1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
15 #include <linux/mm.h>
16 #include <linux/string_helpers.h>
17 #include <linux/stop_machine.h>
18
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/mmu_context.h>
22 #include <asm/dma.h>
23 #include <asm/machdep.h>
24 #include <asm/mmu.h>
25 #include <asm/firmware.h>
26 #include <asm/powernv.h>
27 #include <asm/sections.h>
28 #include <asm/trace.h>
29 #include <asm/uaccess.h>
30 #include <asm/ultravisor.h>
31
32 #include <trace/events/thp.h>
33
34 unsigned int mmu_pid_bits;
35 unsigned int mmu_base_pid;
36
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)37 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
38 unsigned long region_start, unsigned long region_end)
39 {
40 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
41 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
42 void *ptr;
43
44 if (region_start)
45 min_addr = region_start;
46 if (region_end)
47 max_addr = region_end;
48
49 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
50
51 if (!ptr)
52 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
53 __func__, size, size, nid, &min_addr, &max_addr);
54
55 return ptr;
56 }
57
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)58 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
59 pgprot_t flags,
60 unsigned int map_page_size,
61 int nid,
62 unsigned long region_start, unsigned long region_end)
63 {
64 unsigned long pfn = pa >> PAGE_SHIFT;
65 pgd_t *pgdp;
66 pud_t *pudp;
67 pmd_t *pmdp;
68 pte_t *ptep;
69
70 pgdp = pgd_offset_k(ea);
71 if (pgd_none(*pgdp)) {
72 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
73 region_start, region_end);
74 pgd_populate(&init_mm, pgdp, pudp);
75 }
76 pudp = pud_offset(pgdp, ea);
77 if (map_page_size == PUD_SIZE) {
78 ptep = (pte_t *)pudp;
79 goto set_the_pte;
80 }
81 if (pud_none(*pudp)) {
82 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
83 region_start, region_end);
84 pud_populate(&init_mm, pudp, pmdp);
85 }
86 pmdp = pmd_offset(pudp, ea);
87 if (map_page_size == PMD_SIZE) {
88 ptep = pmdp_ptep(pmdp);
89 goto set_the_pte;
90 }
91 if (!pmd_present(*pmdp)) {
92 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
93 region_start, region_end);
94 pmd_populate_kernel(&init_mm, pmdp, ptep);
95 }
96 ptep = pte_offset_kernel(pmdp, ea);
97
98 set_the_pte:
99 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
100 smp_wmb();
101 return 0;
102 }
103
104 /*
105 * nid, region_start, and region_end are hints to try to place the page
106 * table memory in the same node or region.
107 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)108 static int __map_kernel_page(unsigned long ea, unsigned long pa,
109 pgprot_t flags,
110 unsigned int map_page_size,
111 int nid,
112 unsigned long region_start, unsigned long region_end)
113 {
114 unsigned long pfn = pa >> PAGE_SHIFT;
115 pgd_t *pgdp;
116 pud_t *pudp;
117 pmd_t *pmdp;
118 pte_t *ptep;
119 /*
120 * Make sure task size is correct as per the max adddr
121 */
122 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
123
124 #ifdef CONFIG_PPC_64K_PAGES
125 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
126 #endif
127
128 if (unlikely(!slab_is_available()))
129 return early_map_kernel_page(ea, pa, flags, map_page_size,
130 nid, region_start, region_end);
131
132 /*
133 * Should make page table allocation functions be able to take a
134 * node, so we can place kernel page tables on the right nodes after
135 * boot.
