1 /*
2 * Page table handling routines for radix page table.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "radix-mmu: " fmt
13
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
18 #include <linux/mm.h>
19 #include <linux/string_helpers.h>
20 #include <linux/stop_machine.h>
21
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/mmu_context.h>
25 #include <asm/dma.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu.h>
28 #include <asm/firmware.h>
29 #include <asm/powernv.h>
30 #include <asm/sections.h>
31 #include <asm/trace.h>
32
33 #include <trace/events/thp.h>
34
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
37
native_register_process_table(unsigned long base,unsigned long pg_sz,unsigned long table_size)38 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
39 unsigned long table_size)
40 {
41 unsigned long patb0, patb1;
42
43 patb0 = be64_to_cpu(partition_tb[0].patb0);
44 patb1 = base | table_size | PATB_GR;
45
46 mmu_partition_table_set_entry(0, patb0, patb1);
47
48 return 0;
49 }
50
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)51 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
52 unsigned long region_start, unsigned long region_end)
53 {
54 unsigned long pa = 0;
55 void *pt;
56
57 if (region_start || region_end) /* has region hint */
58 pa = memblock_alloc_range(size, size, region_start, region_end,
59 MEMBLOCK_NONE);
60 else if (nid != -1) /* has node hint */
61 pa = memblock_alloc_base_nid(size, size,
62 MEMBLOCK_ALLOC_ANYWHERE,
63 nid, MEMBLOCK_NONE);
64
65 if (!pa)
66 pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);
67
68 BUG_ON(!pa);
69
70 pt = __va(pa);
71 memset(pt, 0, size);
72
73 return pt;
74 }
75
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)76 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
77 pgprot_t flags,
78 unsigned int map_page_size,
79 int nid,
80 unsigned long region_start, unsigned long region_end)
81 {
82 unsigned long pfn = pa >> PAGE_SHIFT;
83 pgd_t *pgdp;
84 pud_t *pudp;
85 pmd_t *pmdp;
86 pte_t *ptep;
87
88 pgdp = pgd_offset_k(ea);
89 if (pgd_none(*pgdp)) {
90 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
91 region_start, region_end);
92 pgd_populate(&init_mm, pgdp, pudp);
93 }
94 pudp = pud_offset(pgdp, ea);
95 if (map_page_size == PUD_SIZE) {
96 ptep = (pte_t *)pudp;
97 goto set_the_pte;
98 }
99 if (pud_none(*pudp)) {
100 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
101 region_start, region_end);
102 pud_populate(&init_mm, pudp, pmdp);
103 }
104 pmdp = pmd_offset(pudp, ea);
105 if (map_page_size == PMD_SIZE) {
106 ptep = pmdp_ptep(pmdp);
107 goto set_the_pte;
108 }
109 if (!pmd_present(*pmdp)) {
110 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
111 region_start, region_end);
112 pmd_populate_kernel(&init_mm, pmdp, ptep);
113 }
114 ptep = pte_offset_kernel(pmdp, ea);
115
116 set_the_pte:
117 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
118 smp_wmb();
119 return 0;
120 }
121
122 /*
123 * nid, region_start, and region_end are hints to try to place the page
124 * table memory in the same node or region.
125 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)126 static int __map_kernel_page(unsigned long ea, unsigned long pa,
127 pgprot_t flags,
128 unsigned int map_page_size,
129 int nid,
130 unsigned long region_start, unsigned long region_end)
131 {
132 unsigned long pfn = pa >> PAGE_SHIFT;
133 pgd_t *pgdp;
134 pud_t *pudp;
135 pmd_t *pmdp;
136 pte_t *ptep;
137 /*
138 * Make sure task size is correct as per the max adddr
139 */
140 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
141
142 if (unlikely(!slab_is_available()))
143 return early_map_kernel_page(ea, pa, flags, map_page_size,
144 nid, region_start, region_end);
145
146 /*
147 * Should make page table allocation functions be able to take a
148 * node, so we can place kernel page tables on the right nodes after
149 * boot.
