1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
28
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK 0xffffffff
31
32 #define POWER_LIMIT1_MASK 0x7FFF
33 #define POWER_LIMIT1_ENABLE BIT(15)
34 #define POWER_LIMIT1_CLAMP BIT(16)
35
36 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
39 #define POWER_HIGH_LOCK BIT_ULL(63)
40 #define POWER_LOW_LOCK BIT(31)
41
42 #define POWER_LIMIT4_MASK 0x1FFF
43
44 #define TIME_WINDOW1_MASK (0x7FULL<<17)
45 #define TIME_WINDOW2_MASK (0x7FULL<<49)
46
47 #define POWER_UNIT_OFFSET 0
48 #define POWER_UNIT_MASK 0x0F
49
50 #define ENERGY_UNIT_OFFSET 0x08
51 #define ENERGY_UNIT_MASK 0x1F00
52
53 #define TIME_UNIT_OFFSET 0x10
54 #define TIME_UNIT_MASK 0xF0000
55
56 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
57 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
58 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
59 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
60
61 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62 #define PP_POLICY_MASK 0x1F
63
64 /*
65 * SPR has different layout for Psys Domain PowerLimit registers.
66 * There are 17 bits of PL1 and PL2 instead of 15 bits.
67 * The Enable bits and TimeWindow bits are also shifted as a result.
68 */
69 #define PSYS_POWER_LIMIT1_MASK 0x1FFFF
70 #define PSYS_POWER_LIMIT1_ENABLE BIT(17)
71
72 #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
73 #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
74
75 #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
76 #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
77
78 /* Non HW constants */
79 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
80 #define RAPL_PRIMITIVE_DUMMY BIT(2)
81
82 #define TIME_WINDOW_MAX_MSEC 40000
83 #define TIME_WINDOW_MIN_MSEC 250
84 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
85 enum unit_type {
86 ARBITRARY_UNIT, /* no translation */
87 POWER_UNIT,
88 ENERGY_UNIT,
89 TIME_UNIT,
90 };
91
92 /* per domain data, some are optional */
93 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
94
95 #define DOMAIN_STATE_INACTIVE BIT(0)
96 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
97 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
98
99 static const char pl1_name[] = "long_term";
100 static const char pl2_name[] = "short_term";
101 static const char pl4_name[] = "peak_power";
102
103 #define power_zone_to_rapl_domain(_zone) \
104 container_of(_zone, struct rapl_domain, power_zone)
105
106 struct rapl_defaults {
107 u8 floor_freq_reg_addr;
108 int (*check_unit)(struct rapl_package *rp, int cpu);
109 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
110 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
111 bool to_raw);
112 unsigned int dram_domain_energy_unit;
113 unsigned int psys_domain_energy_unit;
114 bool spr_psys_bits;
115 };
116 static struct rapl_defaults *rapl_defaults;
117
118 /* Sideband MBI registers */
119 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
120 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
121
122 #define PACKAGE_PLN_INT_SAVED BIT(0)
123 #define MAX_PRIM_NAME (32)
124
125 /* per domain data. used to describe individual knobs such that access function
126 * can be consolidated into one instead of many inline functions.
127 */
128 struct rapl_primitive_info {
129 const char *name;
130 u64 mask;
131 int shift;
132 enum rapl_domain_reg_id id;
133 enum unit_type unit;
134 u32 flag;
135 };
136
137 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
138 .name = #p, \
139 .mask = m, \
140 .shift = s, \
141 .id = i, \
142 .unit = u, \
143 .flag = f \
144 }
145
146 static void rapl_init_domains(struct rapl_package *rp);
147 static int rapl_read_data_raw(struct rapl_domain *rd,
148 enum rapl_primitives prim,
149 bool xlate, u64 *data);
150 static int rapl_write_data_raw(struct rapl_domain *rd,
151 enum rapl_primitives prim,
152 unsigned long long value);
153 static u64 rapl_unit_xlate(struct rapl_domain *rd,
154 enum unit_type type, u64 value, int to_raw);
155 static void package_power_limit_irq_save(struct rapl_package *rp);
156
157 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
158
159 static const char *const rapl_domain_names[] = {
160 "package",
161 "core",
162 "uncore",
163 "dram",
164 "psys",
165 };
166
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)167 static int get_energy_counter(struct powercap_zone *power_zone,
168 u64 *energy_raw)
169 {
170 struct rapl_domain *rd;
171 u64 energy_now;
172
173 /* prevent CPU hotplug, make sure the RAPL domain does not go
174 * away while reading the counter.
175 */
176 cpus_read_lock();
177 rd = power_zone_to_rapl_domain(power_zone);
178
179 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
180 *energy_raw = energy_now;
181 cpus_read_unlock();
182
183 return 0;
184 }
185 cpus_read_unlock();
186
187 return -EIO;
188 }
189
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)190 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
191 {
192 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
193
194 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
195 return 0;
196 }
197
release_zone(struct powercap_zone * power_zone)198 static int release_zone(struct powercap_zone *power_zone)
199 {
200 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
201 struct rapl_package *rp = rd->rp;
202
203 /* package zone is the last zone of a package, we can free
204 * memory here since all children has been unregistered.
