1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * linux/percpu-defs.h - basic definitions for percpu areas
4  *
5  * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
6  *
7  * This file is separate from linux/percpu.h to avoid cyclic inclusion
8  * dependency from arch header files.  Only to be included from
9  * asm/percpu.h.
10  *
11  * This file includes macros necessary to declare percpu sections and
12  * variables, and definitions of percpu accessors and operations.  It
13  * should provide enough percpu features to arch header files even when
14  * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
15  */
16 
17 #ifndef _LINUX_PERCPU_DEFS_H
18 #define _LINUX_PERCPU_DEFS_H
19 
20 #ifdef CONFIG_SMP
21 
22 #ifdef MODULE
23 #define PER_CPU_SHARED_ALIGNED_SECTION ""
24 #define PER_CPU_ALIGNED_SECTION ""
25 #else
26 #define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
27 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
28 #endif
29 #define PER_CPU_FIRST_SECTION "..first"
30 
31 #else
32 
33 #define PER_CPU_SHARED_ALIGNED_SECTION ""
34 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
35 #define PER_CPU_FIRST_SECTION ""
36 
37 #endif
38 
39 /*
40  * Base implementations of per-CPU variable declarations and definitions, where
41  * the section in which the variable is to be placed is provided by the
42  * 'sec' argument.  This may be used to affect the parameters governing the
43  * variable's storage.
44  *
45  * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
46  * linkage errors occur due the compiler generating the wrong code to access
47  * that section.
48  */
49 #define __PCPU_ATTRS(sec)						\
50 	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
51 	PER_CPU_ATTRIBUTES
52 
53 #define __PCPU_DUMMY_ATTRS						\
54 	__attribute__((section(".discard"), unused))
55 
56 /*
57  * s390 and alpha modules require percpu variables to be defined as
58  * weak to force the compiler to generate GOT based external
59  * references for them.  This is necessary because percpu sections
60  * will be located outside of the usually addressable area.
61  *
62  * This definition puts the following two extra restrictions when
63  * defining percpu variables.
64  *
65  * 1. The symbol must be globally unique, even the static ones.
66  * 2. Static percpu variables cannot be defined inside a function.
67  *
68  * Archs which need weak percpu definitions should define
69  * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
70  *
71  * To ensure that the generic code observes the above two
72  * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
73  * definition is used for all cases.
74  */
75 #if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
76 /*
77  * __pcpu_scope_* dummy variable is used to enforce scope.  It
78  * receives the static modifier when it's used in front of
79  * DEFINE_PER_CPU() and will trigger build failure if
80  * DECLARE_PER_CPU() is used for the same variable.
81  *
82  * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
83  * such that hidden weak symbol collision, which will cause unrelated
84  * variables to share the same address, can be detected during build.
85  */
86 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
87 	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
88 	extern __PCPU_ATTRS(sec) __typeof__(type) name
89 
90 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
91 	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
92 	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
93 	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
94 	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
95 	__PCPU_ATTRS(sec) __weak __typeof__(type) name
96 #else
97 /*
98  * Normal declaration and definition macros.
99  */
100 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
101 	extern __PCPU_ATTRS(sec) __typeof__(type) name
102 
103 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
104 	__PCPU_ATTRS(sec) __typeof__(type) name
105 #endif
106 
107 /*
108  * Variant on the per-CPU variable declaration/definition theme used for
109  * ordinary per-CPU variables.
110  */
111 #define DECLARE_PER_CPU(type, name)					\
112 	DECLARE_PER_CPU_SECTION(type, name, "")
113 
114 #define DEFINE_PER_CPU(type, name)					\
115 	DEFINE_PER_CPU_SECTION(type, name, "")
116 
117 /*
118  * Declaration/definition used for per-CPU variables that must come first in
119  * the set of variables.
120  */
121 #define DECLARE_PER_CPU_FIRST(type, name)				\
122 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
123 
124 #define DEFINE_PER_CPU_FIRST(type, name)				\
125 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
126 
127 /*
128  * Declaration/definition used for per-CPU variables that must be cacheline
129  * aligned under SMP conditions so that, whilst a particular instance of the
130  * data corresponds to a particular CPU, inefficiencies due to direct access by
131  * other CPUs are reduced by preventing the data from unnecessarily spanning
132  * cachelines.