136 */
137 pgdp = pgd_offset_k(ea);
138 pudp = pud_alloc(&init_mm, pgdp, ea);
139 if (!pudp)
140 return -ENOMEM;
141 if (map_page_size == PUD_SIZE) {
142 ptep = (pte_t *)pudp;
143 goto set_the_pte;
144 }
145 pmdp = pmd_alloc(&init_mm, pudp, ea);
146 if (!pmdp)
147 return -ENOMEM;
148 if (map_page_size == PMD_SIZE) {
149 ptep = pmdp_ptep(pmdp);
150 goto set_the_pte;
151 }
152 ptep = pte_alloc_kernel(pmdp, ea);
153 if (!ptep)
154 return -ENOMEM;
155
156 set_the_pte:
157 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
158 smp_wmb();
159 return 0;
160 }
161
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)162 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
163 pgprot_t flags,
164 unsigned int map_page_size)
165 {
166 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
167 }
168
169 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)170 void radix__change_memory_range(unsigned long start, unsigned long end,
171 unsigned long clear)
172 {
173 unsigned long idx;
174 pgd_t *pgdp;
175 pud_t *pudp;
176 pmd_t *pmdp;
177 pte_t *ptep;
178
179 start = ALIGN_DOWN(start, PAGE_SIZE);
180 end = PAGE_ALIGN(end); // aligns up
181
182 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
183 start, end, clear);
184
185 for (idx = start; idx < end; idx += PAGE_SIZE) {
186 pgdp = pgd_offset_k(idx);
187 pudp = pud_alloc(&init_mm, pgdp, idx);
188 if (!pudp)
189 continue;
190 if (pud_is_leaf(*pudp)) {
191 ptep = (pte_t *)pudp;
192 goto update_the_pte;
193 }
194 pmdp = pmd_alloc(&init_mm, pudp, idx);
195 if (!pmdp)
196 continue;
197 if (pmd_is_leaf(*pmdp)) {
198 ptep = pmdp_ptep(pmdp);
199 goto update_the_pte;
200 }
201 ptep = pte_alloc_kernel(pmdp, idx);
202 if (!ptep)
203 continue;
204 update_the_pte:
205 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
206 }
207
208 radix__flush_tlb_kernel_range(start, end);
209 }
210
radix__mark_rodata_ro(void)211 void radix__mark_rodata_ro(void)
212 {
213 unsigned long start, end;
214
215 start = (unsigned long)_stext;
216 end = (unsigned long)__init_begin;
217
218 radix__change_memory_range(start, end, _PAGE_WRITE);
219 }
220
radix__mark_initmem_nx(void)221 void radix__mark_initmem_nx(void)
222 {
223 unsigned long start = (unsigned long)__init_begin;
224 unsigned long end = (unsigned long)__init_end;
225
226 radix__change_memory_range(start, end, _PAGE_EXEC);
227 }
228 #endif /* CONFIG_STRICT_KERNEL_RWX */
229
230 static inline void __meminit
print_mapping(unsigned long start,unsigned long end,unsigned long size,bool exec)231 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
232 {
233 char buf[10];
234
235 if (end <= start)
236 return;
237
238 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
239
240 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
241 exec ? " (exec)" : "");
242 }
243
next_boundary(unsigned long addr,unsigned long end)244 static unsigned long next_boundary(unsigned long addr, unsigned long end)
245 {
246 #ifdef CONFIG_STRICT_KERNEL_RWX
247 if (addr < __pa_symbol(__init_begin))
248 return __pa_symbol(__init_begin);
249 #endif
250 return end;
251 }
252
create_physical_mapping(unsigned long start,unsigned long end,int nid)253 static int __meminit create_physical_mapping(unsigned long start,
254 unsigned long end,
255 int nid)
256 {
257 unsigned long vaddr, addr, mapping_size = 0;
258 bool prev_exec, exec = false;
259 pgprot_t prot;
260 int psize;
261
262 start = _ALIGN_UP(start, PAGE_SIZE);
263 for (addr = start; addr < end; addr += mapping_size) {
264 unsigned long gap, previous_size;
265 int rc;
266
267 gap = next_boundary(addr, end) - addr;
268 previous_size = mapping_size;
269 prev_exec = exec;
270
271 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
272 mmu_psize_defs[MMU_PAGE_1G].shift) {
273 mapping_size = PUD_SIZE;
274 psize = MMU_PAGE_1G;
275 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
276 mmu_psize_defs[MMU_PAGE_2M].shift) {
277 mapping_size = PMD_SIZE;
278 psize = MMU_PAGE_2M;
279 } else {
280 mapping_size = PAGE_SIZE;
281 psize = mmu_virtual_psize;
282 }
283
284 vaddr = (unsigned long)__va(addr);
285
286 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
287 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
288 prot = PAGE_KERNEL_X;
289 exec = true;
290 } else {
291 prot = PAGE_KERNEL;
292 exec = false;
293 }
294
295 if (mapping_size != previous_size || exec != prev_exec) {
296 print_mapping(start, addr, previous_size, prev_exec);
297 start = addr;
298 }
299
300 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
301 if (rc)
302 return rc;
303
304 update_page_count(psize, 1);
305 }
306
307 print_mapping(start, addr, mapping_size, exec);
308 return 0;
309 }
310
radix_init_pgtable(void)311 static void __init radix_init_pgtable(void)
312 {
313 unsigned long rts_field;
314 struct memblock_region *reg;
315
316 /* We don't support slb for radix */
317 mmu_slb_size = 0;
318 /*
319 * Create the linear mapping, using standard page size for now
320 */
321 for_each_memblock(memory, reg) {
322 /*
323 * The memblock allocator is up at this point, so the
324 * page tables will be allocated within the range. No
325 * need or a node (which we don't have yet).