150 */
151 pgdp = pgd_offset_k(ea);
152 pudp = pud_alloc(&init_mm, pgdp, ea);
153 if (!pudp)
154 return -ENOMEM;
155 if (map_page_size == PUD_SIZE) {
156 ptep = (pte_t *)pudp;
157 goto set_the_pte;
158 }
159 pmdp = pmd_alloc(&init_mm, pudp, ea);
160 if (!pmdp)
161 return -ENOMEM;
162 if (map_page_size == PMD_SIZE) {
163 ptep = pmdp_ptep(pmdp);
164 goto set_the_pte;
165 }
166 ptep = pte_alloc_kernel(pmdp, ea);
167 if (!ptep)
168 return -ENOMEM;
169
170 set_the_pte:
171 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
172 smp_wmb();
173 return 0;
174 }
175
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)176 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
177 pgprot_t flags,
178 unsigned int map_page_size)
179 {
180 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
181 }
182
183 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)184 void radix__change_memory_range(unsigned long start, unsigned long end,
185 unsigned long clear)
186 {
187 unsigned long idx;
188 pgd_t *pgdp;
189 pud_t *pudp;
190 pmd_t *pmdp;
191 pte_t *ptep;
192
193 start = ALIGN_DOWN(start, PAGE_SIZE);
194 end = PAGE_ALIGN(end); // aligns up
195
196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
197 start, end, clear);
198
199 for (idx = start; idx < end; idx += PAGE_SIZE) {
200 pgdp = pgd_offset_k(idx);
201 pudp = pud_alloc(&init_mm, pgdp, idx);
202 if (!pudp)
203 continue;
204 if (pud_huge(*pudp)) {
205 ptep = (pte_t *)pudp;
206 goto update_the_pte;
207 }
208 pmdp = pmd_alloc(&init_mm, pudp, idx);
209 if (!pmdp)
210 continue;
211 if (pmd_huge(*pmdp)) {
212 ptep = pmdp_ptep(pmdp);
213 goto update_the_pte;
214 }
215 ptep = pte_alloc_kernel(pmdp, idx);
216 if (!ptep)
217 continue;
218 update_the_pte:
219 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
220 }
221
222 radix__flush_tlb_kernel_range(start, end);
223 }
224
radix__mark_rodata_ro(void)225 void radix__mark_rodata_ro(void)
226 {
227 unsigned long start, end;
228
229 start = (unsigned long)_stext;
230 end = (unsigned long)__init_begin;
231
232 radix__change_memory_range(start, end, _PAGE_WRITE);
233 }
234
radix__mark_initmem_nx(void)235 void radix__mark_initmem_nx(void)
236 {
237 unsigned long start = (unsigned long)__init_begin;
238 unsigned long end = (unsigned long)__init_end;
239
240 radix__change_memory_range(start, end, _PAGE_EXEC);
241 }
242 #endif /* CONFIG_STRICT_KERNEL_RWX */
243
print_mapping(unsigned long start,unsigned long end,unsigned long size)244 static inline void __meminit print_mapping(unsigned long start,
245 unsigned long end,
246 unsigned long size)
247 {
248 char buf[10];
249
250 if (end <= start)
251 return;
252
253 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
254
255 pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start, end, buf);
256 }
257
create_physical_mapping(unsigned long start,unsigned long end,int nid)258 static int __meminit create_physical_mapping(unsigned long start,
259 unsigned long end,
260 int nid)
261 {
262 unsigned long vaddr, addr, mapping_size = 0;
263 pgprot_t prot;
264 unsigned long max_mapping_size;
265 #ifdef CONFIG_STRICT_KERNEL_RWX
266 int split_text_mapping = 1;
267 #else
268 int split_text_mapping = 0;
269 #endif
270 int psize;
271
272 start = _ALIGN_UP(start, PAGE_SIZE);
273 for (addr = start; addr < end; addr += mapping_size) {
274 unsigned long gap, previous_size;
275 int rc;
276
277 gap = end - addr;
278 previous_size = mapping_size;
279 max_mapping_size = PUD_SIZE;
280
281 retry:
282 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
283 mmu_psize_defs[MMU_PAGE_1G].shift &&
284 PUD_SIZE <= max_mapping_size) {
285 mapping_size = PUD_SIZE;
286 psize = MMU_PAGE_1G;
287 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
288 mmu_psize_defs[MMU_PAGE_2M].shift) {
289 mapping_size = PMD_SIZE;
290 psize = MMU_PAGE_2M;
291 } else {
