::aux_mmap_count and rb::refcount has to be done in
355 * the same order, see perf_mmap_close. Otherwise we end up freeing
356 * aux pages in this path, which is a bug, because in_atomic().
357 */
358 if (!atomic_read(&rb->aux_mmap_count))
359 goto err;
360
361 if (!atomic_inc_not_zero(&rb->aux_refcount))
362 goto err;
363
364 /*
365 * Nesting is not supported for AUX area, make sure nested
366 * writers are caught early
367 */
368 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
369 goto err_put;
370
371 aux_head = rb->aux_head;
372
373 handle->rb = rb;
374 handle->event = event;
375 handle->head = aux_head;
376 handle->size = 0;
377 handle->aux_flags = 0;
378
379 /*
380 * In overwrite mode, AUX data stores do not depend on aux_tail,
381 * therefore (A) control dependency barrier does not exist. The
382 * (B) <-> (C) ordering is still observed by the pmu driver.
383 */
384 if (!rb->aux_overwrite) {
385 aux_tail = READ_ONCE(rb->user_page->aux_tail);
386 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
387 if (aux_head - aux_tail < perf_aux_size(rb))
388 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
389
390 /*
391 * handle->size computation depends on aux_tail load; this forms a
392 * control dependency barrier separating aux_tail load from aux data
393 * store that will be enabled on successful return
394 */
395 if (!handle->size) { /* A, matches D */
396 event->pending_disable = 1;
397 perf_output_wakeup(handle);
398 local_set(&rb->aux_nest, 0);
399 goto err_put;
400 }
401 }
402
403 return handle->rb->aux_priv;
404
405 err_put:
406 /* can't be last */
407 rb_free_aux(rb);
408
409 err:
410 ring_buffer_put(rb);
411 handle->event = NULL;
412
413 return NULL;
414 }
415 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
416
rb_need_aux_wakeup(struct ring_buffer * rb)417 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb)
418 {
419 if (rb->aux_overwrite)
420 return false;
421
422 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
423 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
424 return true;
425 }
426
427 return false;
428 }
429
430 /*
431 * Commit the data written by hardware into the ring buffer by adjusting
432 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
433 * pmu driver's responsibility to observe ordering rules of the hardware,
434 * so that all the data is externally visible before this is called.
435 *
436 * Note: this has to be called from pmu::stop() callback, as the assumption
437 * of the AUX buffer management code is that after pmu::stop(), the AUX
438 * transaction must be stopped and therefore drop the AUX reference count.
439 */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)440 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
441 {
442 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
443 struct ring_buffer *rb = handle->rb;
444 unsigned long aux_head;
445
446 /* in overwrite mode, driver provides aux_head via handle */
447 if (rb->aux_overwrite) {
448 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
449
450 aux_head = handle->head;
451 rb->aux_head = aux_head;
452 } else {
453 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
454
455 aux_head = rb->aux_head;
456 rb->aux_head += size;
457 }
458
459 if (size || handle->aux_flags) {
460 /*
461 * Only send RECORD_AUX if we have something useful to communicate
462 */
463
464 perf_event_aux_event(handle->event, aux_head, size,
465 handle->aux_flags);
466 }
467
468 rb->user_page->aux_head = rb->aux_head;
469 if (rb_need_aux_wakeup(rb))
470 wakeup = true;
471
472 if (wakeup) {
473 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
474 handle->event->pending_disable = 1;
475 perf_output_wakeup(handle);
476 }
477
478 handle->event = NULL;
479
480 local_set(&rb->aux_nest, 0);
481 /* can't be last */
482 rb_free_aux(rb);
483 ring_buffer_put(rb);
484 }
485 EXPORT_SYMBOL_GPL(perf_aux_output_end);
486
487 /*
488 * Skip over a given number of bytes in the AUX buffer, due to, for example,
489 * hardware's alignment constraints.
490 */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)491 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
492 {
493 struct ring_buffer *rb = handle->rb;
494
495 if (size > handle->size)
496 return -ENOSPC;
497
498 rb->aux_head += size;
499
500 rb->user_page->aux_head = rb->aux_head;
501 if (rb_need_aux_wakeup(rb)) {
502 perf_output_wakeup(handle);
503 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
504 }
505
506 handle->head = rb->aux_head;
507 handle->size -= size;
508
509 return 0;
510 }
511 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
512
perf_get_aux(struct perf_output_handle * handle)513 void *perf_get_aux(struct perf_output_handle *handle)
514 {
515 /* this is only valid between perf_aux_output_begin and *_end */
516 if (!handle->event)
517 return NULL;
518
519 return handle->rb->aux_priv;
520 }
521 EXPORT_SYMBOL_GPL(perf_get_aux);
522
523 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
524
rb_alloc_aux_page(int node,int order)525 static struct page *rb_alloc_aux_page(int node, int order)
526 {
527 struct page *page;
528
529 if (order > MAX_ORDER)
530 order = MAX_ORDER;
531
532 do {
533 page = alloc_pages_node(node, PERF_AUX_GFP, order);
534 } while (!page && order--);
535
536 if (page && order) {
537 /*
538 * Communicate the allocation size to the driver:
539 * if we managed to secure a high-order allocation,
540 * set its first page's private to this order;
541 * !PagePrivate(page) means it's just a normal page.
