1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 */
8 #ifndef _LINUX_RADIX_TREE_H
9 #define _LINUX_RADIX_TREE_H
10
11 #include <linux/bitops.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/rcupdate.h>
17 #include <linux/spinlock.h>
18 #include <linux/types.h>
19 #include <linux/xarray.h>
20 #include <linux/local_lock.h>
21
22 /* Keep unconverted code working */
23 #define radix_tree_root xarray
24 #define radix_tree_node xa_node
25
26 struct radix_tree_preload {
27 local_lock_t lock;
28 unsigned nr;
29 /* nodes->parent points to next preallocated node */
30 struct radix_tree_node *nodes;
31 };
32 DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads);
33
34 /*
35 * The bottom two bits of the slot determine how the remaining bits in the
36 * slot are interpreted:
37 *
38 * 00 - data pointer
39 * 10 - internal entry
40 * x1 - value entry
41 *
42 * The internal entry may be a pointer to the next level in the tree, a
43 * sibling entry, or an indicator that the entry in this slot has been moved
44 * to another location in the tree and the lookup should be restarted. While
45 * NULL fits the 'data pointer' pattern, it means that there is no entry in
46 * the tree for this index (no matter what level of the tree it is found at).
47 * This means that storing a NULL entry in the tree is the same as deleting
48 * the entry from the tree.
49 */
50 #define RADIX_TREE_ENTRY_MASK 3UL
51 #define RADIX_TREE_INTERNAL_NODE 2UL
52
radix_tree_is_internal_node(void * ptr)53 static inline bool radix_tree_is_internal_node(void *ptr)
54 {
55 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
56 RADIX_TREE_INTERNAL_NODE;
57 }
58
59 /*** radix-tree API starts here ***/
60
61 #define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT
62 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
63 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
64
65 #define RADIX_TREE_MAX_TAGS XA_MAX_MARKS
66 #define RADIX_TREE_TAG_LONGS XA_MARK_LONGS
67
68 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
69 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
70 RADIX_TREE_MAP_SHIFT))
71
72 /* The IDR tag is stored in the low bits of xa_flags */
73 #define ROOT_IS_IDR ((__force gfp_t)4)
74 /* The top bits of xa_flags are used to store the root tags */
75 #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT)
76
77 #define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask)
78
79 #define RADIX_TREE(name, mask) \
80 struct radix_tree_root name = RADIX_TREE_INIT(name, mask)
81
82 #define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask)
83
radix_tree_empty(const struct radix_tree_root * root)84 static inline bool radix_tree_empty(const struct radix_tree_root *root)
85 {
86 return root->xa_head == NULL;
87 }
88
89 /**
90 * struct radix_tree_iter - radix tree iterator state
91 *
92 * @index: index of current slot
93 * @next_index: one beyond the last index for this chunk
94 * @tags: bit-mask for tag-iterating
95 * @node: node that contains current slot
96 *
97 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
98 * subinterval of slots contained within one radix tree leaf node. It is
99 * described by a pointer to its first slot and a struct radix_tree_iter
100 * which holds the chunk's position in the tree and its size. For tagged
101 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
102 * radix tree tag.
103 */
104 struct radix_tree_iter {
105 unsigned long index;
106 unsigned long next_index;
107 unsigned long tags;
108 struct radix_tree_node *node;
109 };
110
111 /**
112 * Radix-tree synchronization
113 *
114 * The radix-tree API requires that users provide all synchronisation (with
115 * specific exceptions, noted below).
116 *
117 * Synchronization of access to the data items being stored in the tree, and
118 * management of their lifetimes must be completely managed by API users.
119 *
120 * For API usage, in general,
121 * - any function _modifying_ the tree or tags (inserting or deleting
122 * items, setting or clearing tags) must exclude other modifications, and
123 * exclude any functions reading the tree.
124 * - any function _reading_ the tree or tags (looking up items or tags,
125 * gang lookups) must exclude modifications to the tree, but may occur
126 * concurrently with other readers.
