1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63
64 /*
65 * Global Variables
66 */
67
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
71
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
76
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
81
srpt_get_u64_x(char * buffer,const struct kernel_param * kp)82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83 {
84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
85 }
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103
104 /*
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
107 */
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new)108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109 {
110 unsigned long flags;
111 enum rdma_ch_state prev;
112 bool changed = false;
113
114 spin_lock_irqsave(&ch->spinlock, flags);
115 prev = ch->state;
116 if (new > prev) {
117 ch->state = new;
118 changed = true;
119 }
120 spin_unlock_irqrestore(&ch->spinlock, flags);
121
122 return changed;
123 }
124
125 /**
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
129 *
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
134 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)135 static void srpt_event_handler(struct ib_event_handler *handler,
136 struct ib_event *event)
137 {
138 struct srpt_device *sdev =
139 container_of(handler, struct srpt_device, event_handler);
140 struct srpt_port *sport;
141 u8 port_num;
142
143 pr_debug("ASYNC event= %d on device= %s\n", event->event,
144 dev_name(&sdev->device->dev));
145
146 switch (event->event) {
147 case IB_EVENT_PORT_ERR:
148 port_num = event->element.port_num - 1;
149 if (port_num < sdev->device->phys_port_cnt) {
150 sport = &sdev->port[port_num];
151 sport->lid = 0;
152 sport->sm_lid = 0;
153 } else {
154 WARN(true, "event %d: port_num %d out of range 1..%d\n",
155 event->event, port_num + 1,
156 sdev->device->phys_port_cnt);
157 }
158 break;
159 case IB_EVENT_PORT_ACTIVE:
160 case IB_EVENT_LID_CHANGE:
161 case IB_EVENT_PKEY_CHANGE:
162 case IB_EVENT_SM_CHANGE:
163 case IB_EVENT_CLIENT_REREGISTER:
164 case IB_EVENT_GID_CHANGE:
165 /* Refresh port data asynchronously. */
166 port_num = event->element.port_num - 1;
167 if (port_num < sdev->device->phys_port_cnt) {
168 sport = &sdev->port[port_num];
169 if (!sport->lid && !sport->sm_lid)
170 schedule_work(&sport->work);
171 } else {
172 WARN(true, "event %d: port_num %d out of range 1..%d\n",
173 event->event, port_num + 1,
174 sdev->device->phys_port_cnt);
175 }
176 break;
177 default:
178 pr_err("received unrecognized IB event %d\n", event->event);
179 break;
180 }
181 }
182
183 /**
184 * srpt_srq_event - SRQ event callback function
185 * @event: Description of the event that occurred.
186 * @ctx: Context pointer specified at SRQ creation time.
187 */
srpt_srq_event(struct ib_event * event,void * ctx)188 static void srpt_srq_event(struct ib_event *event, void *ctx)
189 {
190 pr_debug("SRQ event %d\n", event->event);
191 }
192
get_ch_state_name(enum rdma_ch_state s)193 static const char *get_ch_state_name(enum rdma_ch_state s)
194 {
195 switch (s) {
196 case CH_CONNECTING:
197 return "connecting";
198 case CH_LIVE:
199 return "live";
200 case CH_DISCONNECTING:
201 return "disconnecting";
202 case CH_DRAINING:
203 return "draining";
204 case CH_DISCONNECTED:
205 return "disconnected";
206 }
207 return "???";
208 }
209
210 /**
211 * srpt_qp_event - QP event callback function
212 * @event: Description of the event that occurred.
213 * @ch: SRPT RDMA channel.
214 */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
216 {
217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
218 event->event, ch, ch->sess_name, ch->qp->qp_num,
219 get_ch_state_name(ch->state));
220
221 switch (event->event) {
222 case IB_EVENT_COMM_EST:
223 if (ch->using_rdma_cm)
224 rdma_notify(ch->rdma_cm.cm_id, event->event);
225 else
226 ib_cm_notify(ch->ib_cm.cm_id, event->event);
227 break;
228 case IB_EVENT_QP_LAST_WQE_REACHED:
229 pr_debug("%s-%d, state %s: received Last WQE event.\n",
230 ch->sess_name, ch->qp->qp_num,
231 get_ch_state_name(ch->state));
232 break;
233 default:
234 pr_err("received unrecognized IB QP event %d\n", event->event);
235 break;
236 }
237 }
238
239 /**
240 * srpt_set_ioc - initialize a IOUnitInfo structure
241 * @c_list: controller list.
242 * @slot: one-based slot number.
243 * @value: four-bit value.
244 *
245 * Copies the lowest four bits of value in element slot of the array of four
246 * bit elements called c_list (controller list). The index slot is one-based.
247 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
249 {
250 u16 id;
251 u8 tmp;
252
253 id = (slot - 1) / 2;
254 if (slot & 0x1) {
255 tmp = c_list[id] & 0xf;
256 c_list[id] = (value << 4) | tmp;
257 } else {
258 tmp = c_list[id] & 0xf0;
259 c_list[id] = (value & 0xf) | tmp;
260 }
261 }
262
263 /**
264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
266 *
267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
268 * Specification.
269 */
srpt_get_class_port_info(struct ib_dm_mad * mad)270 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
271 {
272 struct ib_class_port_info *cif;
273
274 cif = (struct ib_class_port_info *)mad->data;
275 memset(cif, 0, sizeof(*cif));
276 cif->base_version = 1;
277 cif->class_version = 1;
278
279 ib_set_cpi_resp_time(cif, 20);
280 mad->mad_hdr.status = 0;
281 }
282
283 /**
284 * srpt_get_iou - write IOUnitInfo to a management datagram
285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
286 *
287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
288 * Specification. See also section B.7, table B.6 in the SRP r16a document.
289 */
srpt_get_iou(struct ib_dm_mad * mad)290 static void srpt_get_iou(struct ib_dm_mad *mad)
291 {
292 struct ib_dm_iou_info *ioui;
293 u8 slot;
294 int i;
295
296 ioui = (struct ib_dm_iou_info *)mad->data;
297 ioui->change_id = cpu_to_be16(1);
298 ioui->max_controllers = 16;
299
300 /* set present for slot 1 and empty for the rest */
301 srpt_set_ioc(ioui->controller_list, 1, 1);
302 for (i = 1, slot = 2; i < 16; i++, slot++)
303 srpt_set_ioc(ioui->controller_list, slot, 0);
304
305 mad->mad_hdr.status = 0;
306 }
307
308 /**
309 * srpt_get_ioc - write IOControllerprofile to a management datagram
310 * @sport: HCA port through which the MAD has been received.
311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
313 *
314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
315 * Architecture Specification. See also section B.7, table B.7 in the SRP
316 * r16a document.
317 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
319 struct ib_dm_mad *mad)
320 {
321 struct srpt_device *sdev = sport->sdev;
322 struct ib_dm_ioc_profile *iocp;
323 int send_queue_depth;
324
325 iocp = (struct ib_dm_ioc_profile *)mad->data;
326
327 if (!slot || slot > 16) {
328 mad->mad_hdr.status
329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
330 return;
331 }
332
333 if (slot > 2) {
334 mad->mad_hdr.status
335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
336 return;
337 }
338
339 if (sdev->use_srq)
340 send_queue_depth = sdev->srq_size;
341 else
342 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
343 sdev->device->attrs.max_qp_wr);
344
345 memset(iocp, 0, sizeof(*iocp));
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 1U << 24));
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366 mad->mad_hdr.status = 0;
367 }
368
369 /**
370 * srpt_get_svc_entries - write ServiceEntries to a management datagram
371 * @ioc_guid: I/O controller GUID to use in reply.
372 * @slot: I/O controller number.
373 * @hi: End of the range of service entries to be specified in the reply.
374 * @lo: Start of the range of service entries to be specified in the reply..
375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
376 *
377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
378 * Specification. See also section B.7, table B.8 in the SRP r16a document.
379 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)380 static void srpt_get_svc_entries(u64 ioc_guid,
381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
382 {
383 struct ib_dm_svc_entries *svc_entries;
384
385 WARN_ON(!ioc_guid);
386
387 if (!slot || slot > 16) {
388 mad->mad_hdr.status
389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
390 return;
391 }
392
393 if (slot > 2 || lo > hi || hi > 1) {
394 mad->mad_hdr.status
395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
396 return;
397 }
398
399 svc_entries = (struct ib_dm_svc_entries *)mad->data;
400 memset(svc_entries, 0, sizeof(*svc_entries));
401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
402 snprintf(svc_entries->service_entries[0].name,
403 sizeof(svc_entries->service_entries[0].name),
404 "%s%016llx",
405 SRP_SERVICE_NAME_PREFIX,
406 ioc_guid);
407
408 mad->mad_hdr.status = 0;
409 }
410
411 /**
412 * srpt_mgmt_method_get - process a received management datagram
413 * @sp: HCA port through which the MAD has been received.
414 * @rq_mad: received MAD.
415 * @rsp_mad: response MAD.
416 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
418 struct ib_dm_mad *rsp_mad)
419 {
420 u16 attr_id;
421 u32 slot;
422 u8 hi, lo;
423
424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
425 switch (attr_id) {
426 case DM_ATTR_CLASS_PORT_INFO:
427 srpt_get_class_port_info(rsp_mad);
428 break;
429 case DM_ATTR_IOU_INFO:
430 srpt_get_iou(rsp_mad);
431 break;
432 case DM_ATTR_IOC_PROFILE:
433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
434 srpt_get_ioc(sp, slot, rsp_mad);
435 break;
436 case DM_ATTR_SVC_ENTRIES:
437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
438 hi = (u8) ((slot >> 8) & 0xff);
439 lo = (u8) (slot & 0xff);
440 slot = (u16) ((slot >> 16) & 0xffff);
441 srpt_get_svc_entries(srpt_service_guid,
442 slot, hi, lo, rsp_mad);
443 break;
444 default:
445 rsp_mad->mad_hdr.status =
446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
447 break;
448 }
449 }
450
451 /**
452 * srpt_mad_send_handler - MAD send completion callback
453 * @mad_agent: Return value of ib_register_mad_agent().
454 * @mad_wc: Work completion reporting that the MAD has been sent.
455 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
457 struct ib_mad_send_wc *mad_wc)
458 {
459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
460 ib_free_send_mad(mad_wc->send_buf);
461 }
462
463 /**
464 * srpt_mad_recv_handler - MAD reception callback function
465 * @mad_agent: Return value of ib_register_mad_agent().
466 * @send_buf: Not used.
467 * @mad_wc: Work completion reporting that a MAD has been received.
468 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_buf * send_buf,struct ib_mad_recv_wc * mad_wc)469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
470 struct ib_mad_send_buf *send_buf,
471 struct ib_mad_recv_wc *mad_wc)
472 {
473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
474 struct ib_ah *ah;
475 struct ib_mad_send_buf *rsp;
476 struct ib_dm_mad *dm_mad;
477
478 if (!mad_wc || !mad_wc->recv_buf.mad)
479 return;
480
481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
482 mad_wc->recv_buf.grh, mad_agent->port_num);
483 if (IS_ERR(ah))
484 goto err;
485
486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
487
488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
489 mad_wc->wc->pkey_index, 0,
490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
491 GFP_KERNEL,
492 IB_MGMT_BASE_VERSION);
493 if (IS_ERR(rsp))
494 goto err_rsp;
495
496 rsp->ah = ah;
497
498 dm_mad = rsp->mad;
499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
501 dm_mad->mad_hdr.status = 0;
502
503 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
504 case IB_MGMT_METHOD_GET:
505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
506 break;
507 case IB_MGMT_METHOD_SET:
508 dm_mad->mad_hdr.status =
509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
510 break;
511 default:
512 dm_mad->mad_hdr.status =
513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
514 break;
515 }
516
517 if (!ib_post_send_mad(rsp, NULL)) {
518 ib_free_recv_mad(mad_wc);
519 /* will destroy_ah & free_send_mad in send completion */
520 return;
521 }
522
523 ib_free_send_mad(rsp);
524
525 err_rsp:
526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
527 err:
528 ib_free_recv_mad(mad_wc);
529 }
530
srpt_format_guid(char * buf,unsigned int size,const __be64 * guid)531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
532 {
533 const __be16 *g = (const __be16 *)guid;
534
535 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
536 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
537 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
538 }
539
540 /**
541 * srpt_refresh_port - configure a HCA port
542 * @sport: SRPT HCA port.
543 *
544 * Enable InfiniBand management datagram processing, update the cached sm_lid,
545 * lid and gid values, and register a callback function for processing MADs
546 * on the specified port.
547 *
548 * Note: It is safe to call this function more than once for the same port.
549 */
srpt_refresh_port(struct srpt_port * sport)550 static int srpt_refresh_port(struct srpt_port *sport)
551 {
552 struct ib_mad_reg_req reg_req;
553 struct ib_port_modify port_modify;
554 struct ib_port_attr port_attr;
555 int ret;
556
557 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
558 if (ret)
559 return ret;
560
561 sport->sm_lid = port_attr.sm_lid;
562 sport->lid = port_attr.lid;
563
564 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
565 if (ret)
566 return ret;
567
568 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
569 &sport->gid.global.interface_id);
570 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
571 "0x%016llx%016llx",
572 be64_to_cpu(sport->gid.global.subnet_prefix),
573 be64_to_cpu(sport->gid.global.interface_id));
574
575 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
576 return 0;
577
578 memset(&port_modify, 0, sizeof(port_modify));
579 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 port_modify.clr_port_cap_mask = 0;
581
582 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
583 if (ret) {
584 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
585 dev_name(&sport->sdev->device->dev), sport->port, ret);
586 return 0;
587 }
588
589 if (!sport->mad_agent) {
590 memset(®_req, 0, sizeof(reg_req));
591 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
592 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
593 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
594 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
595
596 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
597 sport->port,
598 IB_QPT_GSI,
599 ®_req, 0,
600 srpt_mad_send_handler,
601 srpt_mad_recv_handler,
602 sport, 0);
603 if (IS_ERR(sport->mad_agent)) {
604 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
605 dev_name(&sport->sdev->device->dev), sport->port,
606 PTR_ERR(sport->mad_agent));
607 sport->mad_agent = NULL;
608 memset(&port_modify, 0, sizeof(port_modify));
609 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
610 ib_modify_port(sport->sdev->device, sport->port, 0,
611 &port_modify);
612
613 }
614 }
615
616 return 0;
617 }
618
619 /**
620 * srpt_unregister_mad_agent - unregister MAD callback functions
621 * @sdev: SRPT HCA pointer.
