1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
set_max_mapnr(unsigned long limit)43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
set_max_mapnr(unsigned long limit)48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54 
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71 
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75 
76 #ifndef __pa_symbol
77 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79 
80 #ifndef page_to_virt
81 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83 
84 #ifndef lm_alias
85 #define lm_alias(x)	__va(__pa_symbol(x))
86 #endif
87 
88 /*
89  * To prevent common memory management code establishing
90  * a zero page mapping on a read fault.
91  * This macro should be defined within <asm/pgtable.h>.
92  * s390 does this to prevent multiplexing of hardware bits
93  * related to the physical page in case of virtualization.
94  */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X)	(0)
97 #endif
98 
99 /*
100  * On some architectures it is expensive to call memset() for small sizes.
101  * Those architectures should provide their own implementation of "struct page"
102  * zeroing by defining this macro in <asm/pgtable.h>.
103  */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107 
108 /*
109  * Default maximum number of active map areas, this limits the number of vmas
110  * per mm struct. Users can overwrite this number by sysctl but there is a
111  * problem.
112  *
113  * When a program's coredump is generated as ELF format, a section is created
114  * per a vma. In ELF, the number of sections is represented in unsigned short.
115  * This means the number of sections should be smaller than 65535 at coredump.
116  * Because the kernel adds some informative sections to a image of program at
117  * generating coredump, we need some margin. The number of extra sections is
118  * 1-3 now and depends on arch. We use "5" as safe margin, here.
119  *
120  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121  * not a hard limit any more. Although some userspace tools can be surprised by
122  * that.
123  */
124 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
125 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 
127 extern int sysctl_max_map_count;
128 
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131 
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135 
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 				    size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 				    size_t *, loff_t *);
140 
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148 
149 /*
150  * Linux kernel virtual memory manager primitives.
151  * The idea being to have a "virtual" mm in the same way
152  * we have a virtual fs - giving a cleaner interface to the
153  * mm details, and allowing different kinds of memory mappings
154  * (from shared memory to executable loading to arbitrary
155  * mmap() functions).
156  */
157 
158 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
161 
162 #ifndef CONFIG_MMU
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
165 
166 extern unsigned int kobjsize(const void *objp);
167 #endif
168 
169 /*
170  * vm_flags in vm_area_struct, see mm_types.h.
171  * When changing, update also include/trace/events/mmflags.h
172  */
173 #define VM_NONE		0x00000000
174 
175 #define VM_READ		0x00000001	/* currently active flags */
176 #define VM_WRITE	0x00000002
177 #define VM_EXEC		0x00000004
178 #define VM_SHARED	0x00000008
179 
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
182 #define VM_MAYWRITE	0x00000020
183 #define VM_MAYEXEC	0x00000040
184 #define VM_MAYSHARE	0x00000080
185 
186 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
187 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
188 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
191 
192 #define VM_LOCKED	0x00002000
193 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
194 
195 					/* Used by sys_madvise() */
196 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
197 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
198 
199 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
203 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
204 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
205 #define VM_SYNC		0x00800000	/* Synchronous page faults */
206 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
207 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
208 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
209 
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
212 #else
213 # define VM_SOFTDIRTY	0
214 #endif
215 
216 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
220 
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233 
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
238 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
240 #ifdef CONFIG_PPC
241 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
242 #else
243 # define VM_PKEY_BIT4  0
244 #endif
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
246 
247 #if defined(CONFIG_X86)
248 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP	VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP	VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR	VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
260 #endif
261 
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX		VM_HIGH_ARCH_4
265 #else
266 # define VM_MPX		VM_NONE
267 #endif
268 
269 #ifndef VM_GROWSUP
270 # define VM_GROWSUP	VM_NONE
271 #endif
272 
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
275 
276 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278 #endif
279 
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK	VM_GROWSUP
282 #else
283 #define VM_STACK	VM_GROWSDOWN
284 #endif
285 
286 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287 
288 /*
289  * Special vmas that are non-mergable, non-mlock()able.
290  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291  */
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293 
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
296 
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
299 
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR	VM_NONE
303 #endif
304 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305 
306 /*
307  * mapping from the currently active vm_flags protection bits (the
308  * low four bits) to a page protection mask..
309  */
310 extern pgprot_t protection_map[16];
311 
312 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED	0x20	/* Second try */
318 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
321 
322 #define FAULT_FLAG_TRACE \
323 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
324 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
325 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
326 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
327 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
328 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
329 	{ FAULT_FLAG_USER,		"USER" }, \
330 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
331 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
332 
333 /*
334  * vm_fault is filled by the the pagefault handler and passed to the vma's
335  * ->fault function. The vma's ->fault is responsible for returning a bitmask
336  * of VM_FAULT_xxx flags that give details about how the fault was handled.
337  *
338  * MM layer fills up gfp_mask for page allocations but fault handler might
339  * alter it if its implementation requires a different allocation context.
340  *
341  * pgoff should be used in favour of virtual_address, if possible.
342  */
343 struct vm_fault {
344 	struct vm_area_struct *vma;	/* Target VMA */
345 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
346 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
347 	pgoff_t pgoff;			/* Logical page offset based on vma */
348 	unsigned long address;		/* Faulting virtual address */
349 	pmd_t *pmd;			/* Pointer to pmd entry matching
350 					 * the 'address' */
351 	pud_t *pud;			/* Pointer to pud entry matching
352 					 * the 'address'
353 					 */
354 	pte_t orig_pte;			/* Value of PTE at the time of fault */
355 
356 	struct page *cow_page;		/* Page handler may use for COW fault */
357 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
358 	struct page *page;		/* ->fault handlers should return a
359 					 * page here, unless VM_FAULT_NOPAGE
360 					 * is set (which is also implied by
361 					 * VM_FAULT_ERROR).
362 					 */
363 	/* These three entries are valid only while holding ptl lock */
364 	pte_t *pte;			/* Pointer to pte entry matching
365 					 * the 'address'. NULL if the page
366 					 * table hasn't been allocated.
367 					 */
368 	spinlock_t *ptl;		/* Page table lock.
369 					 * Protects pte page table if 'pte'
370 					 * is not NULL, otherwise pmd.
371 					 */
372 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
373 					 * vm_ops->map_pages() calls
374 					 * alloc_set_pte() from atomic context.
375 					 * do_fault_around() pre-allocates
376 					 * page table to avoid allocation from
377 					 * atomic context.
378 					 */
379 };
380 
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
383 	PE_SIZE_PTE = 0,
384 	PE_SIZE_PMD,
385 	PE_SIZE_PUD,
386 };
387 
388 /*
389  * These are the virtual MM functions - opening of an area, closing and
390  * unmapping it (needed to keep files on disk up-to-date etc), pointer
391  * to the functions called when a no-page or a wp-page exception occurs.
392  */
393 struct vm_operations_struct {
394 	void (*open)(struct vm_area_struct * area);
395 	void (*close)(struct vm_area_struct * area);
396 	int (*split)(struct vm_area_struct * area, unsigned long addr);
397 	int (*mremap)(struct vm_area_struct * area);
398 	vm_fault_t (*fault)(struct vm_fault *vmf);
399 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 			enum page_entry_size pe_size);
401 	void (*map_pages)(struct vm_fault *vmf,
402 			pgoff_t start_pgoff, pgoff_t end_pgoff);
403 	unsigned long (*pagesize)(struct vm_area_struct * area);
404 
405 	/* notification that a previously read-only page is about to become
406 	 * writable, if an error is returned it will cause a SIGBUS */
407 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408 
409 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411 
412 	/* called by access_process_vm when get_user_pages() fails, typically
413 	 * for use by special VMAs that can switch between memory and hardware
414 	 */
415 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 		      void *buf, int len, int write);
417 
418 	/* Called by the /proc/PID/maps code to ask the vma whether it
419 	 * has a special name.  Returning non-NULL will also cause this
420 	 * vma to be dumped unconditionally. */
421 	const char *(*name)(struct vm_area_struct *vma);
422 
423 #ifdef CONFIG_NUMA
424 	/*
425 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 	 * to hold the policy upon return.  Caller should pass NULL @new to
427 	 * remove a policy and fall back to surrounding context--i.e. do not
428 	 * install a MPOL_DEFAULT policy, nor the task or system default
429 	 * mempolicy.
430 	 */
431 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432 
433 	/*
434 	 * get_policy() op must add reference [mpol_get()] to any policy at
435 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
436 	 * in mm/mempolicy.c will do this automatically.
437 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 	 * must return NULL--i.e., do not "fallback" to task or system default
441 	 * policy.
442 	 */
443 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 					unsigned long addr);
445 #endif
446 	/*
447 	 * Called by vm_normal_page() for special PTEs to find the
448 	 * page for @addr.  This is useful if the default behavior
449 	 * (using pte_page()) would not find the correct page.
450 	 */
451 	struct page *(*find_special_page)(struct vm_area_struct *vma,
452 					  unsigned long addr);
453 };
454 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456 {
457 	static const struct vm_operations_struct dummy_vm_ops = {};
458 
459 	memset(vma, 0, sizeof(*vma));
460 	vma->vm_mm = mm;
461 	vma->vm_ops = &dummy_vm_ops;
462 	INIT_LIST_HEAD(&vma->anon_vma_chain);
463 }
464 
vma_set_anonymous(struct vm_area_struct * vma)465 static inline void vma_set_anonymous(struct vm_area_struct *vma)
466 {
467 	vma->vm_ops = NULL;
468 }
469 
470 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
471 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
472 
473 struct mmu_gather;
474 struct inode;
475 
476 #define page_private(page)		((page)->private)
477 #define set_page_private(page, v)	((page)->private = (v))
478 
479 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)480 static inline int pmd_devmap(pmd_t pmd)
481 {
482 	return 0;
483 }
pud_devmap(pud_t pud)484 static inline int pud_devmap(pud_t pud)
485 {
486 	return 0;
487 }
pgd_devmap(pgd_t pgd)488 static inline int pgd_devmap(pgd_t pgd)
489 {
490 	return 0;
491 }
492 #endif
493 
494 /*
495  * FIXME: take this include out, include page-flags.h in
496  * files which need it (119 of them)
497  */
498 #include <linux/page-flags.h>
499 #include <linux/huge_mm.h>
500 
501 /*
502  * Methods to modify the page usage count.