127 *
128 * The notable exceptions to this rule are the following functions:
129 * __radix_tree_lookup
130 * radix_tree_lookup
131 * radix_tree_lookup_slot
132 * radix_tree_tag_get
133 * radix_tree_gang_lookup
134 * radix_tree_gang_lookup_tag
135 * radix_tree_gang_lookup_tag_slot
136 * radix_tree_tagged
137 *
138 * The first 7 functions are able to be called locklessly, using RCU. The
139 * caller must ensure calls to these functions are made within rcu_read_lock()
140 * regions. Other readers (lock-free or otherwise) and modifications may be
141 * running concurrently.
142 *
143 * It is still required that the caller manage the synchronization and lifetimes
144 * of the items. So if RCU lock-free lookups are used, typically this would mean
145 * that the items have their own locks, or are amenable to lock-free access; and
146 * that the items are freed by RCU (or only freed after having been deleted from
147 * the radix tree *and* a synchronize_rcu() grace period).
148 *
149 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
150 * access to data items when inserting into or looking up from the radix tree)
151 *
152 * Note that the value returned by radix_tree_tag_get() may not be relied upon
153 * if only the RCU read lock is held. Functions to set/clear tags and to
154 * delete nodes running concurrently with it may affect its result such that
155 * two consecutive reads in the same locked section may return different
156 * values. If reliability is required, modification functions must also be
157 * excluded from concurrency.
158 *
159 * radix_tree_tagged is able to be called without locking or RCU.
160 */
161
162 /**
163 * radix_tree_deref_slot - dereference a slot
164 * @slot: slot pointer, returned by radix_tree_lookup_slot
165 *
166 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
167 * locked across slot lookup and dereference. Not required if write lock is
168 * held (ie. items cannot be concurrently inserted).
169 *
170 * radix_tree_deref_retry must be used to confirm validity of the pointer if
171 * only the read lock is held.
172 *
173 * Return: entry stored in that slot.
174 */
radix_tree_deref_slot(void __rcu ** slot)175 static inline void *radix_tree_deref_slot(void __rcu **slot)
176 {
177 return rcu_dereference(*slot);
178 }
179
180 /**
181 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
182 * @slot: slot pointer, returned by radix_tree_lookup_slot
183 *
184 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read
185 * lock but it must hold the tree lock to prevent parallel updates.
186 *
187 * Return: entry stored in that slot.
188 */
radix_tree_deref_slot_protected(void __rcu ** slot,spinlock_t * treelock)189 static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
190 spinlock_t *treelock)
191 {
192 return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
193 }
194
195 /**
196 * radix_tree_deref_retry - check radix_tree_deref_slot
197 * @arg: pointer returned by radix_tree_deref_slot
198 * Returns: 0 if retry is not required, otherwise retry is required
199 *
200 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
201 */
radix_tree_deref_retry(void * arg)202 static inline int radix_tree_deref_retry(void *arg)
203 {
204 return unlikely(radix_tree_is_internal_node(arg));
205 }
206
207 /**
208 * radix_tree_exception - radix_tree_deref_slot returned either exception?