205 */
206 if (rd->id == RAPL_DOMAIN_PACKAGE) {
207 kfree(rd);
208 rp->domains = NULL;
209 }
210
211 return 0;
212
213 }
214
find_nr_power_limit(struct rapl_domain * rd)215 static int find_nr_power_limit(struct rapl_domain *rd)
216 {
217 int i, nr_pl = 0;
218
219 for (i = 0; i < NR_POWER_LIMITS; i++) {
220 if (rd->rpl[i].name)
221 nr_pl++;
222 }
223
224 return nr_pl;
225 }
226
set_domain_enable(struct powercap_zone * power_zone,bool mode)227 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
228 {
229 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
230
231 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
232 return -EACCES;
233
234 cpus_read_lock();
235 rapl_write_data_raw(rd, PL1_ENABLE, mode);
236 if (rapl_defaults->set_floor_freq)
237 rapl_defaults->set_floor_freq(rd, mode);
238 cpus_read_unlock();
239
240 return 0;
241 }
242
get_domain_enable(struct powercap_zone * power_zone,bool * mode)243 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
244 {
245 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
246 u64 val;
247
248 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
249 *mode = false;
250 return 0;
251 }
252 cpus_read_lock();
253 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
254 cpus_read_unlock();
255 return -EIO;
256 }
257 *mode = val;
258 cpus_read_unlock();
259
260 return 0;
261 }
262
263 /* per RAPL domain ops, in the order of rapl_domain_type */
264 static const struct powercap_zone_ops zone_ops[] = {
265 /* RAPL_DOMAIN_PACKAGE */
266 {
267 .get_energy_uj = get_energy_counter,
268 .get_max_energy_range_uj = get_max_energy_counter,
269 .release = release_zone,
270 .set_enable = set_domain_enable,
271 .get_enable = get_domain_enable,
272 },
273 /* RAPL_DOMAIN_PP0 */
274 {
275 .get_energy_uj = get_energy_counter,
276 .get_max_energy_range_uj = get_max_energy_counter,
277 .release = release_zone,
278 .set_enable = set_domain_enable,
279 .get_enable = get_domain_enable,
280 },
281 /* RAPL_DOMAIN_PP1 */
282 {
283 .get_energy_uj = get_energy_counter,
284 .get_max_energy_range_uj = get_max_energy_counter,
285 .release = release_zone,
286 .set_enable = set_domain_enable,
287 .get_enable = get_domain_enable,
288 },
289 /* RAPL_DOMAIN_DRAM */
290 {
291 .get_energy_uj = get_energy_counter,
292 .get_max_energy_range_uj = get_max_energy_counter,
293 .release = release_zone,
294 .set_enable = set_domain_enable,
295 .get_enable = get_domain_enable,
296 },
297 /* RAPL_DOMAIN_PLATFORM */
298 {
299 .get_energy_uj = get_energy_counter,
300 .get_max_energy_range_uj = get_max_energy_counter,
301 .release = release_zone,
302 .set_enable = set_domain_enable,
303 .get_enable = get_domain_enable,
304 },
305 };
306
307 /*
308 * Constraint index used by powercap can be different than power limit (PL)
309 * index in that some PLs maybe missing due to non-existent MSRs. So we
310 * need to convert here by finding the valid PLs only (name populated).
311 */
contraint_to_pl(struct rapl_domain * rd,int cid)312 static int contraint_to_pl(struct rapl_domain *rd, int cid)
313 {
314 int i, j;
315
316 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
317 if ((rd->rpl[i].name) && j++ == cid) {
318 pr_debug("%s: index %d\n", __func__, i);
319 return i;
320 }
321 }
322 pr_err("Cannot find matching power limit for constraint %d\n", cid);
323
324 return -EINVAL;
325 }
326
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)327 static int set_power_limit(struct powercap_zone *power_zone, int cid,
328 u64 power_limit)
329 {
330 struct rapl_domain *rd;
331 struct rapl_package *rp;
332 int ret = 0;
333 int id;
334
335 cpus_read_lock();
336 rd = power_zone_to_rapl_domain(power_zone);
337 id = contraint_to_pl(rd, cid);
338 if (id < 0) {
339 ret = id;
340 goto set_exit;
341 }
342
343 rp = rd->rp;
344
345 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
346 dev_warn(&power_zone->dev,
347 "%s locked by BIOS, monitoring only\n", rd->name);
348 ret = -EACCES;
349 goto set_exit;
350 }
351
352 switch (rd->rpl[id].prim_id) {
353 case PL1_ENABLE:
354 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
355 break;
356 case PL2_ENABLE:
357 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
358 break;
359 case PL4_ENABLE:
360 rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
361 break;
362 default:
363 ret = -EINVAL;
364 }
365 if (!ret)
366 package_power_limit_irq_save(rp);
367 set_exit:
368 cpus_read_unlock();
369 return ret;
370 }
371
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)372 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
373 u64 *data)
374 {
375 struct rapl_domain *rd;
376 u64 val;
377 int prim;
378 int ret = 0;
379 int id;
380
381 cpus_read_lock();
382 rd = power_zone_to_rapl_domain(power_zone);
383 id = contraint_to_pl(rd, cid);
384 if (id < 0) {
385 ret = id;
386 goto get_exit;
387 }
388
389 switch (rd->rpl[id].prim_id) {
390 case PL1_ENABLE:
391 prim = POWER_LIMIT1;
392 break;
393 case PL2_ENABLE:
394 prim = POWER_LIMIT2;
395 break;
396 case PL4_ENABLE:
397 prim = POWER_LIMIT4;
398 break;
399 default:
400 cpus_read_unlock();
401 return -EINVAL;
402 }
403 if (rapl_read_data_raw(rd, prim, true, &val))
404 ret = -EIO;
405 else
406 *data = val;
407
408 get_exit:
409 cpus_read_unlock();
410
411 return ret;
412 }
413
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)414 static int set_time_window(struct powercap_zone *power_zone, int cid,
415 u64 window)
416 {
417 struct rapl_domain *rd;
418 int ret = 0;
419 int id;
420
421 cpus_read_lock();
422 rd = power_zone_to_rapl_domain(power_zone);
423 id = contraint_to_pl(rd, cid);
424 if (id < 0) {
425 ret = id;
426 goto set_time_exit;
427 }
428
429 switch (rd->rpl[id].prim_id) {
430 case PL1_ENABLE:
431 rapl_write_data_raw(rd, TIME_WINDOW1, window);
432 break;
433 case PL2_ENABLE:
434 rapl_write_data_raw(rd, TIME_WINDOW2, window);
435 break;
436 default:
437 ret = -EINVAL;
438 }
439
440 set_time_exit:
441 cpus_read_unlock();
442 return ret;
443 }
444
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)445 static int get_time_window(struct powercap_zone *power_zone, int cid,
446 u64 *data)
447 {
448 struct rapl_domain *rd;
449 u64 val;
450 int ret = 0;
451 int id;
452
453 cpus_read_lock();
454 rd = power_zone_to_rapl_domain(power_zone);
455 id = contraint_to_pl(rd, cid);
456 if (id < 0) {
457 ret = id;
458 goto get_time_exit;
459 }
460
461 switch (rd->rpl[id].prim_id) {
462 case PL1_ENABLE:
463 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
464 break;
465 case PL2_ENABLE:
466 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
467 break;
468 case PL4_ENABLE:
469 /*
470 * Time window parameter is not applicable for PL4 entry
471 * so assigining '0' as default value.