503  *
504  * What counts for a page usage:
505  * - cache mapping   (page->mapping)
506  * - private data    (page->private)
507  * - page mapped in a task's page tables, each mapping
508  *   is counted separately
509  *
510  * Also, many kernel routines increase the page count before a critical
511  * routine so they can be sure the page doesn't go away from under them.
512  */
513 
514 /*
515  * Drop a ref, return true if the refcount fell to zero (the page has no users)
516  */
put_page_testzero(struct page * page)517 static inline int put_page_testzero(struct page *page)
518 {
519 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
520 	return page_ref_dec_and_test(page);
521 }
522 
523 /*
524  * Try to grab a ref unless the page has a refcount of zero, return false if
525  * that is the case.
526  * This can be called when MMU is off so it must not access
527  * any of the virtual mappings.
528  */
get_page_unless_zero(struct page * page)529 static inline int get_page_unless_zero(struct page *page)
530 {
531 	return page_ref_add_unless(page, 1, 0);
532 }
533 
534 extern int page_is_ram(unsigned long pfn);
535 
536 enum {
537 	REGION_INTERSECTS,
538 	REGION_DISJOINT,
539 	REGION_MIXED,
540 };
541 
542 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
543 		      unsigned long desc);
544 
545 /* Support for virtually mapped pages */
546 struct page *vmalloc_to_page(const void *addr);
547 unsigned long vmalloc_to_pfn(const void *addr);
548 
549 /*
550  * Determine if an address is within the vmalloc range
551  *
552  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
553  * is no special casing required.
554  */
is_vmalloc_addr(const void * x)555 static inline bool is_vmalloc_addr(const void *x)
556 {
557 #ifdef CONFIG_MMU
558 	unsigned long addr = (unsigned long)x;
559 
560 	return addr >= VMALLOC_START && addr < VMALLOC_END;
561 #else
562 	return false;
563 #endif
564 }
565 #ifdef CONFIG_MMU
566 extern int is_vmalloc_or_module_addr(const void *x);
567 #else
is_vmalloc_or_module_addr(const void * x)568 static inline int is_vmalloc_or_module_addr(const void *x)
569 {
570 	return 0;
571 }
572 #endif
573 
574 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)575 static inline void *kvmalloc(size_t size, gfp_t flags)
576 {
577 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
578 }
kvzalloc_node(size_t size,gfp_t flags,int node)579 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580 {
581 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
582 }
kvzalloc(size_t size,gfp_t flags)583 static inline void *kvzalloc(size_t size, gfp_t flags)
584 {
585 	return kvmalloc(size, flags | __GFP_ZERO);
586 }
587 
kvmalloc_array(size_t n,size_t size,gfp_t flags)588 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
589 {
590 	size_t bytes;
591 
592 	if (unlikely(check_mul_overflow(n, size, &bytes)))
593 		return NULL;
594 
595 	return kvmalloc(bytes, flags);
596 }
597 
kvcalloc(size_t n,size_t size,gfp_t flags)598 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599 {
600 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
601 }
602 
603 extern void kvfree(const void *addr);
604 
compound_mapcount_ptr(struct page * page)605 static inline atomic_t *compound_mapcount_ptr(struct page *page)
606 {
607 	return &page[1].compound_mapcount;
608 }
609 
compound_mapcount(struct page * page)610 static inline int compound_mapcount(struct page *page)
611 {
612 	VM_BUG_ON_PAGE(!PageCompound(page), page);
613 	page = compound_head(page);
614 	return atomic_read(compound_mapcount_ptr(page)) + 1;
615 }
616 
617 /*
618  * The atomic page->_mapcount, starts from -1: so that transitions
619  * both from it and to it can be tracked, using atomic_inc_and_test
620  * and atomic_add_negative(-1).
621  */
page_mapcount_reset(struct page * page)622 static inline void page_mapcount_reset(struct page *page)
623 {
624 	atomic_set(&(page)->_mapcount, -1);
625 }
626 
627 int __page_mapcount(struct page *page);
628 
page_mapcount(struct page * page)629 static inline int page_mapcount(struct page *page)
630 {
631 	VM_BUG_ON_PAGE(PageSlab(page), page);
632 
633 	if (unlikely(PageCompound(page)))
634 		return __page_mapcount(page);
635 	return atomic_read(&page->_mapcount) + 1;
636 }
637 
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 int total_mapcount(struct page *page);
640 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
641 #else
total_mapcount(struct page * page)642 static inline int total_mapcount(struct page *page)
643 {
644 	return page_mapcount(page);
645 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)646 static inline int page_trans_huge_mapcount(struct page *page,
647 					   int *total_mapcount)
648 {
649 	int mapcount = page_mapcount(page);
650 	if (total_mapcount)
651 		*total_mapcount = mapcount;
652 	return mapcount;
653 }
654 #endif
655 
virt_to_head_page(const void * x)656 static inline struct page *virt_to_head_page(const void *x)
657 {
658 	struct page *page = virt_to_page(x);
659 
660 	return compound_head(page);
661 }
662 
663 void __put_page(struct page *page);
664 
665 void put_pages_list(struct list_head *pages);
666 
667 void split_page(struct page *page, unsigned int order);
668 
669 /*
670  * Compound pages have a destructor function.  Provide a
671  * prototype for that function and accessor functions.
672  * These are _only_ valid on the head of a compound page.
673  */
674 typedef void compound_page_dtor(struct page *);
675 
676 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
677 enum compound_dtor_id {
678 	NULL_COMPOUND_DTOR,
679 	COMPOUND_PAGE_DTOR,
680 #ifdef CONFIG_HUGETLB_PAGE
681 	HUGETLB_PAGE_DTOR,
682 #endif
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 	TRANSHUGE_PAGE_DTOR,
685 #endif
686 	NR_COMPOUND_DTORS,
687 };
688 extern compound_page_dtor * const compound_page_dtors[];
689 
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)690 static inline void set_compound_page_dtor(struct page *page,
691 		enum compound_dtor_id compound_dtor)
692 {
693 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
694 	page[1].compound_dtor = compound_dtor;
695 }
696 
get_compound_page_dtor(struct page * page)697 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
698 {
699 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
700 	return compound_page_dtors[page[1].compound_dtor];
701 }
702 
compound_order(struct page * page)703 static inline unsigned int compound_order(struct page *page)
704 {
705 	if (!PageHead(page))
706 		return 0;
707 	return page[1].compound_order;
708 }
709 
set_compound_order(struct page * page,unsigned int order)710 static inline void set_compound_order(struct page *page, unsigned int order)
711 {
712 	page[1].compound_order = order;
713 }
714 
715 void free_compound_page(struct page *page);
716 
717 #ifdef CONFIG_MMU
718 /*
719  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
720  * servicing faults for write access.  In the normal case, do always want
721  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
722  * that do not have writing enabled, when used by access_process_vm.
723  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)724 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
725 {
726 	if (likely(vma->vm_flags & VM_WRITE))
727 		pte = pte_mkwrite(pte);
728 	return pte;
729 }
730 
731 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
732 		struct page *page);
733 vm_fault_t finish_fault(struct vm_fault *vmf);
734 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
735 #endif
736 
737 /*
738  * Multiple processes may "see" the same page. E.g. for untouched
739  * mappings of /dev/null, all processes see the same page full of
740  * zeroes, and text pages of executables and shared libraries have
741  * only one copy in memory, at most, normally.
742  *
743  * For the non-reserved pages, page_count(page) denotes a reference count.
744  *   page_count() == 0 means the page is free. page->lru is then used for
745  *   freelist management in the buddy allocator.
746  *   page_count() > 0  means the page has been allocated.
747  *
748  * Pages are allocated by the slab allocator in order to provide memory
749  * to kmalloc and kmem_cache_alloc. In this case, the management of the
750  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
751  * unless a particular usage is carefully commented. (the responsibility of
752  * freeing the kmalloc memory is the caller's, of course).
753  *
754  * A page may be used by anyone else who does a __get_free_page().
755  * In this case, page_count still tracks the references, and should only
756  * be used through the normal accessor functions. The top bits of page->flags
757  * and page->virtual store page management information, but all other fields
758  * are unused and could be used privately, carefully. The management of this
759  * page is the responsibility of the one who allocated it, and those who have
760  * subsequently been given references to it.
761  *
762  * The other pages (we may call them "pagecache pages") are completely
763  * managed by the Linux memory manager: I/O, buffers, swapping etc.
764  * The following discussion applies only to them.
765  *
766  * A pagecache page contains an opaque `private' member, which belongs to the
767  * page's address_space. Usually, this is the address of a circular list of
768  * the page's disk buffers. PG_private must be set to tell the VM to call
769  * into the filesystem to release these pages.
770  *
771  * A page may belong to an inode's memory mapping. In this case, page->mapping
772  * is the pointer to the inode, and page->index is the file offset of the page,
773  * in units of PAGE_SIZE.
774  *
775  * If pagecache pages are not associated with an inode, they are said to be
776  * anonymous pages. These may become associated with the swapcache, and in that
777  * case PG_swapcache is set, and page->private is an offset into the swapcache.
778  *
779  * In either case (swapcache or inode backed), the pagecache itself holds one
780  * reference to the page. Setting PG_private should also increment the
781  * refcount. The each user mapping also has a reference to the page.
782  *
783  * The pagecache pages are stored in a per-mapping radix tree, which is
784  * rooted at mapping->i_pages, and indexed by offset.
785  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
786  * lists, we instead now tag pages as dirty/writeback in the radix tree.
787  *
788  * All pagecache pages may be subject to I/O:
789  * - inode pages may need to be read from disk,
790  * - inode pages which have been modified and are MAP_SHARED may need
791  *   to be written back to the inode on disk,
792  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
793  *   modified may need to be swapped out to swap space and (later) to be read
794  *   back into memory.
795  */
796 
797 /*
798  * The zone field is never updated after free_area_init_core()
799  * sets it, so none of the operations on it need to be atomic.
800  */
801 
802 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
803 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
804 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
805 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
806 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
807 
808 /*
809  * Define the bit shifts to access each section.  For non-existent
810  * sections we define the shift as 0; that plus a 0 mask ensures
811  * the compiler will optimise away reference to them.