326 */
327
328 if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
329 pr_warn("Outside the supported range\n");
330 continue;
331 }
332
333 WARN_ON(create_physical_mapping(reg->base,
334 reg->base + reg->size,
335 -1));
336 }
337
338 /* Find out how many PID bits are supported */
339 if (cpu_has_feature(CPU_FTR_HVMODE)) {
340 if (!mmu_pid_bits)
341 mmu_pid_bits = 20;
342 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
343 /*
344 * When KVM is possible, we only use the top half of the
345 * PID space to avoid collisions between host and guest PIDs
346 * which can cause problems due to prefetch when exiting the
347 * guest with AIL=3
348 */
349 mmu_base_pid = 1 << (mmu_pid_bits - 1);
350 #else
351 mmu_base_pid = 1;
352 #endif
353 } else {
354 /* The guest uses the bottom half of the PID space */
355 if (!mmu_pid_bits)
356 mmu_pid_bits = 19;
357 mmu_base_pid = 1;
358 }
359
360 /*
361 * Allocate Partition table and process table for the
362 * host.
363 */
364 BUG_ON(PRTB_SIZE_SHIFT > 36);
365 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
366 /*
367 * Fill in the process table.
368 */
369 rts_field = radix__get_tree_size();
370 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
371
372 /*
373 * The init_mm context is given the first available (non-zero) PID,
374 * which is the "guard PID" and contains no page table. PIDR should
375 * never be set to zero because that duplicates the kernel address
376 * space at the 0x0... offset (quadrant 0)!
377 *
378 * An arbitrary PID that may later be allocated by the PID allocator
379 * for userspace processes must not be used either, because that
380 * would cause stale user mappings for that PID on CPUs outside of
381 * the TLB invalidation scheme (because it won't be in mm_cpumask).
382 *
383 * So permanently carve out one PID for the purpose of a guard PID.
384 */
385 init_mm.context.id = mmu_base_pid;
386 mmu_base_pid++;
387 }
388
radix_init_partition_table(void)389 static void __init radix_init_partition_table(void)
390 {
391 unsigned long rts_field, dw0, dw1;
392
393 mmu_partition_table_init();
394 rts_field = radix__get_tree_size();
395 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
396 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
397 mmu_partition_table_set_entry(0, dw0, dw1, false);
398
399 pr_info("Initializing Radix MMU\n");
400 }
401
get_idx_from_shift(unsigned int shift)402 static int __init get_idx_from_shift(unsigned int shift)
403 {
404 int idx = -1;
405
406 switch (shift) {
407 case 0xc:
408 idx = MMU_PAGE_4K;
409 break;
410 case 0x10:
411 idx = MMU_PAGE_64K;
412 break;
413 case 0x15:
414 idx = MMU_PAGE_2M;
415 break;
416 case 0x1e:
417 idx = MMU_PAGE_1G;
418 break;
419 }
420 return idx;
421 }
422
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)423 static int __init radix_dt_scan_page_sizes(unsigned long node,
424 const char *uname, int depth,
425 void *data)
426 {
427 int size = 0;
428 int shift, idx;
429 unsigned int ap;
430 const __be32 *prop;
431 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
432
433 /* We are scanning "cpu" nodes only */
434 if (type == NULL || strcmp(type, "cpu") != 0)
435 return 0;
436
437 /* Find MMU PID size */
438 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
439 if (prop && size == 4)
440 mmu_pid_bits = be32_to_cpup(prop);
441
442 /* Grab page size encodings */
443 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
444 if (!prop)
445 return 0;
446
447 pr_info("Page sizes from device-tree:\n");
448 for (; size >= 4; size -= 4, ++prop) {
449
450 struct mmu_psize_def *def;
451
452 /* top 3 bit is AP encoding */
453 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
454 ap = be32_to_cpu(prop[0]) >> 29;
455 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
456
457 idx = get_idx_from_shift(shift);
458 if (idx < 0)