622 * @port_cnt: number of ports with registered MAD
623 *
624 * Note: It is safe to call this function more than once for the same device.
625 */
srpt_unregister_mad_agent(struct srpt_device * sdev,int port_cnt)626 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
627 {
628 struct ib_port_modify port_modify = {
629 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
630 };
631 struct srpt_port *sport;
632 int i;
633
634 for (i = 1; i <= port_cnt; i++) {
635 sport = &sdev->port[i - 1];
636 WARN_ON(sport->port != i);
637 if (sport->mad_agent) {
638 ib_modify_port(sdev->device, i, 0, &port_modify);
639 ib_unregister_mad_agent(sport->mad_agent);
640 sport->mad_agent = NULL;
641 }
642 }
643 }
644
645 /**
646 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
647 * @sdev: SRPT HCA pointer.
648 * @ioctx_size: I/O context size.
649 * @buf_cache: I/O buffer cache.
650 * @dir: DMA data direction.
651 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)652 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
653 int ioctx_size,
654 struct kmem_cache *buf_cache,
655 enum dma_data_direction dir)
656 {
657 struct srpt_ioctx *ioctx;
658
659 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
660 if (!ioctx)
661 goto err;
662
663 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
664 if (!ioctx->buf)
665 goto err_free_ioctx;
666
667 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
668 kmem_cache_size(buf_cache), dir);
669 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
670 goto err_free_buf;
671
672 return ioctx;
673
674 err_free_buf:
675 kmem_cache_free(buf_cache, ioctx->buf);
676 err_free_ioctx:
677 kfree(ioctx);
678 err:
679 return NULL;
680 }
681
682 /**
683 * srpt_free_ioctx - free a SRPT I/O context structure
684 * @sdev: SRPT HCA pointer.
685 * @ioctx: I/O context pointer.
686 * @buf_cache: I/O buffer cache.
687 * @dir: DMA data direction.
688 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,struct kmem_cache * buf_cache,enum dma_data_direction dir)689 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
690 struct kmem_cache *buf_cache,
691 enum dma_data_direction dir)
692 {
693 if (!ioctx)
694 return;
695
696 ib_dma_unmap_single(sdev->device, ioctx->dma,
697 kmem_cache_size(buf_cache), dir);
698 kmem_cache_free(buf_cache, ioctx->buf);
699 kfree(ioctx);
700 }
701
702 /**
703 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
704 * @sdev: Device to allocate the I/O context ring for.
705 * @ring_size: Number of elements in the I/O context ring.
706 * @ioctx_size: I/O context size.
707 * @buf_cache: I/O buffer cache.
708 * @alignment_offset: Offset in each ring buffer at which the SRP information
709 * unit starts.
710 * @dir: DMA data direction.
711 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,struct kmem_cache * buf_cache,int alignment_offset,enum dma_data_direction dir)712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
713 int ring_size, int ioctx_size,
714 struct kmem_cache *buf_cache,
715 int alignment_offset,
716 enum dma_data_direction dir)
717 {
718 struct srpt_ioctx **ring;
719 int i;
720
721 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
722 ioctx_size != sizeof(struct srpt_send_ioctx));
723
724 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
725 if (!ring)
726 goto out;
727 for (i = 0; i < ring_size; ++i) {
728 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
729 if (!ring[i])
730 goto err;
731 ring[i]->index = i;
732 ring[i]->offset = alignment_offset;
733 }
734 goto out;
735
736 err:
737 while (--i >= 0)
738 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
739 kvfree(ring);
740 ring = NULL;
741 out:
742 return ring;
743 }
744
745 /**
746 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
747 * @ioctx_ring: I/O context ring to be freed.
748 * @sdev: SRPT HCA pointer.
749 * @ring_size: Number of ring elements.
750 * @buf_cache: I/O buffer cache.
751 * @dir: DMA data direction.
752 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)753 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
754 struct srpt_device *sdev, int ring_size,
755 struct kmem_cache *buf_cache,
756 enum dma_data_direction dir)
757 {
758 int i;
759
760 if (!ioctx_ring)
761 return;
762
763 for (i = 0; i < ring_size; ++i)
764 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
765 kvfree(ioctx_ring);
766 }
767
768 /**
769 * srpt_set_cmd_state - set the state of a SCSI command
770 * @ioctx: Send I/O context.
771 * @new: New I/O context state.
772 *
773 * Does not modify the state of aborted commands. Returns the previous command
774 * state.
775 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)776 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
777 enum srpt_command_state new)
778 {
779 enum srpt_command_state previous;
780
781 previous = ioctx->state;
782 if (previous != SRPT_STATE_DONE)
783 ioctx->state = new;
784
785 return previous;
786 }
787
788 /**
789 * srpt_test_and_set_cmd_state - test and set the state of a command
790 * @ioctx: Send I/O context.
791 * @old: Current I/O context state.
792 * @new: New I/O context state.
793 *
794 * Returns true if and only if the previous command state was equal to 'old'.
795 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)796 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
797 enum srpt_command_state old,
798 enum srpt_command_state new)
799 {
800 enum srpt_command_state previous;
801
802 WARN_ON(!ioctx);
803 WARN_ON(old == SRPT_STATE_DONE);
804 WARN_ON(new == SRPT_STATE_NEW);
805
806 previous = ioctx->state;
807 if (previous == old)
808 ioctx->state = new;
809
810 return previous == old;
811 }
812
813 /**
814 * srpt_post_recv - post an IB receive request
815 * @sdev: SRPT HCA pointer.
816 * @ch: SRPT RDMA channel.
817 * @ioctx: Receive I/O context pointer.
818 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * ioctx)819 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
820 struct srpt_recv_ioctx *ioctx)
821 {
822 struct ib_sge list;
823 struct ib_recv_wr wr;
824
825 BUG_ON(!sdev);
826 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
827 list.length = srp_max_req_size;
828 list.lkey = sdev->lkey;
829
830 ioctx->ioctx.cqe.done = srpt_recv_done;
831 wr.wr_cqe = &ioctx->ioctx.cqe;
832 wr.next = NULL;
833 wr.sg_list = &list;
834 wr.num_sge = 1;
835
836 if (sdev->use_srq)
837 return ib_post_srq_recv(sdev->srq, &wr, NULL);
838 else
839 return ib_post_recv(ch->qp, &wr, NULL);
840 }
841
842 /**
843 * srpt_zerolength_write - perform a zero-length RDMA write
844 * @ch: SRPT RDMA channel.
845 *
846 * A quote from the InfiniBand specification: C9-88: For an HCA responder
847 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
848 * request, the R_Key shall not be validated, even if the request includes
849 * Immediate data.
850 */
srpt_zerolength_write(struct srpt_rdma_ch * ch)851 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
852 {
853 struct ib_rdma_wr wr = {
854 .wr = {
855 .next = NULL,
856 { .wr_cqe = &ch->zw_cqe, },
857 .opcode = IB_WR_RDMA_WRITE,
858 .send_flags = IB_SEND_SIGNALED,
859 }
860 };
861
862 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
863 ch->qp->qp_num);
864
865 return ib_post_send(ch->qp, &wr.wr, NULL);
866 }
867
srpt_zerolength_write_done(struct ib_cq * cq,struct ib_wc * wc)868 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
869 {
870 struct srpt_rdma_ch *ch = wc->qp->qp_context;
871
872 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
873 wc->status);
874
875 if (wc->status == IB_WC_SUCCESS) {
876 srpt_process_wait_list(ch);
877 } else {
878 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
879 schedule_work(&ch->release_work);
880 else
881 pr_debug("%s-%d: already disconnected.\n",
882 ch->sess_name, ch->qp->qp_num);
883 }
884 }
885
srpt_alloc_rw_ctxs(struct srpt_send_ioctx * ioctx,struct srp_direct_buf * db,int nbufs,struct scatterlist ** sg,unsigned * sg_cnt)886 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
887 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
888 unsigned *sg_cnt)
889 {
890 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
891 struct srpt_rdma_ch *ch = ioctx->ch;
892 struct scatterlist *prev = NULL;
893 unsigned prev_nents;
894 int ret, i;
895
896 if (nbufs == 1) {
897 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
898 } else {
899 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
900 GFP_KERNEL);
901 if (!ioctx->rw_ctxs)
902 return -ENOMEM;
903 }
904
905 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
906 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
907 u64 remote_addr = be64_to_cpu(db->va);
908 u32 size = be32_to_cpu(db->len);
909 u32 rkey = be32_to_cpu(db->key);
910
911 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
912 i < nbufs - 1);
913 if (ret)
914 goto unwind;
915
916 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
917 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
918 if (ret < 0) {
919 target_free_sgl(ctx->sg, ctx->nents);
920 goto unwind;
921 }
922
923 ioctx->n_rdma += ret;
924 ioctx->n_rw_ctx++;
925
926 if (prev) {
927 sg_unmark_end(&prev[prev_nents - 1]);
928 sg_chain(prev, prev_nents + 1, ctx->sg);
929 } else {
930 *sg = ctx->sg;
931 }
932
933 prev = ctx->sg;
934 prev_nents = ctx->nents;
935
936 *sg_cnt += ctx->nents;
937 }
938
939 return 0;
940
941 unwind:
942 while (--i >= 0) {
943 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
944
945 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
946 ctx->sg, ctx->nents, dir);
947 target_free_sgl(ctx->sg, ctx->nents);
948 }
949 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
950 kfree(ioctx->rw_ctxs);
951 return ret;
952 }
953
srpt_free_rw_ctxs(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)954 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
955 struct srpt_send_ioctx *ioctx)
956 {
957 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
958 int i;
959
960 for (i = 0; i < ioctx->n_rw_ctx; i++) {
961 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
962
963 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
964 ctx->sg, ctx->nents, dir);
965 target_free_sgl(ctx->sg, ctx->nents);
966 }
967
968 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
969 kfree(ioctx->rw_ctxs);
970 }
971
srpt_get_desc_buf(struct srp_cmd * srp_cmd)972 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
973 {
974 /*
975 * The pointer computations below will only be compiled correctly
976 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
977 * whether srp_cmd::add_data has been declared as a byte pointer.
978 */
979 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
980 !__same_type(srp_cmd->add_data[0], (u8)0));
981
982 /*
983 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
984 * CDB LENGTH' field are reserved and the size in bytes of this field
985 * is four times the value specified in bits 3..7. Hence the "& ~3".
986 */
987 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
988 }
989
990 /**
991 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
992 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
993 * @ioctx: I/O context that will be used for responding to the initiator.
994 * @srp_cmd: Pointer to the SRP_CMD request data.
995 * @dir: Pointer to the variable to which the transfer direction will be
996 * written.
997 * @sg: [out] scatterlist for the parsed SRP_CMD.
998 * @sg_cnt: [out] length of @sg.
999 * @data_len: Pointer to the variable to which the total data length of all
1000 * descriptors in the SRP_CMD request will be written.
1001 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1002 * starts.
1003 *
1004 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1005 *
1006 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1007 * -ENOMEM when memory allocation fails and zero upon success.
1008 */
srpt_get_desc_tbl(struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,struct scatterlist ** sg,unsigned int * sg_cnt,u64 * data_len,u16 imm_data_offset)1009 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1010 struct srpt_send_ioctx *ioctx,
1011 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1012 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1013 u16 imm_data_offset)
1014 {
1015 BUG_ON(!dir);
1016 BUG_ON(!data_len);
1017
1018 /*
1019 * The lower four bits of the buffer format field contain the DATA-IN
1020 * buffer descriptor format, and the highest four bits contain the
1021 * DATA-OUT buffer descriptor format.
1022 */
1023 if (srp_cmd->buf_fmt & 0xf)
1024 /* DATA-IN: transfer data from target to initiator (read). */
1025 *dir = DMA_FROM_DEVICE;
1026 else if (srp_cmd->buf_fmt >> 4)
1027 /* DATA-OUT: transfer data from initiator to target (write). */
1028 *dir = DMA_TO_DEVICE;
1029 else
1030 *dir = DMA_NONE;
1031
1032 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1033 ioctx->cmd.data_direction = *dir;
1034
1035 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1036 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1037 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1038
1039 *data_len = be32_to_cpu(db->len);
1040 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1041 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1042 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1043 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1044 int nbufs = be32_to_cpu(idb->table_desc.len) /
1045 sizeof(struct srp_direct_buf);
1046
1047 if (nbufs >
1048 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1049 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1050 srp_cmd->data_out_desc_cnt,
1051 srp_cmd->data_in_desc_cnt,
1052 be32_to_cpu(idb->table_desc.len),
1053 sizeof(struct srp_direct_buf));
1054 return -EINVAL;
1055 }
1056
1057 *data_len = be32_to_cpu(idb->len);
1058 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1059 sg, sg_cnt);
1060 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1061 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1062 void *data = (void *)srp_cmd + imm_data_offset;
1063 uint32_t len = be32_to_cpu(imm_buf->len);
1064 uint32_t req_size = imm_data_offset + len;
1065
1066 if (req_size > srp_max_req_size) {
1067 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1068 imm_data_offset, len, srp_max_req_size);
1069 return -EINVAL;
1070 }
1071 if (recv_ioctx->byte_len < req_size) {
1072 pr_err("Received too few data - %d < %d\n",
1073 recv_ioctx->byte_len, req_size);
1074 return -EIO;
1075 }
1076 /*
1077 * The immediate data buffer descriptor must occur before the
1078 * immediate data itself.
1079 */
1080 if ((void *)(imm_buf + 1) > (void *)data) {
1081 pr_err("Received invalid write request\n");
1082 return -EINVAL;
1083 }
1084 *data_len = len;
1085 ioctx->recv_ioctx = recv_ioctx;
1086 if ((uintptr_t)data & 511) {
1087 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1088 return -EINVAL;
1089 }
1090 sg_init_one(&ioctx->imm_sg, data, len);
1091 *sg = &ioctx->imm_sg;
1092 *sg_cnt = 1;
1093 return 0;
1094 } else {
1095 *data_len = 0;
1096 return 0;
1097 }
1098 }
1099
1100 /**
1101 * srpt_init_ch_qp - initialize queue pair attributes
1102 * @ch: SRPT RDMA channel.
1103 * @qp: Queue pair pointer.
