1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
ql_sem_trylock(struct ql_adapter * qdev,u32 sem_mask)107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
ql_sem_spinlock(struct ql_adapter * qdev,u32 sem_mask)145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
ql_sem_unlock(struct ql_adapter * qdev,u32 sem_mask)156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
ql_wait_reg_rdy(struct ql_adapter * qdev,u32 reg,u32 bit,u32 err_bit)167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
ql_wait_cfg(struct ql_adapter * qdev,u32 bit)194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
ql_write_cfg(struct ql_adapter * qdev,void * ptr,int size,u32 bit,u16 q_id)215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
ql_get_mac_addr_reg(struct ql_adapter * qdev,u32 type,u16 index,u32 * value)263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
ql_set_mac_addr_reg(struct ql_adapter * qdev,u8 * addr,u32 type,u16 index)333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
ql_set_mac_addr(struct ql_adapter * qdev,int set)452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 eth_zero_addr(zero_mac_addr);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
ql_link_on(struct ql_adapter * qdev)480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
ql_link_off(struct ql_adapter * qdev)487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
ql_get_routing_reg(struct ql_adapter * qdev,u32 index,u32 * value)497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
ql_set_routing_reg(struct ql_adapter * qdev,u32 index,u32 mask,int enable)520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
ql_enable_interrupts(struct ql_adapter * qdev)618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
ql_disable_interrupts(struct ql_adapter * qdev)623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
ql_enable_completion_interrupt(struct ql_adapter * qdev,u32 intr)634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
ql_disable_completion_interrupt(struct ql_adapter * qdev,u32 intr)660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
ql_enable_all_completion_interrupts(struct ql_adapter * qdev)683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
ql_validate_flash(struct ql_adapter * qdev,u32 size,const char * str)699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
ql_read_flash_word(struct ql_adapter * qdev,int offset,__le32 * data)721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
ql_get_8000_flash_params(struct ql_adapter * qdev)745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
ql_get_8012_flash_params(struct ql_adapter * qdev)810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
ql_write_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 data)864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
ql_read_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 * data)883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
ql_read_xgmac_reg64(struct ql_adapter * qdev,u32 reg,u64 * data)905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
ql_8000_port_initialize(struct ql_adapter * qdev)925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
ql_8012_port_initialize(struct ql_adapter * qdev)950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
ql_lbq_block_size(struct ql_adapter * qdev)1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
ql_get_curr_lbuf(struct rx_ring * rx_ring)1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
ql_get_curr_lchunk(struct ql_adapter * qdev,struct rx_ring * rx_ring)1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
ql_get_curr_sbuf(struct rx_ring * rx_ring)1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
ql_update_cq(struct rx_ring * rx_ring)1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
ql_write_cq_idx(struct rx_ring * rx_ring)1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
ql_get_next_chunk(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct bq_desc * lbq_desc)1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 rx_ring->pg_chunk.page = NULL;
1110 netif_err(qdev, drv, qdev->ndev,
1111 "PCI mapping failed.\n");
1112 return -ENOMEM;
1113 }
1114 rx_ring->pg_chunk.map = map;
1115 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1116 }
1117
1118 /* Copy the current master pg_chunk info
1119 * to the current descriptor.
1120 */
1121 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1122
1123 /* Adjust the master page chunk for next
1124 * buffer get.
1125 */
1126 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128 rx_ring->pg_chunk.page = NULL;
1129 lbq_desc->p.pg_chunk.last_flag = 1;
1130 } else {
1131 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132 get_page(rx_ring->pg_chunk.page);
1133 lbq_desc->p.pg_chunk.last_flag = 0;
1134 }
1135 return 0;
1136 }
1137 /* Process (refill) a large buffer queue. */
ql_update_lbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1138 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1139 {
1140 u32 clean_idx = rx_ring->lbq_clean_idx;
1141 u32 start_idx = clean_idx;
1142 struct bq_desc *lbq_desc;
1143 u64 map;
1144 int i;
1145
1146 while (rx_ring->lbq_free_cnt > 32) {
1147 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149 "lbq: try cleaning clean_idx = %d.\n",
1150 clean_idx);
1151 lbq_desc = &rx_ring->lbq[clean_idx];
1152 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1153 rx_ring->lbq_clean_idx = clean_idx;
1154 netif_err(qdev, ifup, qdev->ndev,
1155 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156 i, clean_idx);
1157 return;
1158 }
1159
1160 map = lbq_desc->p.pg_chunk.map +
1161 lbq_desc->p.pg_chunk.offset;
1162 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163 dma_unmap_len_set(lbq_desc, maplen,
1164 rx_ring->lbq_buf_size);
1165 *lbq_desc->addr = cpu_to_le64(map);
1166
1167 pci_dma_sync_single_for_device(qdev->pdev, map,
1168 rx_ring->lbq_buf_size,
1169 PCI_DMA_FROMDEVICE);
1170 clean_idx++;
1171 if (clean_idx == rx_ring->lbq_len)
1172 clean_idx = 0;
1173 }
1174
1175 rx_ring->lbq_clean_idx = clean_idx;
1176 rx_ring->lbq_prod_idx += 16;
1177 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178 rx_ring->lbq_prod_idx = 0;
1179 rx_ring->lbq_free_cnt -= 16;
1180 }
1181
1182 if (start_idx != clean_idx) {
1183 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184 "lbq: updating prod idx = %d.\n",
1185 rx_ring->lbq_prod_idx);
1186 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187 rx_ring->lbq_prod_idx_db_reg);
1188 }
1189 }
1190
1191 /* Process (refill) a small buffer queue. */
ql_update_sbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1192 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1193 {
1194 u32 clean_idx = rx_ring->sbq_clean_idx;
1195 u32 start_idx = clean_idx;
1196 struct bq_desc *sbq_desc;
1197 u64 map;
1198 int i;
1199
1200 while (rx_ring->sbq_free_cnt > 16) {
1201 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1202 sbq_desc = &rx_ring->sbq[clean_idx];
1203 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204 "sbq: try cleaning clean_idx = %d.\n",
1205 clean_idx);
1206 if (sbq_desc->p.skb == NULL) {
1207 netif_printk(qdev, rx_status, KERN_DEBUG,
1208 qdev->ndev,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
1213 SMALL_BUFFER_SIZE);
1214 if (sbq_desc->p.skb == NULL) {
1215 rx_ring->sbq_clean_idx = clean_idx;
1216 return;
1217 }
1218 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219 map = pci_map_single(qdev->pdev,
1220 sbq_desc->p.skb->data,
1221 rx_ring->sbq_buf_size,
1222 PCI_DMA_FROMDEVICE);
1223 if (pci_dma_mapping_error(qdev->pdev, map)) {
1224 netif_err(qdev, ifup, qdev->ndev,
1225 "PCI mapping failed.\n");
1226 rx_ring->sbq_clean_idx = clean_idx;
1227 dev_kfree_skb_any(sbq_desc->p.skb);
1228 sbq_desc->p.skb = NULL;
1229 return;
1230 }
1231 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232 dma_unmap_len_set(sbq_desc, maplen,
1233 rx_ring->sbq_buf_size);
1234 *sbq_desc->addr = cpu_to_le64(map);
1235 }
1236
1237 clean_idx++;
1238 if (clean_idx == rx_ring->sbq_len)
1239 clean_idx = 0;
1240 }
1241 rx_ring->sbq_clean_idx = clean_idx;
1242 rx_ring->sbq_prod_idx += 16;
1243 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244 rx_ring->sbq_prod_idx = 0;
1245 rx_ring->sbq_free_cnt -= 16;
1246 }
1247
1248 if (start_idx != clean_idx) {
1249 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250 "sbq: updating prod idx = %d.\n",
1251 rx_ring->sbq_prod_idx);
1252 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253 rx_ring->sbq_prod_idx_db_reg);
1254 }
1255 }
1256
ql_update_buffer_queues(struct ql_adapter * qdev,struct rx_ring * rx_ring)1257 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258 struct rx_ring *rx_ring)
1259 {
1260 ql_update_sbq(qdev, rx_ring);
1261 ql_update_lbq(qdev, rx_ring);
1262 }
1263
1264 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1265 * fails at some stage, or from the interrupt when a tx completes.