472 */
473 val = 0;
474 break;
475 default:
476 cpus_read_unlock();
477 return -EINVAL;
478 }
479 if (!ret)
480 *data = val;
481
482 get_time_exit:
483 cpus_read_unlock();
484
485 return ret;
486 }
487
get_constraint_name(struct powercap_zone * power_zone,int cid)488 static const char *get_constraint_name(struct powercap_zone *power_zone,
489 int cid)
490 {
491 struct rapl_domain *rd;
492 int id;
493
494 rd = power_zone_to_rapl_domain(power_zone);
495 id = contraint_to_pl(rd, cid);
496 if (id >= 0)
497 return rd->rpl[id].name;
498
499 return NULL;
500 }
501
get_max_power(struct powercap_zone * power_zone,int id,u64 * data)502 static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
503 {
504 struct rapl_domain *rd;
505 u64 val;
506 int prim;
507 int ret = 0;
508
509 cpus_read_lock();
510 rd = power_zone_to_rapl_domain(power_zone);
511 switch (rd->rpl[id].prim_id) {
512 case PL1_ENABLE:
513 prim = THERMAL_SPEC_POWER;
514 break;
515 case PL2_ENABLE:
516 prim = MAX_POWER;
517 break;
518 case PL4_ENABLE:
519 prim = MAX_POWER;
520 break;
521 default:
522 cpus_read_unlock();
523 return -EINVAL;
524 }
525 if (rapl_read_data_raw(rd, prim, true, &val))
526 ret = -EIO;
527 else
528 *data = val;
529
530 /* As a generalization rule, PL4 would be around two times PL2. */
531 if (rd->rpl[id].prim_id == PL4_ENABLE)
532 *data = *data * 2;
533
534 cpus_read_unlock();
535
536 return ret;
537 }
538
539 static const struct powercap_zone_constraint_ops constraint_ops = {
540 .set_power_limit_uw = set_power_limit,
541 .get_power_limit_uw = get_current_power_limit,
542 .set_time_window_us = set_time_window,
543 .get_time_window_us = get_time_window,
544 .get_max_power_uw = get_max_power,
545 .get_name = get_constraint_name,
546 };
547
548 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)549 static void rapl_init_domains(struct rapl_package *rp)
550 {
551 enum rapl_domain_type i;
552 enum rapl_domain_reg_id j;
553 struct rapl_domain *rd = rp->domains;
554
555 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
556 unsigned int mask = rp->domain_map & (1 << i);
557
558 if (!mask)
559 continue;
560
561 rd->rp = rp;
562
563 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
564 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
565 topology_physical_package_id(rp->lead_cpu));
566 } else
567 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
568 rapl_domain_names[i]);
569
570 rd->id = i;
571 rd->rpl[0].prim_id = PL1_ENABLE;
572 rd->rpl[0].name = pl1_name;
573
574 /*
575 * The PL2 power domain is applicable for limits two
576 * and limits three
577 */
578 if (rp->priv->limits[i] >= 2) {
579 rd->rpl[1].prim_id = PL2_ENABLE;
580 rd->rpl[1].name = pl2_name;
581 }
582
583 /* Enable PL4 domain if the total power limits are three */
584 if (rp->priv->limits[i] == 3) {
585 rd->rpl[2].prim_id = PL4_ENABLE;
586 rd->rpl[2].name = pl4_name;
587 }
588
589 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
590 rd->regs[j] = rp->priv->regs[i][j];
591
592 switch (i) {
593 case RAPL_DOMAIN_DRAM:
594 rd->domain_energy_unit =
595 rapl_defaults->dram_domain_energy_unit;
596 if (rd->domain_energy_unit)
597 pr_info("DRAM domain energy unit %dpj\n",
598 rd->domain_energy_unit);
599 break;
600 case RAPL_DOMAIN_PLATFORM:
601 rd->domain_energy_unit =
602 rapl_defaults->psys_domain_energy_unit;
603 if (rd->domain_energy_unit)
604 pr_info("Platform domain energy unit %dpj\n",
605 rd->domain_energy_unit);
606 break;
607 default:
608 break;
609 }
610 rd++;
611 }
612 }
613
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)614 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
615 u64 value, int to_raw)
616 {
617 u64 units = 1;
618 struct rapl_package *rp = rd->rp;
619 u64 scale = 1;
620
621 switch (type) {
622 case POWER_UNIT:
623 units = rp->power_unit;
624 break;
625 case ENERGY_UNIT:
626 scale = ENERGY_UNIT_SCALE;
627 /* per domain unit takes precedence */
628 if (rd->domain_energy_unit)
629 units = rd->domain_energy_unit;
630 else
631 units = rp->energy_unit;
632 break;
633 case TIME_UNIT:
634 return rapl_defaults->compute_time_window(rp, value, to_raw);
635 case ARBITRARY_UNIT:
636 default:
637 return value;
638 }
639
640 if (to_raw)
641 return div64_u64(value, units) * scale;
642
643 value *= units;
644
645 return div64_u64(value, scale);
646 }
647
648 /* in the order of enum rapl_primitives */
649 static struct rapl_primitive_info rpi[] = {
650 /* name, mask, shift, msr index, unit divisor */
651 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
652 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
653 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
654 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
655 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
656 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
657 PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
658 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
659 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
660 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
661 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
662 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
663 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
664 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
665 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
666 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
667 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