1104 *
1105 * Initialized the attributes of queue pair 'qp' by allowing local write,
1106 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1107 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)1108 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109 {
1110 struct ib_qp_attr *attr;
1111 int ret;
1112
1113 WARN_ON_ONCE(ch->using_rdma_cm);
1114
1115 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1116 if (!attr)
1117 return -ENOMEM;
1118
1119 attr->qp_state = IB_QPS_INIT;
1120 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1121 attr->port_num = ch->sport->port;
1122
1123 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1124 ch->pkey, &attr->pkey_index);
1125 if (ret < 0)
1126 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1127 ch->pkey, ret);
1128
1129 ret = ib_modify_qp(qp, attr,
1130 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1131 IB_QP_PKEY_INDEX);
1132
1133 kfree(attr);
1134 return ret;
1135 }
1136
1137 /**
1138 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1139 * @ch: channel of the queue pair.
1140 * @qp: queue pair to change the state of.
1141 *
1142 * Returns zero upon success and a negative value upon failure.
1143 *
1144 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1145 * If this structure ever becomes larger, it might be necessary to allocate
1146 * it dynamically instead of on the stack.
1147 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)1148 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1149 {
1150 struct ib_qp_attr qp_attr;
1151 int attr_mask;
1152 int ret;
1153
1154 WARN_ON_ONCE(ch->using_rdma_cm);
1155
1156 qp_attr.qp_state = IB_QPS_RTR;
1157 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1158 if (ret)
1159 goto out;
1160
1161 qp_attr.max_dest_rd_atomic = 4;
1162
1163 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1164
1165 out:
1166 return ret;
1167 }
1168
1169 /**
1170 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1171 * @ch: channel of the queue pair.
1172 * @qp: queue pair to change the state of.
1173 *
1174 * Returns zero upon success and a negative value upon failure.
1175 *
1176 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1177 * If this structure ever becomes larger, it might be necessary to allocate
1178 * it dynamically instead of on the stack.
1179 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1180 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1181 {
1182 struct ib_qp_attr qp_attr;
1183 int attr_mask;
1184 int ret;
1185
1186 qp_attr.qp_state = IB_QPS_RTS;
1187 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1188 if (ret)
1189 goto out;
1190
1191 qp_attr.max_rd_atomic = 4;
1192
1193 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1194
1195 out:
1196 return ret;
1197 }
1198
1199 /**
1200 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1201 * @ch: SRPT RDMA channel.
1202 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1203 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1204 {
1205 struct ib_qp_attr qp_attr;
1206
1207 qp_attr.qp_state = IB_QPS_ERR;
1208 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1209 }
1210
1211 /**
1212 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1213 * @ch: SRPT RDMA channel.
1214 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1215 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1216 {
1217 struct srpt_send_ioctx *ioctx;
1218 int tag, cpu;
1219
1220 BUG_ON(!ch);
1221
1222 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1223 if (tag < 0)
1224 return NULL;
1225
1226 ioctx = ch->ioctx_ring[tag];
1227 BUG_ON(ioctx->ch != ch);
1228 ioctx->state = SRPT_STATE_NEW;
1229 WARN_ON_ONCE(ioctx->recv_ioctx);
1230 ioctx->n_rdma = 0;
1231 ioctx->n_rw_ctx = 0;
1232 ioctx->queue_status_only = false;
1233 /*
1234 * transport_init_se_cmd() does not initialize all fields, so do it
1235 * here.
1236 */
1237 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1238 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1239 ioctx->cmd.map_tag = tag;
1240 ioctx->cmd.map_cpu = cpu;
1241
1242 return ioctx;
1243 }
1244
1245 /**
1246 * srpt_abort_cmd - abort a SCSI command
1247 * @ioctx: I/O context associated with the SCSI command.
1248 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1249 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1250 {
1251 enum srpt_command_state state;
1252
1253 BUG_ON(!ioctx);
1254
1255 /*
1256 * If the command is in a state where the target core is waiting for
1257 * the ib_srpt driver, change the state to the next state.
1258 */
1259
1260 state = ioctx->state;
1261 switch (state) {
1262 case SRPT_STATE_NEED_DATA:
1263 ioctx->state = SRPT_STATE_DATA_IN;
1264 break;
1265 case SRPT_STATE_CMD_RSP_SENT:
1266 case SRPT_STATE_MGMT_RSP_SENT:
1267 ioctx->state = SRPT_STATE_DONE;
1268 break;
1269 default:
1270 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1271 __func__, state);
1272 break;
1273 }
1274
1275 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1276 ioctx->state, ioctx->cmd.tag);
1277
1278 switch (state) {
1279 case SRPT_STATE_NEW:
1280 case SRPT_STATE_DATA_IN:
1281 case SRPT_STATE_MGMT:
1282 case SRPT_STATE_DONE:
1283 /*
1284 * Do nothing - defer abort processing until
1285 * srpt_queue_response() is invoked.
1286 */
1287 break;
1288 case SRPT_STATE_NEED_DATA:
1289 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1290 transport_generic_request_failure(&ioctx->cmd,
1291 TCM_CHECK_CONDITION_ABORT_CMD);
1292 break;
1293 case SRPT_STATE_CMD_RSP_SENT:
1294 /*
1295 * SRP_RSP sending failed or the SRP_RSP send completion has
1296 * not been received in time.
1297 */
1298 transport_generic_free_cmd(&ioctx->cmd, 0);
1299 break;
1300 case SRPT_STATE_MGMT_RSP_SENT:
1301 transport_generic_free_cmd(&ioctx->cmd, 0);
1302 break;
1303 default:
1304 WARN(1, "Unexpected command state (%d)", state);
1305 break;
1306 }
1307
1308 return state;
1309 }
1310
1311 /**
1312 * srpt_rdma_read_done - RDMA read completion callback
1313 * @cq: Completion queue.
1314 * @wc: Work completion.
1315 *
1316 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1317 * the data that has been transferred via IB RDMA had to be postponed until the
1318 * check_stop_free() callback. None of this is necessary anymore and needs to
1319 * be cleaned up.
1320 */
srpt_rdma_read_done(struct ib_cq * cq,struct ib_wc * wc)1321 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1322 {
1323 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1324 struct srpt_send_ioctx *ioctx =
1325 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1326
1327 WARN_ON(ioctx->n_rdma <= 0);
1328 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1329 ioctx->n_rdma = 0;
1330
1331 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1332 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1333 ioctx, wc->status);
1334 srpt_abort_cmd(ioctx);
1335 return;
1336 }
1337
1338 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1339 SRPT_STATE_DATA_IN))
1340 target_execute_cmd(&ioctx->cmd);
1341 else
1342 pr_err("%s[%d]: wrong state = %d\n", __func__,
1343 __LINE__, ioctx->state);
1344 }
1345
1346 /**
1347 * srpt_build_cmd_rsp - build a SRP_RSP response
1348 * @ch: RDMA channel through which the request has been received.
1349 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1350 * be built in the buffer ioctx->buf points at and hence this function will
1351 * overwrite the request data.
1352 * @tag: tag of the request for which this response is being generated.
1353 * @status: value for the STATUS field of the SRP_RSP information unit.
1354 *
1355 * Returns the size in bytes of the SRP_RSP response.
1356 *
1357 * An SRP_RSP response contains a SCSI status or service response. See also
1358 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1359 * response. See also SPC-2 for more information about sense data.
1360 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1361 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1362 struct srpt_send_ioctx *ioctx, u64 tag,
1363 int status)
1364 {
1365 struct se_cmd *cmd = &ioctx->cmd;
1366 struct srp_rsp *srp_rsp;
1367 const u8 *sense_data;
1368 int sense_data_len, max_sense_len;
1369 u32 resid = cmd->residual_count;
1370
1371 /*
1372 * The lowest bit of all SAM-3 status codes is zero (see also
1373 * paragraph 5.3 in SAM-3).
1374 */
1375 WARN_ON(status & 1);
1376
1377 srp_rsp = ioctx->ioctx.buf;
1378 BUG_ON(!srp_rsp);
1379
1380 sense_data = ioctx->sense_data;
1381 sense_data_len = ioctx->cmd.scsi_sense_length;
1382 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1383
1384 memset(srp_rsp, 0, sizeof(*srp_rsp));
1385 srp_rsp->opcode = SRP_RSP;
1386 srp_rsp->req_lim_delta =
1387 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1388 srp_rsp->tag = tag;
1389 srp_rsp->status = status;
1390
1391 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1392 if (cmd->data_direction == DMA_TO_DEVICE) {
1393 /* residual data from an underflow write */
1394 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1395 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1396 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1397 /* residual data from an underflow read */
1398 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1399 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1400 }
1401 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1402 if (cmd->data_direction == DMA_TO_DEVICE) {
1403 /* residual data from an overflow write */
1404 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1405 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1406 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1407 /* residual data from an overflow read */
1408 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1409 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1410 }
1411 }
1412
1413 if (sense_data_len) {
1414 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1415 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1416 if (sense_data_len > max_sense_len) {
1417 pr_warn("truncated sense data from %d to %d bytes\n",
1418 sense_data_len, max_sense_len);
1419 sense_data_len = max_sense_len;
1420 }
1421
1422 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1423 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1424 memcpy(srp_rsp->data, sense_data, sense_data_len);
1425 }
1426
1427 return sizeof(*srp_rsp) + sense_data_len;
1428 }
1429
1430 /**
1431 * srpt_build_tskmgmt_rsp - build a task management response
1432 * @ch: RDMA channel through which the request has been received.
1433 * @ioctx: I/O context in which the SRP_RSP response will be built.
1434 * @rsp_code: RSP_CODE that will be stored in the response.
1435 * @tag: Tag of the request for which this response is being generated.
1436 *
1437 * Returns the size in bytes of the SRP_RSP response.
1438 *
1439 * An SRP_RSP response contains a SCSI status or service response. See also
1440 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1441 * response.
1442 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1443 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1444 struct srpt_send_ioctx *ioctx,
1445 u8 rsp_code, u64 tag)
1446 {
1447 struct srp_rsp *srp_rsp;
1448 int resp_data_len;
1449 int resp_len;
1450
1451 resp_data_len = 4;
1452 resp_len = sizeof(*srp_rsp) + resp_data_len;
1453
1454 srp_rsp = ioctx->ioctx.buf;
1455 BUG_ON(!srp_rsp);
1456 memset(srp_rsp, 0, sizeof(*srp_rsp));
1457
1458 srp_rsp->opcode = SRP_RSP;
1459 srp_rsp->req_lim_delta =
1460 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1461 srp_rsp->tag = tag;
1462
1463 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1464 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1465 srp_rsp->data[3] = rsp_code;
1466
1467 return resp_len;
1468 }
1469
srpt_check_stop_free(struct se_cmd * cmd)1470 static int srpt_check_stop_free(struct se_cmd *cmd)
1471 {
1472 struct srpt_send_ioctx *ioctx = container_of(cmd,
1473 struct srpt_send_ioctx, cmd);
1474
1475 return target_put_sess_cmd(&ioctx->cmd);
1476 }
1477
1478 /**
1479 * srpt_handle_cmd - process a SRP_CMD information unit
1480 * @ch: SRPT RDMA channel.
1481 * @recv_ioctx: Receive I/O context.
1482 * @send_ioctx: Send I/O context.
1483 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1484 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1485 struct srpt_recv_ioctx *recv_ioctx,
1486 struct srpt_send_ioctx *send_ioctx)
1487 {
1488 struct se_cmd *cmd;
1489 struct srp_cmd *srp_cmd;
1490 struct scatterlist *sg = NULL;
1491 unsigned sg_cnt = 0;
1492 u64 data_len;
1493 enum dma_data_direction dir;
1494 int rc;
1495
1496 BUG_ON(!send_ioctx);
1497
1498 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1499 cmd = &send_ioctx->cmd;
1500 cmd->tag = srp_cmd->tag;
1501
1502 switch (srp_cmd->task_attr) {
1503 case SRP_CMD_SIMPLE_Q:
1504 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1505 break;
1506 case SRP_CMD_ORDERED_Q:
1507 default:
1508 cmd->sam_task_attr = TCM_ORDERED_TAG;
1509 break;
1510 case SRP_CMD_HEAD_OF_Q:
1511 cmd->sam_task_attr = TCM_HEAD_TAG;
1512 break;
1513 case SRP_CMD_ACA:
1514 cmd->sam_task_attr = TCM_ACA_TAG;
1515 break;
1516 }
1517
1518 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1519 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1520 if (rc) {
1521 if (rc != -EAGAIN) {
1522 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1523 srp_cmd->tag);
1524 }
1525 goto busy;
1526 }
1527
1528 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1529 scsilun_to_int(&srp_cmd->lun), data_len,
1530 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1531 if (rc != 0) {
1532 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1533 srp_cmd->tag);
1534 goto busy;
1535 }
1536
1537 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1538 GFP_KERNEL))
1539 return;
1540
1541 target_submit(cmd);
1542 return;
1543
1544 busy:
1545 target_send_busy(cmd);
1546 }
1547
srp_tmr_to_tcm(int fn)1548 static int srp_tmr_to_tcm(int fn)
1549 {
1550 switch (fn) {
1551 case SRP_TSK_ABORT_TASK:
1552 return TMR_ABORT_TASK;
1553 case SRP_TSK_ABORT_TASK_SET:
1554 return TMR_ABORT_TASK_SET;
1555 case SRP_TSK_CLEAR_TASK_SET:
1556 return TMR_CLEAR_TASK_SET;
1557 case SRP_TSK_LUN_RESET:
1558 return TMR_LUN_RESET;
1559 case SRP_TSK_CLEAR_ACA:
1560 return TMR_CLEAR_ACA;
1561 default:
1562 return -1;
1563 }
1564 }
1565
1566 /**
1567 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1568 * @ch: SRPT RDMA channel.
1569 * @recv_ioctx: Receive I/O context.
1570 * @send_ioctx: Send I/O context.
1571 *
1572 * Returns 0 if and only if the request will be processed by the target core.
1573 *
1574 * For more information about SRP_TSK_MGMT information units, see also section
1575 * 6.7 in the SRP r16a document.