1266 */
ql_unmap_send(struct ql_adapter * qdev,struct tx_ring_desc * tx_ring_desc,int mapped)1267 static void ql_unmap_send(struct ql_adapter *qdev,
1268 struct tx_ring_desc *tx_ring_desc, int mapped)
1269 {
1270 int i;
1271 for (i = 0; i < mapped; i++) {
1272 if (i == 0 || (i == 7 && mapped > 7)) {
1273 /*
1274 * Unmap the skb->data area, or the
1275 * external sglist (AKA the Outbound
1276 * Address List (OAL)).
1277 * If its the zeroeth element, then it's
1278 * the skb->data area. If it's the 7th
1279 * element and there is more than 6 frags,
1280 * then its an OAL.
1281 */
1282 if (i == 7) {
1283 netif_printk(qdev, tx_done, KERN_DEBUG,
1284 qdev->ndev,
1285 "unmapping OAL area.\n");
1286 }
1287 pci_unmap_single(qdev->pdev,
1288 dma_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 dma_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295 "unmapping frag %d.\n", i);
1296 pci_unmap_page(qdev->pdev,
1297 dma_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 dma_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304 }
1305
1306 /* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
ql_map_send(struct ql_adapter * qdev,struct ob_mac_iocb_req * mac_iocb_ptr,struct sk_buff * skb,struct tx_ring_desc * tx_ring_desc)1309 static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312 {
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
1320 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321 "frag_cnt = %d.\n", frag_cnt);
1322 }
1323 /*
1324 * Map the skb buffer first.
1325 */
1326 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1327
1328 err = pci_dma_mapping_error(qdev->pdev, map);
1329 if (err) {
1330 netif_err(qdev, tx_queued, qdev->ndev,
1331 "PCI mapping failed with error: %d\n", err);
1332
1333 return NETDEV_TX_BUSY;
1334 }
1335
1336 tbd->len = cpu_to_le32(len);
1337 tbd->addr = cpu_to_le64(map);
1338 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1340 map_idx++;
1341
1342 /*
1343 * This loop fills the remainder of the 8 address descriptors
1344 * in the IOCB. If there are more than 7 fragments, then the
1345 * eighth address desc will point to an external list (OAL).
1346 * When this happens, the remainder of the frags will be stored
1347 * in this list.
1348 */
1349 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351 tbd++;
1352 if (frag_idx == 6 && frag_cnt > 7) {
1353 /* Let's tack on an sglist.
1354 * Our control block will now
1355 * look like this:
1356 * iocb->seg[0] = skb->data
1357 * iocb->seg[1] = frag[0]
1358 * iocb->seg[2] = frag[1]
1359 * iocb->seg[3] = frag[2]
1360 * iocb->seg[4] = frag[3]
1361 * iocb->seg[5] = frag[4]
1362 * iocb->seg[6] = frag[5]
1363 * iocb->seg[7] = ptr to OAL (external sglist)
1364 * oal->seg[0] = frag[6]
1365 * oal->seg[1] = frag[7]
1366 * oal->seg[2] = frag[8]
1367 * oal->seg[3] = frag[9]
1368 * oal->seg[4] = frag[10]
1369 * etc...
1370 */
1371 /* Tack on the OAL in the eighth segment of IOCB. */
1372 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373 sizeof(struct oal),
1374 PCI_DMA_TODEVICE);
1375 err = pci_dma_mapping_error(qdev->pdev, map);
1376 if (err) {
1377 netif_err(qdev, tx_queued, qdev->ndev,
1378 "PCI mapping outbound address list with error: %d\n",
1379 err);
1380 goto map_error;
1381 }
1382
1383 tbd->addr = cpu_to_le64(map);
1384 /*
1385 * The length is the number of fragments
1386 * that remain to be mapped times the length
1387 * of our sglist (OAL).
1388 */
1389 tbd->len =
1390 cpu_to_le32((sizeof(struct tx_buf_desc) *
1391 (frag_cnt - frag_idx)) | TX_DESC_C);
1392 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1393 map);
1394 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1395 sizeof(struct oal));
1396 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397 map_idx++;
1398 }
1399
1400 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1401 DMA_TO_DEVICE);
1402
1403 err = dma_mapping_error(&qdev->pdev->dev, map);
1404 if (err) {
1405 netif_err(qdev, tx_queued, qdev->ndev,
1406 "PCI mapping frags failed with error: %d.\n",
1407 err);
1408 goto map_error;
1409 }
1410
1411 tbd->addr = cpu_to_le64(map);
1412 tbd->len = cpu_to_le32(skb_frag_size(frag));
1413 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1415 skb_frag_size(frag));
1416
1417 }
1418 /* Save the number of segments we've mapped. */
1419 tx_ring_desc->map_cnt = map_idx;
1420 /* Terminate the last segment. */
1421 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422 return NETDEV_TX_OK;
1423
1424 map_error:
1425 /*
1426 * If the first frag mapping failed, then i will be zero.
1427 * This causes the unmap of the skb->data area. Otherwise
1428 * we pass in the number of frags that mapped successfully
1429 * so they can be umapped.