812  */
813 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
814 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
815 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
816 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
817 
818 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
819 #ifdef NODE_NOT_IN_PAGE_FLAGS
820 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
821 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
822 						SECTIONS_PGOFF : ZONES_PGOFF)
823 #else
824 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
825 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
826 						NODES_PGOFF : ZONES_PGOFF)
827 #endif
828 
829 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
830 
831 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
832 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
833 #endif
834 
835 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
836 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
837 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
838 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
839 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
840 
page_zonenum(const struct page * page)841 static inline enum zone_type page_zonenum(const struct page *page)
842 {
843 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
844 }
845 
846 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)847 static inline bool is_zone_device_page(const struct page *page)
848 {
849 	return page_zonenum(page) == ZONE_DEVICE;
850 }
851 #else
is_zone_device_page(const struct page * page)852 static inline bool is_zone_device_page(const struct page *page)
853 {
854 	return false;
855 }
856 #endif
857 
858 #ifdef CONFIG_DEV_PAGEMAP_OPS
859 void dev_pagemap_get_ops(void);
860 void dev_pagemap_put_ops(void);
861 void __put_devmap_managed_page(struct page *page);
862 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
put_devmap_managed_page(struct page * page)863 static inline bool put_devmap_managed_page(struct page *page)
864 {
865 	if (!static_branch_unlikely(&devmap_managed_key))
866 		return false;
867 	if (!is_zone_device_page(page))
868 		return false;
869 	switch (page->pgmap->type) {
870 	case MEMORY_DEVICE_PRIVATE:
871 	case MEMORY_DEVICE_PUBLIC:
872 	case MEMORY_DEVICE_FS_DAX:
873 		__put_devmap_managed_page(page);
874 		return true;
875 	default:
876 		break;
877 	}
878 	return false;
879 }
880 
is_device_private_page(const struct page * page)881 static inline bool is_device_private_page(const struct page *page)
882 {
883 	return is_zone_device_page(page) &&
884 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
885 }
886 
is_device_public_page(const struct page * page)887 static inline bool is_device_public_page(const struct page *page)
888 {
889 	return is_zone_device_page(page) &&
890 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
891 }
892 
893 #else /* CONFIG_DEV_PAGEMAP_OPS */
dev_pagemap_get_ops(void)894 static inline void dev_pagemap_get_ops(void)
895 {
896 }
897 
dev_pagemap_put_ops(void)898 static inline void dev_pagemap_put_ops(void)
899 {
900 }
901 
put_devmap_managed_page(struct page * page)902 static inline bool put_devmap_managed_page(struct page *page)
903 {
904 	return false;
905 }
906 
is_device_private_page(const struct page * page)907 static inline bool is_device_private_page(const struct page *page)
908 {
909 	return false;
910 }
911 
is_device_public_page(const struct page * page)912 static inline bool is_device_public_page(const struct page *page)
913 {
914 	return false;
915 }
916 #endif /* CONFIG_DEV_PAGEMAP_OPS */
917 
get_page(struct page * page)918 static inline void get_page(struct page *page)
919 {
920 	page = compound_head(page);
921 	/*
922 	 * Getting a normal page or the head of a compound page
923 	 * requires to already have an elevated page->_refcount.
924 	 */
925 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
926 	page_ref_inc(page);
927 }
928 
put_page(struct page * page)929 static inline void put_page(struct page *page)
930 {
931 	page = compound_head(page);
932 
933 	/*
934 	 * For devmap managed pages we need to catch refcount transition from
935 	 * 2 to 1, when refcount reach one it means the page is free and we
936 	 * need to inform the device driver through callback. See
937 	 * include/linux/memremap.h and HMM for details.
938 	 */
939 	if (put_devmap_managed_page(page))
940 		return;
941 
942 	if (put_page_testzero(page))
943 		__put_page(page);
944 }
945 
946 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
947 #define SECTION_IN_PAGE_FLAGS
948 #endif
949 
950 /*
951  * The identification function is mainly used by the buddy allocator for
952  * determining if two pages could be buddies. We are not really identifying
953  * the zone since we could be using the section number id if we do not have
954  * node id available in page flags.
955  * We only guarantee that it will return the same value for two combinable
956  * pages in a zone.
957  */
page_zone_id(struct page * page)958 static inline int page_zone_id(struct page *page)
959 {
960 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
961 }
962 
963 #ifdef NODE_NOT_IN_PAGE_FLAGS
964 extern int page_to_nid(const struct page *page);
965 #else
page_to_nid(const struct page * page)966 static inline int page_to_nid(const struct page *page)
967 {
968 	struct page *p = (struct page *)page;
969 
970 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
971 }
972 #endif
973 
974 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)975 static inline int cpu_pid_to_cpupid(int cpu, int pid)
976 {
977 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
978 }
979 
cpupid_to_pid(int cpupid)980 static inline int cpupid_to_pid(int cpupid)
981 {
982 	return cpupid & LAST__PID_MASK;
983 }
984 
cpupid_to_cpu(int cpupid)985 static inline int cpupid_to_cpu(int cpupid)
986 {
987 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
988 }
989 
cpupid_to_nid(int cpupid)990 static inline int cpupid_to_nid(int cpupid)
991 {
992 	return cpu_to_node(cpupid_to_cpu(cpupid));
993 }
994 
cpupid_pid_unset(int cpupid)995 static inline bool cpupid_pid_unset(int cpupid)
996 {
997 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
998 }
999 
cpupid_cpu_unset(int cpupid)1000 static inline bool cpupid_cpu_unset(int cpupid)
1001 {
1002 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1003 }
1004 
__cpupid_match_pid(pid_t task_pid,int cpupid)1005 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1006 {
1007 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1008 }
1009 
1010 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1011 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1012 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1013 {
1014 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1015 }
1016 
page_cpupid_last(struct page * page)1017 static inline int page_cpupid_last(struct page *page)
1018 {
1019 	return page->_last_cpupid;
1020 }
page_cpupid_reset_last(struct page * page)1021 static inline void page_cpupid_reset_last(struct page *page)
1022 {
1023 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1024 }
1025 #else
page_cpupid_last(struct page * page)1026 static inline int page_cpupid_last(struct page *page)
1027 {
1028 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1029 }
1030 
1031 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1032 
page_cpupid_reset_last(struct page * page)1033 static inline void page_cpupid_reset_last(struct page *page)
1034 {
1035 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1036 }
1037 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1038 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1039 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1040 {
1041 	return page_to_nid(page); /* XXX */
1042 }
1043 
page_cpupid_last(struct page * page)1044 static inline int page_cpupid_last(struct page *page)
1045 {
1046 	return page_to_nid(page); /* XXX */
1047 }
1048 
cpupid_to_nid(int cpupid)1049 static inline int cpupid_to_nid(int cpupid)
1050 {
1051 	return -1;
1052 }
1053 
cpupid_to_pid(int cpupid)1054 static inline int cpupid_to_pid(int cpupid)
1055 {
1056 	return -1;
1057 }
1058 
cpupid_to_cpu(int cpupid)1059 static inline int cpupid_to_cpu(int cpupid)
1060 {
1061 	return -1;
1062 }
1063 
cpu_pid_to_cpupid(int nid,int pid)1064 static inline int cpu_pid_to_cpupid(int nid, int pid)
1065 {
1066 	return -1;
1067 }
1068 
cpupid_pid_unset(int cpupid)1069 static inline bool cpupid_pid_unset(int cpupid)
1070 {
1071 	return 1;
1072 }
1073 
page_cpupid_reset_last(struct page * page)1074 static inline void page_cpupid_reset_last(struct page *page)
1075 {
1076 }
1077 
cpupid_match_pid(struct task_struct * task,int cpupid)1078 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1079 {
1080 	return false;
1081 }
1082 #endif /* CONFIG_NUMA_BALANCING */
1083 
page_zone(const struct page * page)1084 static inline struct zone *page_zone(const struct page *page)
1085 {
1086 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1087 }
1088 
page_pgdat(const struct page * page)1089 static inline pg_data_t *page_pgdat(const struct page *page)
1090 {
1091 	return NODE_DATA(page_to_nid(page));
1092 }
1093 
1094 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1095 static inline void set_page_section(struct page *page, unsigned long section)
1096 {
1097 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1098 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1099 }
1100 
page_to_section(const struct page * page)1101 static inline unsigned long page_to_section(const struct page *page)
1102 {
1103 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1104 }
1105 #endif
1106 
set_page_zone(struct page * page,enum zone_type zone)1107 static inline void set_page_zone(struct page *page, enum zone_type zone)
1108 {
1109 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1110 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1111 }
1112 
set_page_node(struct page * page,unsigned long node)1113 static inline void set_page_node(struct page *page, unsigned long node)
1114 {
1115 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1116 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1117 }
1118 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1119 static inline void set_page_links(struct page *page, enum zone_type zone,
1120 	unsigned long node, unsigned long pfn)
1121 {
1122 	set_page_zone(page, zone);
1123 	set_page_node(page, node);
1124 #ifdef SECTION_IN_PAGE_FLAGS
1125 	set_page_section(page, pfn_to_section_nr(pfn));
1126 #endif
1127 }
1128 
1129 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1130 static inline struct mem_cgroup *page_memcg(struct page *page)
1131 {
1132 	return page->mem_cgroup;
1133 }
page_memcg_rcu(struct page * page)1134 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1135 {
1136 	WARN_ON_ONCE(!rcu_read_lock_held());
1137 	return READ_ONCE(page->mem_cgroup);
1138 }
1139 #else
page_memcg(struct page * page)1140 static inline struct mem_cgroup *page_memcg(struct page *page)
1141 {
1142 	return NULL;
1143 }
page_memcg_rcu(struct page * page)1144 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1145 {
1146 	WARN_ON_ONCE(!rcu_read_lock_held());
1147 	return NULL;
1148 }
1149 #endif
1150 
1151 /*
1152  * Some inline functions in vmstat.h depend on page_zone()
1153  */
1154 #include <linux/vmstat.h>
1155 
lowmem_page_address(const struct page * page)1156 static __always_inline void *lowmem_page_address(const struct page *page)
1157 {
1158 	return page_to_virt(page);
1159 }
1160 
1161 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1162 #define HASHED_PAGE_VIRTUAL
1163 #endif
1164 
1165 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1166 static inline void *page_address(const struct page *page)
1167 {
1168 	return page->virtual;
1169 }
set_page_address(struct page * page,void * address)1170 static inline void set_page_address(struct page *page, void *address)
1171 {
1172 	page->virtual = address;
1173 }
1174 #define page_address_init()  do { } while(0)
1175 #endif
1176 
1177 #if defined(HASHED_PAGE_VIRTUAL)
1178 void *page_address(const struct page *page);
1179 void set_page_address(struct page *page, void *virtual);
1180 void page_address_init(void);
1181 #endif
1182 
1183 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1184 #define page_address(page) lowmem_page_address(page)
1185 #define set_page_address(page, address)  do { } while(0)
1186 #define page_address_init()  do { } while(0)
1187 #endif
1188 
1189 extern void *page_rmapping(struct page *page);
1190 extern struct anon_vma *page_anon_vma(struct page *page);
1191 extern struct address_space *page_mapping(struct page *page);
1192 
1193 extern struct address_space *__page_file_mapping(struct page *);
1194 
1195 static inline
page_file_mapping(struct page * page)1196 struct address_space *page_file_mapping(struct page *page)
1197 {
1198 	if (unlikely(PageSwapCache(page)))
1199 		return __page_file_mapping(page);
1200 
1201 	return page->mapping;
1202 }
1203 
1204 extern pgoff_t __page_file_index(struct page *page);
1205 
1206 /*
1207  * Return the pagecache index of the passed page.  Regular pagecache pages
1208  * use ->index whereas swapcache pages use swp_offset(->private)
1209  */
page_index(struct page * page)1210 static inline pgoff_t page_index(struct page *page)
1211 {
1212 	if (unlikely(PageSwapCache(page)))
1213 		return __page_file_index(page);
1214 	return page->index;
1215 }
1216 
1217 bool page_mapped(struct page *page);
1218 struct address_space *page_mapping(struct page *page);
1219 struct address_space *page_mapping_file(struct page *page);
1220 
1221 /*
1222  * Return true only if the page has been allocated with
1223  * ALLOC_NO_WATERMARKS and the low watermark was not
1224  * met implying that the system is under some pressure.