668 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
669 PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
670 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
671 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
672 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
673 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
674 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
675 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
676 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
677 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
678 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
679 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
680 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
681 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
682 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
683 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
684 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
685 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
686 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
687 PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
688 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
689 PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
690 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
691 PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
692 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
693 PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
694 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
695 PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
696 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
697 PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
698 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
699 /* non-hardware */
700 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
701 RAPL_PRIMITIVE_DERIVED),
702 {NULL, 0, 0, 0},
703 };
704
705 static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)706 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
707 {
708 if (!rapl_defaults->spr_psys_bits)
709 return prim;
710
711 if (rd->id != RAPL_DOMAIN_PLATFORM)
712 return prim;
713
714 switch (prim) {
715 case POWER_LIMIT1:
716 return PSYS_POWER_LIMIT1;
717 case POWER_LIMIT2:
718 return PSYS_POWER_LIMIT2;
719 case PL1_ENABLE:
720 return PSYS_PL1_ENABLE;
721 case PL2_ENABLE:
722 return PSYS_PL2_ENABLE;
723 case TIME_WINDOW1:
724 return PSYS_TIME_WINDOW1;
725 case TIME_WINDOW2:
726 return PSYS_TIME_WINDOW2;
727 default:
728 return prim;
729 }
730 }
731
732 /* Read primitive data based on its related struct rapl_primitive_info.
733 * if xlate flag is set, return translated data based on data units, i.e.
734 * time, energy, and power.
735 * RAPL MSRs are non-architectual and are laid out not consistently across
736 * domains. Here we use primitive info to allow writing consolidated access
737 * functions.
738 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
739 * is pre-assigned based on RAPL unit MSRs read at init time.
740 * 63-------------------------- 31--------------------------- 0
741 * | xxxxx (mask) |
742 * | |<- shift ----------------|
743 * 63-------------------------- 31--------------------------- 0
744 */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)745 static int rapl_read_data_raw(struct rapl_domain *rd,
746 enum rapl_primitives prim, bool xlate, u64 *data)
747 {
748 u64 value;
749 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
750 struct rapl_primitive_info *rp = &rpi[prim_fixed];
751 struct reg_action ra;
752 int cpu;
753
754 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
755 return -EINVAL;
756
757 ra.reg = rd->regs[rp->id];
758 if (!ra.reg)
759 return -EINVAL;
760
761 cpu = rd->rp->lead_cpu;
762
763 /* domain with 2 limits has different bit */
764 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
765 rp->mask = POWER_HIGH_LOCK;
766 rp->shift = 63;
767 }
768 /* non-hardware data are collected by the polling thread */
769 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
770 *data = rd->rdd.primitives[prim];
771 return 0;
772 }
773
774 ra.mask = rp->mask;
775
776 if (rd->rp->priv->read_raw(cpu, &ra)) {
777 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
778 return -EIO;
779 }
780
781 value = ra.value >> rp->shift;
782
783 if (xlate)
784 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
785 else
786 *data = value;
787
788 return 0;
789 }
790
791 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)792 static int rapl_write_data_raw(struct rapl_domain *rd,
793 enum rapl_primitives prim,
794 unsigned long long value)
795 {
796 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
797 struct rapl_primitive_info *rp = &rpi[prim_fixed];
798 int cpu;
799 u64 bits;
800 struct reg_action ra;
801 int ret;
802
803 cpu = rd->rp->lead_cpu;
804 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
805 bits <<= rp->shift;
806 bits &= rp->mask;
807
808 memset(&ra, 0, sizeof(ra));
809
810 ra.reg = rd->regs[rp->id];
811 ra.mask = rp->mask;
812 ra.value = bits;
813
814 ret = rd->rp->priv->write_raw(cpu, &ra);
815
816 return ret;
817 }
818
819 /*
820 * Raw RAPL data stored in MSRs are in certain scales. We need to
821 * convert them into standard units based on the units reported in
822 * the RAPL unit MSRs. This is specific to CPUs as the method to
823 * calculate units differ on different CPUs.
824 * We convert the units to below format based on CPUs.
825 * i.e.