292 mapping_size = PAGE_SIZE;
293 psize = mmu_virtual_psize;
294 }
295
296 if (split_text_mapping && (mapping_size == PUD_SIZE) &&
297 (addr <= __pa_symbol(__init_begin)) &&
298 (addr + mapping_size) >= __pa_symbol(_stext)) {
299 max_mapping_size = PMD_SIZE;
300 goto retry;
301 }
302
303 if (split_text_mapping && (mapping_size == PMD_SIZE) &&
304 (addr <= __pa_symbol(__init_begin)) &&
305 (addr + mapping_size) >= __pa_symbol(_stext)) {
306 mapping_size = PAGE_SIZE;
307 psize = mmu_virtual_psize;
308 }
309
310 if (mapping_size != previous_size) {
311 print_mapping(start, addr, previous_size);
312 start = addr;
313 }
314
315 vaddr = (unsigned long)__va(addr);
316
317 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
318 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size))
319 prot = PAGE_KERNEL_X;
320 else
321 prot = PAGE_KERNEL;
322
323 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
324 if (rc)
325 return rc;
326
327 update_page_count(psize, 1);
328 }
329
330 print_mapping(start, addr, mapping_size);
331 return 0;
332 }
333
radix_init_pgtable(void)334 void __init radix_init_pgtable(void)
335 {
336 unsigned long rts_field;
337 struct memblock_region *reg;
338
339 /* We don't support slb for radix */
340 mmu_slb_size = 0;
341 /*
342 * Create the linear mapping, using standard page size for now
343 */
344 for_each_memblock(memory, reg) {
345 /*
346 * The memblock allocator is up at this point, so the
347 * page tables will be allocated within the range. No
348 * need or a node (which we don't have yet).
349 */
350 WARN_ON(create_physical_mapping(reg->base,
351 reg->base + reg->size,
352 -1));
353 }
354
355 /* Find out how many PID bits are supported */
356 if (cpu_has_feature(CPU_FTR_HVMODE)) {
357 if (!mmu_pid_bits)
358 mmu_pid_bits = 20;
359 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
360 /*
361 * When KVM is possible, we only use the top half of the
362 * PID space to avoid collisions between host and guest PIDs
363 * which can cause problems due to prefetch when exiting the
364 * guest with AIL=3
365 */
366 mmu_base_pid = 1 << (mmu_pid_bits - 1);
367 #else
368 mmu_base_pid = 1;
369 #endif
370 } else {
371 /* The guest uses the bottom half of the PID space */
372 if (!mmu_pid_bits)
373 mmu_pid_bits = 19;
374 mmu_base_pid = 1;
375 }
376
377 /*
378 * Allocate Partition table and process table for the
379 * host.
380 */
381 BUG_ON(PRTB_SIZE_SHIFT > 36);
382 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
383 /*
384 * Fill in the process table.
385 */
386 rts_field = radix__get_tree_size();
387 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
388 /*
389 * Fill in the partition table. We are suppose to use effective address
390 * of process table here. But our linear mapping also enable us to use
391 * physical address here.
392 */
393 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
394 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
395 asm volatile("ptesync" : : : "memory");
396 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
397 "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
398 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
399 trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
400
401 /*
402 * The init_mm context is given the first available (non-zero) PID,
403 * which is the "guard PID" and contains no page table. PIDR should
404 * never be set to zero because that duplicates the kernel address
405 * space at the 0x0... offset (quadrant 0)!
406 *
407 * An arbitrary PID that may later be allocated by the PID allocator
408 * for userspace processes must not be used either, because that
409 * would cause stale user mappings for that PID on CPUs outside of
410 * the TLB invalidation scheme (because it won't be in mm_cpumask).
411 *
412 * So permanently carve out one PID for the purpose of a guard PID.