133  *
134  * An example of this would be statistical data, where each CPU's set of data
135  * is updated by that CPU alone, but the data from across all CPUs is collated
136  * by a CPU processing a read from a proc file.
137  */
138 #define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
139 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
140 	____cacheline_aligned_in_smp
141 
142 #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
143 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
144 	____cacheline_aligned_in_smp
145 
146 #define DECLARE_PER_CPU_ALIGNED(type, name)				\
147 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
148 	____cacheline_aligned
149 
150 #define DEFINE_PER_CPU_ALIGNED(type, name)				\
151 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
152 	____cacheline_aligned
153 
154 /*
155  * Declaration/definition used for per-CPU variables that must be page aligned.
156  */
157 #define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
158 	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
159 	__aligned(PAGE_SIZE)
160 
161 #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
162 	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
163 	__aligned(PAGE_SIZE)
164 
165 /*
166  * Declaration/definition used for per-CPU variables that must be read mostly.
167  */
168 #define DECLARE_PER_CPU_READ_MOSTLY(type, name)			\
169 	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
170 
171 #define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
172 	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
173 
174 /*
175  * Declaration/definition used for per-CPU variables that should be accessed
176  * as decrypted when memory encryption is enabled in the guest.
177  */
178 #if defined(CONFIG_VIRTUALIZATION) && defined(CONFIG_AMD_MEM_ENCRYPT)
179 
180 #define DECLARE_PER_CPU_DECRYPTED(type, name)				\
181 	DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
182 
183 #define DEFINE_PER_CPU_DECRYPTED(type, name)				\
184 	DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
185 #else
186 #define DEFINE_PER_CPU_DECRYPTED(type, name)	DEFINE_PER_CPU(type, name)
187 #endif
188 
189 /*
190  * Intermodule exports for per-CPU variables.  sparse forgets about
191  * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
192  * noop if __CHECKER__.
193  */
194 #ifndef __CHECKER__
195 #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
196 #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
197 #else
198 #define EXPORT_PER_CPU_SYMBOL(var)
199 #define EXPORT_PER_CPU_SYMBOL_GPL(var)
200 #endif
201 
202 /*
203  * Accessors and operations.
204  */
205 #ifndef __ASSEMBLY__
206 
207 /*
208  * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
209  * @ptr and is invoked once before a percpu area is accessed by all
210  * accessors and operations.  This is performed in the generic part of
211  * percpu and arch overrides don't need to worry about it; however, if an
212  * arch wants to implement an arch-specific percpu accessor or operation,
213  * it may use __verify_pcpu_ptr() to verify the parameters.
214  *
215  * + 0 is required in order to convert the pointer type from a
216  * potential array type to a pointer to a single item of the array.
217  */
218 #define __verify_pcpu_ptr(ptr)						\
219 do {									\
220 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
221 	(void)__vpp_verify;						\
222 } while (0)
223 
224 #ifdef CONFIG_SMP
225 
226 /*
227  * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
228  * to prevent the compiler from making incorrect assumptions about the
229  * pointer value.  The weird cast keeps both GCC and sparse happy.
230  */
231 #define SHIFT_PERCPU_PTR(__p, __offset)					\
232 	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
233 
234 #define per_cpu_ptr(ptr, cpu)						\
235 ({									\
236 	__verify_pcpu_ptr(ptr);						\
237 	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
238 })
239 
240 #define raw_cpu_ptr(ptr)						\
241 ({									\
242 	__verify_pcpu_ptr(ptr);						\
243 	arch_raw_cpu_ptr(ptr);						\
244 })
245 
246 #ifdef CONFIG_DEBUG_PREEMPT
247 #define this_cpu_ptr(ptr)						\
248 ({									\
249 	__verify_pcpu_ptr(ptr);						\
250 	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
251 })
252 #else
253 #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
254 #endif
255 
256 #else	/* CONFIG_SMP */
257 
258 #define VERIFY_PERCPU_PTR(__p)						\
259 ({									\
260 	__verify_pcpu_ptr(__p);						\
261 	(typeof(*(__p)) __kernel __force *)(__p);			\
262 })
263 
264 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
265 #define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
266 #define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
267 
268 #endif	/* CONFIG_SMP */
269 
270 #define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
271 
272 /*
273  * Must be an lvalue. Since @var must be a simple identifier,
274  * we force a syntax error here if it isn't.