1430 */
1431 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432 return NETDEV_TX_BUSY;
1433 }
1434
1435 /* Categorizing receive firmware frame errors */
ql_categorize_rx_err(struct ql_adapter * qdev,u8 rx_err,struct rx_ring * rx_ring)1436 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437 struct rx_ring *rx_ring)
1438 {
1439 struct nic_stats *stats = &qdev->nic_stats;
1440
1441 stats->rx_err_count++;
1442 rx_ring->rx_errors++;
1443
1444 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446 stats->rx_code_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449 stats->rx_oversize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452 stats->rx_undersize_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455 stats->rx_preamble_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458 stats->rx_frame_len_err++;
1459 break;
1460 case IB_MAC_IOCB_RSP_ERR_CRC:
1461 stats->rx_crc_err++;
1462 default:
1463 break;
1464 }
1465 }
1466
1467 /**
1468 * ql_update_mac_hdr_len - helper routine to update the mac header length
1469 * based on vlan tags if present
1470 */
ql_update_mac_hdr_len(struct ql_adapter * qdev,struct ib_mac_iocb_rsp * ib_mac_rsp,void * page,size_t * len)1471 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1472 struct ib_mac_iocb_rsp *ib_mac_rsp,
1473 void *page, size_t *len)
1474 {
1475 u16 *tags;
1476
1477 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1478 return;
1479 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1480 tags = (u16 *)page;
1481 /* Look for stacked vlan tags in ethertype field */
1482 if (tags[6] == ETH_P_8021Q &&
1483 tags[8] == ETH_P_8021Q)
1484 *len += 2 * VLAN_HLEN;
1485 else
1486 *len += VLAN_HLEN;
1487 }
1488 }
1489
1490 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_gro_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1491 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1492 struct rx_ring *rx_ring,
1493 struct ib_mac_iocb_rsp *ib_mac_rsp,
1494 u32 length,
1495 u16 vlan_id)
1496 {
1497 struct sk_buff *skb;
1498 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1499 struct napi_struct *napi = &rx_ring->napi;
1500
1501 /* Frame error, so drop the packet. */
1502 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1503 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1504 put_page(lbq_desc->p.pg_chunk.page);
1505 return;
1506 }
1507 napi->dev = qdev->ndev;
1508
1509 skb = napi_get_frags(napi);
1510 if (!skb) {
1511 netif_err(qdev, drv, qdev->ndev,
1512 "Couldn't get an skb, exiting.\n");
1513 rx_ring->rx_dropped++;
1514 put_page(lbq_desc->p.pg_chunk.page);
1515 return;
1516 }
1517 prefetch(lbq_desc->p.pg_chunk.va);
1518 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1519 lbq_desc->p.pg_chunk.page,
1520 lbq_desc->p.pg_chunk.offset,
1521 length);
1522
1523 skb->len += length;
1524 skb->data_len += length;
1525 skb->truesize += length;
1526 skb_shinfo(skb)->nr_frags++;
1527
1528 rx_ring->rx_packets++;
1529 rx_ring->rx_bytes += length;
1530 skb->ip_summed = CHECKSUM_UNNECESSARY;
1531 skb_record_rx_queue(skb, rx_ring->cq_id);
1532 if (vlan_id != 0xffff)
1533 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1534 napi_gro_frags(napi);
1535 }
1536
1537 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1538 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1539 struct rx_ring *rx_ring,
1540 struct ib_mac_iocb_rsp *ib_mac_rsp,
1541 u32 length,
1542 u16 vlan_id)
1543 {
1544 struct net_device *ndev = qdev->ndev;
1545 struct sk_buff *skb = NULL;
1546 void *addr;
1547 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1548 struct napi_struct *napi = &rx_ring->napi;
1549 size_t hlen = ETH_HLEN;
1550
1551 skb = netdev_alloc_skb(ndev, length);
1552 if (!skb) {
1553 rx_ring->rx_dropped++;
1554 put_page(lbq_desc->p.pg_chunk.page);
1555 return;
1556 }
1557
1558 addr = lbq_desc->p.pg_chunk.va;
1559 prefetch(addr);
1560
1561 /* Frame error, so drop the packet. */
1562 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1563 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1564 goto err_out;
1565 }
1566
1567 /* Update the MAC header length*/
1568 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1569
1570 /* The max framesize filter on this chip is set higher than
1571 * MTU since FCoE uses 2k frames.
1572 */
1573 if (skb->len > ndev->mtu + hlen) {
1574 netif_err(qdev, drv, qdev->ndev,
1575 "Segment too small, dropping.\n");
1576 rx_ring->rx_dropped++;
1577 goto err_out;
1578 }
1579 skb_put_data(skb, addr, hlen);
1580 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1581 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1582 length);
1583 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1584 lbq_desc->p.pg_chunk.offset + hlen,
1585 length - hlen);
1586 skb->len += length - hlen;
1587 skb->data_len += length - hlen;
1588 skb->truesize += length - hlen;
1589
1590 rx_ring->rx_packets++;
1591 rx_ring->rx_bytes += skb->len;
1592 skb->protocol = eth_type_trans(skb, ndev);
1593 skb_checksum_none_assert(skb);
1594
1595 if ((ndev->features & NETIF_F_RXCSUM) &&
1596 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1597 /* TCP frame. */
1598 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1599 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1600 "TCP checksum done!\n");
1601 skb->ip_summed = CHECKSUM_UNNECESSARY;
1602 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1603 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1604 /* Unfragmented ipv4 UDP frame. */
1605 struct iphdr *iph =
1606 (struct iphdr *)((u8 *)addr + hlen);
1607 if (!(iph->frag_off &
1608 htons(IP_MF|IP_OFFSET))) {
1609 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610 netif_printk(qdev, rx_status, KERN_DEBUG,
1611 qdev->ndev,
1612 "UDP checksum done!\n");
1613 }
1614 }
1615 }
1616
1617 skb_record_rx_queue(skb, rx_ring->cq_id);
1618 if (vlan_id != 0xffff)
1619 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1620 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1621 napi_gro_receive(napi, skb);
1622 else
1623 netif_receive_skb(skb);
1624 return;
1625 err_out:
1626 dev_kfree_skb_any(skb);
1627 put_page(lbq_desc->p.pg_chunk.page);
1628 }
1629
1630 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1631 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1632 struct rx_ring *rx_ring,
1633 struct ib_mac_iocb_rsp *ib_mac_rsp,
1634 u32 length,
1635 u16 vlan_id)
1636 {
1637 struct net_device *ndev = qdev->ndev;
1638 struct sk_buff *skb = NULL;
1639 struct sk_buff *new_skb = NULL;
1640 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1641
1642 skb = sbq_desc->p.skb;
1643 /* Allocate new_skb and copy */
1644 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1645 if (new_skb == NULL) {
1646 rx_ring->rx_dropped++;
1647 return;
1648 }
1649 skb_reserve(new_skb, NET_IP_ALIGN);
1650
1651 pci_dma_sync_single_for_cpu(qdev->pdev,
1652 dma_unmap_addr(sbq_desc, mapaddr),
1653 dma_unmap_len(sbq_desc, maplen),
1654 PCI_DMA_FROMDEVICE);
1655
1656 skb_put_data(new_skb, skb->data, length);
1657
1658 pci_dma_sync_single_for_device(qdev->pdev,
1659 dma_unmap_addr(sbq_desc, mapaddr),
1660 dma_unmap_len(sbq_desc, maplen),
1661 PCI_DMA_FROMDEVICE);
1662 skb = new_skb;
1663
1664 /* Frame error, so drop the packet. */
1665 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1666 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1667 dev_kfree_skb_any(skb);
1668 return;
1669 }
1670
1671 /* loopback self test for ethtool */
1672 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1673 ql_check_lb_frame(qdev, skb);
1674 dev_kfree_skb_any(skb);
1675 return;
1676 }
1677
1678 /* The max framesize filter on this chip is set higher than
1679 * MTU since FCoE uses 2k frames.
1680 */
1681 if (skb->len > ndev->mtu + ETH_HLEN) {
1682 dev_kfree_skb_any(skb);
1683 rx_ring->rx_dropped++;
1684 return;
1685 }
1686
1687 prefetch(skb->data);
1688 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "%s Multicast.\n",
1691 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1692 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1693 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1694 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1695 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1696 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1697 }
1698 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1699 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1700 "Promiscuous Packet.\n");
1701
1702 rx_ring->rx_packets++;
1703 rx_ring->rx_bytes += skb->len;
1704 skb->protocol = eth_type_trans(skb, ndev);
1705 skb_checksum_none_assert(skb);
1706
1707 /* If rx checksum is on, and there are no
1708 * csum or frame errors.
1709 */
1710 if ((ndev->features & NETIF_F_RXCSUM) &&
1711 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1712 /* TCP frame. */
1713 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1714 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1715 "TCP checksum done!\n");
1716 skb->ip_summed = CHECKSUM_UNNECESSARY;
1717 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1718 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1719 /* Unfragmented ipv4 UDP frame. */
1720 struct iphdr *iph = (struct iphdr *) skb->data;
1721 if (!(iph->frag_off &
1722 htons(IP_MF|IP_OFFSET))) {
1723 skb->ip_summed = CHECKSUM_UNNECESSARY;
1724 netif_printk(qdev, rx_status, KERN_DEBUG,
1725 qdev->ndev,
1726 "UDP checksum done!\n");
1727 }
1728 }
1729 }
1730
1731 skb_record_rx_queue(skb, rx_ring->cq_id);
1732 if (vlan_id != 0xffff)
1733 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1734 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1735 napi_gro_receive(&rx_ring->napi, skb);
1736 else
1737 netif_receive_skb(skb);
1738 }
1739
ql_realign_skb(struct sk_buff * skb,int len)1740 static void ql_realign_skb(struct sk_buff *skb, int len)
1741 {
1742 void *temp_addr = skb->data;
1743
1744 /* Undo the skb_reserve(skb,32) we did before
1745 * giving to hardware, and realign data on
1746 * a 2-byte boundary.