1576 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1577 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1578 struct srpt_recv_ioctx *recv_ioctx,
1579 struct srpt_send_ioctx *send_ioctx)
1580 {
1581 struct srp_tsk_mgmt *srp_tsk;
1582 struct se_cmd *cmd;
1583 struct se_session *sess = ch->sess;
1584 int tcm_tmr;
1585 int rc;
1586
1587 BUG_ON(!send_ioctx);
1588
1589 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1590 cmd = &send_ioctx->cmd;
1591
1592 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1593 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1594 ch->sess);
1595
1596 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1597 send_ioctx->cmd.tag = srp_tsk->tag;
1598 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1599 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1600 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1601 GFP_KERNEL, srp_tsk->task_tag,
1602 TARGET_SCF_ACK_KREF);
1603 if (rc != 0) {
1604 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1605 cmd->se_tfo->queue_tm_rsp(cmd);
1606 }
1607 return;
1608 }
1609
1610 /**
1611 * srpt_handle_new_iu - process a newly received information unit
1612 * @ch: RDMA channel through which the information unit has been received.
1613 * @recv_ioctx: Receive I/O context associated with the information unit.
1614 */
1615 static bool
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx)1616 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1617 {
1618 struct srpt_send_ioctx *send_ioctx = NULL;
1619 struct srp_cmd *srp_cmd;
1620 bool res = false;
1621 u8 opcode;
1622
1623 BUG_ON(!ch);
1624 BUG_ON(!recv_ioctx);
1625
1626 if (unlikely(ch->state == CH_CONNECTING))
1627 goto push;
1628
1629 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1630 recv_ioctx->ioctx.dma,
1631 recv_ioctx->ioctx.offset + srp_max_req_size,
1632 DMA_FROM_DEVICE);
1633
1634 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1635 opcode = srp_cmd->opcode;
1636 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1637 send_ioctx = srpt_get_send_ioctx(ch);
1638 if (unlikely(!send_ioctx))
1639 goto push;
1640 }
1641
1642 if (!list_empty(&recv_ioctx->wait_list)) {
1643 WARN_ON_ONCE(!ch->processing_wait_list);
1644 list_del_init(&recv_ioctx->wait_list);
1645 }
1646
1647 switch (opcode) {
1648 case SRP_CMD:
1649 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1650 break;
1651 case SRP_TSK_MGMT:
1652 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1653 break;
1654 case SRP_I_LOGOUT:
1655 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1656 break;
1657 case SRP_CRED_RSP:
1658 pr_debug("received SRP_CRED_RSP\n");
1659 break;
1660 case SRP_AER_RSP:
1661 pr_debug("received SRP_AER_RSP\n");
1662 break;
1663 case SRP_RSP:
1664 pr_err("Received SRP_RSP\n");
1665 break;
1666 default:
1667 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1668 break;
1669 }
1670
1671 if (!send_ioctx || !send_ioctx->recv_ioctx)
1672 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1673 res = true;
1674
1675 out:
1676 return res;
1677
1678 push:
1679 if (list_empty(&recv_ioctx->wait_list)) {
1680 WARN_ON_ONCE(ch->processing_wait_list);
1681 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1682 }
1683 goto out;
1684 }
1685
srpt_recv_done(struct ib_cq * cq,struct ib_wc * wc)1686 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1687 {
1688 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1689 struct srpt_recv_ioctx *ioctx =
1690 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1691
1692 if (wc->status == IB_WC_SUCCESS) {
1693 int req_lim;
1694
1695 req_lim = atomic_dec_return(&ch->req_lim);
1696 if (unlikely(req_lim < 0))
1697 pr_err("req_lim = %d < 0\n", req_lim);
1698 ioctx->byte_len = wc->byte_len;
1699 srpt_handle_new_iu(ch, ioctx);
1700 } else {
1701 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1702 ioctx, wc->status);
1703 }
1704 }
1705
1706 /*
1707 * This function must be called from the context in which RDMA completions are
1708 * processed because it accesses the wait list without protection against
1709 * access from other threads.
1710 */
srpt_process_wait_list(struct srpt_rdma_ch * ch)1711 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1712 {
1713 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1714
1715 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1716
1717 if (list_empty(&ch->cmd_wait_list))
1718 return;
1719
1720 WARN_ON_ONCE(ch->processing_wait_list);
1721 ch->processing_wait_list = true;
1722 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1723 wait_list) {
1724 if (!srpt_handle_new_iu(ch, recv_ioctx))
1725 break;
1726 }
1727 ch->processing_wait_list = false;
1728 }
1729
1730 /**
1731 * srpt_send_done - send completion callback
1732 * @cq: Completion queue.
1733 * @wc: Work completion.
1734 *
1735 * Note: Although this has not yet been observed during tests, at least in
1736 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1737 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1738 * value in each response is set to one, and it is possible that this response
1739 * makes the initiator send a new request before the send completion for that
1740 * response has been processed. This could e.g. happen if the call to
1741 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1742 * if IB retransmission causes generation of the send completion to be
1743 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1744 * are queued on cmd_wait_list. The code below processes these delayed
1745 * requests one at a time.
1746 */
srpt_send_done(struct ib_cq * cq,struct ib_wc * wc)1747 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1748 {
1749 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1750 struct srpt_send_ioctx *ioctx =
1751 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1752 enum srpt_command_state state;
1753
1754 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1755
1756 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1757 state != SRPT_STATE_MGMT_RSP_SENT);
1758
1759 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1760
1761 if (wc->status != IB_WC_SUCCESS)
1762 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1763 ioctx, wc->status);
1764
1765 if (state != SRPT_STATE_DONE) {
1766 transport_generic_free_cmd(&ioctx->cmd, 0);
1767 } else {
1768 pr_err("IB completion has been received too late for wr_id = %u.\n",
1769 ioctx->ioctx.index);
1770 }
1771
1772 srpt_process_wait_list(ch);
1773 }
1774
1775 /**
1776 * srpt_create_ch_ib - create receive and send completion queues
1777 * @ch: SRPT RDMA channel.
1778 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)1779 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1780 {
1781 struct ib_qp_init_attr *qp_init;
1782 struct srpt_port *sport = ch->sport;
1783 struct srpt_device *sdev = sport->sdev;
1784 const struct ib_device_attr *attrs = &sdev->device->attrs;
1785 int sq_size = sport->port_attrib.srp_sq_size;
1786 int i, ret;
1787
1788 WARN_ON(ch->rq_size < 1);
1789
1790 ret = -ENOMEM;
1791 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1792 if (!qp_init)
1793 goto out;
1794
1795 retry:
1796 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1797 IB_POLL_WORKQUEUE);
1798 if (IS_ERR(ch->cq)) {
1799 ret = PTR_ERR(ch->cq);
1800 pr_err("failed to create CQ cqe= %d ret= %d\n",
1801 ch->rq_size + sq_size, ret);
1802 goto out;
1803 }
1804 ch->cq_size = ch->rq_size + sq_size;
1805
1806 qp_init->qp_context = (void *)ch;
1807 qp_init->event_handler
1808 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1809 qp_init->send_cq = ch->cq;
1810 qp_init->recv_cq = ch->cq;
1811 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1812 qp_init->qp_type = IB_QPT_RC;
1813 /*
1814 * We divide up our send queue size into half SEND WRs to send the
1815 * completions, and half R/W contexts to actually do the RDMA
1816 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1817 * both both, as RDMA contexts will also post completions for the
1818 * RDMA READ case.
1819 */
1820 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1821 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1822 qp_init->cap.max_send_sge = attrs->max_send_sge;
1823 qp_init->cap.max_recv_sge = 1;
1824 qp_init->port_num = ch->sport->port;
1825 if (sdev->use_srq)
1826 qp_init->srq = sdev->srq;
1827 else
1828 qp_init->cap.max_recv_wr = ch->rq_size;
1829
1830 if (ch->using_rdma_cm) {
1831 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1832 ch->qp = ch->rdma_cm.cm_id->qp;
1833 } else {
1834 ch->qp = ib_create_qp(sdev->pd, qp_init);
1835 if (!IS_ERR(ch->qp)) {
1836 ret = srpt_init_ch_qp(ch, ch->qp);
1837 if (ret)
1838 ib_destroy_qp(ch->qp);
1839 } else {
1840 ret = PTR_ERR(ch->qp);
1841 }
1842 }
1843 if (ret) {
1844 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1845
1846 if (retry) {
1847 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1848 sq_size, ret);
1849 ib_cq_pool_put(ch->cq, ch->cq_size);
1850 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1851 goto retry;
1852 } else {
1853 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1854 sq_size, ret);
1855 goto err_destroy_cq;
1856 }
1857 }
1858
1859 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1860
1861 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1862 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1863 qp_init->cap.max_send_wr, ch);
1864
1865 if (!sdev->use_srq)
1866 for (i = 0; i < ch->rq_size; i++)
1867 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1868
1869 out:
1870 kfree(qp_init);
1871 return ret;
1872
1873 err_destroy_cq:
1874 ch->qp = NULL;
1875 ib_cq_pool_put(ch->cq, ch->cq_size);
1876 goto out;
1877 }
1878
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)1879 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1880 {
1881 ib_destroy_qp(ch->qp);
1882 ib_cq_pool_put(ch->cq, ch->cq_size);
1883 }
1884
1885 /**
1886 * srpt_close_ch - close a RDMA channel
1887 * @ch: SRPT RDMA channel.
1888 *
1889 * Make sure all resources associated with the channel will be deallocated at
1890 * an appropriate time.
1891 *
1892 * Returns true if and only if the channel state has been modified into
1893 * CH_DRAINING.
1894 */
srpt_close_ch(struct srpt_rdma_ch * ch)1895 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1896 {
1897 int ret;
1898
1899 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1900 pr_debug("%s: already closed\n", ch->sess_name);
1901 return false;
1902 }
1903
1904 kref_get(&ch->kref);
1905
1906 ret = srpt_ch_qp_err(ch);
1907 if (ret < 0)
1908 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1909 ch->sess_name, ch->qp->qp_num, ret);
1910
1911 ret = srpt_zerolength_write(ch);
1912 if (ret < 0) {
1913 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1914 ch->sess_name, ch->qp->qp_num, ret);
1915 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1916 schedule_work(&ch->release_work);
1917 else
1918 WARN_ON_ONCE(true);
1919 }
1920
1921 kref_put(&ch->kref, srpt_free_ch);
1922
1923 return true;
1924 }
1925
1926 /*
1927 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1928 * reached the connected state, close it. If a channel is in the connected
1929 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1930 * the responsibility of the caller to ensure that this function is not
1931 * invoked concurrently with the code that accepts a connection. This means
1932 * that this function must either be invoked from inside a CM callback
1933 * function or that it must be invoked with the srpt_port.mutex held.
1934 */
srpt_disconnect_ch(struct srpt_rdma_ch * ch)1935 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1936 {
1937 int ret;
1938
1939 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1940 return -ENOTCONN;
1941
1942 if (ch->using_rdma_cm) {
1943 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1944 } else {
1945 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1946 if (ret < 0)
1947 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1948 }
1949
1950 if (ret < 0 && srpt_close_ch(ch))
1951 ret = 0;
1952
1953 return ret;
1954 }
1955
1956 /* Send DREQ and wait for DREP. */
srpt_disconnect_ch_sync(struct srpt_rdma_ch * ch)1957 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1958 {
1959 DECLARE_COMPLETION_ONSTACK(closed);
1960 struct srpt_port *sport = ch->sport;
1961
1962 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1963 ch->state);
1964
1965 ch->closed = &closed;
1966
1967 mutex_lock(&sport->mutex);
1968 srpt_disconnect_ch(ch);
1969 mutex_unlock(&sport->mutex);
1970
1971 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1972 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1973 ch->sess_name, ch->qp->qp_num, ch->state);
1974
1975 }
1976
__srpt_close_all_ch(struct srpt_port * sport)1977 static void __srpt_close_all_ch(struct srpt_port *sport)
1978 {
1979 struct srpt_nexus *nexus;
1980 struct srpt_rdma_ch *ch;
1981
1982 lockdep_assert_held(&sport->mutex);
1983
1984 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1985 list_for_each_entry(ch, &nexus->ch_list, list) {
1986 if (srpt_disconnect_ch(ch) >= 0)
1987 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1988 ch->sess_name, ch->qp->qp_num,
1989 dev_name(&sport->sdev->device->dev),
1990 sport->port);
1991 srpt_close_ch(ch);
1992 }
1993 }
1994 }
1995
1996 /*
1997 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1998 * it does not yet exist.
1999 */
srpt_get_nexus(struct srpt_port * sport,const u8 i_port_id[16],const u8 t_port_id[16])2000 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2001 const u8 i_port_id[16],
2002 const u8 t_port_id[16])
2003 {
2004 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2005
2006 for (;;) {
2007 mutex_lock(&sport->mutex);
2008 list_for_each_entry(n, &sport->nexus_list, entry) {
2009 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2010 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2011 nexus = n;
2012 break;
2013 }
2014 }
2015 if (!nexus && tmp_nexus) {
2016 list_add_tail_rcu(&tmp_nexus->entry,
2017 &sport->nexus_list);
2018 swap(nexus, tmp_nexus);
2019 }
2020 mutex_unlock(&sport->mutex);
2021
2022 if (nexus)
2023 break;
2024 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2025 if (!tmp_nexus) {
2026 nexus = ERR_PTR(-ENOMEM);
2027 break;
2028 }
2029 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2030 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2031 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2032 }
2033
2034 kfree(tmp_nexus);
2035
2036 return nexus;
2037 }
2038
srpt_set_enabled(struct srpt_port * sport,bool enabled)2039 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2040 __must_hold(&sport->mutex)
2041 {
2042 lockdep_assert_held(&sport->mutex);
2043
2044 if (sport->enabled == enabled)
2045 return;
2046 sport->enabled = enabled;
2047 if (!enabled)
2048 __srpt_close_all_ch(sport);
2049 }
2050
srpt_drop_sport_ref(struct srpt_port * sport)2051 static void srpt_drop_sport_ref(struct srpt_port *sport)
2052 {
2053 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2054 complete(sport->freed_channels);
2055 }
2056
srpt_free_ch(struct kref * kref)2057 static void srpt_free_ch(struct kref *kref)
2058 {
2059 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2060
2061 srpt_drop_sport_ref(ch->sport);
2062 kfree_rcu(ch, rcu);
2063 }
2064
2065 /*
2066 * Shut down the SCSI target session, tell the connection manager to
2067 * disconnect the associated RDMA channel, transition the QP to the error
2068 * state and remove the channel from the channel list. This function is
2069 * typically called from inside srpt_zerolength_write_done(). Concurrent
2070 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2071 * as long as the channel is on sport->nexus_list.