459 continue;
460
461 def = &mmu_psize_defs[idx];
462 def->shift = shift;
463 def->ap = ap;
464 }
465
466 /* needed ? */
467 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
468 return 1;
469 }
470
radix__early_init_devtree(void)471 void __init radix__early_init_devtree(void)
472 {
473 int rc;
474
475 /*
476 * Try to find the available page sizes in the device-tree
477 */
478 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
479 if (rc != 0) /* Found */
480 goto found;
481 /*
482 * let's assume we have page 4k and 64k support
483 */
484 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
485 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
486
487 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
488 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
489 found:
490 return;
491 }
492
radix_init_amor(void)493 static void radix_init_amor(void)
494 {
495 /*
496 * In HV mode, we init AMOR (Authority Mask Override Register) so that
497 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
498 * Register), enable key 0 and set it to 1.
499 *
500 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
501 */
502 mtspr(SPRN_AMOR, (3ul << 62));
503 }
504
505 #ifdef CONFIG_PPC_KUEP
setup_kuep(bool disabled)506 void setup_kuep(bool disabled)
507 {
508 if (disabled || !early_radix_enabled())
509 return;
510
511 if (smp_processor_id() == boot_cpuid)
512 pr_info("Activating Kernel Userspace Execution Prevention\n");
513
514 /*
515 * Radix always uses key0 of the IAMR to determine if an access is
516 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
517 * fetch.
518 */
519 mtspr(SPRN_IAMR, (1ul << 62));
520 }
521 #endif
522
523 #ifdef CONFIG_PPC_KUAP
setup_kuap(bool disabled)524 void setup_kuap(bool disabled)
525 {
526 if (disabled || !early_radix_enabled())
527 return;
528
529 if (smp_processor_id() == boot_cpuid) {
530 pr_info("Activating Kernel Userspace Access Prevention\n");
531 cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
532 }
533
534 /* Make sure userspace can't change the AMR */
535 mtspr(SPRN_UAMOR, 0);
536 mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
537 isync();
538 }
539 #endif
540
radix__early_init_mmu(void)541 void __init radix__early_init_mmu(void)
542 {
543 unsigned long lpcr;
544
545 #ifdef CONFIG_PPC_64K_PAGES
546 /* PAGE_SIZE mappings */
547 mmu_virtual_psize = MMU_PAGE_64K;
548 #else
549 mmu_virtual_psize = MMU_PAGE_4K;
550 #endif
551
552 #ifdef CONFIG_SPARSEMEM_VMEMMAP
553 /* vmemmap mapping */
554 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
555 /*
556 * map vmemmap using 2M if available
557 */
558 mmu_vmemmap_psize = MMU_PAGE_2M;
559 } else
560 mmu_vmemmap_psize = mmu_virtual_psize;
561 #endif
562 /*
563 * initialize page table size
564 */
565 __pte_index_size = RADIX_PTE_INDEX_SIZE;
566 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
567 __pud_index_size = RADIX_PUD_INDEX_SIZE;
568 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
569 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
570 __pte_table_size = RADIX_PTE_TABLE_SIZE;
571 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
572 __pud_table_size = RADIX_PUD_TABLE_SIZE;
573 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
574
575 __pmd_val_bits = RADIX_PMD_VAL_BITS;
576 __pud_val_bits = RADIX_PUD_VAL_BITS;
577 __pgd_val_bits = RADIX_PGD_VAL_BITS;
578
579 __kernel_virt_start = RADIX_KERN_VIRT_START;
580 __vmalloc_start = RADIX_VMALLOC_START;
581 __vmalloc_end = RADIX_VMALLOC_END;
582 __kernel_io_start = RADIX_KERN_IO_START;
583 __kernel_io_end = RADIX_KERN_IO_END;
584 vmemmap = (struct page *)RADIX_VMEMMAP_START;
585 ioremap_bot = IOREMAP_BASE;
586
587 #ifdef CONFIG_PCI
588 pci_io_base = ISA_IO_BASE;
589 #endif
590 __pte_frag_nr = RADIX_PTE_FRAG_NR;
591 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