1747 */
1748 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1749 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 memmove(skb->data, temp_addr, len);
1751 }
1752
1753 /*
1754 * This function builds an skb for the given inbound
1755 * completion. It will be rewritten for readability in the near
1756 * future, but for not it works well.
1757 */
ql_build_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1758 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1759 struct rx_ring *rx_ring,
1760 struct ib_mac_iocb_rsp *ib_mac_rsp)
1761 {
1762 struct bq_desc *lbq_desc;
1763 struct bq_desc *sbq_desc;
1764 struct sk_buff *skb = NULL;
1765 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1766 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1767 size_t hlen = ETH_HLEN;
1768
1769 /*
1770 * Handle the header buffer if present.
1771 */
1772 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1773 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1774 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1775 "Header of %d bytes in small buffer.\n", hdr_len);
1776 /*
1777 * Headers fit nicely into a small buffer.
1778 */
1779 sbq_desc = ql_get_curr_sbuf(rx_ring);
1780 pci_unmap_single(qdev->pdev,
1781 dma_unmap_addr(sbq_desc, mapaddr),
1782 dma_unmap_len(sbq_desc, maplen),
1783 PCI_DMA_FROMDEVICE);
1784 skb = sbq_desc->p.skb;
1785 ql_realign_skb(skb, hdr_len);
1786 skb_put(skb, hdr_len);
1787 sbq_desc->p.skb = NULL;
1788 }
1789
1790 /*
1791 * Handle the data buffer(s).
1792 */
1793 if (unlikely(!length)) { /* Is there data too? */
1794 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1795 "No Data buffer in this packet.\n");
1796 return skb;
1797 }
1798
1799 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1800 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1801 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802 "Headers in small, data of %d bytes in small, combine them.\n",
1803 length);
1804 /*
1805 * Data is less than small buffer size so it's
1806 * stuffed in a small buffer.
1807 * For this case we append the data
1808 * from the "data" small buffer to the "header" small
1809 * buffer.
1810 */
1811 sbq_desc = ql_get_curr_sbuf(rx_ring);
1812 pci_dma_sync_single_for_cpu(qdev->pdev,
1813 dma_unmap_addr
1814 (sbq_desc, mapaddr),
1815 dma_unmap_len
1816 (sbq_desc, maplen),
1817 PCI_DMA_FROMDEVICE);
1818 skb_put_data(skb, sbq_desc->p.skb->data, length);
1819 pci_dma_sync_single_for_device(qdev->pdev,
1820 dma_unmap_addr
1821 (sbq_desc,
1822 mapaddr),
1823 dma_unmap_len
1824 (sbq_desc,
1825 maplen),
1826 PCI_DMA_FROMDEVICE);
1827 } else {
1828 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1829 "%d bytes in a single small buffer.\n",
1830 length);
1831 sbq_desc = ql_get_curr_sbuf(rx_ring);
1832 skb = sbq_desc->p.skb;
1833 ql_realign_skb(skb, length);
1834 skb_put(skb, length);
1835 pci_unmap_single(qdev->pdev,
1836 dma_unmap_addr(sbq_desc,
1837 mapaddr),
1838 dma_unmap_len(sbq_desc,
1839 maplen),
1840 PCI_DMA_FROMDEVICE);
1841 sbq_desc->p.skb = NULL;
1842 }
1843 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1844 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1845 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846 "Header in small, %d bytes in large. Chain large to small!\n",
1847 length);
1848 /*
1849 * The data is in a single large buffer. We
1850 * chain it to the header buffer's skb and let
1851 * it rip.
1852 */
1853 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1854 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1855 "Chaining page at offset = %d, for %d bytes to skb.\n",
1856 lbq_desc->p.pg_chunk.offset, length);
1857 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1858 lbq_desc->p.pg_chunk.offset,
1859 length);
1860 skb->len += length;
1861 skb->data_len += length;
1862 skb->truesize += length;
1863 } else {
1864 /*
1865 * The headers and data are in a single large buffer. We
1866 * copy it to a new skb and let it go. This can happen with
1867 * jumbo mtu on a non-TCP/UDP frame.
1868 */
1869 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870 skb = netdev_alloc_skb(qdev->ndev, length);
1871 if (skb == NULL) {
1872 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1873 "No skb available, drop the packet.\n");
1874 return NULL;
1875 }
1876 pci_unmap_page(qdev->pdev,
1877 dma_unmap_addr(lbq_desc,
1878 mapaddr),
1879 dma_unmap_len(lbq_desc, maplen),
1880 PCI_DMA_FROMDEVICE);
1881 skb_reserve(skb, NET_IP_ALIGN);
1882 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1883 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1884 length);
1885 skb_fill_page_desc(skb, 0,
1886 lbq_desc->p.pg_chunk.page,
1887 lbq_desc->p.pg_chunk.offset,
1888 length);
1889 skb->len += length;
1890 skb->data_len += length;
1891 skb->truesize += length;
1892 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1893 lbq_desc->p.pg_chunk.va,
1894 &hlen);
1895 __pskb_pull_tail(skb, hlen);
1896 }
1897 } else {
1898 /*
1899 * The data is in a chain of large buffers
1900 * pointed to by a small buffer. We loop
1901 * thru and chain them to the our small header
1902 * buffer's skb.
1903 * frags: There are 18 max frags and our small
1904 * buffer will hold 32 of them. The thing is,
1905 * we'll use 3 max for our 9000 byte jumbo
1906 * frames. If the MTU goes up we could
1907 * eventually be in trouble.
1908 */
1909 int size, i = 0;
1910 sbq_desc = ql_get_curr_sbuf(rx_ring);
1911 pci_unmap_single(qdev->pdev,
1912 dma_unmap_addr(sbq_desc, mapaddr),
1913 dma_unmap_len(sbq_desc, maplen),
1914 PCI_DMA_FROMDEVICE);
1915 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1916 /*
1917 * This is an non TCP/UDP IP frame, so
1918 * the headers aren't split into a small
1919 * buffer. We have to use the small buffer
1920 * that contains our sg list as our skb to
1921 * send upstairs. Copy the sg list here to
1922 * a local buffer and use it to find the
1923 * pages to chain.
1924 */
1925 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1926 "%d bytes of headers & data in chain of large.\n",
1927 length);
1928 skb = sbq_desc->p.skb;
1929 sbq_desc->p.skb = NULL;
1930 skb_reserve(skb, NET_IP_ALIGN);
1931 }
1932 do {
1933 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1934 size = (length < rx_ring->lbq_buf_size) ? length :
1935 rx_ring->lbq_buf_size;
1936
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1938 "Adding page %d to skb for %d bytes.\n",
1939 i, size);
1940 skb_fill_page_desc(skb, i,
1941 lbq_desc->p.pg_chunk.page,
1942 lbq_desc->p.pg_chunk.offset,
1943 size);
1944 skb->len += size;
1945 skb->data_len += size;
1946 skb->truesize += size;
1947 length -= size;
1948 i++;
1949 } while (length > 0);
1950 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1951 &hlen);
1952 __pskb_pull_tail(skb, hlen);
1953 }
1954 return skb;
1955 }
1956
1957 /* Process an inbound completion from an rx ring. */
ql_process_mac_split_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u16 vlan_id)1958 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1959 struct rx_ring *rx_ring,
1960 struct ib_mac_iocb_rsp *ib_mac_rsp,
1961 u16 vlan_id)
1962 {
1963 struct net_device *ndev = qdev->ndev;
1964 struct sk_buff *skb = NULL;
1965
1966 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1967
1968 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1969 if (unlikely(!skb)) {
1970 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1971 "No skb available, drop packet.\n");
1972 rx_ring->rx_dropped++;
1973 return;
1974 }
1975
1976 /* Frame error, so drop the packet. */
1977 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1978 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1979 dev_kfree_skb_any(skb);
1980 return;
1981 }
1982
1983 /* The max framesize filter on this chip is set higher than
1984 * MTU since FCoE uses 2k frames.