413 */
414 init_mm.context.id = mmu_base_pid;
415 mmu_base_pid++;
416 }
417
radix_init_partition_table(void)418 static void __init radix_init_partition_table(void)
419 {
420 unsigned long rts_field, dw0;
421
422 mmu_partition_table_init();
423 rts_field = radix__get_tree_size();
424 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
425 mmu_partition_table_set_entry(0, dw0, 0);
426
427 pr_info("Initializing Radix MMU\n");
428 pr_info("Partition table %p\n", partition_tb);
429 }
430
radix_init_native(void)431 void __init radix_init_native(void)
432 {
433 register_process_table = native_register_process_table;
434 }
435
get_idx_from_shift(unsigned int shift)436 static int __init get_idx_from_shift(unsigned int shift)
437 {
438 int idx = -1;
439
440 switch (shift) {
441 case 0xc:
442 idx = MMU_PAGE_4K;
443 break;
444 case 0x10:
445 idx = MMU_PAGE_64K;
446 break;
447 case 0x15:
448 idx = MMU_PAGE_2M;
449 break;
450 case 0x1e:
451 idx = MMU_PAGE_1G;
452 break;
453 }
454 return idx;
455 }
456
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)457 static int __init radix_dt_scan_page_sizes(unsigned long node,
458 const char *uname, int depth,
459 void *data)
460 {
461 int size = 0;
462 int shift, idx;
463 unsigned int ap;
464 const __be32 *prop;
465 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
466
467 /* We are scanning "cpu" nodes only */
468 if (type == NULL || strcmp(type, "cpu") != 0)
469 return 0;
470
471 /* Find MMU PID size */
472 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
473 if (prop && size == 4)
474 mmu_pid_bits = be32_to_cpup(prop);
475
476 /* Grab page size encodings */
477 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
478 if (!prop)
479 return 0;
480
481 pr_info("Page sizes from device-tree:\n");
482 for (; size >= 4; size -= 4, ++prop) {
483
484 struct mmu_psize_def *def;
485
486 /* top 3 bit is AP encoding */
487 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
488 ap = be32_to_cpu(prop[0]) >> 29;
489 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
490
491 idx = get_idx_from_shift(shift);
492 if (idx < 0)
493 continue;
494
495 def = &mmu_psize_defs[idx];
496 def->shift = shift;
497 def->ap = ap;
498 }
499
500 /* needed ? */
501 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
502 return 1;
503 }
504
radix__early_init_devtree(void)505 void __init radix__early_init_devtree(void)
506 {
507 int rc;
508
509 /*
510 * Try to find the available page sizes in the device-tree
511 */
512 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
513 if (rc != 0) /* Found */
514 goto found;
515 /*
516 * let's assume we have page 4k and 64k support
517 */
518 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
519 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
520
521 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
522 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
523 found:
524 #ifdef CONFIG_SPARSEMEM_VMEMMAP
525 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
526 /*
527 * map vmemmap using 2M if available
528 */
529 mmu_vmemmap_psize = MMU_PAGE_2M;
530 }
531 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
532 return;
533 }
534
radix_init_amor(void)535 static void radix_init_amor(void)
536 {
537 /*
538 * In HV mode, we init AMOR (Authority Mask Override Register) so that
539 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
540 * Register), enable key 0 and set it to 1.
541 *
542 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
543 */
544 mtspr(SPRN_AMOR, (3ul << 62));
545 }
546
radix_init_iamr(void)547 static void radix_init_iamr(void)
548 {
549 /*
550 * Radix always uses key0 of the IAMR to determine if an access is
551 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
552 * fetch.
553 */
554 mtspr(SPRN_IAMR, (1ul << 62));
555 }
556
radix__early_init_mmu(void)557 void __init radix__early_init_mmu(void)
558 {
559 unsigned long lpcr;
560
561 #ifdef CONFIG_PPC_64K_PAGES
562 /* PAGE_SIZE mappings */
563 mmu_virtual_psize = MMU_PAGE_64K;
564 #else
565 mmu_virtual_psize = MMU_PAGE_4K;
566 #endif
567
568 #ifdef CONFIG_SPARSEMEM_VMEMMAP
569 /* vmemmap mapping */
570 mmu_vmemmap_psize = mmu_virtual_psize;
571 #endif
572 /*
573 * initialize page table size
574 */
575 __pte_index_size = RADIX_PTE_INDEX_SIZE;
576 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
577 __pud_index_size = RADIX_PUD_INDEX_SIZE;
578 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
579 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
580 __pte_table_size = RADIX_PTE_TABLE_SIZE;
581 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
582 __pud_table_size = RADIX_PUD_TABLE_SIZE;