826 * energy unit: picoJoules : Represented in picoJoules by default
827 * power unit : microWatts : Represented in milliWatts by default
828 * time unit : microseconds: Represented in seconds by default
829 */
rapl_check_unit_core(struct rapl_package * rp,int cpu)830 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
831 {
832 struct reg_action ra;
833 u32 value;
834
835 ra.reg = rp->priv->reg_unit;
836 ra.mask = ~0;
837 if (rp->priv->read_raw(cpu, &ra)) {
838 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
839 rp->priv->reg_unit, cpu);
840 return -ENODEV;
841 }
842
843 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
844 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
845
846 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
847 rp->power_unit = 1000000 / (1 << value);
848
849 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
850 rp->time_unit = 1000000 / (1 << value);
851
852 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
853 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
854
855 return 0;
856 }
857
rapl_check_unit_atom(struct rapl_package * rp,int cpu)858 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
859 {
860 struct reg_action ra;
861 u32 value;
862
863 ra.reg = rp->priv->reg_unit;
864 ra.mask = ~0;
865 if (rp->priv->read_raw(cpu, &ra)) {
866 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
867 rp->priv->reg_unit, cpu);
868 return -ENODEV;
869 }
870
871 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
872 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
873
874 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
875 rp->power_unit = (1 << value) * 1000;
876
877 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
878 rp->time_unit = 1000000 / (1 << value);
879
880 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
881 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
882
883 return 0;
884 }
885
power_limit_irq_save_cpu(void * info)886 static void power_limit_irq_save_cpu(void *info)
887 {
888 u32 l, h = 0;
889 struct rapl_package *rp = (struct rapl_package *)info;
890
891 /* save the state of PLN irq mask bit before disabling it */
892 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
893 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
894 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
895 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
896 }
897 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
898 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
899 }
900
901 /* REVISIT:
902 * When package power limit is set artificially low by RAPL, LVT
903 * thermal interrupt for package power limit should be ignored
904 * since we are not really exceeding the real limit. The intention
905 * is to avoid excessive interrupts while we are trying to save power.
906 * A useful feature might be routing the package_power_limit interrupt
907 * to userspace via eventfd. once we have a usecase, this is simple
908 * to do by adding an atomic notifier.
909 */
910
package_power_limit_irq_save(struct rapl_package * rp)911 static void package_power_limit_irq_save(struct rapl_package *rp)
912 {
913 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
914 return;
915
916 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
917 }
918
919 /*
920 * Restore per package power limit interrupt enable state. Called from cpu
921 * hotplug code on package removal.
922 */
package_power_limit_irq_restore(struct rapl_package * rp)923 static void package_power_limit_irq_restore(struct rapl_package *rp)
924 {
925 u32 l, h;
926
927 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
928 return;
929
930 /* irq enable state not saved, nothing to restore */
931 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
932 return;
933
934 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
935
936 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
937 l |= PACKAGE_THERM_INT_PLN_ENABLE;
938 else
939 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
940
941 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
942 }
943
set_floor_freq_default(struct rapl_domain * rd,bool mode)944 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
945 {
946 int nr_powerlimit = find_nr_power_limit(rd);
947
948 /* always enable clamp such that p-state can go below OS requested
949 * range. power capping priority over guranteed frequency.
950 */
951 rapl_write_data_raw(rd, PL1_CLAMP, mode);
952
953 /* some domains have pl2 */
954 if (nr_powerlimit > 1) {
955 rapl_write_data_raw(rd, PL2_ENABLE, mode);
956 rapl_write_data_raw(rd, PL2_CLAMP, mode);
957 }
958 }
959
set_floor_freq_atom(struct rapl_domain * rd,bool enable)960 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
961 {
962 static u32 power_ctrl_orig_val;
963 u32 mdata;
964
965 if (!rapl_defaults->floor_freq_reg_addr) {
966 pr_err("Invalid floor frequency config register\n");
967 return;
968 }
969
970 if (!power_ctrl_orig_val)
971 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
972 rapl_defaults->floor_freq_reg_addr,
973 &power_ctrl_orig_val);
974 mdata = power_ctrl_orig_val;
975 if (enable) {
976 mdata &= ~(0x7f << 8);
977 mdata |= 1 << 8;
978 }
979 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
980 rapl_defaults->floor_freq_reg_addr, mdata);
981 }
982
rapl_compute_time_window_core(struct rapl_package * rp,u64 value,bool to_raw)983 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
984 bool to_raw)
985 {
986 u64 f, y; /* fraction and exp. used for time unit */
987
988 /*
989 * Special processing based on 2^Y*(1+F/4), refer
990 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
991 */
992 if (!to_raw) {
993 f = (value & 0x60) >> 5;
994 y = value & 0x1f;
995 value = (1 << y) * (4 + f) * rp->time_unit / 4;
996 } else {
997 if (value < rp->time_unit)
998 return 0;
999
1000 do_div(value, rp->time_unit);
1001 y = ilog2(value);
1002 f = div64_u64(4 * (value - (1 << y)), 1 << y);
1003 value = (y & 0x1f) | ((f & 0x3) << 5);
1004 }
1005 return value;
1006 }
1007
rapl_compute_time_window_atom(struct rapl_package * rp,u64 value,bool to_raw)1008 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1009 bool to_raw)
1010 {
1011 /*
1012 * Atom time unit encoding is straight forward val * time_unit,
1013 * where time_unit is default to 1 sec. Never 0.