1985 */
1986 if (skb->len > ndev->mtu + ETH_HLEN) {
1987 dev_kfree_skb_any(skb);
1988 rx_ring->rx_dropped++;
1989 return;
1990 }
1991
1992 /* loopback self test for ethtool */
1993 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1994 ql_check_lb_frame(qdev, skb);
1995 dev_kfree_skb_any(skb);
1996 return;
1997 }
1998
1999 prefetch(skb->data);
2000 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2001 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2002 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2003 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2004 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2005 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2008 rx_ring->rx_multicast++;
2009 }
2010 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2011 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2012 "Promiscuous Packet.\n");
2013 }
2014
2015 skb->protocol = eth_type_trans(skb, ndev);
2016 skb_checksum_none_assert(skb);
2017
2018 /* If rx checksum is on, and there are no
2019 * csum or frame errors.
2020 */
2021 if ((ndev->features & NETIF_F_RXCSUM) &&
2022 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2023 /* TCP frame. */
2024 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2025 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2026 "TCP checksum done!\n");
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2029 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2030 /* Unfragmented ipv4 UDP frame. */
2031 struct iphdr *iph = (struct iphdr *) skb->data;
2032 if (!(iph->frag_off &
2033 htons(IP_MF|IP_OFFSET))) {
2034 skb->ip_summed = CHECKSUM_UNNECESSARY;
2035 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2036 "TCP checksum done!\n");
2037 }
2038 }
2039 }
2040
2041 rx_ring->rx_packets++;
2042 rx_ring->rx_bytes += skb->len;
2043 skb_record_rx_queue(skb, rx_ring->cq_id);
2044 if (vlan_id != 0xffff)
2045 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2046 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2047 napi_gro_receive(&rx_ring->napi, skb);
2048 else
2049 netif_receive_skb(skb);
2050 }
2051
2052 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)2053 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2054 struct rx_ring *rx_ring,
2055 struct ib_mac_iocb_rsp *ib_mac_rsp)
2056 {
2057 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2058 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2059 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2060 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2061 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2062
2063 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2064
2065 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2066 /* The data and headers are split into
2067 * separate buffers.
2068 */
2069 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2070 vlan_id);
2071 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2072 /* The data fit in a single small buffer.
2073 * Allocate a new skb, copy the data and
2074 * return the buffer to the free pool.
2075 */
2076 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2077 length, vlan_id);
2078 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2079 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2080 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2081 /* TCP packet in a page chunk that's been checksummed.
2082 * Tack it on to our GRO skb and let it go.
2083 */
2084 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2085 length, vlan_id);
2086 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2087 /* Non-TCP packet in a page chunk. Allocate an
2088 * skb, tack it on frags, and send it up.
2089 */
2090 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2091 length, vlan_id);
2092 } else {
2093 /* Non-TCP/UDP large frames that span multiple buffers
2094 * can be processed corrrectly by the split frame logic.
2095 */
2096 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2097 vlan_id);
2098 }
2099
2100 return (unsigned long)length;
2101 }
2102
2103 /* Process an outbound completion from an rx ring. */
ql_process_mac_tx_intr(struct ql_adapter * qdev,struct ob_mac_iocb_rsp * mac_rsp)2104 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2105 struct ob_mac_iocb_rsp *mac_rsp)
2106 {
2107 struct tx_ring *tx_ring;
2108 struct tx_ring_desc *tx_ring_desc;
2109
2110 QL_DUMP_OB_MAC_RSP(mac_rsp);
2111 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2112 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2113 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2114 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2115 tx_ring->tx_packets++;
2116 dev_kfree_skb(tx_ring_desc->skb);
2117 tx_ring_desc->skb = NULL;
2118
2119 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2120 OB_MAC_IOCB_RSP_S |
2121 OB_MAC_IOCB_RSP_L |
2122 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2123 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2124 netif_warn(qdev, tx_done, qdev->ndev,
2125 "Total descriptor length did not match transfer length.\n");
2126 }
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Frame too short to be valid, not sent.\n");
2130 }
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "Frame too long, but sent anyway.\n");
2134 }
2135 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2136 netif_warn(qdev, tx_done, qdev->ndev,
2137 "PCI backplane error. Frame not sent.\n");
2138 }
2139 }
2140 atomic_inc(&tx_ring->tx_count);
2141 }
2142
2143 /* Fire up a handler to reset the MPI processor. */
ql_queue_fw_error(struct ql_adapter * qdev)2144 void ql_queue_fw_error(struct ql_adapter *qdev)
2145 {
2146 ql_link_off(qdev);
2147 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2148 }
2149
ql_queue_asic_error(struct ql_adapter * qdev)2150 void ql_queue_asic_error(struct ql_adapter *qdev)
2151 {
2152 ql_link_off(qdev);
2153 ql_disable_interrupts(qdev);
2154 /* Clear adapter up bit to signal the recovery
2155 * process that it shouldn't kill the reset worker
2156 * thread
2157 */
2158 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2159 /* Set asic recovery bit to indicate reset process that we are
2160 * in fatal error recovery process rather than normal close
2161 */
2162 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2163 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2164 }
2165
ql_process_chip_ae_intr(struct ql_adapter * qdev,struct ib_ae_iocb_rsp * ib_ae_rsp)2166 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2167 struct ib_ae_iocb_rsp *ib_ae_rsp)
2168 {
2169 switch (ib_ae_rsp->event) {
2170 case MGMT_ERR_EVENT:
2171 netif_err(qdev, rx_err, qdev->ndev,
2172 "Management Processor Fatal Error.\n");
2173 ql_queue_fw_error(qdev);
2174 return;
2175
2176 case CAM_LOOKUP_ERR_EVENT:
2177 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2178 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2179 ql_queue_asic_error(qdev);
2180 return;
2181
2182 case SOFT_ECC_ERROR_EVENT:
2183 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 case PCI_ERR_ANON_BUF_RD:
2188 netdev_err(qdev->ndev, "PCI error occurred when reading "
2189 "anonymous buffers from rx_ring %d.\n",
2190 ib_ae_rsp->q_id);
2191 ql_queue_asic_error(qdev);
2192 break;
2193
2194 default:
2195 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2196 ib_ae_rsp->event);
2197 ql_queue_asic_error(qdev);
2198 break;
2199 }
2200 }
2201
ql_clean_outbound_rx_ring(struct rx_ring * rx_ring)2202 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2203 {
2204 struct ql_adapter *qdev = rx_ring->qdev;
2205 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2206 struct ob_mac_iocb_rsp *net_rsp = NULL;
2207 int count = 0;
2208
2209 struct tx_ring *tx_ring;
2210 /* While there are entries in the completion queue. */
2211 while (prod != rx_ring->cnsmr_idx) {
2212
2213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214 "cq_id = %d, prod = %d, cnsmr = %d\n",
2215 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2216
2217 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2218 rmb();
2219 switch (net_rsp->opcode) {
2220
2221 case OPCODE_OB_MAC_TSO_IOCB:
2222 case OPCODE_OB_MAC_IOCB:
2223 ql_process_mac_tx_intr(qdev, net_rsp);
2224 break;
2225 default:
2226 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2227 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2228 net_rsp->opcode);
2229 }
2230 count++;
2231 ql_update_cq(rx_ring);
2232 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2233 }
2234 if (!net_rsp)
2235 return 0;
2236 ql_write_cq_idx(rx_ring);
2237 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2238 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2239 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2240 /*
2241 * The queue got stopped because the tx_ring was full.