2072 */
srpt_release_channel_work(struct work_struct * w)2073 static void srpt_release_channel_work(struct work_struct *w)
2074 {
2075 struct srpt_rdma_ch *ch;
2076 struct srpt_device *sdev;
2077 struct srpt_port *sport;
2078 struct se_session *se_sess;
2079
2080 ch = container_of(w, struct srpt_rdma_ch, release_work);
2081 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2082
2083 sdev = ch->sport->sdev;
2084 BUG_ON(!sdev);
2085
2086 se_sess = ch->sess;
2087 BUG_ON(!se_sess);
2088
2089 target_stop_session(se_sess);
2090 target_wait_for_sess_cmds(se_sess);
2091
2092 target_remove_session(se_sess);
2093 ch->sess = NULL;
2094
2095 if (ch->using_rdma_cm)
2096 rdma_destroy_id(ch->rdma_cm.cm_id);
2097 else
2098 ib_destroy_cm_id(ch->ib_cm.cm_id);
2099
2100 sport = ch->sport;
2101 mutex_lock(&sport->mutex);
2102 list_del_rcu(&ch->list);
2103 mutex_unlock(&sport->mutex);
2104
2105 if (ch->closed)
2106 complete(ch->closed);
2107
2108 srpt_destroy_ch_ib(ch);
2109
2110 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2111 ch->sport->sdev, ch->rq_size,
2112 ch->rsp_buf_cache, DMA_TO_DEVICE);
2113
2114 kmem_cache_destroy(ch->rsp_buf_cache);
2115
2116 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2117 sdev, ch->rq_size,
2118 ch->req_buf_cache, DMA_FROM_DEVICE);
2119
2120 kmem_cache_destroy(ch->req_buf_cache);
2121
2122 kref_put(&ch->kref, srpt_free_ch);
2123 }
2124
2125 /**
2126 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2127 * @sdev: HCA through which the login request was received.
2128 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2129 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2130 * @port_num: Port through which the REQ message was received.
2131 * @pkey: P_Key of the incoming connection.
2132 * @req: SRP login request.
2133 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2134 * the login request.
2135 *
2136 * Ownership of the cm_id is transferred to the target session if this
2137 * function returns zero. Otherwise the caller remains the owner of cm_id.
2138 */
srpt_cm_req_recv(struct srpt_device * const sdev,struct ib_cm_id * ib_cm_id,struct rdma_cm_id * rdma_cm_id,u8 port_num,__be16 pkey,const struct srp_login_req * req,const char * src_addr)2139 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2140 struct ib_cm_id *ib_cm_id,
2141 struct rdma_cm_id *rdma_cm_id,
2142 u8 port_num, __be16 pkey,
2143 const struct srp_login_req *req,
2144 const char *src_addr)
2145 {
2146 struct srpt_port *sport = &sdev->port[port_num - 1];
2147 struct srpt_nexus *nexus;
2148 struct srp_login_rsp *rsp = NULL;
2149 struct srp_login_rej *rej = NULL;
2150 union {
2151 struct rdma_conn_param rdma_cm;
2152 struct ib_cm_rep_param ib_cm;
2153 } *rep_param = NULL;
2154 struct srpt_rdma_ch *ch = NULL;
2155 char i_port_id[36];
2156 u32 it_iu_len;
2157 int i, tag_num, tag_size, ret;
2158 struct srpt_tpg *stpg;
2159
2160 WARN_ON_ONCE(irqs_disabled());
2161
2162 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2163
2164 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2165 req->initiator_port_id, req->target_port_id, it_iu_len,
2166 port_num, &sport->gid, be16_to_cpu(pkey));
2167
2168 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2169 req->target_port_id);
2170 if (IS_ERR(nexus)) {
2171 ret = PTR_ERR(nexus);
2172 goto out;
2173 }
2174
2175 ret = -ENOMEM;
2176 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2177 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2178 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2179 if (!rsp || !rej || !rep_param)
2180 goto out;
2181
2182 ret = -EINVAL;
2183 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2184 rej->reason = cpu_to_be32(
2185 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2186 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2187 it_iu_len, 64, srp_max_req_size);
2188 goto reject;
2189 }
2190
2191 if (!sport->enabled) {
2192 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2193 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2194 dev_name(&sport->sdev->device->dev), port_num);
2195 goto reject;
2196 }
2197
2198 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2199 || *(__be64 *)(req->target_port_id + 8) !=
2200 cpu_to_be64(srpt_service_guid)) {
2201 rej->reason = cpu_to_be32(
2202 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2203 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2204 goto reject;
2205 }
2206
2207 ret = -ENOMEM;
2208 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2209 if (!ch) {
2210 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2211 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2212 goto reject;
2213 }
2214
2215 kref_init(&ch->kref);
2216 ch->pkey = be16_to_cpu(pkey);
2217 ch->nexus = nexus;
2218 ch->zw_cqe.done = srpt_zerolength_write_done;
2219 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2220 ch->sport = sport;
2221 if (rdma_cm_id) {
2222 ch->using_rdma_cm = true;
2223 ch->rdma_cm.cm_id = rdma_cm_id;
2224 rdma_cm_id->context = ch;
2225 } else {
2226 ch->ib_cm.cm_id = ib_cm_id;
2227 ib_cm_id->context = ch;
2228 }
2229 /*
2230 * ch->rq_size should be at least as large as the initiator queue
2231 * depth to avoid that the initiator driver has to report QUEUE_FULL
2232 * to the SCSI mid-layer.
2233 */
2234 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2235 spin_lock_init(&ch->spinlock);
2236 ch->state = CH_CONNECTING;
2237 INIT_LIST_HEAD(&ch->cmd_wait_list);
2238 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2239
2240 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2241 512, 0, NULL);
2242 if (!ch->rsp_buf_cache)
2243 goto free_ch;
2244
2245 ch->ioctx_ring = (struct srpt_send_ioctx **)
2246 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2247 sizeof(*ch->ioctx_ring[0]),
2248 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2249 if (!ch->ioctx_ring) {
2250 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2251 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2252 goto free_rsp_cache;
2253 }
2254
2255 for (i = 0; i < ch->rq_size; i++)
2256 ch->ioctx_ring[i]->ch = ch;
2257 if (!sdev->use_srq) {
2258 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2259 be16_to_cpu(req->imm_data_offset) : 0;
2260 u16 alignment_offset;
2261 u32 req_sz;
2262
2263 if (req->req_flags & SRP_IMMED_REQUESTED)
2264 pr_debug("imm_data_offset = %d\n",
2265 be16_to_cpu(req->imm_data_offset));
2266 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2267 ch->imm_data_offset = imm_data_offset;
2268 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2269 } else {
2270 ch->imm_data_offset = 0;
2271 }
2272 alignment_offset = round_up(imm_data_offset, 512) -
2273 imm_data_offset;
2274 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2275 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2276 512, 0, NULL);
2277 if (!ch->req_buf_cache)
2278 goto free_rsp_ring;
2279
2280 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2281 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2282 sizeof(*ch->ioctx_recv_ring[0]),
2283 ch->req_buf_cache,
2284 alignment_offset,
2285 DMA_FROM_DEVICE);
2286 if (!ch->ioctx_recv_ring) {
2287 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2288 rej->reason =
2289 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2290 goto free_recv_cache;
2291 }
2292 for (i = 0; i < ch->rq_size; i++)
2293 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2294 }
2295
2296 ret = srpt_create_ch_ib(ch);
2297 if (ret) {
2298 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2299 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2300 goto free_recv_ring;
2301 }
2302
2303 strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2304 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2305 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2306 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2307
2308 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2309 i_port_id);
2310
2311 tag_num = ch->rq_size;
2312 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2313
2314 if (sport->guid_id) {
2315 mutex_lock(&sport->guid_id->mutex);
2316 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2317 if (!IS_ERR_OR_NULL(ch->sess))
2318 break;
2319 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2320 tag_size, TARGET_PROT_NORMAL,
2321 ch->sess_name, ch, NULL);
2322 }
2323 mutex_unlock(&sport->guid_id->mutex);
2324 }
2325
2326 if (sport->gid_id) {
2327 mutex_lock(&sport->gid_id->mutex);
2328 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2329 if (!IS_ERR_OR_NULL(ch->sess))
2330 break;
2331 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2332 tag_size, TARGET_PROT_NORMAL, i_port_id,
2333 ch, NULL);
2334 if (!IS_ERR_OR_NULL(ch->sess))
2335 break;
2336 /* Retry without leading "0x" */
2337 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2338 tag_size, TARGET_PROT_NORMAL,
2339 i_port_id + 2, ch, NULL);
2340 }
2341 mutex_unlock(&sport->gid_id->mutex);
2342 }
2343
2344 if (IS_ERR_OR_NULL(ch->sess)) {
2345 WARN_ON_ONCE(ch->sess == NULL);
2346 ret = PTR_ERR(ch->sess);
2347 ch->sess = NULL;
2348 pr_info("Rejected login for initiator %s: ret = %d.\n",
2349 ch->sess_name, ret);
2350 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2351 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2352 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2353 goto destroy_ib;
2354 }
2355
2356 /*
2357 * Once a session has been created destruction of srpt_rdma_ch objects
2358 * will decrement sport->refcount. Hence increment sport->refcount now.
2359 */
2360 atomic_inc(&sport->refcount);
2361
2362 mutex_lock(&sport->mutex);
2363
2364 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2365 struct srpt_rdma_ch *ch2;
2366
2367 list_for_each_entry(ch2, &nexus->ch_list, list) {
2368 if (srpt_disconnect_ch(ch2) < 0)
2369 continue;
2370 pr_info("Relogin - closed existing channel %s\n",
2371 ch2->sess_name);
2372 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2373 }
2374 } else {
2375 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2376 }
2377
2378 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2379
2380 if (!sport->enabled) {
2381 rej->reason = cpu_to_be32(
2382 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2383 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2384 dev_name(&sdev->device->dev), port_num);
2385 mutex_unlock(&sport->mutex);
2386 ret = -EINVAL;
2387 goto reject;
2388 }
2389
2390 mutex_unlock(&sport->mutex);
2391
2392 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2393 if (ret) {
2394 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2395 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2396 ret);
2397 goto reject;
2398 }
2399
2400 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2401 ch->sess_name, ch);
2402
2403 /* create srp_login_response */
2404 rsp->opcode = SRP_LOGIN_RSP;
2405 rsp->tag = req->tag;
2406 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2407 rsp->max_ti_iu_len = req->req_it_iu_len;
2408 ch->max_ti_iu_len = it_iu_len;
2409 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2410 SRP_BUF_FORMAT_INDIRECT);
2411 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2412 atomic_set(&ch->req_lim, ch->rq_size);
2413 atomic_set(&ch->req_lim_delta, 0);
2414
2415 /* create cm reply */
2416 if (ch->using_rdma_cm) {
2417 rep_param->rdma_cm.private_data = (void *)rsp;
2418 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2419 rep_param->rdma_cm.rnr_retry_count = 7;
2420 rep_param->rdma_cm.flow_control = 1;
2421 rep_param->rdma_cm.responder_resources = 4;
2422 rep_param->rdma_cm.initiator_depth = 4;
2423 } else {
2424 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2425 rep_param->ib_cm.private_data = (void *)rsp;
2426 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2427 rep_param->ib_cm.rnr_retry_count = 7;
2428 rep_param->ib_cm.flow_control = 1;
2429 rep_param->ib_cm.failover_accepted = 0;
2430 rep_param->ib_cm.srq = 1;
2431 rep_param->ib_cm.responder_resources = 4;
2432 rep_param->ib_cm.initiator_depth = 4;
2433 }
2434
2435 /*
2436 * Hold the sport mutex while accepting a connection to avoid that
2437 * srpt_disconnect_ch() is invoked concurrently with this code.
2438 */
2439 mutex_lock(&sport->mutex);
2440 if (sport->enabled && ch->state == CH_CONNECTING) {
2441 if (ch->using_rdma_cm)
2442 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2443 else
2444 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2445 } else {
2446 ret = -EINVAL;
2447 }
2448 mutex_unlock(&sport->mutex);
2449
2450 switch (ret) {
2451 case 0:
2452 break;
2453 case -EINVAL:
2454 goto reject;
2455 default:
2456 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2457 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2458 ret);
2459 goto reject;
2460 }
2461
2462 goto out;
2463
2464 destroy_ib:
2465 srpt_destroy_ch_ib(ch);
2466
2467 free_recv_ring:
2468 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2469 ch->sport->sdev, ch->rq_size,
2470 ch->req_buf_cache, DMA_FROM_DEVICE);
2471
2472 free_recv_cache:
2473 kmem_cache_destroy(ch->req_buf_cache);
2474
2475 free_rsp_ring:
2476 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2477 ch->sport->sdev, ch->rq_size,
2478 ch->rsp_buf_cache, DMA_TO_DEVICE);
2479
2480 free_rsp_cache:
2481 kmem_cache_destroy(ch->rsp_buf_cache);
2482
2483 free_ch:
2484 if (rdma_cm_id)
2485 rdma_cm_id->context = NULL;
2486 else
2487 ib_cm_id->context = NULL;
2488 kfree(ch);
2489 ch = NULL;
2490
2491 WARN_ON_ONCE(ret == 0);
2492
2493 reject:
2494 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2495 rej->opcode = SRP_LOGIN_REJ;
2496 rej->tag = req->tag;
2497 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2498 SRP_BUF_FORMAT_INDIRECT);
2499
2500 if (rdma_cm_id)
2501 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2502 IB_CM_REJ_CONSUMER_DEFINED);
2503 else
2504 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2505 rej, sizeof(*rej));
2506
2507 if (ch && ch->sess) {
2508 srpt_close_ch(ch);
2509 /*
2510 * Tell the caller not to free cm_id since
2511 * srpt_release_channel_work() will do that.