1225  */
page_is_pfmemalloc(struct page * page)1226 static inline bool page_is_pfmemalloc(struct page *page)
1227 {
1228 	/*
1229 	 * Page index cannot be this large so this must be
1230 	 * a pfmemalloc page.
1231 	 */
1232 	return page->index == -1UL;
1233 }
1234 
1235 /*
1236  * Only to be called by the page allocator on a freshly allocated
1237  * page.
1238  */
set_page_pfmemalloc(struct page * page)1239 static inline void set_page_pfmemalloc(struct page *page)
1240 {
1241 	page->index = -1UL;
1242 }
1243 
clear_page_pfmemalloc(struct page * page)1244 static inline void clear_page_pfmemalloc(struct page *page)
1245 {
1246 	page->index = 0;
1247 }
1248 
1249 /*
1250  * Different kinds of faults, as returned by handle_mm_fault().
1251  * Used to decide whether a process gets delivered SIGBUS or
1252  * just gets major/minor fault counters bumped up.
1253  */
1254 
1255 #define VM_FAULT_OOM	0x0001
1256 #define VM_FAULT_SIGBUS	0x0002
1257 #define VM_FAULT_MAJOR	0x0004
1258 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1259 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1260 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1261 #define VM_FAULT_SIGSEGV 0x0040
1262 
1263 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1264 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1265 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1266 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1267 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1268 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1269 					 * and needs fsync() to complete (for
1270 					 * synchronous page faults in DAX) */
1271 
1272 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1273 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1274 			 VM_FAULT_FALLBACK)
1275 
1276 #define VM_FAULT_RESULT_TRACE \
1277 	{ VM_FAULT_OOM,			"OOM" }, \
1278 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1279 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1280 	{ VM_FAULT_WRITE,		"WRITE" }, \
1281 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1282 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1283 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1284 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1285 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1286 	{ VM_FAULT_RETRY,		"RETRY" }, \
1287 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1288 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1289 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1290 
1291 /* Encode hstate index for a hwpoisoned large page */
1292 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1293 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1294 
1295 /*
1296  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1297  */
1298 extern void pagefault_out_of_memory(void);
1299 
1300 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1301 
1302 /*
1303  * Flags passed to show_mem() and show_free_areas() to suppress output in
1304  * various contexts.
1305  */
1306 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1307 
1308 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1309 
1310 extern bool can_do_mlock(void);
1311 extern int user_shm_lock(size_t, struct user_struct *);
1312 extern void user_shm_unlock(size_t, struct user_struct *);
1313 
1314 /*
1315  * Parameter block passed down to zap_pte_range in exceptional cases.
1316  */
1317 struct zap_details {
1318 	struct address_space *check_mapping;	/* Check page->mapping if set */
1319 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1320 	pgoff_t last_index;			/* Highest page->index to unmap */
1321 };
1322 
1323 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1324 			     pte_t pte, bool with_public_device);
1325 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1326 
1327 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1328 				pmd_t pmd);
1329 
1330 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1331 		  unsigned long size);
1332 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1333 		    unsigned long size);
1334 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1335 		unsigned long start, unsigned long end);
1336 
1337 /**
1338  * mm_walk - callbacks for walk_page_range
1339  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1340  *	       this handler should only handle pud_trans_huge() puds.
1341  *	       the pmd_entry or pte_entry callbacks will be used for
1342  *	       regular PUDs.
1343  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1344  *	       this handler is required to be able to handle
1345  *	       pmd_trans_huge() pmds.  They may simply choose to
1346  *	       split_huge_page() instead of handling it explicitly.
1347  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1348  * @pte_hole: if set, called for each hole at all levels
1349  * @hugetlb_entry: if set, called for each hugetlb entry
1350  * @test_walk: caller specific callback function to determine whether
1351  *             we walk over the current vma or not. Returning 0
1352  *             value means "do page table walk over the current vma,"
1353  *             and a negative one means "abort current page table walk
1354  *             right now." 1 means "skip the current vma."
1355  * @mm:        mm_struct representing the target process of page table walk
1356  * @vma:       vma currently walked (NULL if walking outside vmas)
1357  * @private:   private data for callbacks' usage
1358  *
1359  * (see the comment on walk_page_range() for more details)
1360  */
1361 struct mm_walk {
1362 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1363 			 unsigned long next, struct mm_walk *walk);
1364 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1365 			 unsigned long next, struct mm_walk *walk);
1366 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1367 			 unsigned long next, struct mm_walk *walk);
1368 	int (*pte_hole)(unsigned long addr, unsigned long next,
1369 			struct mm_walk *walk);
1370 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1371 			     unsigned long addr, unsigned long next,
1372 			     struct mm_walk *walk);
1373 	int (*test_walk)(unsigned long addr, unsigned long next,
1374 			struct mm_walk *walk);
1375 	struct mm_struct *mm;
1376 	struct vm_area_struct *vma;
1377 	void *private;
1378 };
1379 
1380 int walk_page_range(unsigned long addr, unsigned long end,
1381 		struct mm_walk *walk);
1382 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1383 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1384 		unsigned long end, unsigned long floor, unsigned long ceiling);
1385 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1386 			struct vm_area_struct *vma);
1387 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1388 			     unsigned long *start, unsigned long *end,
1389 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1390 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1391 	unsigned long *pfn);
1392 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1393 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1394 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1395 			void *buf, int len, int write);
1396 
1397 extern void truncate_pagecache(struct inode *inode, loff_t new);
1398 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1399 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1400 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1401 int truncate_inode_page(struct address_space *mapping, struct page *page);
1402 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1403 int invalidate_inode_page(struct page *page);
1404 
1405 #ifdef CONFIG_MMU
1406 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1407 			unsigned long address, unsigned int flags);
1408 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1409 			    unsigned long address, unsigned int fault_flags,
1410 			    bool *unlocked);
1411 void unmap_mapping_pages(struct address_space *mapping,
1412 		pgoff_t start, pgoff_t nr, bool even_cows);
1413 void unmap_mapping_range(struct address_space *mapping,
1414 		loff_t const holebegin, loff_t const holelen, int even_cows);
1415 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1416 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1417 		unsigned long address, unsigned int flags)
1418 {
1419 	/* should never happen if there's no MMU */
1420 	BUG();
1421 	return VM_FAULT_SIGBUS;
1422 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1423 static inline int fixup_user_fault(struct task_struct *tsk,
1424 		struct mm_struct *mm, unsigned long address,
1425 		unsigned int fault_flags, bool *unlocked)
1426 {
1427 	/* should never happen if there's no MMU */
1428 	BUG();
1429 	return -EFAULT;
1430 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1431 static inline void unmap_mapping_pages(struct address_space *mapping,
1432 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1433 static inline void unmap_mapping_range(struct address_space *mapping,
1434 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1435 #endif
1436 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1437 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1438 		loff_t const holebegin, loff_t const holelen)
1439 {
1440 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1441 }
1442 
1443 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1444 		void *buf, int len, unsigned int gup_flags);
1445 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1446 		void *buf, int len, unsigned int gup_flags);
1447 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1448 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1449 
1450 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1451 			    unsigned long start, unsigned long nr_pages,
1452 			    unsigned int gup_flags, struct page **pages,
1453 			    struct vm_area_struct **vmas, int *locked);
1454 long get_user_pages(unsigned long start, unsigned long nr_pages,
1455 			    unsigned int gup_flags, struct page **pages,
1456 			    struct vm_area_struct **vmas);
1457 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1458 		    unsigned int gup_flags, struct page **pages, int *locked);
1459 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1460 		    struct page **pages, unsigned int gup_flags);
1461 #ifdef CONFIG_FS_DAX
1462 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1463 			    unsigned int gup_flags, struct page **pages,
1464 			    struct vm_area_struct **vmas);
1465 #else
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1466 static inline long get_user_pages_longterm(unsigned long start,
1467 		unsigned long nr_pages, unsigned int gup_flags,
1468 		struct page **pages, struct vm_area_struct **vmas)
1469 {
1470 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1471 }
1472 #endif /* CONFIG_FS_DAX */
1473 
1474 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1475 			struct page **pages);
1476 
1477 /* Container for pinned pfns / pages */
1478 struct frame_vector {
1479 	unsigned int nr_allocated;	/* Number of frames we have space for */
1480 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1481 	bool got_ref;		/* Did we pin pages by getting page ref? */
1482 	bool is_pfns;		/* Does array contain pages or pfns? */
1483 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1484 				 * pfns_vector_pages() or pfns_vector_pfns()
1485 				 * for access */
1486 };
1487 
1488 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1489 void frame_vector_destroy(struct frame_vector *vec);
1490 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1491 		     unsigned int gup_flags, struct frame_vector *vec);
1492 void put_vaddr_frames(struct frame_vector *vec);
1493 int frame_vector_to_pages(struct frame_vector *vec);
1494 void frame_vector_to_pfns(struct frame_vector *vec);
1495 
frame_vector_count(struct frame_vector * vec)1496 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1497 {
1498 	return vec->nr_frames;
1499 }
1500 
frame_vector_pages(struct frame_vector * vec)1501 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1502 {
1503 	if (vec->is_pfns) {
1504 		int err = frame_vector_to_pages(vec);
1505 
1506 		if (err)
1507 			return ERR_PTR(err);
1508 	}
1509 	return (struct page **)(vec->ptrs);
1510 }
1511 
frame_vector_pfns(struct frame_vector * vec)1512 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1513 {
1514 	if (!vec->is_pfns)
1515 		frame_vector_to_pfns(vec);
1516 	return (unsigned long *)(vec->ptrs);
1517 }
1518 
1519 struct kvec;
1520 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1521 			struct page **pages);
1522 int get_kernel_page(unsigned long start, int write, struct page **pages);
1523 struct page *get_dump_page(unsigned long addr);
1524 
1525 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1526 extern void do_invalidatepage(struct page *page, unsigned int offset,
1527 			      unsigned int length);
1528 
1529 void __set_page_dirty(struct page *, struct address_space *, int warn);
1530 int __set_page_dirty_nobuffers(struct page *page);
1531 int __set_page_dirty_no_writeback(struct page *page);
1532 int redirty_page_for_writepage(struct writeback_control *wbc,
1533 				struct page *page);
1534 void account_page_dirtied(struct page *page, struct address_space *mapping);
1535 void account_page_cleaned(struct page *page, struct address_space *mapping,
1536 			  struct bdi_writeback *wb);
1537 int set_page_dirty(struct page *page);
1538 int set_page_dirty_lock(struct page *page);
1539 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1540 static inline void cancel_dirty_page(struct page *page)
1541 {
1542 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1543 	if (PageDirty(page))
1544 		__cancel_dirty_page(page);
1545 }
1546 int clear_page_dirty_for_io(struct page *page);
1547 
1548 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1549 
vma_is_anonymous(struct vm_area_struct * vma)1550 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1551 {
1552 	return !vma->vm_ops;
1553 }
1554 
1555 #ifdef CONFIG_SHMEM
1556 /*
1557  * The vma_is_shmem is not inline because it is used only by slow
1558  * paths in userfault.