1014 */
1015 if (!to_raw)
1016 return (value) ? value * rp->time_unit : rp->time_unit;
1017
1018 value = div64_u64(value, rp->time_unit);
1019
1020 return value;
1021 }
1022
1023 static const struct rapl_defaults rapl_defaults_core = {
1024 .floor_freq_reg_addr = 0,
1025 .check_unit = rapl_check_unit_core,
1026 .set_floor_freq = set_floor_freq_default,
1027 .compute_time_window = rapl_compute_time_window_core,
1028 };
1029
1030 static const struct rapl_defaults rapl_defaults_hsw_server = {
1031 .check_unit = rapl_check_unit_core,
1032 .set_floor_freq = set_floor_freq_default,
1033 .compute_time_window = rapl_compute_time_window_core,
1034 .dram_domain_energy_unit = 15300,
1035 };
1036
1037 static const struct rapl_defaults rapl_defaults_spr_server = {
1038 .check_unit = rapl_check_unit_core,
1039 .set_floor_freq = set_floor_freq_default,
1040 .compute_time_window = rapl_compute_time_window_core,
1041 .psys_domain_energy_unit = 1000000000,
1042 .spr_psys_bits = true,
1043 };
1044
1045 static const struct rapl_defaults rapl_defaults_byt = {
1046 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1047 .check_unit = rapl_check_unit_atom,
1048 .set_floor_freq = set_floor_freq_atom,
1049 .compute_time_window = rapl_compute_time_window_atom,
1050 };
1051
1052 static const struct rapl_defaults rapl_defaults_tng = {
1053 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1054 .check_unit = rapl_check_unit_atom,
1055 .set_floor_freq = set_floor_freq_atom,
1056 .compute_time_window = rapl_compute_time_window_atom,
1057 };
1058
1059 static const struct rapl_defaults rapl_defaults_ann = {
1060 .floor_freq_reg_addr = 0,
1061 .check_unit = rapl_check_unit_atom,
1062 .set_floor_freq = NULL,
1063 .compute_time_window = rapl_compute_time_window_atom,
1064 };
1065
1066 static const struct rapl_defaults rapl_defaults_cht = {
1067 .floor_freq_reg_addr = 0,
1068 .check_unit = rapl_check_unit_atom,
1069 .set_floor_freq = NULL,
1070 .compute_time_window = rapl_compute_time_window_atom,
1071 };
1072
1073 static const struct rapl_defaults rapl_defaults_amd = {
1074 .check_unit = rapl_check_unit_core,
1075 };
1076
1077 static const struct x86_cpu_id rapl_ids[] __initconst = {
1078 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
1079 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
1080
1081 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
1082 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
1083
1084 X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
1085 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
1086 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
1087 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
1088
1089 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
1090 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
1091 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
1092 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
1093
1094 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
1095 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
1096 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
1097 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
1098 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
1099 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
1100 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
1101 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
1102 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
1103 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
1104 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
1105 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
1106 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
1107 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
1108 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
1109 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
1110 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
1111 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
1112 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, &rapl_defaults_core),
1113 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core),
1114 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core),
1115 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core),
1116 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1117 X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
1118
1119 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
1120 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
1121 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1122 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
1123 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
1124 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1125 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
1126 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
1127 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
1128 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
1129
1130 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
1131 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
1132
1133 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1134 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1135 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1136 {}
1137 };
1138 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1139
1140 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1141 static void rapl_update_domain_data(struct rapl_package *rp)
1142 {
1143 int dmn, prim;
1144 u64 val;
1145
1146 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1147 pr_debug("update %s domain %s data\n", rp->name,
1148 rp->domains[dmn].name);
1149 /* exclude non-raw primitives */
1150 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1151 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1152 rpi[prim].unit, &val))
1153 rp->domains[dmn].rdd.primitives[prim] = val;
1154 }
1155 }
1156
1157 }
1158
rapl_package_register_powercap(struct rapl_package * rp)1159 static int rapl_package_register_powercap(struct rapl_package *rp)
1160 {
1161 struct rapl_domain *rd;
1162 struct powercap_zone *power_zone = NULL;
1163 int nr_pl, ret;
1164
1165 /* Update the domain data of the new package */
1166 rapl_update_domain_data(rp);
1167
1168 /* first we register package domain as the parent zone */
1169 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1170 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1171 nr_pl = find_nr_power_limit(rd);
1172 pr_debug("register package domain %s\n", rp->name);
1173 power_zone = powercap_register_zone(&rd->power_zone,
1174 rp->priv->control_type, rp->name,
1175 NULL, &zone_ops[rd->id], nr_pl,
1176 &constraint_ops);
1177 if (IS_ERR(power_zone)) {
1178 pr_debug("failed to register power zone %s\n",
1179 rp->name);
1180 return PTR_ERR(power_zone);
1181 }
1182 /* track parent zone in per package/socket data */
1183 rp->power_zone = power_zone;
1184 /* done, only one package domain per socket */
1185 break;
1186 }
1187 }
1188 if (!power_zone) {
1189 pr_err("no package domain found, unknown topology!\n");
1190 return -ENODEV;
1191 }
1192 /* now register domains as children of the socket/package */
1193 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1194 struct powercap_zone *parent = rp->power_zone;
1195
1196 if (rd->id == RAPL_DOMAIN_PACKAGE)
1197 continue;
1198 if (rd->id == RAPL_DOMAIN_PLATFORM)
1199 parent = NULL;
1200 /* number of power limits per domain varies */
1201 nr_pl = find_nr_power_limit(rd);
1202 power_zone = powercap_register_zone(&rd->power_zone,
1203 rp->priv->control_type,
1204 rd->name, parent,
1205 &zone_ops[rd->id], nr_pl,
1206 &constraint_ops);
1207
1208 if (IS_ERR(power_zone)) {
1209 pr_debug("failed to register power_zone, %s:%s\n",
1210 rp->name, rd->name);
1211 ret = PTR_ERR(power_zone);
1212 goto err_cleanup;
1213 }
1214 }
1215 return 0;
1216
1217 err_cleanup:
1218 /*
1219 * Clean up previously initialized domains within the package if we
1220 * failed after the first domain setup.