2512 */
2513 ret = 0;
2514 }
2515
2516 out:
2517 kfree(rep_param);
2518 kfree(rsp);
2519 kfree(rej);
2520
2521 return ret;
2522 }
2523
srpt_ib_cm_req_recv(struct ib_cm_id * cm_id,const struct ib_cm_req_event_param * param,void * private_data)2524 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2525 const struct ib_cm_req_event_param *param,
2526 void *private_data)
2527 {
2528 char sguid[40];
2529
2530 srpt_format_guid(sguid, sizeof(sguid),
2531 ¶m->primary_path->dgid.global.interface_id);
2532
2533 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2534 param->primary_path->pkey,
2535 private_data, sguid);
2536 }
2537
srpt_rdma_cm_req_recv(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2538 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2539 struct rdma_cm_event *event)
2540 {
2541 struct srpt_device *sdev;
2542 struct srp_login_req req;
2543 const struct srp_login_req_rdma *req_rdma;
2544 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2545 char src_addr[40];
2546
2547 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2548 if (!sdev)
2549 return -ECONNREFUSED;
2550
2551 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2552 return -EINVAL;
2553
2554 /* Transform srp_login_req_rdma into srp_login_req. */
2555 req_rdma = event->param.conn.private_data;
2556 memset(&req, 0, sizeof(req));
2557 req.opcode = req_rdma->opcode;
2558 req.tag = req_rdma->tag;
2559 req.req_it_iu_len = req_rdma->req_it_iu_len;
2560 req.req_buf_fmt = req_rdma->req_buf_fmt;
2561 req.req_flags = req_rdma->req_flags;
2562 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2563 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2564 req.imm_data_offset = req_rdma->imm_data_offset;
2565
2566 snprintf(src_addr, sizeof(src_addr), "%pIS",
2567 &cm_id->route.addr.src_addr);
2568
2569 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2570 path_rec ? path_rec->pkey : 0, &req, src_addr);
2571 }
2572
srpt_cm_rej_recv(struct srpt_rdma_ch * ch,enum ib_cm_rej_reason reason,const u8 * private_data,u8 private_data_len)2573 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2574 enum ib_cm_rej_reason reason,
2575 const u8 *private_data,
2576 u8 private_data_len)
2577 {
2578 char *priv = NULL;
2579 int i;
2580
2581 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2582 GFP_KERNEL))) {
2583 for (i = 0; i < private_data_len; i++)
2584 sprintf(priv + 3 * i, " %02x", private_data[i]);
2585 }
2586 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2587 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2588 "; private data" : "", priv ? priv : " (?)");
2589 kfree(priv);
2590 }
2591
2592 /**
2593 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2594 * @ch: SRPT RDMA channel.
2595 *
2596 * An RTU (ready to use) message indicates that the connection has been
2597 * established and that the recipient may begin transmitting.
2598 */
srpt_cm_rtu_recv(struct srpt_rdma_ch * ch)2599 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2600 {
2601 int ret;
2602
2603 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2604 if (ret < 0) {
2605 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2606 ch->qp->qp_num);
2607 srpt_close_ch(ch);
2608 return;
2609 }
2610
2611 /*
2612 * Note: calling srpt_close_ch() if the transition to the LIVE state
2613 * fails is not necessary since that means that that function has
2614 * already been invoked from another thread.
2615 */
2616 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2617 pr_err("%s-%d: channel transition to LIVE state failed\n",
2618 ch->sess_name, ch->qp->qp_num);
2619 return;
2620 }
2621
2622 /* Trigger wait list processing. */
2623 ret = srpt_zerolength_write(ch);
2624 WARN_ONCE(ret < 0, "%d\n", ret);
2625 }
2626
2627 /**
2628 * srpt_cm_handler - IB connection manager callback function
2629 * @cm_id: IB/CM connection identifier.
2630 * @event: IB/CM event.
2631 *
2632 * A non-zero return value will cause the caller destroy the CM ID.
2633 *
2634 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2635 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2636 * a non-zero value in any other case will trigger a race with the
2637 * ib_destroy_cm_id() call in srpt_release_channel().
2638 */
srpt_cm_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event)2639 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2640 const struct ib_cm_event *event)
2641 {
2642 struct srpt_rdma_ch *ch = cm_id->context;
2643 int ret;
2644
2645 ret = 0;
2646 switch (event->event) {
2647 case IB_CM_REQ_RECEIVED:
2648 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2649 event->private_data);
2650 break;
2651 case IB_CM_REJ_RECEIVED:
2652 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2653 event->private_data,
2654 IB_CM_REJ_PRIVATE_DATA_SIZE);
2655 break;
2656 case IB_CM_RTU_RECEIVED:
2657 case IB_CM_USER_ESTABLISHED:
2658 srpt_cm_rtu_recv(ch);
2659 break;
2660 case IB_CM_DREQ_RECEIVED:
2661 srpt_disconnect_ch(ch);
2662 break;
2663 case IB_CM_DREP_RECEIVED:
2664 pr_info("Received CM DREP message for ch %s-%d.\n",
2665 ch->sess_name, ch->qp->qp_num);
2666 srpt_close_ch(ch);
2667 break;
2668 case IB_CM_TIMEWAIT_EXIT:
2669 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2670 ch->sess_name, ch->qp->qp_num);
2671 srpt_close_ch(ch);
2672 break;
2673 case IB_CM_REP_ERROR:
2674 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2675 ch->qp->qp_num);
2676 break;
2677 case IB_CM_DREQ_ERROR:
2678 pr_info("Received CM DREQ ERROR event.\n");
2679 break;
2680 case IB_CM_MRA_RECEIVED:
2681 pr_info("Received CM MRA event\n");
2682 break;
2683 default:
2684 pr_err("received unrecognized CM event %d\n", event->event);
2685 break;
2686 }
2687
2688 return ret;
2689 }
2690
srpt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2691 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2692 struct rdma_cm_event *event)
2693 {
2694 struct srpt_rdma_ch *ch = cm_id->context;
2695 int ret = 0;
2696
2697 switch (event->event) {
2698 case RDMA_CM_EVENT_CONNECT_REQUEST:
2699 ret = srpt_rdma_cm_req_recv(cm_id, event);
2700 break;
2701 case RDMA_CM_EVENT_REJECTED:
2702 srpt_cm_rej_recv(ch, event->status,
2703 event->param.conn.private_data,
2704 event->param.conn.private_data_len);
2705 break;
2706 case RDMA_CM_EVENT_ESTABLISHED:
2707 srpt_cm_rtu_recv(ch);
2708 break;
2709 case RDMA_CM_EVENT_DISCONNECTED:
2710 if (ch->state < CH_DISCONNECTING)
2711 srpt_disconnect_ch(ch);
2712 else
2713 srpt_close_ch(ch);
2714 break;
2715 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2716 srpt_close_ch(ch);
2717 break;
2718 case RDMA_CM_EVENT_UNREACHABLE:
2719 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2720 ch->qp->qp_num);
2721 break;
2722 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2723 case RDMA_CM_EVENT_ADDR_CHANGE:
2724 break;
2725 default:
2726 pr_err("received unrecognized RDMA CM event %d\n",
2727 event->event);
2728 break;
2729 }
2730
2731 return ret;
2732 }
2733
2734 /*
2735 * srpt_write_pending - Start data transfer from initiator to target (write).
2736 */
srpt_write_pending(struct se_cmd * se_cmd)2737 static int srpt_write_pending(struct se_cmd *se_cmd)
2738 {
2739 struct srpt_send_ioctx *ioctx =
2740 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2741 struct srpt_rdma_ch *ch = ioctx->ch;
2742 struct ib_send_wr *first_wr = NULL;
2743 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2744 enum srpt_command_state new_state;
2745 int ret, i;
2746
2747 if (ioctx->recv_ioctx) {
2748 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2749 target_execute_cmd(&ioctx->cmd);
2750 return 0;
2751 }
2752
2753 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2754 WARN_ON(new_state == SRPT_STATE_DONE);
2755
2756 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2757 pr_warn("%s: IB send queue full (needed %d)\n",
2758 __func__, ioctx->n_rdma);
2759 ret = -ENOMEM;
2760 goto out_undo;
2761 }
2762
2763 cqe->done = srpt_rdma_read_done;
2764 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2765 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2766
2767 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2768 cqe, first_wr);
2769 cqe = NULL;
2770 }
2771
2772 ret = ib_post_send(ch->qp, first_wr, NULL);
2773 if (ret) {
2774 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2775 __func__, ret, ioctx->n_rdma,
2776 atomic_read(&ch->sq_wr_avail));
2777 goto out_undo;
2778 }
2779
2780 return 0;
2781 out_undo:
2782 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2783 return ret;
2784 }
2785
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2786 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2787 {
2788 switch (tcm_mgmt_status) {
2789 case TMR_FUNCTION_COMPLETE:
2790 return SRP_TSK_MGMT_SUCCESS;
2791 case TMR_FUNCTION_REJECTED:
2792 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2793 }
2794 return SRP_TSK_MGMT_FAILED;
2795 }
2796
2797 /**
2798 * srpt_queue_response - transmit the response to a SCSI command
2799 * @cmd: SCSI target command.
2800 *
2801 * Callback function called by the TCM core. Must not block since it can be
2802 * invoked on the context of the IB completion handler.
2803 */
srpt_queue_response(struct se_cmd * cmd)2804 static void srpt_queue_response(struct se_cmd *cmd)
2805 {
2806 struct srpt_send_ioctx *ioctx =
2807 container_of(cmd, struct srpt_send_ioctx, cmd);
2808 struct srpt_rdma_ch *ch = ioctx->ch;
2809 struct srpt_device *sdev = ch->sport->sdev;
2810 struct ib_send_wr send_wr, *first_wr = &send_wr;
2811 struct ib_sge sge;
2812 enum srpt_command_state state;
2813 int resp_len, ret, i;
2814 u8 srp_tm_status;
2815
2816 state = ioctx->state;
2817 switch (state) {
2818 case SRPT_STATE_NEW:
2819 case SRPT_STATE_DATA_IN:
2820 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2821 break;
2822 case SRPT_STATE_MGMT:
2823 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2824 break;
2825 default:
2826 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2827 ch, ioctx->ioctx.index, ioctx->state);
2828 break;
2829 }
2830
2831 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2832 return;
2833
2834 /* For read commands, transfer the data to the initiator. */
2835 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2836 ioctx->cmd.data_length &&
2837 !ioctx->queue_status_only) {
2838 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2839 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2840
2841 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2842 ch->sport->port, NULL, first_wr);
2843 }
2844 }
2845
2846 if (state != SRPT_STATE_MGMT)
2847 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2848 cmd->scsi_status);
2849 else {
2850 srp_tm_status
2851 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2852 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2853 ioctx->cmd.tag);
2854 }
2855
2856 atomic_inc(&ch->req_lim);
2857
2858 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2859 &ch->sq_wr_avail) < 0)) {
2860 pr_warn("%s: IB send queue full (needed %d)\n",
2861 __func__, ioctx->n_rdma);
2862 goto out;
2863 }
2864
2865 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2866 DMA_TO_DEVICE);
2867
2868 sge.addr = ioctx->ioctx.dma;
2869 sge.length = resp_len;
2870 sge.lkey = sdev->lkey;
2871
2872 ioctx->ioctx.cqe.done = srpt_send_done;
2873 send_wr.next = NULL;
2874 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2875 send_wr.sg_list = &sge;
2876 send_wr.num_sge = 1;
2877 send_wr.opcode = IB_WR_SEND;
2878 send_wr.send_flags = IB_SEND_SIGNALED;
2879
2880 ret = ib_post_send(ch->qp, first_wr, NULL);
2881 if (ret < 0) {
2882 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2883 __func__, ioctx->cmd.tag, ret);
2884 goto out;
2885 }
2886
2887 return;
2888
2889 out:
2890 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2891 atomic_dec(&ch->req_lim);
2892 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2893 target_put_sess_cmd(&ioctx->cmd);
2894 }
2895
srpt_queue_data_in(struct se_cmd * cmd)2896 static int srpt_queue_data_in(struct se_cmd *cmd)
2897 {
2898 srpt_queue_response(cmd);
2899 return 0;
2900 }
2901
srpt_queue_tm_rsp(struct se_cmd * cmd)2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2903 {
2904 srpt_queue_response(cmd);
2905 }
2906
2907 /*
2908 * This function is called for aborted commands if no response is sent to the
2909 * initiator. Make sure that the credits freed by aborting a command are
2910 * returned to the initiator the next time a response is sent by incrementing
2911 * ch->req_lim_delta.
2912 */
srpt_aborted_task(struct se_cmd * cmd)2913 static void srpt_aborted_task(struct se_cmd *cmd)
2914 {
2915 struct srpt_send_ioctx *ioctx = container_of(cmd,
2916 struct srpt_send_ioctx, cmd);
2917 struct srpt_rdma_ch *ch = ioctx->ch;
2918
2919 atomic_inc(&ch->req_lim_delta);
2920 }
2921
srpt_queue_status(struct se_cmd * cmd)2922 static int srpt_queue_status(struct se_cmd *cmd)
2923 {
2924 struct srpt_send_ioctx *ioctx;
2925
2926 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2927 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2928 if (cmd->se_cmd_flags &
2929 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2930 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2931 ioctx->queue_status_only = true;
2932 srpt_queue_response(cmd);
2933 return 0;
2934 }
2935
srpt_refresh_port_work(struct work_struct * work)2936 static void srpt_refresh_port_work(struct work_struct *work)
2937 {
2938 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2939
2940 srpt_refresh_port(sport);
2941 }
2942
2943 /**
2944 * srpt_release_sport - disable login and wait for associated channels
2945 * @sport: SRPT HCA port.
2946 */
srpt_release_sport(struct srpt_port * sport)2947 static int srpt_release_sport(struct srpt_port *sport)
2948 {
2949 DECLARE_COMPLETION_ONSTACK(c);
2950 struct srpt_nexus *nexus, *next_n;
2951 struct srpt_rdma_ch *ch;
2952
2953 WARN_ON_ONCE(irqs_disabled());
2954
2955 sport->freed_channels = &c;
2956
2957 mutex_lock(&sport->mutex);
2958 srpt_set_enabled(sport, false);
2959 mutex_unlock(&sport->mutex);
2960
2961 while (atomic_read(&sport->refcount) > 0 &&
2962 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2963 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2964 dev_name(&sport->sdev->device->dev), sport->port,
2965 atomic_read(&sport->refcount));
2966 rcu_read_lock();
2967 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2968 list_for_each_entry(ch, &nexus->ch_list, list) {
2969 pr_info("%s-%d: state %s\n",
2970 ch->sess_name, ch->qp->qp_num,
2971 get_ch_state_name(ch->state));
2972 }
2973 }
2974 rcu_read_unlock();
2975 }
2976
2977 mutex_lock(&sport->mutex);
2978 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2979 list_del(&nexus->entry);
2980 kfree_rcu(nexus, rcu);
2981 }
2982 mutex_unlock(&sport->mutex);
2983
2984 return 0;
2985 }
2986
2987 struct port_and_port_id {
2988 struct srpt_port *sport;
2989 struct srpt_port_id **port_id;
2990 };
2991
__srpt_lookup_port(const char * name)2992 static struct port_and_port_id __srpt_lookup_port(const char *name)
2993 {
2994 struct ib_device *dev;
2995 struct srpt_device *sdev;
2996 struct srpt_port *sport;
2997 int i;
2998
2999 list_for_each_entry(sdev, &srpt_dev_list, list) {
3000 dev = sdev->device;
3001 if (!dev)
3002 continue;
3003
3004 for (i = 0; i < dev->phys_port_cnt; i++) {
3005 sport = &sdev->port[i];
3006
3007 if (strcmp(sport->guid_name, name) == 0) {
3008 kref_get(&sdev->refcnt);
3009 return (struct port_and_port_id){
3010 sport, &sport->guid_id};
3011 }
3012 if (strcmp(sport->gid_name, name) == 0) {
3013 kref_get(&sdev->refcnt);
3014 return (struct port_and_port_id){
3015 sport, &sport->gid_id};
3016 }
3017 }
3018 }
3019
3020 return (struct port_and_port_id){};
3021 }
3022
3023 /**
3024 * srpt_lookup_port() - Look up an RDMA port by name
3025 * @name: ASCII port name
3026 *
3027 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3028 * The caller must drop that reference count by calling srpt_port_put_ref().