2242 * Wake it up, because it's now at least 25% empty.
2243 */
2244 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2245 }
2246
2247 return count;
2248 }
2249
ql_clean_inbound_rx_ring(struct rx_ring * rx_ring,int budget)2250 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2251 {
2252 struct ql_adapter *qdev = rx_ring->qdev;
2253 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2254 struct ql_net_rsp_iocb *net_rsp;
2255 int count = 0;
2256
2257 /* While there are entries in the completion queue. */
2258 while (prod != rx_ring->cnsmr_idx) {
2259
2260 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2261 "cq_id = %d, prod = %d, cnsmr = %d\n",
2262 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2263
2264 net_rsp = rx_ring->curr_entry;
2265 rmb();
2266 switch (net_rsp->opcode) {
2267 case OPCODE_IB_MAC_IOCB:
2268 ql_process_mac_rx_intr(qdev, rx_ring,
2269 (struct ib_mac_iocb_rsp *)
2270 net_rsp);
2271 break;
2272
2273 case OPCODE_IB_AE_IOCB:
2274 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2275 net_rsp);
2276 break;
2277 default:
2278 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2279 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2280 net_rsp->opcode);
2281 break;
2282 }
2283 count++;
2284 ql_update_cq(rx_ring);
2285 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2286 if (count == budget)
2287 break;
2288 }
2289 ql_update_buffer_queues(qdev, rx_ring);
2290 ql_write_cq_idx(rx_ring);
2291 return count;
2292 }
2293
ql_napi_poll_msix(struct napi_struct * napi,int budget)2294 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2295 {
2296 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2297 struct ql_adapter *qdev = rx_ring->qdev;
2298 struct rx_ring *trx_ring;
2299 int i, work_done = 0;
2300 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2301
2302 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2303 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2304
2305 /* Service the TX rings first. They start
2306 * right after the RSS rings. */
2307 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2308 trx_ring = &qdev->rx_ring[i];
2309 /* If this TX completion ring belongs to this vector and
2310 * it's not empty then service it.
2311 */
2312 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2313 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2314 trx_ring->cnsmr_idx)) {
2315 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2316 "%s: Servicing TX completion ring %d.\n",
2317 __func__, trx_ring->cq_id);
2318 ql_clean_outbound_rx_ring(trx_ring);
2319 }
2320 }
2321
2322 /*
2323 * Now service the RSS ring if it's active.
2324 */
2325 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2326 rx_ring->cnsmr_idx) {
2327 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2328 "%s: Servicing RX completion ring %d.\n",
2329 __func__, rx_ring->cq_id);
2330 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2331 }
2332
2333 if (work_done < budget) {
2334 napi_complete_done(napi, work_done);
2335 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2336 }
2337 return work_done;
2338 }
2339
qlge_vlan_mode(struct net_device * ndev,netdev_features_t features)2340 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2341 {
2342 struct ql_adapter *qdev = netdev_priv(ndev);
2343
2344 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2345 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2346 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2347 } else {
2348 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2349 }
2350 }
2351
2352 /**
2353 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2354 * based on the features to enable/disable hardware vlan accel
2355 */
qlge_update_hw_vlan_features(struct net_device * ndev,netdev_features_t features)2356 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2357 netdev_features_t features)
2358 {
2359 struct ql_adapter *qdev = netdev_priv(ndev);
2360 int status = 0;
2361 bool need_restart = netif_running(ndev);
2362
2363 if (need_restart) {
2364 status = ql_adapter_down(qdev);
2365 if (status) {
2366 netif_err(qdev, link, qdev->ndev,
2367 "Failed to bring down the adapter\n");
2368 return status;
2369 }
2370 }
2371
2372 /* update the features with resent change */
2373 ndev->features = features;
2374
2375 if (need_restart) {
2376 status = ql_adapter_up(qdev);
2377 if (status) {
2378 netif_err(qdev, link, qdev->ndev,
2379 "Failed to bring up the adapter\n");
2380 return status;
2381 }
2382 }
2383
2384 return status;
2385 }
2386
qlge_set_features(struct net_device * ndev,netdev_features_t features)2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2389 {
2390 netdev_features_t changed = ndev->features ^ features;
2391 int err;
2392
2393 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2394 /* Update the behavior of vlan accel in the adapter */
2395 err = qlge_update_hw_vlan_features(ndev, features);
2396 if (err)
2397 return err;
2398
2399 qlge_vlan_mode(ndev, features);
2400 }
2401
2402 return 0;
2403 }
2404
__qlge_vlan_rx_add_vid(struct ql_adapter * qdev,u16 vid)2405 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2406 {
2407 u32 enable_bit = MAC_ADDR_E;
2408 int err;
2409
2410 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2411 MAC_ADDR_TYPE_VLAN, vid);
2412 if (err)
2413 netif_err(qdev, ifup, qdev->ndev,
2414 "Failed to init vlan address.\n");
2415 return err;
2416 }
2417
qlge_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2418 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2419 {
2420 struct ql_adapter *qdev = netdev_priv(ndev);
2421 int status;
2422 int err;
2423
2424 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2425 if (status)
2426 return status;
2427
2428 err = __qlge_vlan_rx_add_vid(qdev, vid);
2429 set_bit(vid, qdev->active_vlans);
2430
2431 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2432
2433 return err;
2434 }
2435
__qlge_vlan_rx_kill_vid(struct ql_adapter * qdev,u16 vid)2436 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2437 {
2438 u32 enable_bit = 0;
2439 int err;
2440
2441 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2442 MAC_ADDR_TYPE_VLAN, vid);
2443 if (err)
2444 netif_err(qdev, ifup, qdev->ndev,
2445 "Failed to clear vlan address.\n");
2446 return err;
2447 }
2448
qlge_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2449 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2450 {
2451 struct ql_adapter *qdev = netdev_priv(ndev);
2452 int status;
2453 int err;
2454
2455 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2456 if (status)
2457 return status;
2458
2459 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2460 clear_bit(vid, qdev->active_vlans);
2461
2462 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2463
2464 return err;
2465 }
2466
qlge_restore_vlan(struct ql_adapter * qdev)2467 static void qlge_restore_vlan(struct ql_adapter *qdev)
2468 {
2469 int status;
2470 u16 vid;
2471
2472 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2473 if (status)
2474 return;
2475
2476 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2477 __qlge_vlan_rx_add_vid(qdev, vid);
2478
2479 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2480 }
2481
2482 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
qlge_msix_rx_isr(int irq,void * dev_id)2483 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2484 {
2485 struct rx_ring *rx_ring = dev_id;
2486 napi_schedule(&rx_ring->napi);
2487 return IRQ_HANDLED;
2488 }
2489
2490 /* This handles a fatal error, MPI activity, and the default
2491 * rx_ring in an MSI-X multiple vector environment.
2492 * In MSI/Legacy environment it also process the rest of
2493 * the rx_rings.