1221 */
1222 while (--rd >= rp->domains) {
1223 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1224 powercap_unregister_zone(rp->priv->control_type,
1225 &rd->power_zone);
1226 }
1227
1228 return ret;
1229 }
1230
rapl_check_domain(int cpu,int domain,struct rapl_package * rp)1231 static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1232 {
1233 struct reg_action ra;
1234
1235 switch (domain) {
1236 case RAPL_DOMAIN_PACKAGE:
1237 case RAPL_DOMAIN_PP0:
1238 case RAPL_DOMAIN_PP1:
1239 case RAPL_DOMAIN_DRAM:
1240 case RAPL_DOMAIN_PLATFORM:
1241 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1242 break;
1243 default:
1244 pr_err("invalid domain id %d\n", domain);
1245 return -EINVAL;
1246 }
1247 /* make sure domain counters are available and contains non-zero
1248 * values, otherwise skip it.
1249 */
1250
1251 ra.mask = ENERGY_STATUS_MASK;
1252 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1253 return -ENODEV;
1254
1255 return 0;
1256 }
1257
1258 /*
1259 * Check if power limits are available. Two cases when they are not available:
1260 * 1. Locked by BIOS, in this case we still provide read-only access so that
1261 * users can see what limit is set by the BIOS.
1262 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1263 * exist at all. In this case, we do not show the constraints in powercap.
1264 *
1265 * Called after domains are detected and initialized.
1266 */
rapl_detect_powerlimit(struct rapl_domain * rd)1267 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1268 {
1269 u64 val64;
1270 int i;
1271
1272 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1273 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1274 if (val64) {
1275 pr_info("RAPL %s domain %s locked by BIOS\n",
1276 rd->rp->name, rd->name);
1277 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1278 }
1279 }
1280 /* check if power limit MSR exists, otherwise domain is monitoring only */
1281 for (i = 0; i < NR_POWER_LIMITS; i++) {
1282 int prim = rd->rpl[i].prim_id;
1283
1284 if (rapl_read_data_raw(rd, prim, false, &val64))
1285 rd->rpl[i].name = NULL;
1286 }
1287 }
1288
1289 /* Detect active and valid domains for the given CPU, caller must
1290 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1291 */
rapl_detect_domains(struct rapl_package * rp,int cpu)1292 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1293 {
1294 struct rapl_domain *rd;
1295 int i;
1296
1297 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1298 /* use physical package id to read counters */
1299 if (!rapl_check_domain(cpu, i, rp)) {
1300 rp->domain_map |= 1 << i;
1301 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1302 }
1303 }
1304 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1305 if (!rp->nr_domains) {
1306 pr_debug("no valid rapl domains found in %s\n", rp->name);
1307 return -ENODEV;
1308 }
1309 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1310
1311 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1312 GFP_KERNEL);
1313 if (!rp->domains)
1314 return -ENOMEM;
1315
1316 rapl_init_domains(rp);
1317
1318 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1319 rapl_detect_powerlimit(rd);
1320
1321 return 0;
1322 }
1323
1324 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package(struct rapl_package * rp)1325 void rapl_remove_package(struct rapl_package *rp)
1326 {
1327 struct rapl_domain *rd, *rd_package = NULL;
1328
1329 package_power_limit_irq_restore(rp);
1330
1331 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1332 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1333 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1334 if (find_nr_power_limit(rd) > 1) {
1335 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1336 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1337 rapl_write_data_raw(rd, PL4_ENABLE, 0);
1338 }
1339 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1340 rd_package = rd;
1341 continue;
1342 }
1343 pr_debug("remove package, undo power limit on %s: %s\n",
1344 rp->name, rd->name);
1345 powercap_unregister_zone(rp->priv->control_type,
1346 &rd->power_zone);
1347 }
1348 /* do parent zone last */
1349 powercap_unregister_zone(rp->priv->control_type,
1350 &rd_package->power_zone);
1351 list_del(&rp->plist);
1352 kfree(rp);
1353 }
1354 EXPORT_SYMBOL_GPL(rapl_remove_package);
1355
1356 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain(int cpu,struct rapl_if_priv * priv)1357 struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1358 {
1359 int id = topology_logical_die_id(cpu);
1360 struct rapl_package *rp;
1361
1362 list_for_each_entry(rp, &rapl_packages, plist) {
1363 if (rp->id == id
1364 && rp->priv->control_type == priv->control_type)
1365 return rp;
1366 }
1367
1368 return NULL;
1369 }
1370 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1371
1372 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package(int cpu,struct rapl_if_priv * priv)1373 struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1374 {