1559  */
1560 bool vma_is_shmem(struct vm_area_struct *vma);
1561 #else
vma_is_shmem(struct vm_area_struct * vma)1562 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1563 #endif
1564 
1565 int vma_is_stack_for_current(struct vm_area_struct *vma);
1566 
1567 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1568 		unsigned long old_addr, struct vm_area_struct *new_vma,
1569 		unsigned long new_addr, unsigned long len,
1570 		bool need_rmap_locks);
1571 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1572 			      unsigned long end, pgprot_t newprot,
1573 			      int dirty_accountable, int prot_numa);
1574 extern int mprotect_fixup(struct vm_area_struct *vma,
1575 			  struct vm_area_struct **pprev, unsigned long start,
1576 			  unsigned long end, unsigned long newflags);
1577 
1578 /*
1579  * doesn't attempt to fault and will return short.
1580  */
1581 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1582 			  struct page **pages);
1583 /*
1584  * per-process(per-mm_struct) statistics.
1585  */
get_mm_counter(struct mm_struct * mm,int member)1586 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1587 {
1588 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1589 
1590 #ifdef SPLIT_RSS_COUNTING
1591 	/*
1592 	 * counter is updated in asynchronous manner and may go to minus.
1593 	 * But it's never be expected number for users.
1594 	 */
1595 	if (val < 0)
1596 		val = 0;
1597 #endif
1598 	return (unsigned long)val;
1599 }
1600 
add_mm_counter(struct mm_struct * mm,int member,long value)1601 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1602 {
1603 	atomic_long_add(value, &mm->rss_stat.count[member]);
1604 }
1605 
inc_mm_counter(struct mm_struct * mm,int member)1606 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1607 {
1608 	atomic_long_inc(&mm->rss_stat.count[member]);
1609 }
1610 
dec_mm_counter(struct mm_struct * mm,int member)1611 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1612 {
1613 	atomic_long_dec(&mm->rss_stat.count[member]);
1614 }
1615 
1616 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1617 static inline int mm_counter_file(struct page *page)
1618 {
1619 	if (PageSwapBacked(page))
1620 		return MM_SHMEMPAGES;
1621 	return MM_FILEPAGES;
1622 }
1623 
mm_counter(struct page * page)1624 static inline int mm_counter(struct page *page)
1625 {
1626 	if (PageAnon(page))
1627 		return MM_ANONPAGES;
1628 	return mm_counter_file(page);
1629 }
1630 
get_mm_rss(struct mm_struct * mm)1631 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1632 {
1633 	return get_mm_counter(mm, MM_FILEPAGES) +
1634 		get_mm_counter(mm, MM_ANONPAGES) +
1635 		get_mm_counter(mm, MM_SHMEMPAGES);
1636 }
1637 
get_mm_hiwater_rss(struct mm_struct * mm)1638 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1639 {
1640 	return max(mm->hiwater_rss, get_mm_rss(mm));
1641 }
1642 
get_mm_hiwater_vm(struct mm_struct * mm)1643 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1644 {
1645 	return max(mm->hiwater_vm, mm->total_vm);
1646 }
1647 
update_hiwater_rss(struct mm_struct * mm)1648 static inline void update_hiwater_rss(struct mm_struct *mm)
1649 {
1650 	unsigned long _rss = get_mm_rss(mm);
1651 
1652 	if ((mm)->hiwater_rss < _rss)
1653 		(mm)->hiwater_rss = _rss;
1654 }
1655 
update_hiwater_vm(struct mm_struct * mm)1656 static inline void update_hiwater_vm(struct mm_struct *mm)
1657 {
1658 	if (mm->hiwater_vm < mm->total_vm)
1659 		mm->hiwater_vm = mm->total_vm;
1660 }
1661 
reset_mm_hiwater_rss(struct mm_struct * mm)1662 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1663 {
1664 	mm->hiwater_rss = get_mm_rss(mm);
1665 }
1666 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1667 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1668 					 struct mm_struct *mm)
1669 {
1670 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1671 
1672 	if (*maxrss < hiwater_rss)
1673 		*maxrss = hiwater_rss;
1674 }
1675 
1676 #if defined(SPLIT_RSS_COUNTING)
1677 void sync_mm_rss(struct mm_struct *mm);
1678 #else
sync_mm_rss(struct mm_struct * mm)1679 static inline void sync_mm_rss(struct mm_struct *mm)
1680 {
1681 }
1682 #endif
1683 
1684 #ifndef __HAVE_ARCH_PTE_DEVMAP
pte_devmap(pte_t pte)1685 static inline int pte_devmap(pte_t pte)
1686 {
1687 	return 0;
1688 }
1689 #endif
1690 
1691 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1692 
1693 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1694 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1695 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1696 				    spinlock_t **ptl)
1697 {
1698 	pte_t *ptep;
1699 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1700 	return ptep;
1701 }
1702 
1703 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1704 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1705 						unsigned long address)
1706 {
1707 	return 0;
1708 }
1709 #else
1710 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1711 #endif
1712 
1713 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1714 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1715 						unsigned long address)
1716 {
1717 	return 0;
1718 }
mm_inc_nr_puds(struct mm_struct * mm)1719 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)1720 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1721 
1722 #else
1723 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1724 
mm_inc_nr_puds(struct mm_struct * mm)1725 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1726 {
1727 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1728 }
1729 
mm_dec_nr_puds(struct mm_struct * mm)1730 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1731 {
1732 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1733 }
1734 #endif
1735 
1736 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1737 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1738 						unsigned long address)
1739 {
1740 	return 0;
1741 }
1742 
mm_inc_nr_pmds(struct mm_struct * mm)1743 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1744 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1745 
1746 #else
1747 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1748 
mm_inc_nr_pmds(struct mm_struct * mm)1749 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1750 {
1751 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1752 }
1753 
mm_dec_nr_pmds(struct mm_struct * mm)1754 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1755 {
1756 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1757 }
1758 #endif
1759 
1760 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)1761 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1762 {
1763 	atomic_long_set(&mm->pgtables_bytes, 0);
1764 }
1765 
mm_pgtables_bytes(const struct mm_struct * mm)1766 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1767 {
1768 	return atomic_long_read(&mm->pgtables_bytes);
1769 }
1770 
mm_inc_nr_ptes(struct mm_struct * mm)1771 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1772 {
1773 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1774 }
1775 
mm_dec_nr_ptes(struct mm_struct * mm)1776 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1777 {
1778 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1779 }
1780 #else
1781 
mm_pgtables_bytes_init(struct mm_struct * mm)1782 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)1783 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1784 {
1785 	return 0;
1786 }
1787 
mm_inc_nr_ptes(struct mm_struct * mm)1788 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)1789 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1790 #endif
1791 
1792 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1793 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1794 
1795 /*
1796  * The following ifdef needed to get the 4level-fixup.h header to work.
1797  * Remove it when 4level-fixup.h has been removed.