2494 */
qlge_isr(int irq,void * dev_id)2495 static irqreturn_t qlge_isr(int irq, void *dev_id)
2496 {
2497 struct rx_ring *rx_ring = dev_id;
2498 struct ql_adapter *qdev = rx_ring->qdev;
2499 struct intr_context *intr_context = &qdev->intr_context[0];
2500 u32 var;
2501 int work_done = 0;
2502
2503 spin_lock(&qdev->hw_lock);
2504 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2505 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2506 "Shared Interrupt, Not ours!\n");
2507 spin_unlock(&qdev->hw_lock);
2508 return IRQ_NONE;
2509 }
2510 spin_unlock(&qdev->hw_lock);
2511
2512 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2513
2514 /*
2515 * Check for fatal error.
2516 */
2517 if (var & STS_FE) {
2518 ql_queue_asic_error(qdev);
2519 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2520 var = ql_read32(qdev, ERR_STS);
2521 netdev_err(qdev->ndev, "Resetting chip. "
2522 "Error Status Register = 0x%x\n", var);
2523 return IRQ_HANDLED;
2524 }
2525
2526 /*
2527 * Check MPI processor activity.
2528 */
2529 if ((var & STS_PI) &&
2530 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2531 /*
2532 * We've got an async event or mailbox completion.
2533 * Handle it and clear the source of the interrupt.
2534 */
2535 netif_err(qdev, intr, qdev->ndev,
2536 "Got MPI processor interrupt.\n");
2537 ql_disable_completion_interrupt(qdev, intr_context->intr);
2538 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2539 queue_delayed_work_on(smp_processor_id(),
2540 qdev->workqueue, &qdev->mpi_work, 0);
2541 work_done++;
2542 }
2543
2544 /*
2545 * Get the bit-mask that shows the active queues for this
2546 * pass. Compare it to the queues that this irq services
2547 * and call napi if there's a match.
2548 */
2549 var = ql_read32(qdev, ISR1);
2550 if (var & intr_context->irq_mask) {
2551 netif_info(qdev, intr, qdev->ndev,
2552 "Waking handler for rx_ring[0].\n");
2553 ql_disable_completion_interrupt(qdev, intr_context->intr);
2554 napi_schedule(&rx_ring->napi);
2555 work_done++;
2556 }
2557 ql_enable_completion_interrupt(qdev, intr_context->intr);
2558 return work_done ? IRQ_HANDLED : IRQ_NONE;
2559 }
2560
ql_tso(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2561 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2562 {
2563
2564 if (skb_is_gso(skb)) {
2565 int err;
2566 __be16 l3_proto = vlan_get_protocol(skb);
2567
2568 err = skb_cow_head(skb, 0);
2569 if (err < 0)
2570 return err;
2571
2572 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2573 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2574 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2575 mac_iocb_ptr->total_hdrs_len =
2576 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2577 mac_iocb_ptr->net_trans_offset =
2578 cpu_to_le16(skb_network_offset(skb) |
2579 skb_transport_offset(skb)
2580 << OB_MAC_TRANSPORT_HDR_SHIFT);
2581 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2582 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2583 if (likely(l3_proto == htons(ETH_P_IP))) {
2584 struct iphdr *iph = ip_hdr(skb);
2585 iph->check = 0;
2586 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2587 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2588 iph->daddr, 0,
2589 IPPROTO_TCP,
2590 0);
2591 } else if (l3_proto == htons(ETH_P_IPV6)) {
2592 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2593 tcp_hdr(skb)->check =
2594 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2595 &ipv6_hdr(skb)->daddr,
2596 0, IPPROTO_TCP, 0);
2597 }
2598 return 1;
2599 }
2600 return 0;
2601 }
2602
ql_hw_csum_setup(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2603 static void ql_hw_csum_setup(struct sk_buff *skb,
2604 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2605 {
2606 int len;
2607 struct iphdr *iph = ip_hdr(skb);
2608 __sum16 *check;
2609 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2610 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2611 mac_iocb_ptr->net_trans_offset =
2612 cpu_to_le16(skb_network_offset(skb) |
2613 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2614
2615 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2616 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2617 if (likely(iph->protocol == IPPROTO_TCP)) {
2618 check = &(tcp_hdr(skb)->check);
2619 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2620 mac_iocb_ptr->total_hdrs_len =
2621 cpu_to_le16(skb_transport_offset(skb) +
2622 (tcp_hdr(skb)->doff << 2));
2623 } else {
2624 check = &(udp_hdr(skb)->check);
2625 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2626 mac_iocb_ptr->total_hdrs_len =
2627 cpu_to_le16(skb_transport_offset(skb) +
2628 sizeof(struct udphdr));
2629 }
2630 *check = ~csum_tcpudp_magic(iph->saddr,
2631 iph->daddr, len, iph->protocol, 0);
2632 }
2633
qlge_send(struct sk_buff * skb,struct net_device * ndev)2634 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2635 {
2636 struct tx_ring_desc *tx_ring_desc;
2637 struct ob_mac_iocb_req *mac_iocb_ptr;
2638 struct ql_adapter *qdev = netdev_priv(ndev);
2639 int tso;
2640 struct tx_ring *tx_ring;
2641 u32 tx_ring_idx = (u32) skb->queue_mapping;
2642
2643 tx_ring = &qdev->tx_ring[tx_ring_idx];
2644
2645 if (skb_padto(skb, ETH_ZLEN))
2646 return NETDEV_TX_OK;
2647
2648 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2649 netif_info(qdev, tx_queued, qdev->ndev,
2650 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2651 __func__, tx_ring_idx);
2652 netif_stop_subqueue(ndev, tx_ring->wq_id);
2653 tx_ring->tx_errors++;
2654 return NETDEV_TX_BUSY;
2655 }
2656 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2657 mac_iocb_ptr = tx_ring_desc->queue_entry;
2658 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2659
2660 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2661 mac_iocb_ptr->tid = tx_ring_desc->index;
2662 /* We use the upper 32-bits to store the tx queue for this IO.
2663 * When we get the completion we can use it to establish the context.
2664 */
2665 mac_iocb_ptr->txq_idx = tx_ring_idx;
2666 tx_ring_desc->skb = skb;
2667
2668 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2669
2670 if (skb_vlan_tag_present(skb)) {
2671 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2672 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2673 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2674 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2675 }
2676 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677 if (tso < 0) {
2678 dev_kfree_skb_any(skb);
2679 return NETDEV_TX_OK;
2680 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2681 ql_hw_csum_setup(skb,
2682 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2683 }
2684 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2685 NETDEV_TX_OK) {
2686 netif_err(qdev, tx_queued, qdev->ndev,
2687 "Could not map the segments.\n");
2688 tx_ring->tx_errors++;
2689 return NETDEV_TX_BUSY;
2690 }
2691 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2692 tx_ring->prod_idx++;
2693 if (tx_ring->prod_idx == tx_ring->wq_len)
2694 tx_ring->prod_idx = 0;
2695 wmb();
2696
2697 ql_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2698 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2699 "tx queued, slot %d, len %d\n",
2700 tx_ring->prod_idx, skb->len);
2701
2702 atomic_dec(&tx_ring->tx_count);
2703
2704 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2705 netif_stop_subqueue(ndev, tx_ring->wq_id);
2706 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2707 /*
2708 * The queue got stopped because the tx_ring was full.
2709 * Wake it up, because it's now at least 25% empty.