1375 int id = topology_logical_die_id(cpu);
1376 struct rapl_package *rp;
1377 int ret;
1378
1379 if (!rapl_defaults)
1380 return ERR_PTR(-ENODEV);
1381
1382 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1383 if (!rp)
1384 return ERR_PTR(-ENOMEM);
1385
1386 /* add the new package to the list */
1387 rp->id = id;
1388 rp->lead_cpu = cpu;
1389 rp->priv = priv;
1390
1391 if (topology_max_die_per_package() > 1)
1392 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1393 "package-%d-die-%d",
1394 topology_physical_package_id(cpu), topology_die_id(cpu));
1395 else
1396 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1397 topology_physical_package_id(cpu));
1398
1399 /* check if the package contains valid domains */
1400 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1401 ret = -ENODEV;
1402 goto err_free_package;
1403 }
1404 ret = rapl_package_register_powercap(rp);
1405 if (!ret) {
1406 INIT_LIST_HEAD(&rp->plist);
1407 list_add(&rp->plist, &rapl_packages);
1408 return rp;
1409 }
1410
1411 err_free_package:
1412 kfree(rp->domains);
1413 kfree(rp);
1414 return ERR_PTR(ret);
1415 }
1416 EXPORT_SYMBOL_GPL(rapl_add_package);
1417
power_limit_state_save(void)1418 static void power_limit_state_save(void)
1419 {
1420 struct rapl_package *rp;
1421 struct rapl_domain *rd;
1422 int nr_pl, ret, i;
1423
1424 cpus_read_lock();
1425 list_for_each_entry(rp, &rapl_packages, plist) {
1426 if (!rp->power_zone)
1427 continue;
1428 rd = power_zone_to_rapl_domain(rp->power_zone);
1429 nr_pl = find_nr_power_limit(rd);
1430 for (i = 0; i < nr_pl; i++) {
1431 switch (rd->rpl[i].prim_id) {
1432 case PL1_ENABLE:
1433 ret = rapl_read_data_raw(rd,
1434 POWER_LIMIT1, true,
1435 &rd->rpl[i].last_power_limit);
1436 if (ret)
1437 rd->rpl[i].last_power_limit = 0;
1438 break;
1439 case PL2_ENABLE:
1440 ret = rapl_read_data_raw(rd,
1441 POWER_LIMIT2, true,
1442 &rd->rpl[i].last_power_limit);
1443 if (ret)
1444 rd->rpl[i].last_power_limit = 0;
1445 break;
1446 case PL4_ENABLE:
1447 ret = rapl_read_data_raw(rd,
1448 POWER_LIMIT4, true,
1449 &rd->rpl[i].last_power_limit);
1450 if (ret)
1451 rd->rpl[i].last_power_limit = 0;
1452 break;
1453 }
1454 }
1455 }
1456 cpus_read_unlock();
1457 }
1458
power_limit_state_restore(void)1459 static void power_limit_state_restore(void)
1460 {
1461 struct rapl_package *rp;
1462 struct rapl_domain *rd;
1463 int nr_pl, i;
1464
1465 cpus_read_lock();
1466 list_for_each_entry(rp, &rapl_packages, plist) {
1467 if (!rp->power_zone)
1468 continue;
1469 rd = power_zone_to_rapl_domain(rp->power_zone);
1470 nr_pl = find_nr_power_limit(rd);
1471 for (i = 0; i < nr_pl; i++) {
1472 switch (rd->rpl[i].prim_id) {
1473 case PL1_ENABLE:
1474 if (rd->rpl[i].last_power_limit)
1475 rapl_write_data_raw(rd, POWER_LIMIT1,
1476 rd->rpl[i].last_power_limit);
1477 break;
1478 case PL2_ENABLE:
1479 if (rd->rpl[i].last_power_limit)
1480 rapl_write_data_raw(rd, POWER_LIMIT2,
1481 rd->rpl[i].last_power_limit);
1482 break;
1483 case PL4_ENABLE:
1484 if (rd->rpl[i].last_power_limit)
1485 rapl_write_data_raw(rd, POWER_LIMIT4,
1486 rd->rpl[i].last_power_limit);
1487 break;
1488 }
1489 }
1490 }
1491 cpus_read_unlock();
1492 }
1493
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)1494 static int rapl_pm_callback(struct notifier_block *nb,
1495 unsigned long mode, void *_unused)
1496 {
1497 switch (mode) {
1498 case PM_SUSPEND_PREPARE:
1499 power_limit_state_save();
1500 break;
1501 case PM_POST_SUSPEND:
1502 power_limit_state_restore();
1503 break;
1504 }
1505 return NOTIFY_OK;
1506 }
1507
1508 static struct notifier_block rapl_pm_notifier = {
1509 .notifier_call = rapl_pm_callback,
1510 };
1511
1512 static struct platform_device *rapl_msr_platdev;
1513
rapl_init(void)1514 static int __init rapl_init(void)
1515 {
1516 const struct x86_cpu_id *id;
1517 int ret;
1518
1519 id = x86_match_cpu(rapl_ids);
1520 if (!id) {
1521 pr_err("driver does not support CPU family %d model %d\n",
1522 boot_cpu_data.x86, boot_cpu_data.x86_model);
1523
1524 return -ENODEV;
1525 }
1526
1527 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1528
1529 ret = register_pm_notifier(&rapl_pm_notifier);
1530 if (ret)
1531 return ret;
1532
1533 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1534 if (!rapl_msr_platdev) {
1535 ret = -ENOMEM;
1536 goto end;
1537 }
1538
1539 ret = platform_device_add(rapl_msr_platdev);
1540 if (ret)
1541 platform_device_put(rapl_msr_platdev);
1542
1543 end:
1544 if (ret)
1545 unregister_pm_notifier(&rapl_pm_notifier);
1546
1547 return ret;
1548 }
1549
rapl_exit(void)1550 static void __exit rapl_exit(void)
1551 {
1552 platform_device_unregister(rapl_msr_platdev);
1553 unregister_pm_notifier(&rapl_pm_notifier);
1554 }
1555
1556 fs_initcall(rapl_init);
1557 module_exit(rapl_exit);
1558
1559 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1560 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1561 MODULE_LICENSE("GPL v2");
1562