209 * @arg: value returned by radix_tree_deref_slot
210 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
211 */
radix_tree_exception(void * arg)212 static inline int radix_tree_exception(void *arg)
213 {
214 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
215 }
216
217 int radix_tree_insert(struct radix_tree_root *, unsigned long index,
218 void *);
219 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
220 struct radix_tree_node **nodep, void __rcu ***slotp);
221 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
222 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
223 unsigned long index);
224 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
225 void __rcu **slot, void *entry);
226 void radix_tree_iter_replace(struct radix_tree_root *,
227 const struct radix_tree_iter *, void __rcu **slot, void *entry);
228 void radix_tree_replace_slot(struct radix_tree_root *,
229 void __rcu **slot, void *entry);
230 void radix_tree_iter_delete(struct radix_tree_root *,
231 struct radix_tree_iter *iter, void __rcu **slot);
232 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
233 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
234 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
235 void **results, unsigned long first_index,
236 unsigned int max_items);
237 int radix_tree_preload(gfp_t gfp_mask);
238 int radix_tree_maybe_preload(gfp_t gfp_mask);
239 void radix_tree_init(void);
240 void *radix_tree_tag_set(struct radix_tree_root *,
241 unsigned long index, unsigned int tag);
242 void *radix_tree_tag_clear(struct radix_tree_root *,
243 unsigned long index, unsigned int tag);
244 int radix_tree_tag_get(const struct radix_tree_root *,
245 unsigned long index, unsigned int tag);
246 void radix_tree_iter_tag_clear(struct radix_tree_root *,
247 const struct radix_tree_iter *iter, unsigned int tag);
248 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
249 void **results, unsigned long first_index,
250 unsigned int max_items, unsigned int tag);
251 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
252 void __rcu ***results, unsigned long first_index,
253 unsigned int max_items, unsigned int tag);
254 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
255
radix_tree_preload_end(void)256 static inline void radix_tree_preload_end(void)
257 {
258 local_unlock(&radix_tree_preloads.lock);
259 }
260
261 void __rcu **idr_get_free(struct radix_tree_root *root,
262 struct radix_tree_iter *iter, gfp_t gfp,
263 unsigned long max);
264
265 enum {
266 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */
267 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */
268 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */
269 };
270
271 /**
272 * radix_tree_iter_init - initialize radix tree iterator
273 *
274 * @iter: pointer to iterator state
275 * @start: iteration starting index
276 * Returns: NULL
277 */
278 static __always_inline void __rcu **
radix_tree_iter_init(struct radix_tree_iter * iter,unsigned long start)279 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
280 {
281 /*
282 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
283 * in the case of a successful tagged chunk lookup. If the lookup was
284 * unsuccessful or non-tagged then nobody cares about ->tags.
285 *
286 * Set index to zero to bypass next_index overflow protection.
287 * See the comment in radix_tree_next_chunk() for details.
288 */
289 iter->index = 0;
290 iter->next_index = start;
291 return NULL;
292 }
293
294 /**
295 * radix_tree_next_chunk - find next chunk of slots for iteration
296 *
297 * @root: radix tree root
298 * @iter: iterator state
299 * @flags: RADIX_TREE_ITER_* flags and tag index
300 * Returns: pointer to chunk first slot, or NULL if there no more left
301 *
302 * This function looks up the next chunk in the radix tree starting from
303 * @iter->next_index. It returns a pointer to the chunk's first slot.
304 * Also it fills @iter with data about chunk: position in the tree (index),
305 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
306 */
307 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
308 struct radix_tree_iter *iter, unsigned flags);
309
310 /**
311 * radix_tree_iter_lookup - look up an index in the radix tree
312 * @root: radix tree root
313 * @iter: iterator state
314 * @index: key to look up
315 *
316 * If @index is present in the radix tree, this function returns the slot
317 * containing it and updates @iter to describe the entry. If @index is not
318 * present, it returns NULL.
319 */
320 static inline void __rcu **
radix_tree_iter_lookup(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned long index)321 radix_tree_iter_lookup(const struct radix_tree_root *root,
322 struct radix_tree_iter *iter, unsigned long index)
323 {
324 radix_tree_iter_init(iter, index);
325 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
326 }
327
328 /**
329 * radix_tree_iter_retry - retry this chunk of the iteration
330 * @iter: iterator state
331 *
332 * If we iterate over a tree protected only by the RCU lock, a race
333 * against deletion or creation may result in seeing a slot for which
334 * radix_tree_deref_retry() returns true. If so, call this function
335 * and continue the iteration.
336 */
337 static inline __must_check
radix_tree_iter_retry(struct radix_tree_iter * iter)338 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
339 {
340 iter->next_index = iter->index;
341 iter->tags = 0;
342 return NULL;
343 }
344
345 static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter * iter,unsigned long slots)346 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
347 {
348 return iter->index + slots;
349 }
350
351 /**
352 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
353 * @slot: pointer to current slot
354 * @iter: iterator state
355 * Returns: New slot pointer
356 *
357 * If the iterator needs to release then reacquire a lock, the chunk may
358 * have been invalidated by an insertion or deletion. Call this function
359 * before releasing the lock to continue the iteration from the next index.