583 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
584
585 __pmd_val_bits = RADIX_PMD_VAL_BITS;
586 __pud_val_bits = RADIX_PUD_VAL_BITS;
587 __pgd_val_bits = RADIX_PGD_VAL_BITS;
588
589 __kernel_virt_start = RADIX_KERN_VIRT_START;
590 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
591 __vmalloc_start = RADIX_VMALLOC_START;
592 __vmalloc_end = RADIX_VMALLOC_END;
593 __kernel_io_start = RADIX_KERN_IO_START;
594 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
595 ioremap_bot = IOREMAP_BASE;
596
597 #ifdef CONFIG_PCI
598 pci_io_base = ISA_IO_BASE;
599 #endif
600 __pte_frag_nr = RADIX_PTE_FRAG_NR;
601 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
602 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
603 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
604
605 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
606 radix_init_native();
607 lpcr = mfspr(SPRN_LPCR);
608 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
609 radix_init_partition_table();
610 radix_init_amor();
611 } else {
612 radix_init_pseries();
613 }
614
615 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
616
617 radix_init_iamr();
618 radix_init_pgtable();
619 /* Switch to the guard PID before turning on MMU */
620 radix__switch_mmu_context(NULL, &init_mm);
621 if (cpu_has_feature(CPU_FTR_HVMODE))
622 tlbiel_all();
623 }
624
radix__early_init_mmu_secondary(void)625 void radix__early_init_mmu_secondary(void)
626 {
627 unsigned long lpcr;
628 /*
629 * update partition table control register and UPRT
630 */
631 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
632 lpcr = mfspr(SPRN_LPCR);
633 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
634
635 mtspr(SPRN_PTCR,
636 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
637 radix_init_amor();
638 }
639 radix_init_iamr();
640
641 radix__switch_mmu_context(NULL, &init_mm);
642 if (cpu_has_feature(CPU_FTR_HVMODE))
643 tlbiel_all();
644 }
645
radix__mmu_cleanup_all(void)646 void radix__mmu_cleanup_all(void)
647 {
648 unsigned long lpcr;
649
650 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
651 lpcr = mfspr(SPRN_LPCR);
652 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
653 mtspr(SPRN_PTCR, 0);
654 powernv_set_nmmu_ptcr(0);
655 radix__flush_tlb_all();
656 }
657 }
658
radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)659 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
660 phys_addr_t first_memblock_size)
661 {
662 /* We don't currently support the first MEMBLOCK not mapping 0
663 * physical on those processors
664 */
665 BUG_ON(first_memblock_base != 0);
666
667 /*
668 * Radix mode is not limited by RMA / VRMA addressing.
669 */
670 ppc64_rma_size = ULONG_MAX;
671 }
672
673 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)674 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
675 {
676 pte_t *pte;
677 int i;
678
679 for (i = 0; i < PTRS_PER_PTE; i++) {
680 pte = pte_start + i;
681 if (!pte_none(*pte))
682 return;
683 }
684
685 pte_free_kernel(&init_mm, pte_start);
686 pmd_clear(pmd);
687 }
688
free_pmd_table(pmd_t * pmd_start,pud_t * pud)689 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
690 {
691 pmd_t *pmd;
692 int i;
693
694 for (i = 0; i < PTRS_PER_PMD; i++) {
695 pmd = pmd_start + i;
696 if (!pmd_none(*pmd))
697 return;
698 }
699
700 pmd_free(&init_mm, pmd_start);
701 pud_clear(pud);
702 }
703
704 struct change_mapping_params {
705 pte_t *pte;
706 unsigned long start;
707 unsigned long end;
708 unsigned long aligned_start;
709 unsigned long aligned_end;
710 };
711
stop_machine_change_mapping(void * data)712 static int __meminit stop_machine_change_mapping(void *data)
713 {
714 struct change_mapping_params *params =
715 (struct change_mapping_params *)data;
716
717 if (!data)
718 return -1;
719
720 spin_unlock(&init_mm.page_table_lock);
721 pte_clear(&init_mm, params->aligned_start, params->pte);
722 create_physical_mapping(params->aligned_start, params->start, -1);
723 create_physical_mapping(params->end, params->aligned_end, -1);
724 spin_lock(&init_mm.page_table_lock);
725 return 0;
726 }
727
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end)728 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
729 unsigned long end)
730 {
731 unsigned long next;
732 pte_t *pte;
733
734 pte = pte_start + pte_index(addr);
735 for (; addr < end; addr = next, pte++) {
736 next = (addr + PAGE_SIZE) & PAGE_MASK;
737 if (next > end)
738 next = end;
739
740 if (!pte_present(*pte))
741 continue;
742
743 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
744 /*
745 * The vmemmap_free() and remove_section_mapping()
746 * codepaths call us with aligned addresses.