275  */
276 #define get_cpu_var(var)						\
277 (*({									\
278 	preempt_disable();						\
279 	this_cpu_ptr(&var);						\
280 }))
281 
282 /*
283  * The weird & is necessary because sparse considers (void)(var) to be
284  * a direct dereference of percpu variable (var).
285  */
286 #define put_cpu_var(var)						\
287 do {									\
288 	(void)&(var);							\
289 	preempt_enable();						\
290 } while (0)
291 
292 #define get_cpu_ptr(var)						\
293 ({									\
294 	preempt_disable();						\
295 	this_cpu_ptr(var);						\
296 })
297 
298 #define put_cpu_ptr(var)						\
299 do {									\
300 	(void)(var);							\
301 	preempt_enable();						\
302 } while (0)
303 
304 /*
305  * Branching function to split up a function into a set of functions that
306  * are called for different scalar sizes of the objects handled.
307  */
308 
309 extern void __bad_size_call_parameter(void);
310 
311 #ifdef CONFIG_DEBUG_PREEMPT
312 extern void __this_cpu_preempt_check(const char *op);
313 #else
__this_cpu_preempt_check(const char * op)314 static inline void __this_cpu_preempt_check(const char *op) { }
315 #endif
316 
317 #define __pcpu_size_call_return(stem, variable)				\
318 ({									\
319 	typeof(variable) pscr_ret__;					\
320 	__verify_pcpu_ptr(&(variable));					\
321 	switch(sizeof(variable)) {					\
322 	case 1: pscr_ret__ = stem##1(variable); break;			\
323 	case 2: pscr_ret__ = stem##2(variable); break;			\
324 	case 4: pscr_ret__ = stem##4(variable); break;			\
325 	case 8: pscr_ret__ = stem##8(variable); break;			\
326 	default:							\
327 		__bad_size_call_parameter(); break;			\
328 	}								\
329 	pscr_ret__;							\
330 })
331 
332 #define __pcpu_size_call_return2(stem, variable, ...)			\
333 ({									\
334 	typeof(variable) pscr2_ret__;					\
335 	__verify_pcpu_ptr(&(variable));					\
336 	switch(sizeof(variable)) {					\
337 	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
338 	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
339 	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
340 	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
341 	default:							\
342 		__bad_size_call_parameter(); break;			\
343 	}								\
344 	pscr2_ret__;							\
345 })
346 
347 /*
348  * Special handling for cmpxchg_double.  cmpxchg_double is passed two
349  * percpu variables.  The first has to be aligned to a double word
350  * boundary and the second has to follow directly thereafter.
351  * We enforce this on all architectures even if they don't support
352  * a double cmpxchg instruction, since it's a cheap requirement, and it
353  * avoids breaking the requirement for architectures with the instruction.
354  */
355 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
356 ({									\
357 	bool pdcrb_ret__;						\
358 	__verify_pcpu_ptr(&(pcp1));					\
359 	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
360 	VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));	\
361 	VM_BUG_ON((unsigned long)(&(pcp2)) !=				\
362 		  (unsigned long)(&(pcp1)) + sizeof(pcp1));		\
363 	switch(sizeof(pcp1)) {						\
364 	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
365 	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
366 	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
367 	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
368 	default:							\
369 		__bad_size_call_parameter(); break;			\
370 	}								\
371 	pdcrb_ret__;							\
372 })
373 
374 #define __pcpu_size_call(stem, variable, ...)				\
375 do {									\
376 	__verify_pcpu_ptr(&(variable));					\
377 	switch(sizeof(variable)) {					\
378 		case 1: stem##1(variable, __VA_ARGS__);break;		\
379 		case 2: stem##2(variable, __VA_ARGS__);break;		\
380 		case 4: stem##4(variable, __VA_ARGS__);break;		\
381 		case 8: stem##8(variable, __VA_ARGS__);break;		\
382 		default: 						\
383 			__bad_size_call_parameter();break;		\
384 	}								\
385 } while (0)
386 
387 /*
388  * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
389  *
390  * Optimized manipulation for memory allocated through the per cpu
391  * allocator or for addresses of per cpu variables.