360 */
361 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
362 struct radix_tree_iter *iter);
363
364 /**
365 * radix_tree_chunk_size - get current chunk size
366 *
367 * @iter: pointer to radix tree iterator
368 * Returns: current chunk size
369 */
370 static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter * iter)371 radix_tree_chunk_size(struct radix_tree_iter *iter)
372 {
373 return iter->next_index - iter->index;
374 }
375
376 /**
377 * radix_tree_next_slot - find next slot in chunk
378 *
379 * @slot: pointer to current slot
380 * @iter: pointer to iterator state
381 * @flags: RADIX_TREE_ITER_*, should be constant
382 * Returns: pointer to next slot, or NULL if there no more left
383 *
384 * This function updates @iter->index in the case of a successful lookup.
385 * For tagged lookup it also eats @iter->tags.
386 *
387 * There are several cases where 'slot' can be passed in as NULL to this
388 * function. These cases result from the use of radix_tree_iter_resume() or
389 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
390 * 'slot' because either:
391 * a) we are doing tagged iteration and iter->tags has been set to 0, or
392 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
393 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
394 */
radix_tree_next_slot(void __rcu ** slot,struct radix_tree_iter * iter,unsigned flags)395 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
396 struct radix_tree_iter *iter, unsigned flags)
397 {
398 if (flags & RADIX_TREE_ITER_TAGGED) {
399 iter->tags >>= 1;
400 if (unlikely(!iter->tags))
401 return NULL;
402 if (likely(iter->tags & 1ul)) {
403 iter->index = __radix_tree_iter_add(iter, 1);
404 slot++;
405 goto found;
406 }
407 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
408 unsigned offset = __ffs(iter->tags);
409
410 iter->tags >>= offset++;
411 iter->index = __radix_tree_iter_add(iter, offset);
412 slot += offset;
413 goto found;
414 }
415 } else {
416 long count = radix_tree_chunk_size(iter);
417
418 while (--count > 0) {
419 slot++;
420 iter->index = __radix_tree_iter_add(iter, 1);
421
422 if (likely(*slot))
423 goto found;
424 if (flags & RADIX_TREE_ITER_CONTIG) {
425 /* forbid switching to the next chunk */
426 iter->next_index = 0;
427 break;
428 }
429 }
430 }
431 return NULL;
432
433 found:
434 return slot;
435 }
436
437 /**
438 * radix_tree_for_each_slot - iterate over non-empty slots
439 *
440 * @slot: the void** variable for pointer to slot
441 * @root: the struct radix_tree_root pointer
442 * @iter: the struct radix_tree_iter pointer
443 * @start: iteration starting index
444 *
445 * @slot points to radix tree slot, @iter->index contains its index.
446 */
447 #define radix_tree_for_each_slot(slot, root, iter, start) \
448 for (slot = radix_tree_iter_init(iter, start) ; \
449 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
450 slot = radix_tree_next_slot(slot, iter, 0))
451
452 /**
453 * radix_tree_for_each_tagged - iterate over tagged slots
454 *
455 * @slot: the void** variable for pointer to slot
456 * @root: the struct radix_tree_root pointer
457 * @iter: the struct radix_tree_iter pointer
458 * @start: iteration starting index
459 * @tag: tag index
460 *
461 * @slot points to radix tree slot, @iter->index contains its index.
462 */
463 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
464 for (slot = radix_tree_iter_init(iter, start) ; \
465 slot || (slot = radix_tree_next_chunk(root, iter, \
466 RADIX_TREE_ITER_TAGGED | tag)) ; \
467 slot = radix_tree_next_slot(slot, iter, \
468 RADIX_TREE_ITER_TAGGED | tag))
469
470 #endif /* _LINUX_RADIX_TREE_H */
471