592 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
593 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
594
595 radix_init_pgtable();
596
597 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
598 lpcr = mfspr(SPRN_LPCR);
599 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
600 radix_init_partition_table();
601 radix_init_amor();
602 } else {
603 radix_init_pseries();
604 }
605
606 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
607
608 /* Switch to the guard PID before turning on MMU */
609 radix__switch_mmu_context(NULL, &init_mm);
610 tlbiel_all();
611 }
612
radix__early_init_mmu_secondary(void)613 void radix__early_init_mmu_secondary(void)
614 {
615 unsigned long lpcr;
616 /*
617 * update partition table control register and UPRT
618 */
619 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
620 lpcr = mfspr(SPRN_LPCR);
621 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
622
623 set_ptcr_when_no_uv(__pa(partition_tb) |
624 (PATB_SIZE_SHIFT - 12));
625
626 radix_init_amor();
627 }
628
629 radix__switch_mmu_context(NULL, &init_mm);
630 tlbiel_all();
631 }
632
radix__mmu_cleanup_all(void)633 void radix__mmu_cleanup_all(void)
634 {
635 unsigned long lpcr;
636
637 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
638 lpcr = mfspr(SPRN_LPCR);
639 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
640 set_ptcr_when_no_uv(0);
641 powernv_set_nmmu_ptcr(0);
642 radix__flush_tlb_all();
643 }
644 }
645
radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)646 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
647 phys_addr_t first_memblock_size)
648 {
649 /*
650 * We don't currently support the first MEMBLOCK not mapping 0
651 * physical on those processors
652 */
653 BUG_ON(first_memblock_base != 0);
654
655 /*
656 * Radix mode is not limited by RMA / VRMA addressing.
657 */
658 ppc64_rma_size = ULONG_MAX;
659 }
660
661 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)662 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
663 {
664 pte_t *pte;
665 int i;
666
667 for (i = 0; i < PTRS_PER_PTE; i++) {
668 pte = pte_start + i;
669 if (!pte_none(*pte))
670 return;
671 }
672
673 pte_free_kernel(&init_mm, pte_start);
674 pmd_clear(pmd);
675 }
676
free_pmd_table(pmd_t * pmd_start,pud_t * pud)677 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
678 {
679 pmd_t *pmd;
680 int i;
681
682 for (i = 0; i < PTRS_PER_PMD; i++) {
683 pmd = pmd_start + i;
684 if (!pmd_none(*pmd))
685 return;
686 }
687
688 pmd_free(&init_mm, pmd_start);
689 pud_clear(pud);
690 }
691
692 struct change_mapping_params {
693 pte_t *pte;
694 unsigned long start;
695 unsigned long end;
696 unsigned long aligned_start;
697 unsigned long aligned_end;
698 };
699
stop_machine_change_mapping(void * data)700 static int __meminit stop_machine_change_mapping(void *data)
701 {
702 struct change_mapping_params *params =
703 (struct change_mapping_params *)data;
704
705 if (!data)
706 return -1;
707
708 spin_unlock(&init_mm.page_table_lock);
709 pte_clear(&init_mm, params->aligned_start, params->pte);
710 create_physical_mapping(__pa(params->aligned_start), __pa(params->start), -1);
711 create_physical_mapping(__pa(params->end), __pa(params->aligned_end), -1);
712 spin_lock(&init_mm.page_table_lock);
713 return 0;
714 }
715
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end)716 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
717 unsigned long end)
718 {
719 unsigned long next;
720 pte_t *pte;
721
722 pte = pte_start + pte_index(addr);
723 for (; addr < end; addr = next, pte++) {
724 next = (addr + PAGE_SIZE) & PAGE_MASK;
725 if (next > end)
726 next = end;
727
728 if (!pte_present(*pte))
729 continue;
730
731 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
732 /*
733 * The vmemmap_free() and remove_section_mapping()
734 * codepaths call us with aligned addresses.