3029 */
srpt_lookup_port(const char * name)3030 static struct port_and_port_id srpt_lookup_port(const char *name)
3031 {
3032 struct port_and_port_id papi;
3033
3034 spin_lock(&srpt_dev_lock);
3035 papi = __srpt_lookup_port(name);
3036 spin_unlock(&srpt_dev_lock);
3037
3038 return papi;
3039 }
3040
srpt_free_srq(struct srpt_device * sdev)3041 static void srpt_free_srq(struct srpt_device *sdev)
3042 {
3043 if (!sdev->srq)
3044 return;
3045
3046 ib_destroy_srq(sdev->srq);
3047 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3048 sdev->srq_size, sdev->req_buf_cache,
3049 DMA_FROM_DEVICE);
3050 kmem_cache_destroy(sdev->req_buf_cache);
3051 sdev->srq = NULL;
3052 }
3053
srpt_alloc_srq(struct srpt_device * sdev)3054 static int srpt_alloc_srq(struct srpt_device *sdev)
3055 {
3056 struct ib_srq_init_attr srq_attr = {
3057 .event_handler = srpt_srq_event,
3058 .srq_context = (void *)sdev,
3059 .attr.max_wr = sdev->srq_size,
3060 .attr.max_sge = 1,
3061 .srq_type = IB_SRQT_BASIC,
3062 };
3063 struct ib_device *device = sdev->device;
3064 struct ib_srq *srq;
3065 int i;
3066
3067 WARN_ON_ONCE(sdev->srq);
3068 srq = ib_create_srq(sdev->pd, &srq_attr);
3069 if (IS_ERR(srq)) {
3070 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3071 return PTR_ERR(srq);
3072 }
3073
3074 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3075 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3076
3077 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3078 srp_max_req_size, 0, 0, NULL);
3079 if (!sdev->req_buf_cache)
3080 goto free_srq;
3081
3082 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3083 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3084 sizeof(*sdev->ioctx_ring[0]),
3085 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3086 if (!sdev->ioctx_ring)
3087 goto free_cache;
3088
3089 sdev->use_srq = true;
3090 sdev->srq = srq;
3091
3092 for (i = 0; i < sdev->srq_size; ++i) {
3093 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3094 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3095 }
3096
3097 return 0;
3098
3099 free_cache:
3100 kmem_cache_destroy(sdev->req_buf_cache);
3101
3102 free_srq:
3103 ib_destroy_srq(srq);
3104 return -ENOMEM;
3105 }
3106
srpt_use_srq(struct srpt_device * sdev,bool use_srq)3107 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3108 {
3109 struct ib_device *device = sdev->device;
3110 int ret = 0;
3111
3112 if (!use_srq) {
3113 srpt_free_srq(sdev);
3114 sdev->use_srq = false;
3115 } else if (use_srq && !sdev->srq) {
3116 ret = srpt_alloc_srq(sdev);
3117 }
3118 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3119 dev_name(&device->dev), sdev->use_srq, ret);
3120 return ret;
3121 }
3122
srpt_free_sdev(struct kref * refcnt)3123 static void srpt_free_sdev(struct kref *refcnt)
3124 {
3125 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3126
3127 kfree(sdev);
3128 }
3129
srpt_sdev_put(struct srpt_device * sdev)3130 static void srpt_sdev_put(struct srpt_device *sdev)
3131 {
3132 kref_put(&sdev->refcnt, srpt_free_sdev);
3133 }
3134
3135 /**
3136 * srpt_add_one - InfiniBand device addition callback function
3137 * @device: Describes a HCA.
3138 */
srpt_add_one(struct ib_device * device)3139 static int srpt_add_one(struct ib_device *device)
3140 {
3141 struct srpt_device *sdev;
3142 struct srpt_port *sport;
3143 int ret;
3144 u32 i;
3145
3146 pr_debug("device = %p\n", device);
3147
3148 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3149 GFP_KERNEL);
3150 if (!sdev)
3151 return -ENOMEM;
3152
3153 kref_init(&sdev->refcnt);
3154 sdev->device = device;
3155 mutex_init(&sdev->sdev_mutex);
3156
3157 sdev->pd = ib_alloc_pd(device, 0);
3158 if (IS_ERR(sdev->pd)) {
3159 ret = PTR_ERR(sdev->pd);
3160 goto free_dev;
3161 }
3162
3163 sdev->lkey = sdev->pd->local_dma_lkey;
3164
3165 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3166
3167 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3168
3169 if (!srpt_service_guid)
3170 srpt_service_guid = be64_to_cpu(device->node_guid);
3171
3172 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3173 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3174 if (IS_ERR(sdev->cm_id)) {
3175 pr_info("ib_create_cm_id() failed: %ld\n",
3176 PTR_ERR(sdev->cm_id));
3177 ret = PTR_ERR(sdev->cm_id);
3178 sdev->cm_id = NULL;
3179 if (!rdma_cm_id)
3180 goto err_ring;
3181 }
3182
3183 /* print out target login information */
3184 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3185 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3186
3187 /*
3188 * We do not have a consistent service_id (ie. also id_ext of target_id)
3189 * to identify this target. We currently use the guid of the first HCA
3190 * in the system as service_id; therefore, the target_id will change
3191 * if this HCA is gone bad and replaced by different HCA
3192 */
3193 ret = sdev->cm_id ?
3194 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) :
3195 0;
3196 if (ret < 0) {
3197 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3198 sdev->cm_id->state);
3199 goto err_cm;
3200 }
3201
3202 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3203 srpt_event_handler);
3204 ib_register_event_handler(&sdev->event_handler);
3205
3206 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3207 sport = &sdev->port[i - 1];
3208 INIT_LIST_HEAD(&sport->nexus_list);
3209 mutex_init(&sport->mutex);
3210 sport->sdev = sdev;
3211 sport->port = i;
3212 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3213 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3214 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3215 sport->port_attrib.use_srq = false;
3216 INIT_WORK(&sport->work, srpt_refresh_port_work);
3217
3218 ret = srpt_refresh_port(sport);
3219 if (ret) {
3220 pr_err("MAD registration failed for %s-%d.\n",
3221 dev_name(&sdev->device->dev), i);
3222 i--;
3223 goto err_port;
3224 }
3225 }
3226
3227 spin_lock(&srpt_dev_lock);
3228 list_add_tail(&sdev->list, &srpt_dev_list);
3229 spin_unlock(&srpt_dev_lock);
3230
3231 ib_set_client_data(device, &srpt_client, sdev);
3232 pr_debug("added %s.\n", dev_name(&device->dev));
3233 return 0;
3234
3235 err_port:
3236 srpt_unregister_mad_agent(sdev, i);
3237 ib_unregister_event_handler(&sdev->event_handler);
3238 err_cm:
3239 if (sdev->cm_id)
3240 ib_destroy_cm_id(sdev->cm_id);
3241 err_ring:
3242 srpt_free_srq(sdev);
3243 ib_dealloc_pd(sdev->pd);
3244 free_dev:
3245 srpt_sdev_put(sdev);
3246 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3247 return ret;
3248 }
3249
3250 /**
3251 * srpt_remove_one - InfiniBand device removal callback function
3252 * @device: Describes a HCA.
3253 * @client_data: The value passed as the third argument to ib_set_client_data().
3254 */
srpt_remove_one(struct ib_device * device,void * client_data)3255 static void srpt_remove_one(struct ib_device *device, void *client_data)
3256 {
3257 struct srpt_device *sdev = client_data;
3258 int i;
3259
3260 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3261
3262 ib_unregister_event_handler(&sdev->event_handler);
3263
3264 /* Cancel any work queued by the just unregistered IB event handler. */
3265 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3266 cancel_work_sync(&sdev->port[i].work);
3267
3268 if (sdev->cm_id)
3269 ib_destroy_cm_id(sdev->cm_id);
3270
3271 ib_set_client_data(device, &srpt_client, NULL);
3272
3273 /*
3274 * Unregistering a target must happen after destroying sdev->cm_id
3275 * such that no new SRP_LOGIN_REQ information units can arrive while
3276 * destroying the target.
3277 */
3278 spin_lock(&srpt_dev_lock);
3279 list_del(&sdev->list);
3280 spin_unlock(&srpt_dev_lock);
3281
3282 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3283 srpt_release_sport(&sdev->port[i]);
3284
3285 srpt_free_srq(sdev);
3286
3287 ib_dealloc_pd(sdev->pd);
3288
3289 srpt_sdev_put(sdev);
3290 }
3291
3292 static struct ib_client srpt_client = {
3293 .name = DRV_NAME,
3294 .add = srpt_add_one,
3295 .remove = srpt_remove_one
3296 };
3297
srpt_check_true(struct se_portal_group * se_tpg)3298 static int srpt_check_true(struct se_portal_group *se_tpg)
3299 {
3300 return 1;
3301 }
3302
srpt_check_false(struct se_portal_group * se_tpg)3303 static int srpt_check_false(struct se_portal_group *se_tpg)
3304 {
3305 return 0;
3306 }
3307
srpt_tpg_to_sport(struct se_portal_group * tpg)3308 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3309 {
3310 return tpg->se_tpg_wwn->priv;
3311 }
3312
srpt_wwn_to_sport_id(struct se_wwn * wwn)3313 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3314 {
3315 struct srpt_port *sport = wwn->priv;
3316
3317 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3318 return sport->guid_id;
3319 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3320 return sport->gid_id;
3321 WARN_ON_ONCE(true);
3322 return NULL;
3323 }
3324
srpt_get_fabric_wwn(struct se_portal_group * tpg)3325 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3326 {
3327 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3328
3329 return stpg->sport_id->name;
3330 }
3331
srpt_get_tag(struct se_portal_group * tpg)3332 static u16 srpt_get_tag(struct se_portal_group *tpg)
3333 {
3334 return 1;
3335 }
3336
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3337 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3338 {
3339 return 1;
3340 }
3341
srpt_release_cmd(struct se_cmd * se_cmd)3342 static void srpt_release_cmd(struct se_cmd *se_cmd)
3343 {
3344 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3345 struct srpt_send_ioctx, cmd);
3346 struct srpt_rdma_ch *ch = ioctx->ch;
3347 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3348
3349 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3350 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3351
3352 if (recv_ioctx) {
3353 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3354 ioctx->recv_ioctx = NULL;
3355 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3356 }
3357
3358 if (ioctx->n_rw_ctx) {
3359 srpt_free_rw_ctxs(ch, ioctx);
3360 ioctx->n_rw_ctx = 0;
3361 }
3362
3363 target_free_tag(se_cmd->se_sess, se_cmd);
3364 }
3365
3366 /**
3367 * srpt_close_session - forcibly close a session
3368 * @se_sess: SCSI target session.
3369 *
3370 * Callback function invoked by the TCM core to clean up sessions associated
3371 * with a node ACL when the user invokes
3372 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3373 */
srpt_close_session(struct se_session * se_sess)3374 static void srpt_close_session(struct se_session *se_sess)
3375 {
3376 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3377
3378 srpt_disconnect_ch_sync(ch);
3379 }
3380
3381 /**
3382 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3383 * @se_sess: SCSI target session.
3384 *
3385 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3386 * This object represents an arbitrary integer used to uniquely identify a
3387 * particular attached remote initiator port to a particular SCSI target port
3388 * within a particular SCSI target device within a particular SCSI instance.
3389 */
srpt_sess_get_index(struct se_session * se_sess)3390 static u32 srpt_sess_get_index(struct se_session *se_sess)
3391 {
3392 return 0;
3393 }
3394
srpt_set_default_node_attrs(struct se_node_acl * nacl)3395 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3396 {
3397 }
3398
3399 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3400 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3401 {
3402 struct srpt_send_ioctx *ioctx;
3403
3404 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3405 return ioctx->state;
3406 }
3407
srpt_parse_guid(u64 * guid,const char * name)3408 static int srpt_parse_guid(u64 *guid, const char *name)
3409 {
3410 u16 w[4];
3411 int ret = -EINVAL;
3412
3413 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3414 goto out;
3415 *guid = get_unaligned_be64(w);
3416 ret = 0;
3417 out:
3418 return ret;
3419 }
3420
3421 /**
3422 * srpt_parse_i_port_id - parse an initiator port ID
3423 * @name: ASCII representation of a 128-bit initiator port ID.
3424 * @i_port_id: Binary 128-bit port ID.