747 */
748 WARN_ONCE(1, "%s: unaligned range\n", __func__);
749 continue;
750 }
751
752 pte_clear(&init_mm, addr, pte);
753 }
754 }
755
756 /*
757 * clear the pte and potentially split the mapping helper
758 */
split_kernel_mapping(unsigned long addr,unsigned long end,unsigned long size,pte_t * pte)759 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
760 unsigned long size, pte_t *pte)
761 {
762 unsigned long mask = ~(size - 1);
763 unsigned long aligned_start = addr & mask;
764 unsigned long aligned_end = addr + size;
765 struct change_mapping_params params;
766 bool split_region = false;
767
768 if ((end - addr) < size) {
769 /*
770 * We're going to clear the PTE, but not flushed
771 * the mapping, time to remap and flush. The
772 * effects if visible outside the processor or
773 * if we are running in code close to the
774 * mapping we cleared, we are in trouble.
775 */
776 if (overlaps_kernel_text(aligned_start, addr) ||
777 overlaps_kernel_text(end, aligned_end)) {
778 /*
779 * Hack, just return, don't pte_clear
780 */
781 WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
782 "text, not splitting\n", addr, end);
783 return;
784 }
785 split_region = true;
786 }
787
788 if (split_region) {
789 params.pte = pte;
790 params.start = addr;
791 params.end = end;
792 params.aligned_start = addr & ~(size - 1);
793 params.aligned_end = min_t(unsigned long, aligned_end,
794 (unsigned long)__va(memblock_end_of_DRAM()));
795 stop_machine(stop_machine_change_mapping, ¶ms, NULL);
796 return;
797 }
798
799 pte_clear(&init_mm, addr, pte);
800 }
801
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end)802 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
803 unsigned long end)
804 {
805 unsigned long next;
806 pte_t *pte_base;
807 pmd_t *pmd;
808
809 pmd = pmd_start + pmd_index(addr);
810 for (; addr < end; addr = next, pmd++) {
811 next = pmd_addr_end(addr, end);
812
813 if (!pmd_present(*pmd))
814 continue;
815
816 if (pmd_huge(*pmd)) {
817 split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
818 continue;
819 }
820
821 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
822 remove_pte_table(pte_base, addr, next);
823 free_pte_table(pte_base, pmd);
824 }
825 }
826
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end)827 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
828 unsigned long end)
829 {
830 unsigned long next;
831 pmd_t *pmd_base;
832 pud_t *pud;
833
834 pud = pud_start + pud_index(addr);
835 for (; addr < end; addr = next, pud++) {
836 next = pud_addr_end(addr, end);
837
838 if (!pud_present(*pud))
839 continue;
840
841 if (pud_huge(*pud)) {
842 split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
843 continue;
844 }
845
846 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
847 remove_pmd_table(pmd_base, addr, next);
848 free_pmd_table(pmd_base, pud);
849 }
850 }
851
remove_pagetable(unsigned long start,unsigned long end)852 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
853 {
854 unsigned long addr, next;
855 pud_t *pud_base;
856 pgd_t *pgd;
857
858 spin_lock(&init_mm.page_table_lock);
859
860 for (addr = start; addr < end; addr = next) {
861 next = pgd_addr_end(addr, end);
862
863 pgd = pgd_offset_k(addr);
864 if (!pgd_present(*pgd))
865 continue;
866
867 if (pgd_huge(*pgd)) {
868 split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
869 continue;
870 }
871
872 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
873 remove_pud_table(pud_base, addr, next);
874 }
875
876 spin_unlock(&init_mm.page_table_lock);
877 radix__flush_tlb_kernel_range(start, end);
878 }
879
radix__create_section_mapping(unsigned long start,unsigned long end,int nid)880 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
881 {
882 return create_physical_mapping(start, end, nid);
883 }
884
radix__remove_section_mapping(unsigned long start,unsigned long end)885 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
886 {
887 remove_pagetable(start, end);
888 return 0;
889 }
890 #endif /* CONFIG_MEMORY_HOTPLUG */
891
892 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)893 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
894 pgprot_t flags, unsigned int map_page_size,
895 int nid)
896 {
897 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
898 }
899
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)900 int __meminit radix__vmemmap_create_mapping(unsigned long start,
901 unsigned long page_size,
902 unsigned long phys)
903 {
904 /* Create a PTE encoding */
905 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
906 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
907 int ret;
908
909 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
910 BUG_ON(ret);
911
912 return 0;
913 }
914
915 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)916 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
917 {
918 remove_pagetable(start, start + page_size);
919 }
920 #endif
921 #endif
922
923 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
924
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)925 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
926 pmd_t *pmdp, unsigned long clr,
927 unsigned long set)
928 {
929 unsigned long old;
930
931 #ifdef CONFIG_DEBUG_VM
932 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
933 assert_spin_locked(pmd_lockptr(mm, pmdp));
934 #endif
935
936 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
937 trace_hugepage_update(addr, old, clr, set);
938
939 return old;
940 }
941
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)942 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
943 pmd_t *pmdp)
944
945 {
946 pmd_t pmd;
947
948 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
949 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
950 VM_BUG_ON(pmd_devmap(*pmdp));
951 /*
952 * khugepaged calls this for normal pmd
953 */
954 pmd = *pmdp;
955 pmd_clear(pmdp);
956
957 /*FIXME!! Verify whether we need this kick below */
958 serialize_against_pte_lookup(vma->vm_mm);
959
960 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
961
962 return pmd;
963 }
964
965 /*
966 * For us pgtable_t is pte_t *. Inorder to save the deposisted
967 * page table, we consider the allocated page table as a list
968 * head. On withdraw we need to make sure we zero out the used
969 * list_head memory area.