735 */
736 WARN_ONCE(1, "%s: unaligned range\n", __func__);
737 continue;
738 }
739
740 pte_clear(&init_mm, addr, pte);
741 }
742 }
743
744 /*
745 * clear the pte and potentially split the mapping helper
746 */
split_kernel_mapping(unsigned long addr,unsigned long end,unsigned long size,pte_t * pte)747 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
748 unsigned long size, pte_t *pte)
749 {
750 unsigned long mask = ~(size - 1);
751 unsigned long aligned_start = addr & mask;
752 unsigned long aligned_end = addr + size;
753 struct change_mapping_params params;
754 bool split_region = false;
755
756 if ((end - addr) < size) {
757 /*
758 * We're going to clear the PTE, but not flushed
759 * the mapping, time to remap and flush. The
760 * effects if visible outside the processor or
761 * if we are running in code close to the
762 * mapping we cleared, we are in trouble.
763 */
764 if (overlaps_kernel_text(aligned_start, addr) ||
765 overlaps_kernel_text(end, aligned_end)) {
766 /*
767 * Hack, just return, don't pte_clear
768 */
769 WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
770 "text, not splitting\n", addr, end);
771 return;
772 }
773 split_region = true;
774 }
775
776 if (split_region) {
777 params.pte = pte;
778 params.start = addr;
779 params.end = end;
780 params.aligned_start = addr & ~(size - 1);
781 params.aligned_end = min_t(unsigned long, aligned_end,
782 (unsigned long)__va(memblock_end_of_DRAM()));
783 stop_machine(stop_machine_change_mapping, ¶ms, NULL);
784 return;
785 }
786
787 pte_clear(&init_mm, addr, pte);
788 }
789
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end)790 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
791 unsigned long end)
792 {
793 unsigned long next;
794 pte_t *pte_base;
795 pmd_t *pmd;
796
797 pmd = pmd_start + pmd_index(addr);
798 for (; addr < end; addr = next, pmd++) {
799 next = pmd_addr_end(addr, end);
800
801 if (!pmd_present(*pmd))
802 continue;
803
804 if (pmd_is_leaf(*pmd)) {
805 split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
806 continue;
807 }
808
809 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
810 remove_pte_table(pte_base, addr, next);
811 free_pte_table(pte_base, pmd);
812 }
813 }
814
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end)815 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
816 unsigned long end)
817 {
818 unsigned long next;
819 pmd_t *pmd_base;
820 pud_t *pud;
821
822 pud = pud_start + pud_index(addr);
823 for (; addr < end; addr = next, pud++) {
824 next = pud_addr_end(addr, end);
825
826 if (!pud_present(*pud))
827 continue;
828
829 if (pud_is_leaf(*pud)) {
830 split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
831 continue;
832 }
833
834 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
835 remove_pmd_table(pmd_base, addr, next);
836 free_pmd_table(pmd_base, pud);
837 }
838 }
839
remove_pagetable(unsigned long start,unsigned long end)840 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
841 {
842 unsigned long addr, next;
843 pud_t *pud_base;
844 pgd_t *pgd;
845
846 spin_lock(&init_mm.page_table_lock);
847
848 for (addr = start; addr < end; addr = next) {
849 next = pgd_addr_end(addr, end);
850
851 pgd = pgd_offset_k(addr);
852 if (!pgd_present(*pgd))
853 continue;
854
855 if (pgd_is_leaf(*pgd)) {
856 split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
857 continue;
858 }
859
860 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
861 remove_pud_table(pud_base, addr, next);
862 }
863
864 spin_unlock(&init_mm.page_table_lock);
865 radix__flush_tlb_kernel_range(start, end);
866 }
867
radix__create_section_mapping(unsigned long start,unsigned long end,int nid)868 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
869 {
870 if (end >= RADIX_VMALLOC_START) {
871 pr_warn("Outside the supported range\n");
872 return -1;
873 }
874
875 return create_physical_mapping(__pa(start), __pa(end), nid);
876 }
877
radix__remove_section_mapping(unsigned long start,unsigned long end)878 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
879 {
880 remove_pagetable(start, end);
881 return 0;
882 }
883 #endif /* CONFIG_MEMORY_HOTPLUG */
884
885 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)886 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