1798  */
1799 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1800 
1801 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1802 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1803 		unsigned long address)
1804 {
1805 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1806 		NULL : p4d_offset(pgd, address);
1807 }
1808 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1809 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1810 		unsigned long address)
1811 {
1812 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1813 		NULL : pud_offset(p4d, address);
1814 }
1815 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1816 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1817 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1818 {
1819 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1820 		NULL: pmd_offset(pud, address);
1821 }
1822 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1823 
1824 #if USE_SPLIT_PTE_PTLOCKS
1825 #if ALLOC_SPLIT_PTLOCKS
1826 void __init ptlock_cache_init(void);
1827 extern bool ptlock_alloc(struct page *page);
1828 extern void ptlock_free(struct page *page);
1829 
ptlock_ptr(struct page * page)1830 static inline spinlock_t *ptlock_ptr(struct page *page)
1831 {
1832 	return page->ptl;
1833 }
1834 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1835 static inline void ptlock_cache_init(void)
1836 {
1837 }
1838 
ptlock_alloc(struct page * page)1839 static inline bool ptlock_alloc(struct page *page)
1840 {
1841 	return true;
1842 }
1843 
ptlock_free(struct page * page)1844 static inline void ptlock_free(struct page *page)
1845 {
1846 }
1847 
ptlock_ptr(struct page * page)1848 static inline spinlock_t *ptlock_ptr(struct page *page)
1849 {
1850 	return &page->ptl;
1851 }
1852 #endif /* ALLOC_SPLIT_PTLOCKS */
1853 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1854 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1855 {
1856 	return ptlock_ptr(pmd_page(*pmd));
1857 }
1858 
ptlock_init(struct page * page)1859 static inline bool ptlock_init(struct page *page)
1860 {
1861 	/*
1862 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1863 	 * with 0. Make sure nobody took it in use in between.
1864 	 *
1865 	 * It can happen if arch try to use slab for page table allocation:
1866 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1867 	 */
1868 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1869 	if (!ptlock_alloc(page))
1870 		return false;
1871 	spin_lock_init(ptlock_ptr(page));
1872 	return true;
1873 }
1874 
1875 /* Reset page->mapping so free_pages_check won't complain. */
pte_lock_deinit(struct page * page)1876 static inline void pte_lock_deinit(struct page *page)
1877 {
1878 	page->mapping = NULL;
1879 	ptlock_free(page);
1880 }
1881 
1882 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1883 /*
1884  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1885  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1886 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1887 {
1888 	return &mm->page_table_lock;
1889 }
ptlock_cache_init(void)1890 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1891 static inline bool ptlock_init(struct page *page) { return true; }
pte_lock_deinit(struct page * page)1892 static inline void pte_lock_deinit(struct page *page) {}
1893 #endif /* USE_SPLIT_PTE_PTLOCKS */
1894 
pgtable_init(void)1895 static inline void pgtable_init(void)
1896 {
1897 	ptlock_cache_init();
1898 	pgtable_cache_init();
1899 }
1900 
pgtable_page_ctor(struct page * page)1901 static inline bool pgtable_page_ctor(struct page *page)
1902 {
1903 	if (!ptlock_init(page))
1904 		return false;
1905 	__SetPageTable(page);
1906 	inc_zone_page_state(page, NR_PAGETABLE);
1907 	return true;
1908 }
1909 
pgtable_page_dtor(struct page * page)1910 static inline void pgtable_page_dtor(struct page *page)
1911 {
1912 	pte_lock_deinit(page);
1913 	__ClearPageTable(page);
1914 	dec_zone_page_state(page, NR_PAGETABLE);
1915 }
1916 
1917 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1918 ({							\
1919 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1920 	pte_t *__pte = pte_offset_map(pmd, address);	\
1921 	*(ptlp) = __ptl;				\
1922 	spin_lock(__ptl);				\
1923 	__pte;						\
1924 })
1925 
1926 #define pte_unmap_unlock(pte, ptl)	do {		\
1927 	spin_unlock(ptl);				\
1928 	pte_unmap(pte);					\
1929 } while (0)
1930 
1931 #define pte_alloc(mm, pmd, address)			\
1932 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1933 
1934 #define pte_alloc_map(mm, pmd, address)			\
1935 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1936 
1937 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1938 	(pte_alloc(mm, pmd, address) ?			\
1939 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1940 
1941 #define pte_alloc_kernel(pmd, address)			\
1942 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1943 		NULL: pte_offset_kernel(pmd, address))
1944 
1945 #if USE_SPLIT_PMD_PTLOCKS
1946 
pmd_to_page(pmd_t * pmd)1947 static struct page *pmd_to_page(pmd_t *pmd)
1948 {
1949 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1950 	return virt_to_page((void *)((unsigned long) pmd & mask));
1951 }
1952 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1953 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1954 {
1955 	return ptlock_ptr(pmd_to_page(pmd));
1956 }
1957 
pgtable_pmd_page_ctor(struct page * page)1958 static inline bool pgtable_pmd_page_ctor(struct page *page)
1959 {
1960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1961 	page->pmd_huge_pte = NULL;
1962 #endif
1963 	return ptlock_init(page);
1964 }
1965 
pgtable_pmd_page_dtor(struct page * page)1966 static inline void pgtable_pmd_page_dtor(struct page *page)
1967 {
1968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1969 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1970 #endif
1971 	ptlock_free(page);
1972 }
1973 
1974 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1975 
1976 #else
1977 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1978 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1979 {
1980 	return &mm->page_table_lock;
1981 }
1982 
pgtable_pmd_page_ctor(struct page * page)1983 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)1984 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1985 
1986 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1987 
1988 #endif
1989 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)1990 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1991 {
1992 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1993 	spin_lock(ptl);
1994 	return ptl;
1995 }
1996 
1997 /*
1998  * No scalability reason to split PUD locks yet, but follow the same pattern
1999  * as the PMD locks to make it easier if we decide to.  The VM should not be
2000  * considered ready to switch to split PUD locks yet; there may be places
2001  * which need to be converted from page_table_lock.
2002  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2003 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2004 {
2005 	return &mm->page_table_lock;
2006 }
2007 
pud_lock(struct mm_struct * mm,pud_t * pud)2008 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2009 {
2010 	spinlock_t *ptl = pud_lockptr(mm, pud);
2011 
2012 	spin_lock(ptl);
2013 	return ptl;
2014 }
2015 
2016 extern void __init pagecache_init(void);
2017 extern void free_area_init(unsigned long * zones_size);
2018 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2019 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2020 extern void free_initmem(void);
2021 
2022 /*
2023  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2024  * into the buddy system. The freed pages will be poisoned with pattern
2025  * "poison" if it's within range [0, UCHAR_MAX].
2026  * Return pages freed into the buddy system.
2027  */
2028 extern unsigned long free_reserved_area(void *start, void *end,
2029 					int poison, char *s);
2030 
2031 #ifdef	CONFIG_HIGHMEM
2032 /*
2033  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2034  * and totalram_pages.
2035  */
2036 extern void free_highmem_page(struct page *page);
2037 #endif
2038 
2039 extern void adjust_managed_page_count(struct page *page, long count);
2040 extern void mem_init_print_info(const char *str);
2041 
2042 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2043 
2044 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2045 static inline void __free_reserved_page(struct page *page)
2046 {
2047 	ClearPageReserved(page);
2048 	init_page_count(page);
2049 	__free_page(page);
2050 }
2051 
free_reserved_page(struct page * page)2052 static inline void free_reserved_page(struct page *page)
2053 {
2054 	__free_reserved_page(page);
2055 	adjust_managed_page_count(page, 1);
2056 }
2057 
mark_page_reserved(struct page * page)2058 static inline void mark_page_reserved(struct page *page)
2059 {
2060 	SetPageReserved(page);
2061 	adjust_managed_page_count(page, -1);
2062 }
2063 
2064 /*
2065  * Default method to free all the __init memory into the buddy system.
2066  * The freed pages will be poisoned with pattern "poison" if it's within
2067  * range [0, UCHAR_MAX].
2068  * Return pages freed into the buddy system.
2069  */
free_initmem_default(int poison)2070 static inline unsigned long free_initmem_default(int poison)
2071 {
2072 	extern char __init_begin[], __init_end[];
2073 
2074 	return free_reserved_area(&__init_begin, &__init_end,
2075 				  poison, "unused kernel");
2076 }
2077 
get_num_physpages(void)2078 static inline unsigned long get_num_physpages(void)
2079 {
2080 	int nid;
2081 	unsigned long phys_pages = 0;
2082 
2083 	for_each_online_node(nid)
2084 		phys_pages += node_present_pages(nid);
2085 
2086 	return phys_pages;
2087 }
2088 
2089 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2090 /*
2091  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2092  * zones, allocate the backing mem_map and account for memory holes in a more
2093  * architecture independent manner. This is a substitute for creating the
2094  * zone_sizes[] and zholes_size[] arrays and passing them to
2095  * free_area_init_node()
2096  *
2097  * An architecture is expected to register range of page frames backed by
2098  * physical memory with memblock_add[_node]() before calling
2099  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2100  * usage, an architecture is expected to do something like
2101  *
2102  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2103  * 							 max_highmem_pfn};
2104  * for_each_valid_physical_page_range()
2105  * 	memblock_add_node(base, size, nid)
2106  * free_area_init_nodes(max_zone_pfns);
2107  *
2108  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2109  * registered physical page range.  Similarly
2110  * sparse_memory_present_with_active_regions() calls memory_present() for
2111  * each range when SPARSEMEM is enabled.