392  *
393  * These operation guarantee exclusivity of access for other operations
394  * on the *same* processor. The assumption is that per cpu data is only
395  * accessed by a single processor instance (the current one).
396  *
397  * The arch code can provide optimized implementation by defining macros
398  * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
399  * cpu atomic operations for 2 byte sized RMW actions. If arch code does
400  * not provide operations for a scalar size then the fallback in the
401  * generic code will be used.
402  *
403  * cmpxchg_double replaces two adjacent scalars at once.  The first two
404  * parameters are per cpu variables which have to be of the same size.  A
405  * truth value is returned to indicate success or failure (since a double
406  * register result is difficult to handle).  There is very limited hardware
407  * support for these operations, so only certain sizes may work.
408  */
409 
410 /*
411  * Operations for contexts where we do not want to do any checks for
412  * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
413  * instead.
414  *
415  * If there is no other protection through preempt disable and/or disabling
416  * interupts then one of these RMW operations can show unexpected behavior
417  * because the execution thread was rescheduled on another processor or an
418  * interrupt occurred and the same percpu variable was modified from the
419  * interrupt context.
420  */
421 #define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
422 #define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
423 #define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
424 #define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
425 #define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
426 #define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
427 #define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
428 #define raw_cpu_cmpxchg(pcp, oval, nval) \
429 	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
430 #define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
431 	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
432 
433 #define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
434 #define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
435 #define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
436 #define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
437 #define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
438 #define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
439 
440 /*
441  * Operations for contexts that are safe from preemption/interrupts.  These
442  * operations verify that preemption is disabled.
443  */
444 #define __this_cpu_read(pcp)						\
445 ({									\
446 	__this_cpu_preempt_check("read");				\
447 	raw_cpu_read(pcp);						\
448 })
449 
450 #define __this_cpu_write(pcp, val)					\
451 ({									\
452 	__this_cpu_preempt_check("write");				\
453 	raw_cpu_write(pcp, val);					\
454 })
455 
456 #define __this_cpu_add(pcp, val)					\
457 ({									\
458 	__this_cpu_preempt_check("add");				\
459 	raw_cpu_add(pcp, val);						\
460 })
461 
462 #define __this_cpu_and(pcp, val)					\
463 ({									\
464 	__this_cpu_preempt_check("and");				\
465 	raw_cpu_and(pcp, val);						\
466 })
467 
468 #define __this_cpu_or(pcp, val)						\
469 ({									\
470 	__this_cpu_preempt_check("or");					\
471 	raw_cpu_or(pcp, val);						\
472 })
473 
474 #define __this_cpu_add_return(pcp, val)					\
475 ({									\
476 	__this_cpu_preempt_check("add_return");				\
477 	raw_cpu_add_return(pcp, val);					\
478 })
479 
480 #define __this_cpu_xchg(pcp, nval)					\
481 ({									\
482 	__this_cpu_preempt_check("xchg");				\
483 	raw_cpu_xchg(pcp, nval);					\
484 })
485 
486 #define __this_cpu_cmpxchg(pcp, oval, nval)				\
487 ({									\
488 	__this_cpu_preempt_check("cmpxchg");				\
489 	raw_cpu_cmpxchg(pcp, oval, nval);				\
490 })
491 
492 #define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
493 ({	__this_cpu_preempt_check("cmpxchg_double");			\
494 	raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2);	\
495 })
496 
497 #define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
498 #define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
499 #define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
500 #define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
501 #define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
502 #define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
503 
504 /*
505  * Operations with implied preemption/interrupt protection.  These
506  * operations can be used without worrying about preemption or interrupt.
507  */
508 #define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
509 #define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
510 #define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
511 #define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
512 #define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
513 #define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
514 #define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
515 #define this_cpu_cmpxchg(pcp, oval, nval) \
516 	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
517 #define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
518 	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
519 
520 #define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
521 #define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
522 #define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
523 #define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
524 #define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
525 #define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
526 
527 #endif /* __ASSEMBLY__ */
528 #endif /* _LINUX_PERCPU_DEFS_H */
529