542 */
543 split_page(page, order);
544 SetPagePrivate(page);
545 set_page_private(page, order);
546 }
547
548 return page;
549 }
550
rb_free_aux_page(struct ring_buffer * rb,int idx)551 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
552 {
553 struct page *page = virt_to_page(rb->aux_pages[idx]);
554
555 ClearPagePrivate(page);
556 page->mapping = NULL;
557 __free_page(page);
558 }
559
__rb_free_aux(struct ring_buffer * rb)560 static void __rb_free_aux(struct ring_buffer *rb)
561 {
562 int pg;
563
564 /*
565 * Should never happen, the last reference should be dropped from
566 * perf_mmap_close() path, which first stops aux transactions (which
567 * in turn are the atomic holders of aux_refcount) and then does the
568 * last rb_free_aux().
569 */
570 WARN_ON_ONCE(in_atomic());
571
572 if (rb->aux_priv) {
573 rb->free_aux(rb->aux_priv);
574 rb->free_aux = NULL;
575 rb->aux_priv = NULL;
576 }
577
578 if (rb->aux_nr_pages) {
579 for (pg = 0; pg < rb->aux_nr_pages; pg++)
580 rb_free_aux_page(rb, pg);
581
582 kfree(rb->aux_pages);
583 rb->aux_nr_pages = 0;
584 }
585 }
586
rb_alloc_aux(struct ring_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)587 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
588 pgoff_t pgoff, int nr_pages, long watermark, int flags)
589 {
590 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
591 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
592 int ret = -ENOMEM, max_order = 0;
593
594 if (!has_aux(event))
595 return -EOPNOTSUPP;
596
597 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
598 /*
599 * We need to start with the max_order that fits in nr_pages,
600 * not the other way around, hence ilog2() and not get_order.
601 */
602 max_order = ilog2(nr_pages);
603
604 /*
605 * PMU requests more than one contiguous chunks of memory
606 * for SW double buffering
607 */
608 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
609 !overwrite) {
610 if (!max_order)
611 return -EINVAL;
612
613 max_order--;
614 }
615 }
616
617 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
618 node);
619 if (!rb->aux_pages)
620 return -ENOMEM;
621
622 rb->free_aux = event->pmu->free_aux;
623 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
624 struct page *page;
625 int last, order;
626
627 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
628 page = rb_alloc_aux_page(node, order);
629 if (!page)
630 goto out;
631
632 for (last = rb->aux_nr_pages + (1 << page_private(page));
633 last > rb->aux_nr_pages; rb->aux_nr_pages++)
634 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
635 }
636
637 /*
638 * In overwrite mode, PMUs that don't support SG may not handle more
639 * than one contiguous allocation, since they rely on PMI to do double
640 * buffering. In this case, the entire buffer has to be one contiguous
641 * chunk.
642 */
643 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
644 overwrite) {
645 struct page *page = virt_to_page(rb->aux_pages[0]);
646
647 if (page_private(page) != max_order)
648 goto out;
649 }
650
651 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
652 overwrite);
653 if (!rb->aux_priv)
654 goto out;
655
656 ret = 0;
657
658 /*
659 * aux_pages (and pmu driver's private data, aux_priv) will be
660 * referenced in both producer's and consumer's contexts, thus
661 * we keep a refcount here to make sure either of the two can
662 * reference them safely.