3425 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3426 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3427 {
3428 const char *p;
3429 unsigned len, count, leading_zero_bytes;
3430 int ret;
3431
3432 p = name;
3433 if (strncasecmp(p, "0x", 2) == 0)
3434 p += 2;
3435 ret = -EINVAL;
3436 len = strlen(p);
3437 if (len % 2)
3438 goto out;
3439 count = min(len / 2, 16U);
3440 leading_zero_bytes = 16 - count;
3441 memset(i_port_id, 0, leading_zero_bytes);
3442 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3443
3444 out:
3445 return ret;
3446 }
3447
3448 /*
3449 * configfs callback function invoked for mkdir
3450 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3451 *
3452 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3453 * target_alloc_session() calls in this driver. Examples of valid initiator
3454 * port IDs:
3455 * 0x0000000000000000505400fffe4a0b7b
3456 * 0000000000000000505400fffe4a0b7b
3457 * 5054:00ff:fe4a:0b7b
3458 * 192.168.122.76
3459 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3460 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3461 {
3462 struct sockaddr_storage sa;
3463 u64 guid;
3464 u8 i_port_id[16];
3465 int ret;
3466
3467 ret = srpt_parse_guid(&guid, name);
3468 if (ret < 0)
3469 ret = srpt_parse_i_port_id(i_port_id, name);
3470 if (ret < 0)
3471 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3472 &sa);
3473 if (ret < 0)
3474 pr_err("invalid initiator port ID %s\n", name);
3475 return ret;
3476 }
3477
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3478 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3479 char *page)
3480 {
3481 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3482 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3483
3484 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3485 }
3486
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3487 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3488 const char *page, size_t count)
3489 {
3490 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3491 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3492 unsigned long val;
3493 int ret;
3494
3495 ret = kstrtoul(page, 0, &val);
3496 if (ret < 0) {
3497 pr_err("kstrtoul() failed with ret: %d\n", ret);
3498 return -EINVAL;
3499 }
3500 if (val > MAX_SRPT_RDMA_SIZE) {
3501 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3502 MAX_SRPT_RDMA_SIZE);
3503 return -EINVAL;
3504 }
3505 if (val < DEFAULT_MAX_RDMA_SIZE) {
3506 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3507 val, DEFAULT_MAX_RDMA_SIZE);
3508 return -EINVAL;
3509 }
3510 sport->port_attrib.srp_max_rdma_size = val;
3511
3512 return count;
3513 }
3514
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3515 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3516 char *page)
3517 {
3518 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3519 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3520
3521 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3522 }
3523
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3524 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3525 const char *page, size_t count)
3526 {
3527 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3528 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3529 unsigned long val;
3530 int ret;
3531
3532 ret = kstrtoul(page, 0, &val);
3533 if (ret < 0) {
3534 pr_err("kstrtoul() failed with ret: %d\n", ret);
3535 return -EINVAL;
3536 }
3537 if (val > MAX_SRPT_RSP_SIZE) {
3538 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3539 MAX_SRPT_RSP_SIZE);
3540 return -EINVAL;
3541 }
3542 if (val < MIN_MAX_RSP_SIZE) {
3543 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3544 MIN_MAX_RSP_SIZE);
3545 return -EINVAL;
3546 }
3547 sport->port_attrib.srp_max_rsp_size = val;
3548
3549 return count;
3550 }
3551
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3552 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3553 char *page)
3554 {
3555 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3556 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3557
3558 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3559 }
3560
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3561 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3562 const char *page, size_t count)
3563 {
3564 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3565 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3566 unsigned long val;
3567 int ret;
3568
3569 ret = kstrtoul(page, 0, &val);
3570 if (ret < 0) {
3571 pr_err("kstrtoul() failed with ret: %d\n", ret);
3572 return -EINVAL;
3573 }
3574 if (val > MAX_SRPT_SRQ_SIZE) {
3575 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3576 MAX_SRPT_SRQ_SIZE);
3577 return -EINVAL;
3578 }
3579 if (val < MIN_SRPT_SRQ_SIZE) {
3580 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3581 MIN_SRPT_SRQ_SIZE);
3582 return -EINVAL;
3583 }
3584 sport->port_attrib.srp_sq_size = val;
3585
3586 return count;
3587 }
3588
srpt_tpg_attrib_use_srq_show(struct config_item * item,char * page)3589 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3590 char *page)
3591 {
3592 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3593 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3594
3595 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3596 }
3597
srpt_tpg_attrib_use_srq_store(struct config_item * item,const char * page,size_t count)3598 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3599 const char *page, size_t count)
3600 {
3601 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3602 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3603 struct srpt_device *sdev = sport->sdev;
3604 unsigned long val;
3605 bool enabled;
3606 int ret;
3607
3608 ret = kstrtoul(page, 0, &val);
3609 if (ret < 0)
3610 return ret;
3611 if (val != !!val)
3612 return -EINVAL;
3613
3614 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3615 if (ret < 0)
3616 return ret;
3617 ret = mutex_lock_interruptible(&sport->mutex);
3618 if (ret < 0)
3619 goto unlock_sdev;
3620 enabled = sport->enabled;
3621 /* Log out all initiator systems before changing 'use_srq'. */
3622 srpt_set_enabled(sport, false);
3623 sport->port_attrib.use_srq = val;
3624 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3625 srpt_set_enabled(sport, enabled);
3626 ret = count;
3627 mutex_unlock(&sport->mutex);
3628 unlock_sdev:
3629 mutex_unlock(&sdev->sdev_mutex);
3630
3631 return ret;
3632 }
3633
3634 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3635 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3636 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3637 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3638
3639 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3640 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3641 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3642 &srpt_tpg_attrib_attr_srp_sq_size,
3643 &srpt_tpg_attrib_attr_use_srq,
3644 NULL,
3645 };
3646
srpt_create_rdma_id(struct sockaddr * listen_addr)3647 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3648 {
3649 struct rdma_cm_id *rdma_cm_id;
3650 int ret;
3651
3652 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3653 NULL, RDMA_PS_TCP, IB_QPT_RC);
3654 if (IS_ERR(rdma_cm_id)) {
3655 pr_err("RDMA/CM ID creation failed: %ld\n",
3656 PTR_ERR(rdma_cm_id));
3657 goto out;
3658 }
3659
3660 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3661 if (ret) {
3662 char addr_str[64];
3663
3664 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3665 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3666 addr_str, ret);
3667 rdma_destroy_id(rdma_cm_id);
3668 rdma_cm_id = ERR_PTR(ret);
3669 goto out;
3670 }
3671
3672 ret = rdma_listen(rdma_cm_id, 128);
3673 if (ret) {
3674 pr_err("rdma_listen() failed: %d\n", ret);
3675 rdma_destroy_id(rdma_cm_id);
3676 rdma_cm_id = ERR_PTR(ret);
3677 }
3678
3679 out:
3680 return rdma_cm_id;
3681 }
3682
srpt_rdma_cm_port_show(struct config_item * item,char * page)3683 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3684 {
3685 return sysfs_emit(page, "%d\n", rdma_cm_port);
3686 }
3687
srpt_rdma_cm_port_store(struct config_item * item,const char * page,size_t count)3688 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3689 const char *page, size_t count)
3690 {
3691 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3692 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3693 struct rdma_cm_id *new_id = NULL;
3694 u16 val;
3695 int ret;
3696
3697 ret = kstrtou16(page, 0, &val);
3698 if (ret < 0)
3699 return ret;
3700 ret = count;
3701 if (rdma_cm_port == val)
3702 goto out;
3703
3704 if (val) {
3705 addr6.sin6_port = cpu_to_be16(val);
3706 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3707 if (IS_ERR(new_id)) {
3708 addr4.sin_port = cpu_to_be16(val);
3709 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3710 if (IS_ERR(new_id)) {
3711 ret = PTR_ERR(new_id);
3712 goto out;
3713 }
3714 }
3715 }
3716
3717 mutex_lock(&rdma_cm_mutex);
3718 rdma_cm_port = val;
3719 swap(rdma_cm_id, new_id);
3720 mutex_unlock(&rdma_cm_mutex);
3721
3722 if (new_id)
3723 rdma_destroy_id(new_id);
3724 ret = count;
3725 out:
3726 return ret;
3727 }
3728
3729 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3730
3731 static struct configfs_attribute *srpt_da_attrs[] = {
3732 &srpt_attr_rdma_cm_port,
3733 NULL,
3734 };
3735
srpt_enable_tpg(struct se_portal_group * se_tpg,bool enable)3736 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3737 {
3738 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3739
3740 mutex_lock(&sport->mutex);
3741 srpt_set_enabled(sport, enable);
3742 mutex_unlock(&sport->mutex);
3743
3744 return 0;
3745 }
3746
3747 /**
3748 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3749 * @wwn: Corresponds to $driver/$port.
3750 * @name: $tpg.
3751 */
srpt_make_tpg(struct se_wwn * wwn,const char * name)3752 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3753 const char *name)
3754 {
3755 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3756 struct srpt_tpg *stpg;
3757 int res = -ENOMEM;
3758
3759 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3760 if (!stpg)
3761 return ERR_PTR(res);
3762 stpg->sport_id = sport_id;
3763 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3764 if (res) {
3765 kfree(stpg);
3766 return ERR_PTR(res);
3767 }
3768
3769 mutex_lock(&sport_id->mutex);
3770 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3771 mutex_unlock(&sport_id->mutex);
3772
3773 return &stpg->tpg;
3774 }
3775
3776 /**
3777 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3778 * @tpg: Target portal group to deregister.
3779 */
srpt_drop_tpg(struct se_portal_group * tpg)3780 static void srpt_drop_tpg(struct se_portal_group *tpg)
3781 {
3782 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3783 struct srpt_port_id *sport_id = stpg->sport_id;
3784 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3785
3786 mutex_lock(&sport_id->mutex);
3787 list_del(&stpg->entry);
3788 mutex_unlock(&sport_id->mutex);
3789
3790 sport->enabled = false;
3791 core_tpg_deregister(tpg);
3792 kfree(stpg);
3793 }
3794
3795 /**
3796 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3797 * @tf: Not used.
3798 * @group: Not used.
3799 * @name: $port.
3800 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3801 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3802 struct config_group *group,
3803 const char *name)
3804 {
3805 struct port_and_port_id papi = srpt_lookup_port(name);
3806 struct srpt_port *sport = papi.sport;
3807 struct srpt_port_id *port_id;
3808
3809 if (!papi.port_id)
3810 return ERR_PTR(-EINVAL);
3811 if (*papi.port_id) {
3812 /* Attempt to create a directory that already exists. */
3813 WARN_ON_ONCE(true);
3814 return &(*papi.port_id)->wwn;
3815 }
3816 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3817 if (!port_id) {
3818 srpt_sdev_put(sport->sdev);
3819 return ERR_PTR(-ENOMEM);
3820 }
3821 mutex_init(&port_id->mutex);
3822 INIT_LIST_HEAD(&port_id->tpg_list);
3823 port_id->wwn.priv = sport;
3824 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3825 sport->gid_name, ARRAY_SIZE(port_id->name));
3826
3827 *papi.port_id = port_id;
3828
3829 return &port_id->wwn;
3830 }
3831
3832 /**
3833 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3834 * @wwn: $port.
3835 */
srpt_drop_tport(struct se_wwn * wwn)3836 static void srpt_drop_tport(struct se_wwn *wwn)
3837 {
3838 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3839 struct srpt_port *sport = wwn->priv;
3840
3841 if (sport->guid_id == port_id)
3842 sport->guid_id = NULL;
3843 else if (sport->gid_id == port_id)
3844 sport->gid_id = NULL;
3845 else
3846 WARN_ON_ONCE(true);
3847
3848 srpt_sdev_put(sport->sdev);
3849 kfree(port_id);
3850 }
3851
srpt_wwn_version_show(struct config_item * item,char * buf)3852 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3853 {
3854 return sysfs_emit(buf, "\n");
3855 }
3856
3857 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3858
3859 static struct configfs_attribute *srpt_wwn_attrs[] = {
3860 &srpt_wwn_attr_version,
3861 NULL,
3862 };
3863
3864 static const struct target_core_fabric_ops srpt_template = {
3865 .module = THIS_MODULE,
3866 .fabric_name = "srpt",
3867 .tpg_get_wwn = srpt_get_fabric_wwn,
3868 .tpg_get_tag = srpt_get_tag,
3869 .tpg_check_demo_mode = srpt_check_false,
3870 .tpg_check_demo_mode_cache = srpt_check_true,
3871 .tpg_check_demo_mode_write_protect = srpt_check_true,
3872 .tpg_check_prod_mode_write_protect = srpt_check_false,
3873 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3874 .release_cmd = srpt_release_cmd,
3875 .check_stop_free = srpt_check_stop_free,
3876 .close_session = srpt_close_session,
3877 .sess_get_index = srpt_sess_get_index,
3878 .sess_get_initiator_sid = NULL,
3879 .write_pending = srpt_write_pending,
3880 .set_default_node_attributes = srpt_set_default_node_attrs,
3881 .get_cmd_state = srpt_get_tcm_cmd_state,
3882 .queue_data_in = srpt_queue_data_in,
3883 .queue_status = srpt_queue_status,
3884 .queue_tm_rsp = srpt_queue_tm_rsp,
3885 .aborted_task = srpt_aborted_task,
3886 /*
3887 * Setup function pointers for generic logic in
3888 * target_core_fabric_configfs.c
3889 */
3890 .fabric_make_wwn = srpt_make_tport,
3891 .fabric_drop_wwn = srpt_drop_tport,
3892 .fabric_make_tpg = srpt_make_tpg,
3893 .fabric_enable_tpg = srpt_enable_tpg,
3894 .fabric_drop_tpg = srpt_drop_tpg,
3895 .fabric_init_nodeacl = srpt_init_nodeacl,
3896
3897 .tfc_discovery_attrs = srpt_da_attrs,
3898 .tfc_wwn_attrs = srpt_wwn_attrs,
3899 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3900 };
3901
3902 /**
3903 * srpt_init_module - kernel module initialization
3904 *
3905 * Note: Since ib_register_client() registers callback functions, and since at
3906 * least one of these callback functions (srpt_add_one()) calls target core
3907 * functions, this driver must be registered with the target core before
3908 * ib_register_client() is called.
3909 */
srpt_init_module(void)3910 static int __init srpt_init_module(void)
3911 {
3912 int ret;
3913
3914 ret = -EINVAL;
3915 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3916 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3917 srp_max_req_size, MIN_MAX_REQ_SIZE);
3918 goto out;
3919 }
3920
3921 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3922 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3923 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3924 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3925 goto out;
3926 }
3927
3928 ret = target_register_template(&srpt_template);
3929 if (ret)
3930 goto out;
3931
3932 ret = ib_register_client(&srpt_client);
3933 if (ret) {
3934 pr_err("couldn't register IB client\n");
3935 goto out_unregister_target;
3936 }
3937
3938 return 0;
3939
3940 out_unregister_target:
3941 target_unregister_template(&srpt_template);
3942 out:
3943 return ret;
3944 }
3945
srpt_cleanup_module(void)3946 static void __exit srpt_cleanup_module(void)
3947 {
3948 if (rdma_cm_id)
3949 rdma_destroy_id(rdma_cm_id);
3950 ib_unregister_client(&srpt_client);
3951 target_unregister_template(&srpt_template);
3952 }
3953
3954 module_init(srpt_init_module);
3955 module_exit(srpt_cleanup_module);
3956