887 pgprot_t flags, unsigned int map_page_size,
888 int nid)
889 {
890 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
891 }
892
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)893 int __meminit radix__vmemmap_create_mapping(unsigned long start,
894 unsigned long page_size,
895 unsigned long phys)
896 {
897 /* Create a PTE encoding */
898 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
899 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
900 int ret;
901
902 if ((start + page_size) >= RADIX_VMEMMAP_END) {
903 pr_warn("Outside the supported range\n");
904 return -1;
905 }
906
907 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
908 BUG_ON(ret);
909
910 return 0;
911 }
912
913 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)914 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
915 {
916 remove_pagetable(start, start + page_size);
917 }
918 #endif
919 #endif
920
921 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
922
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)923 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
924 pmd_t *pmdp, unsigned long clr,
925 unsigned long set)
926 {
927 unsigned long old;
928
929 #ifdef CONFIG_DEBUG_VM
930 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
931 assert_spin_locked(pmd_lockptr(mm, pmdp));
932 #endif
933
934 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
935 trace_hugepage_update(addr, old, clr, set);
936
937 return old;
938 }
939
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)940 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
941 pmd_t *pmdp)
942
943 {
944 pmd_t pmd;
945
946 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
947 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
948 VM_BUG_ON(pmd_devmap(*pmdp));
949 /*
950 * khugepaged calls this for normal pmd
951 */
952 pmd = *pmdp;
953 pmd_clear(pmdp);
954
955 /*FIXME!! Verify whether we need this kick below */
956 serialize_against_pte_lookup(vma->vm_mm);
957
958 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
959
960 return pmd;
961 }
962
963 /*
964 * For us pgtable_t is pte_t *. Inorder to save the deposisted
965 * page table, we consider the allocated page table as a list
966 * head. On withdraw we need to make sure we zero out the used
967 * list_head memory area.
968 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)969 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
970 pgtable_t pgtable)
971 {
972 struct list_head *lh = (struct list_head *) pgtable;
973
974 assert_spin_locked(pmd_lockptr(mm, pmdp));
975
976 /* FIFO */
977 if (!pmd_huge_pte(mm, pmdp))
978 INIT_LIST_HEAD(lh);
979 else
980 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
981 pmd_huge_pte(mm, pmdp) = pgtable;
982 }
983
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)984 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
985 {
986 pte_t *ptep;
987 pgtable_t pgtable;
988 struct list_head *lh;
989
990 assert_spin_locked(pmd_lockptr(mm, pmdp));
991
992 /* FIFO */
993 pgtable = pmd_huge_pte(mm, pmdp);
994 lh = (struct list_head *) pgtable;
995 if (list_empty(lh))
996 pmd_huge_pte(mm, pmdp) = NULL;
997 else {
998 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
999 list_del(lh);
1000 }
1001 ptep = (pte_t *) pgtable;
1002 *ptep = __pte(0);
1003 ptep++;
1004 *ptep = __pte(0);
1005 return pgtable;
1006 }
1007
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1008 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1009 unsigned long addr, pmd_t *pmdp)
1010 {
1011 pmd_t old_pmd;
1012 unsigned long old;
1013
1014 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1015 old_pmd = __pmd(old);
1016 /*
1017 * Serialize against find_current_mm_pte which does lock-less
1018 * lookup in page tables with local interrupts disabled. For huge pages
1019 * it casts pmd_t to pte_t. Since format of pte_t is different from
1020 * pmd_t we want to prevent transit from pmd pointing to page table
1021 * to pmd pointing to huge page (and back) while interrupts are disabled.
1022 * We clear pmd to possibly replace it with page table pointer in
1023 * different code paths. So make sure we wait for the parallel
1024 * find_current_mm_pte to finish.