2112  *
2113  * See mm/page_alloc.c for more information on each function exposed by
2114  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2115  */
2116 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2117 unsigned long node_map_pfn_alignment(void);
2118 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2119 						unsigned long end_pfn);
2120 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2121 						unsigned long end_pfn);
2122 extern void get_pfn_range_for_nid(unsigned int nid,
2123 			unsigned long *start_pfn, unsigned long *end_pfn);
2124 extern unsigned long find_min_pfn_with_active_regions(void);
2125 extern void free_bootmem_with_active_regions(int nid,
2126 						unsigned long max_low_pfn);
2127 extern void sparse_memory_present_with_active_regions(int nid);
2128 
2129 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2130 
2131 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2132     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2133 static inline int __early_pfn_to_nid(unsigned long pfn,
2134 					struct mminit_pfnnid_cache *state)
2135 {
2136 	return 0;
2137 }
2138 #else
2139 /* please see mm/page_alloc.c */
2140 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2141 /* there is a per-arch backend function. */
2142 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2143 					struct mminit_pfnnid_cache *state);
2144 #endif
2145 
2146 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2147 void zero_resv_unavail(void);
2148 #else
zero_resv_unavail(void)2149 static inline void zero_resv_unavail(void) {}
2150 #endif
2151 
2152 extern void set_dma_reserve(unsigned long new_dma_reserve);
2153 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2154 		enum memmap_context, struct vmem_altmap *);
2155 extern void setup_per_zone_wmarks(void);
2156 extern int __meminit init_per_zone_wmark_min(void);
2157 extern void mem_init(void);
2158 extern void __init mmap_init(void);
2159 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2160 extern long si_mem_available(void);
2161 extern void si_meminfo(struct sysinfo * val);
2162 extern void si_meminfo_node(struct sysinfo *val, int nid);
2163 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2164 extern unsigned long arch_reserved_kernel_pages(void);
2165 #endif
2166 
2167 extern __printf(3, 4)
2168 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2169 
2170 extern void setup_per_cpu_pageset(void);
2171 
2172 extern void zone_pcp_update(struct zone *zone);
2173 extern void zone_pcp_reset(struct zone *zone);
2174 
2175 /* page_alloc.c */
2176 extern int min_free_kbytes;
2177 extern int watermark_scale_factor;
2178 
2179 /* nommu.c */
2180 extern atomic_long_t mmap_pages_allocated;
2181 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2182 
2183 /* interval_tree.c */
2184 void vma_interval_tree_insert(struct vm_area_struct *node,
2185 			      struct rb_root_cached *root);
2186 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2187 				    struct vm_area_struct *prev,
2188 				    struct rb_root_cached *root);
2189 void vma_interval_tree_remove(struct vm_area_struct *node,
2190 			      struct rb_root_cached *root);
2191 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2192 				unsigned long start, unsigned long last);
2193 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2194 				unsigned long start, unsigned long last);
2195 
2196 #define vma_interval_tree_foreach(vma, root, start, last)		\
2197 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2198 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2199 
2200 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2201 				   struct rb_root_cached *root);
2202 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2203 				   struct rb_root_cached *root);
2204 struct anon_vma_chain *
2205 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2206 				  unsigned long start, unsigned long last);
2207 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2208 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2209 #ifdef CONFIG_DEBUG_VM_RB
2210 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2211 #endif
2212 
2213 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2214 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2215 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2216 
2217 /* mmap.c */
2218 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2219 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2220 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2221 	struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2222 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2223 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2224 {
2225 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2226 }
2227 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2228 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2229 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2230 	struct mempolicy *, struct vm_userfaultfd_ctx);
2231 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2232 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2233 	unsigned long addr, int new_below);
2234 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2235 	unsigned long addr, int new_below);
2236 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2237 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2238 	struct rb_node **, struct rb_node *);
2239 extern void unlink_file_vma(struct vm_area_struct *);
2240 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2241 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2242 	bool *need_rmap_locks);
2243 extern void exit_mmap(struct mm_struct *);
2244 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2245 static inline int check_data_rlimit(unsigned long rlim,
2246 				    unsigned long new,
2247 				    unsigned long start,
2248 				    unsigned long end_data,
2249 				    unsigned long start_data)
2250 {
2251 	if (rlim < RLIM_INFINITY) {
2252 		if (((new - start) + (end_data - start_data)) > rlim)
2253 			return -ENOSPC;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 extern int mm_take_all_locks(struct mm_struct *mm);
2260 extern void mm_drop_all_locks(struct mm_struct *mm);
2261 
2262 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2263 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2264 extern struct file *get_task_exe_file(struct task_struct *task);
2265 
2266 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2267 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2268 
2269 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2270 				   const struct vm_special_mapping *sm);
2271 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2272 				   unsigned long addr, unsigned long len,
2273 				   unsigned long flags,
2274 				   const struct vm_special_mapping *spec);
2275 /* This is an obsolete alternative to _install_special_mapping. */
2276 extern int install_special_mapping(struct mm_struct *mm,
2277 				   unsigned long addr, unsigned long len,
2278 				   unsigned long flags, struct page **pages);
2279 
2280 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2281 
2282 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2283 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2284 	struct list_head *uf);
2285 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2286 	unsigned long len, unsigned long prot, unsigned long flags,
2287 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2288 	struct list_head *uf);
2289 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2290 		     struct list_head *uf);
2291 
2292 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2293 do_mmap_pgoff(struct file *file, unsigned long addr,
2294 	unsigned long len, unsigned long prot, unsigned long flags,
2295 	unsigned long pgoff, unsigned long *populate,
2296 	struct list_head *uf)
2297 {
2298 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2299 }
2300 
2301 #ifdef CONFIG_MMU
2302 extern int __mm_populate(unsigned long addr, unsigned long len,
2303 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2304 static inline void mm_populate(unsigned long addr, unsigned long len)
2305 {
2306 	/* Ignore errors */
2307 	(void) __mm_populate(addr, len, 1);
2308 }
2309 #else
mm_populate(unsigned long addr,unsigned long len)2310 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2311 #endif
2312 
2313 /* These take the mm semaphore themselves */
2314 extern int __must_check vm_brk(unsigned long, unsigned long);
2315 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2316 extern int vm_munmap(unsigned long, size_t);
2317 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2318         unsigned long, unsigned long,
2319         unsigned long, unsigned long);
2320 
2321 struct vm_unmapped_area_info {
2322 #define VM_UNMAPPED_AREA_TOPDOWN 1
2323 	unsigned long flags;
2324 	unsigned long length;
2325 	unsigned long low_limit;
2326 	unsigned long high_limit;
2327 	unsigned long align_mask;
2328 	unsigned long align_offset;
2329 };
2330 
2331 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2332 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2333 
2334 /*
2335  * Search for an unmapped address range.
2336  *
2337  * We are looking for a range that:
2338  * - does not intersect with any VMA;
2339  * - is contained within the [low_limit, high_limit) interval;
2340  * - is at least the desired size.
2341  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2342  */
2343 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2344 vm_unmapped_area(struct vm_unmapped_area_info *info)
2345 {
2346 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2347 		return unmapped_area_topdown(info);
2348 	else
2349 		return unmapped_area(info);
2350 }
2351 
2352 /* truncate.c */
2353 extern void truncate_inode_pages(struct address_space *, loff_t);
2354 extern void truncate_inode_pages_range(struct address_space *,
2355 				       loff_t lstart, loff_t lend);
2356 extern void truncate_inode_pages_final(struct address_space *);
2357 
2358 /* generic vm_area_ops exported for stackable file systems */
2359 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2360 extern void filemap_map_pages(struct vm_fault *vmf,
2361 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2362 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2363 
2364 /* mm/page-writeback.c */
2365 int __must_check write_one_page(struct page *page);
2366 void task_dirty_inc(struct task_struct *tsk);
2367 
2368 /* readahead.c */
2369 #define VM_MAX_READAHEAD	128	/* kbytes */
2370 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2371 
2372 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2373 			pgoff_t offset, unsigned long nr_to_read);
2374 
2375 void page_cache_sync_readahead(struct address_space *mapping,
2376 			       struct file_ra_state *ra,
2377 			       struct file *filp,
2378 			       pgoff_t offset,
2379 			       unsigned long size);
2380 
2381 void page_cache_async_readahead(struct address_space *mapping,
2382 				struct file_ra_state *ra,
2383 				struct file *filp,
2384 				struct page *pg,
2385 				pgoff_t offset,
2386 				unsigned long size);
2387 
2388 extern unsigned long stack_guard_gap;
2389 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2390 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2391 
2392 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2393 extern int expand_downwards(struct vm_area_struct *vma,
2394 		unsigned long address);
2395 #if VM_GROWSUP
2396 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2397 #else
2398   #define expand_upwards(vma, address) (0)
2399 #endif
2400 
2401 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2402 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2403 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2404 					     struct vm_area_struct **pprev);
2405 
2406 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2407    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2408 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2409 {
2410 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2411 
2412 	if (vma && end_addr <= vma->vm_start)
2413 		vma = NULL;
2414 	return vma;
2415 }
2416 
vm_start_gap(struct vm_area_struct * vma)2417 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2418 {
2419 	unsigned long vm_start = vma->vm_start;
2420 
2421 	if (vma->vm_flags & VM_GROWSDOWN) {
2422 		vm_start -= stack_guard_gap;
2423 		if (vm_start > vma->vm_start)
2424 			vm_start = 0;
2425 	}
2426 	return vm_start;
2427 }
2428 
vm_end_gap(struct vm_area_struct * vma)2429 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2430 {
2431 	unsigned long vm_end = vma->vm_end;
2432 
2433 	if (vma->vm_flags & VM_GROWSUP) {
2434 		vm_end += stack_guard_gap;
2435 		if (vm_end < vma->vm_end)
2436 			vm_end = -PAGE_SIZE;
2437 	}
2438 	return vm_end;
2439 }
2440 
vma_pages(struct vm_area_struct * vma)2441 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2442 {