663 */
664 atomic_set(&rb->aux_refcount, 1);
665
666 rb->aux_overwrite = overwrite;
667 rb->aux_watermark = watermark;
668
669 if (!rb->aux_watermark && !rb->aux_overwrite)
670 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
671
672 out:
673 if (!ret)
674 rb->aux_pgoff = pgoff;
675 else
676 __rb_free_aux(rb);
677
678 return ret;
679 }
680
rb_free_aux(struct ring_buffer * rb)681 void rb_free_aux(struct ring_buffer *rb)
682 {
683 if (atomic_dec_and_test(&rb->aux_refcount))
684 __rb_free_aux(rb);
685 }
686
687 #ifndef CONFIG_PERF_USE_VMALLOC
688
689 /*
690 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
691 */
692
693 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)694 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
695 {
696 if (pgoff > rb->nr_pages)
697 return NULL;
698
699 if (pgoff == 0)
700 return virt_to_page(rb->user_page);
701
702 return virt_to_page(rb->data_pages[pgoff - 1]);
703 }
704
perf_mmap_alloc_page(int cpu)705 static void *perf_mmap_alloc_page(int cpu)
706 {
707 struct page *page;
708 int node;
709
710 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
711 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
712 if (!page)
713 return NULL;
714
715 return page_address(page);
716 }
717
rb_alloc(int nr_pages,long watermark,int cpu,int flags)718 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
719 {
720 struct ring_buffer *rb;
721 unsigned long size;
722 int i;
723
724 size = sizeof(struct ring_buffer);
725 size += nr_pages * sizeof(void *);
726
727 rb = kzalloc(size, GFP_KERNEL);
728 if (!rb)
729 goto fail;
730
731 rb->user_page = perf_mmap_alloc_page(cpu);
732 if (!rb->user_page)
733 goto fail_user_page;
734
735 for (i = 0; i < nr_pages; i++) {
736 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
737 if (!rb->data_pages[i])
738 goto fail_data_pages;
739 }
740
741 rb->nr_pages = nr_pages;
742
743 ring_buffer_init(rb, watermark, flags);
744
745 return rb;
746
747 fail_data_pages:
748 for (i--; i >= 0; i--)
749 free_page((unsigned long)rb->data_pages[i]);
750
751 free_page((unsigned long)rb->user_page);
752
753 fail_user_page:
754 kfree(rb);
755
756 fail:
757 return NULL;
758 }
759
perf_mmap_free_page(unsigned long addr)760 static void perf_mmap_free_page(unsigned long addr)
761 {
762 struct page *page = virt_to_page((void *)addr);
763
764 page->mapping = NULL;
765 __free_page(page);
766 }
767
rb_free(struct ring_buffer * rb)768 void rb_free(struct ring_buffer *rb)
769 {
770 int i;
771
772 perf_mmap_free_page((unsigned long)rb->user_page);
773 for (i = 0; i < rb->nr_pages; i++)
774 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
775 kfree(rb);
776 }
777
778 #else
data_page_nr(struct ring_buffer * rb)779 static int data_page_nr(struct ring_buffer *rb)
780 {
781 return rb->nr_pages << page_order(rb);
782 }
783
784 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)785 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
786 {
787 /* The '>' counts in the user page. */
788 if (pgoff > data_page_nr(rb))
789 return NULL;
790
791 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
792 }
793
perf_mmap_unmark_page(void * addr)794 static void perf_mmap_unmark_page(void *addr)
795 {
796 struct page *page = vmalloc_to_page(addr);
797
798 page->mapping = NULL;
799 }
800
rb_free_work(struct work_struct * work)801 static void rb_free_work(struct work_struct *work)
802 {
803 struct ring_buffer *rb;
804 void *base;
805 int i, nr;
806
807 rb = container_of(work, struct ring_buffer, work);
808 nr = data_page_nr(rb);
809
810 base = rb->user_page;
811 /* The '<=' counts in the user page. */
812 for (i = 0; i <= nr; i++)
813 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
814
815 vfree(base);
816 kfree(rb);
817 }
818
rb_free(struct ring_buffer * rb)819 void rb_free(struct ring_buffer *rb)
820 {
821 schedule_work(&rb->work);
822 }
823
rb_alloc(int nr_pages,long watermark,int cpu,int flags)824 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
825 {
826 struct ring_buffer *rb;
827 unsigned long size;
828 void *all_buf;
829
830 size = sizeof(struct ring_buffer);
831 size += sizeof(void *);
832
833 rb = kzalloc(size, GFP_KERNEL);
834 if (!rb)
835 goto fail;
836
837 INIT_WORK(&rb->work, rb_free_work);
838
839 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
840 if (!all_buf)
841 goto fail_all_buf;
842
843 rb->user_page = all_buf;
844 rb->data_pages[0] = all_buf + PAGE_SIZE;
845 if (nr_pages) {
846 rb->nr_pages = 1;
847 rb->page_order = ilog2(nr_pages);
848 }
849
850 ring_buffer_init(rb, watermark, flags);
851
852 return rb;
853
854 fail_all_buf:
855 kfree(rb);
856
857 fail:
858 return NULL;
859 }
860
861 #endif
862
863 struct page *
perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)864 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
865 {
866 if (rb->aux_nr_pages) {
867 /* above AUX space */
868 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
869 return NULL;
870
871 /* AUX space */
872 if (pgoff >= rb->aux_pgoff) {
873 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
874 return virt_to_page(rb->aux_pages[aux_pgoff]);
875 }
876 }
877
878 return __perf_mmap_to_page(rb, pgoff);
879 }
880