1025 */
1026 serialize_against_pte_lookup(mm);
1027 return old_pmd;
1028 }
1029
1030 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1031
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1032 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1033 pte_t entry, unsigned long address, int psize)
1034 {
1035 struct mm_struct *mm = vma->vm_mm;
1036 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1037 _PAGE_RW | _PAGE_EXEC);
1038
1039 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1040 /*
1041 * To avoid NMMU hang while relaxing access, we need mark
1042 * the pte invalid in between.
1043 */
1044 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1045 unsigned long old_pte, new_pte;
1046
1047 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1048 /*
1049 * new value of pte
1050 */
1051 new_pte = old_pte | set;
1052 radix__flush_tlb_page_psize(mm, address, psize);
1053 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1054 } else {
1055 __radix_pte_update(ptep, 0, set);
1056 /*
1057 * Book3S does not require a TLB flush when relaxing access
1058 * restrictions when the address space is not attached to a
1059 * NMMU, because the core MMU will reload the pte after taking
1060 * an access fault, which is defined by the architectue.
1061 */
1062 }
1063 /* See ptesync comment in radix__set_pte_at */
1064 }
1065
radix__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1066 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1067 unsigned long addr, pte_t *ptep,
1068 pte_t old_pte, pte_t pte)
1069 {
1070 struct mm_struct *mm = vma->vm_mm;
1071
1072 /*
1073 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1074 * we set the new value. We need to do this only for radix, because hash
1075 * translation does flush when updating the linux pte.
1076 */
1077 if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1078 (atomic_read(&mm->context.copros) > 0))
1079 radix__flush_tlb_page(vma, addr);
1080
1081 set_pte_at(mm, addr, ptep, pte);
1082 }
1083
arch_ioremap_pud_supported(void)1084 int __init arch_ioremap_pud_supported(void)
1085 {
1086 /* HPT does not cope with large pages in the vmalloc area */
1087 return radix_enabled();
1088 }
1089
arch_ioremap_pmd_supported(void)1090 int __init arch_ioremap_pmd_supported(void)
1091 {
1092 return radix_enabled();
1093 }
1094
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1095 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1096 {
1097 return 0;
1098 }
1099
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1100 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1101 {
1102 pte_t *ptep = (pte_t *)pud;
1103 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1104
1105 if (!radix_enabled())
1106 return 0;
1107
1108 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1109
1110 return 1;
1111 }
1112
pud_clear_huge(pud_t * pud)1113 int pud_clear_huge(pud_t *pud)
1114 {
1115 if (pud_huge(*pud)) {
1116 pud_clear(pud);
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122
pud_free_pmd_page(pud_t * pud,unsigned long addr)1123 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1124 {
1125 pmd_t *pmd;
1126 int i;
1127
1128 pmd = (pmd_t *)pud_page_vaddr(*pud);
1129 pud_clear(pud);
1130
1131 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1132
1133 for (i = 0; i < PTRS_PER_PMD; i++) {
1134 if (!pmd_none(pmd[i])) {
1135 pte_t *pte;
1136 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1137
1138 pte_free_kernel(&init_mm, pte);
1139 }
1140 }
1141
1142 pmd_free(&init_mm, pmd);
1143
1144 return 1;
1145 }
1146
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1147 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1148 {
1149 pte_t *ptep = (pte_t *)pmd;
1150 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1151
1152 if (!radix_enabled())
1153 return 0;
1154
1155 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1156
1157 return 1;
1158 }
1159
pmd_clear_huge(pmd_t * pmd)1160 int pmd_clear_huge(pmd_t *pmd)
1161 {
1162 if (pmd_huge(*pmd)) {
1163 pmd_clear(pmd);
1164 return 1;
1165 }
1166
1167 return 0;
1168 }
1169
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1170 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1171 {
1172 pte_t *pte;
1173
1174 pte = (pte_t *)pmd_page_vaddr(*pmd);
1175 pmd_clear(pmd);
1176
1177 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1178
1179 pte_free_kernel(&init_mm, pte);
1180
1181 return 1;
1182 }
1183
arch_ioremap_p4d_supported(void)1184 int __init arch_ioremap_p4d_supported(void)
1185 {
1186 return 0;
1187 }
1188