2443 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2444 }
2445 
2446 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2447 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2448 				unsigned long vm_start, unsigned long vm_end)
2449 {
2450 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2451 
2452 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2453 		vma = NULL;
2454 
2455 	return vma;
2456 }
2457 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2458 static inline bool range_in_vma(struct vm_area_struct *vma,
2459 				unsigned long start, unsigned long end)
2460 {
2461 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2462 }
2463 
2464 #ifdef CONFIG_MMU
2465 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2466 void vma_set_page_prot(struct vm_area_struct *vma);
2467 #else
vm_get_page_prot(unsigned long vm_flags)2468 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2469 {
2470 	return __pgprot(0);
2471 }
vma_set_page_prot(struct vm_area_struct * vma)2472 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2473 {
2474 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2475 }
2476 #endif
2477 
2478 #ifdef CONFIG_NUMA_BALANCING
2479 unsigned long change_prot_numa(struct vm_area_struct *vma,
2480 			unsigned long start, unsigned long end);
2481 #endif
2482 
2483 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2484 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2485 			unsigned long pfn, unsigned long size, pgprot_t);
2486 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2487 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2488 			unsigned long pfn);
2489 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2490 			unsigned long pfn, pgprot_t pgprot);
2491 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2492 			pfn_t pfn);
2493 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2494 		unsigned long addr, pfn_t pfn);
2495 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2496 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2497 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2498 				unsigned long addr, struct page *page)
2499 {
2500 	int err = vm_insert_page(vma, addr, page);
2501 
2502 	if (err == -ENOMEM)
2503 		return VM_FAULT_OOM;
2504 	if (err < 0 && err != -EBUSY)
2505 		return VM_FAULT_SIGBUS;
2506 
2507 	return VM_FAULT_NOPAGE;
2508 }
2509 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2510 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2511 				unsigned long addr, pfn_t pfn)
2512 {
2513 	int err = vm_insert_mixed(vma, addr, pfn);
2514 
2515 	if (err == -ENOMEM)
2516 		return VM_FAULT_OOM;
2517 	if (err < 0 && err != -EBUSY)
2518 		return VM_FAULT_SIGBUS;
2519 
2520 	return VM_FAULT_NOPAGE;
2521 }
2522 
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2523 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2524 			unsigned long addr, unsigned long pfn)
2525 {
2526 	int err = vm_insert_pfn(vma, addr, pfn);
2527 
2528 	if (err == -ENOMEM)
2529 		return VM_FAULT_OOM;
2530 	if (err < 0 && err != -EBUSY)
2531 		return VM_FAULT_SIGBUS;
2532 
2533 	return VM_FAULT_NOPAGE;
2534 }
2535 
vmf_error(int err)2536 static inline vm_fault_t vmf_error(int err)
2537 {
2538 	if (err == -ENOMEM)
2539 		return VM_FAULT_OOM;
2540 	return VM_FAULT_SIGBUS;
2541 }
2542 
2543 struct page *follow_page_mask(struct vm_area_struct *vma,
2544 			      unsigned long address, unsigned int foll_flags,
2545 			      unsigned int *page_mask);
2546 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)2547 static inline struct page *follow_page(struct vm_area_struct *vma,
2548 		unsigned long address, unsigned int foll_flags)
2549 {
2550 	unsigned int unused_page_mask;
2551 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2552 }
2553 
2554 #define FOLL_WRITE	0x01	/* check pte is writable */
2555 #define FOLL_TOUCH	0x02	/* mark page accessed */
2556 #define FOLL_GET	0x04	/* do get_page on page */
2557 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2558 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2559 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2560 				 * and return without waiting upon it */
2561 #define FOLL_POPULATE	0x40	/* fault in page */
2562 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2563 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2564 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2565 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2566 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2567 #define FOLL_MLOCK	0x1000	/* lock present pages */
2568 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2569 #define FOLL_COW	0x4000	/* internal GUP flag */
2570 #define FOLL_ANON	0x8000	/* don't do file mappings */
2571 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2572 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2573 {
2574 	if (vm_fault & VM_FAULT_OOM)
2575 		return -ENOMEM;
2576 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2577 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2578 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2579 		return -EFAULT;
2580 	return 0;
2581 }
2582 
2583 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2584 			void *data);
2585 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2586 			       unsigned long size, pte_fn_t fn, void *data);
2587 
2588 
2589 #ifdef CONFIG_PAGE_POISONING
2590 extern bool page_poisoning_enabled(void);
2591 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2592 #else
page_poisoning_enabled(void)2593 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2594 static inline void kernel_poison_pages(struct page *page, int numpages,
2595 					int enable) { }
2596 #endif
2597 
2598 #ifdef CONFIG_DEBUG_PAGEALLOC
2599 extern bool _debug_pagealloc_enabled;
2600 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2601 
debug_pagealloc_enabled(void)2602 static inline bool debug_pagealloc_enabled(void)
2603 {
2604 	return _debug_pagealloc_enabled;
2605 }
2606 
2607 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2608 kernel_map_pages(struct page *page, int numpages, int enable)
2609 {
2610 	if (!debug_pagealloc_enabled())
2611 		return;
2612 
2613 	__kernel_map_pages(page, numpages, enable);
2614 }
2615 #ifdef CONFIG_HIBERNATION
2616 extern bool kernel_page_present(struct page *page);
2617 #endif	/* CONFIG_HIBERNATION */
2618 #else	/* CONFIG_DEBUG_PAGEALLOC */
2619 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2620 kernel_map_pages(struct page *page, int numpages, int enable) {}
2621 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2622 static inline bool kernel_page_present(struct page *page) { return true; }
2623 #endif	/* CONFIG_HIBERNATION */
debug_pagealloc_enabled(void)2624 static inline bool debug_pagealloc_enabled(void)
2625 {
2626 	return false;
2627 }
2628 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2629 
2630 #ifdef __HAVE_ARCH_GATE_AREA
2631 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2632 extern int in_gate_area_no_mm(unsigned long addr);
2633 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2634 #else
get_gate_vma(struct mm_struct * mm)2635 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2636 {
2637 	return NULL;
2638 }
in_gate_area_no_mm(unsigned long addr)2639 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2640 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2641 {
2642 	return 0;
2643 }
2644 #endif	/* __HAVE_ARCH_GATE_AREA */
2645 
2646 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2647 
2648 #ifdef CONFIG_SYSCTL
2649 extern int sysctl_drop_caches;
2650 int drop_caches_sysctl_handler(struct ctl_table *, int,
2651 					void __user *, size_t *, loff_t *);
2652 #endif
2653 
2654 void drop_slab(void);
2655 void drop_slab_node(int nid);
2656 
2657 #ifndef CONFIG_MMU
2658 #define randomize_va_space 0
2659 #else
2660 extern int randomize_va_space;
2661 #endif
2662 
2663 const char * arch_vma_name(struct vm_area_struct *vma);
2664 void print_vma_addr(char *prefix, unsigned long rip);
2665 
2666 void *sparse_buffer_alloc(unsigned long size);
2667 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2668 		struct vmem_altmap *altmap);
2669 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2670 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2671 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2672 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2673 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2674 void *vmemmap_alloc_block(unsigned long size, int node);
2675 struct vmem_altmap;
2676 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2677 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2678 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2679 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2680 			       int node);
2681 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2682 		struct vmem_altmap *altmap);
2683 void vmemmap_populate_print_last(void);
2684 #ifdef CONFIG_MEMORY_HOTPLUG
2685 void vmemmap_free(unsigned long start, unsigned long end,
2686 		struct vmem_altmap *altmap);
2687 #endif
2688 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2689 				  unsigned long nr_pages);
2690 
2691 enum mf_flags {
2692 	MF_COUNT_INCREASED = 1 << 0,
2693 	MF_ACTION_REQUIRED = 1 << 1,
2694 	MF_MUST_KILL = 1 << 2,
2695 	MF_SOFT_OFFLINE = 1 << 3,
2696 };
2697 extern int memory_failure(unsigned long pfn, int flags);
2698 extern void memory_failure_queue(unsigned long pfn, int flags);
2699 extern int unpoison_memory(unsigned long pfn);
2700 extern int get_hwpoison_page(struct page *page);
2701 #define put_hwpoison_page(page)	put_page(page)
2702 extern int sysctl_memory_failure_early_kill;
2703 extern int sysctl_memory_failure_recovery;
2704 extern void shake_page(struct page *p, int access);
2705 extern atomic_long_t num_poisoned_pages __read_mostly;
2706 extern int soft_offline_page(struct page *page, int flags);
2707 
2708 
2709 /*
2710  * Error handlers for various types of pages.
2711  */
2712 enum mf_result {
2713 	MF_IGNORED,	/* Error: cannot be handled */
2714 	MF_FAILED,	/* Error: handling failed */
2715 	MF_DELAYED,	/* Will be handled later */
2716 	MF_RECOVERED,	/* Successfully recovered */
2717 };
2718 
2719 enum mf_action_page_type {
2720 	MF_MSG_KERNEL,
2721 	MF_MSG_KERNEL_HIGH_ORDER,
2722 	MF_MSG_SLAB,
2723 	MF_MSG_DIFFERENT_COMPOUND,
2724 	MF_MSG_POISONED_HUGE,
2725 	MF_MSG_HUGE,
2726 	MF_MSG_FREE_HUGE,
2727 	MF_MSG_NON_PMD_HUGE,
2728 	MF_MSG_UNMAP_FAILED,
2729 	MF_MSG_DIRTY_SWAPCACHE,
2730 	MF_MSG_CLEAN_SWAPCACHE,
2731 	MF_MSG_DIRTY_MLOCKED_LRU,
2732 	MF_MSG_CLEAN_MLOCKED_LRU,
2733 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2734 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2735 	MF_MSG_DIRTY_LRU,
2736 	MF_MSG_CLEAN_LRU,
2737 	MF_MSG_TRUNCATED_LRU,
2738 	MF_MSG_BUDDY,
2739 	MF_MSG_BUDDY_2ND,
2740 	MF_MSG_DAX,
2741 	MF_MSG_UNKNOWN,
2742 };
2743 
2744 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2745 extern void clear_huge_page(struct page *page,
2746 			    unsigned long addr_hint,
2747 			    unsigned int pages_per_huge_page);
2748 extern void copy_user_huge_page(struct page *dst, struct page *src,
2749 				unsigned long addr_hint,
2750 				struct vm_area_struct *vma,
2751 				unsigned int pages_per_huge_page);
2752 extern long copy_huge_page_from_user(struct page *dst_page,
2753 				const void __user *usr_src,
2754 				unsigned int pages_per_huge_page,
2755 				bool allow_pagefault);
2756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2757 
2758 extern struct page_ext_operations debug_guardpage_ops;
2759 
2760 #ifdef CONFIG_DEBUG_PAGEALLOC
2761 extern unsigned int _debug_guardpage_minorder;
2762 extern bool _debug_guardpage_enabled;
2763 
debug_guardpage_minorder(void)2764 static inline unsigned int debug_guardpage_minorder(void)
2765 {
2766 	return _debug_guardpage_minorder;
2767 }
2768 
debug_guardpage_enabled(void)2769 static inline bool debug_guardpage_enabled(void)
2770 {
2771 	return _debug_guardpage_enabled;
2772 }
2773 
page_is_guard(struct page * page)2774 static inline bool page_is_guard(struct page *page)
2775 {
2776 	struct page_ext *page_ext;
2777 
2778 	if (!debug_guardpage_enabled())
2779 		return false;
2780 
2781 	page_ext = lookup_page_ext(page);
2782 	if (unlikely(!page_ext))
2783 		return false;
2784 
2785 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2786 }
2787 #else
debug_guardpage_minorder(void)2788 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2789 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2790 static inline bool page_is_guard(struct page *page) { return false; }
2791 #endif /* CONFIG_DEBUG_PAGEALLOC */
2792 
2793 #if MAX_NUMNODES > 1
2794 void __init setup_nr_node_ids(void);
2795 #else
setup_nr_node_ids(void)2796 static inline void setup_nr_node_ids(void) {}
2797 #endif
2798 
2799 #endif /* __KERNEL__ */
2800 #endif /* _LINUX_MM_H */
2801