970 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)971 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
972 pgtable_t pgtable)
973 {
974 struct list_head *lh = (struct list_head *) pgtable;
975
976 assert_spin_locked(pmd_lockptr(mm, pmdp));
977
978 /* FIFO */
979 if (!pmd_huge_pte(mm, pmdp))
980 INIT_LIST_HEAD(lh);
981 else
982 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
983 pmd_huge_pte(mm, pmdp) = pgtable;
984 }
985
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)986 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
987 {
988 pte_t *ptep;
989 pgtable_t pgtable;
990 struct list_head *lh;
991
992 assert_spin_locked(pmd_lockptr(mm, pmdp));
993
994 /* FIFO */
995 pgtable = pmd_huge_pte(mm, pmdp);
996 lh = (struct list_head *) pgtable;
997 if (list_empty(lh))
998 pmd_huge_pte(mm, pmdp) = NULL;
999 else {
1000 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1001 list_del(lh);
1002 }
1003 ptep = (pte_t *) pgtable;
1004 *ptep = __pte(0);
1005 ptep++;
1006 *ptep = __pte(0);
1007 return pgtable;
1008 }
1009
1010
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1011 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1012 unsigned long addr, pmd_t *pmdp)
1013 {
1014 pmd_t old_pmd;
1015 unsigned long old;
1016
1017 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1018 old_pmd = __pmd(old);
1019 /*
1020 * Serialize against find_current_mm_pte which does lock-less
1021 * lookup in page tables with local interrupts disabled. For huge pages
1022 * it casts pmd_t to pte_t. Since format of pte_t is different from
1023 * pmd_t we want to prevent transit from pmd pointing to page table
1024 * to pmd pointing to huge page (and back) while interrupts are disabled.
1025 * We clear pmd to possibly replace it with page table pointer in
1026 * different code paths. So make sure we wait for the parallel
1027 * find_current_mm_pte to finish.
1028 */
1029 serialize_against_pte_lookup(mm);
1030 return old_pmd;
1031 }
1032
radix__has_transparent_hugepage(void)1033 int radix__has_transparent_hugepage(void)
1034 {
1035 /* For radix 2M at PMD level means thp */
1036 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1037 return 1;
1038 return 0;
1039 }
1040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1041
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1042 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1043 pte_t entry, unsigned long address, int psize)
1044 {
1045 struct mm_struct *mm = vma->vm_mm;
1046 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1047 _PAGE_RW | _PAGE_EXEC);
1048
1049 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1050 /*
1051 * To avoid NMMU hang while relaxing access, we need mark
1052 * the pte invalid in between.
1053 */
1054 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1055 unsigned long old_pte, new_pte;
1056
1057 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1058 /*
1059 * new value of pte
1060 */
1061 new_pte = old_pte | set;
1062 radix__flush_tlb_page_psize(mm, address, psize);
1063 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1064 } else {
1065 __radix_pte_update(ptep, 0, set);
1066 /*
1067 * Book3S does not require a TLB flush when relaxing access
1068 * restrictions when the address space is not attached to a
1069 * NMMU, because the core MMU will reload the pte after taking
1070 * an access fault, which is defined by the architectue.
1071 */
1072 }
1073 /* See ptesync comment in radix__set_pte_at */
1074 }
1075