2710 */
2711 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2712 }
2713 return NETDEV_TX_OK;
2714 }
2715
2716
ql_free_shadow_space(struct ql_adapter * qdev)2717 static void ql_free_shadow_space(struct ql_adapter *qdev)
2718 {
2719 if (qdev->rx_ring_shadow_reg_area) {
2720 pci_free_consistent(qdev->pdev,
2721 PAGE_SIZE,
2722 qdev->rx_ring_shadow_reg_area,
2723 qdev->rx_ring_shadow_reg_dma);
2724 qdev->rx_ring_shadow_reg_area = NULL;
2725 }
2726 if (qdev->tx_ring_shadow_reg_area) {
2727 pci_free_consistent(qdev->pdev,
2728 PAGE_SIZE,
2729 qdev->tx_ring_shadow_reg_area,
2730 qdev->tx_ring_shadow_reg_dma);
2731 qdev->tx_ring_shadow_reg_area = NULL;
2732 }
2733 }
2734
ql_alloc_shadow_space(struct ql_adapter * qdev)2735 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2736 {
2737 qdev->rx_ring_shadow_reg_area =
2738 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2739 &qdev->rx_ring_shadow_reg_dma);
2740 if (qdev->rx_ring_shadow_reg_area == NULL) {
2741 netif_err(qdev, ifup, qdev->ndev,
2742 "Allocation of RX shadow space failed.\n");
2743 return -ENOMEM;
2744 }
2745
2746 qdev->tx_ring_shadow_reg_area =
2747 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2748 &qdev->tx_ring_shadow_reg_dma);
2749 if (qdev->tx_ring_shadow_reg_area == NULL) {
2750 netif_err(qdev, ifup, qdev->ndev,
2751 "Allocation of TX shadow space failed.\n");
2752 goto err_wqp_sh_area;
2753 }
2754 return 0;
2755
2756 err_wqp_sh_area:
2757 pci_free_consistent(qdev->pdev,
2758 PAGE_SIZE,
2759 qdev->rx_ring_shadow_reg_area,
2760 qdev->rx_ring_shadow_reg_dma);
2761 return -ENOMEM;
2762 }
2763
ql_init_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2764 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2765 {
2766 struct tx_ring_desc *tx_ring_desc;
2767 int i;
2768 struct ob_mac_iocb_req *mac_iocb_ptr;
2769
2770 mac_iocb_ptr = tx_ring->wq_base;
2771 tx_ring_desc = tx_ring->q;
2772 for (i = 0; i < tx_ring->wq_len; i++) {
2773 tx_ring_desc->index = i;
2774 tx_ring_desc->skb = NULL;
2775 tx_ring_desc->queue_entry = mac_iocb_ptr;
2776 mac_iocb_ptr++;
2777 tx_ring_desc++;
2778 }
2779 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2780 }
2781
ql_free_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2782 static void ql_free_tx_resources(struct ql_adapter *qdev,
2783 struct tx_ring *tx_ring)
2784 {
2785 if (tx_ring->wq_base) {
2786 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2787 tx_ring->wq_base, tx_ring->wq_base_dma);
2788 tx_ring->wq_base = NULL;
2789 }
2790 kfree(tx_ring->q);
2791 tx_ring->q = NULL;
2792 }
2793
ql_alloc_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2794 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2795 struct tx_ring *tx_ring)
2796 {
2797 tx_ring->wq_base =
2798 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2799 &tx_ring->wq_base_dma);
2800
2801 if ((tx_ring->wq_base == NULL) ||
2802 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2803 goto pci_alloc_err;
2804
2805 tx_ring->q =
2806 kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc),
2807 GFP_KERNEL);
2808 if (tx_ring->q == NULL)
2809 goto err;
2810
2811 return 0;
2812 err:
2813 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2814 tx_ring->wq_base, tx_ring->wq_base_dma);
2815 tx_ring->wq_base = NULL;
2816 pci_alloc_err:
2817 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2818 return -ENOMEM;
2819 }
2820
ql_free_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2821 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2822 {
2823 struct bq_desc *lbq_desc;
2824
2825 uint32_t curr_idx, clean_idx;
2826
2827 curr_idx = rx_ring->lbq_curr_idx;
2828 clean_idx = rx_ring->lbq_clean_idx;
2829 while (curr_idx != clean_idx) {
2830 lbq_desc = &rx_ring->lbq[curr_idx];
2831
2832 if (lbq_desc->p.pg_chunk.last_flag) {
2833 pci_unmap_page(qdev->pdev,
2834 lbq_desc->p.pg_chunk.map,
2835 ql_lbq_block_size(qdev),
2836 PCI_DMA_FROMDEVICE);
2837 lbq_desc->p.pg_chunk.last_flag = 0;
2838 }
2839
2840 put_page(lbq_desc->p.pg_chunk.page);
2841 lbq_desc->p.pg_chunk.page = NULL;
2842
2843 if (++curr_idx == rx_ring->lbq_len)
2844 curr_idx = 0;
2845
2846 }
2847 if (rx_ring->pg_chunk.page) {
2848 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2849 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2850 put_page(rx_ring->pg_chunk.page);
2851 rx_ring->pg_chunk.page = NULL;
2852 }
2853 }
2854
ql_free_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2855 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2856 {
2857 int i;
2858 struct bq_desc *sbq_desc;
2859
2860 for (i = 0; i < rx_ring->sbq_len; i++) {
2861 sbq_desc = &rx_ring->sbq[i];
2862 if (sbq_desc == NULL) {
2863 netif_err(qdev, ifup, qdev->ndev,
2864 "sbq_desc %d is NULL.\n", i);
2865 return;
2866 }
2867 if (sbq_desc->p.skb) {
2868 pci_unmap_single(qdev->pdev,
2869 dma_unmap_addr(sbq_desc, mapaddr),
2870 dma_unmap_len(sbq_desc, maplen),
2871 PCI_DMA_FROMDEVICE);
2872 dev_kfree_skb(sbq_desc->p.skb);
2873 sbq_desc->p.skb = NULL;
2874 }
2875 }
2876 }
2877
2878 /* Free all large and small rx buffers associated
2879 * with the completion queues for this device.
2880 */
ql_free_rx_buffers(struct ql_adapter * qdev)2881 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2882 {
2883 int i;
2884 struct rx_ring *rx_ring;
2885
2886 for (i = 0; i < qdev->rx_ring_count; i++) {
2887 rx_ring = &qdev->rx_ring[i];
2888 if (rx_ring->lbq)
2889 ql_free_lbq_buffers(qdev, rx_ring);
2890 if (rx_ring->sbq)
2891 ql_free_sbq_buffers(qdev, rx_ring);
2892 }
2893 }
2894
ql_alloc_rx_buffers(struct ql_adapter * qdev)2895 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2896 {
2897 struct rx_ring *rx_ring;
2898 int i;
2899
2900 for (i = 0; i < qdev->rx_ring_count; i++) {
2901 rx_ring = &qdev->rx_ring[i];
2902 if (rx_ring->type != TX_Q)
2903 ql_update_buffer_queues(qdev, rx_ring);
2904 }
2905 }
2906
ql_init_lbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2907 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2908 struct rx_ring *rx_ring)
2909 {
2910 int i;
2911 struct bq_desc *lbq_desc;
2912 __le64 *bq = rx_ring->lbq_base;
2913
2914 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2915 for (i = 0; i < rx_ring->lbq_len; i++) {
2916 lbq_desc = &rx_ring->lbq[i];
2917 memset(lbq_desc, 0, sizeof(*lbq_desc));
2918 lbq_desc->index = i;
2919 lbq_desc->addr = bq;
2920 bq++;
2921 }
2922 }
2923
ql_init_sbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2924 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2925 struct rx_ring *rx_ring)
2926 {
2927 int i;
2928 struct bq_desc *sbq_desc;
2929 __le64 *bq = rx_ring->sbq_base;
2930
2931 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2932 for (i = 0; i < rx_ring->sbq_len; i++) {
2933 sbq_desc = &rx_ring->sbq[i];
2934 memset(sbq_desc, 0, sizeof(*sbq_desc));
2935 sbq_desc->index = i;
2936 sbq_desc->addr = bq;
2937 bq++;
2938 }
2939 }
2940
ql_free_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2941 static void ql_free_rx_resources(struct ql_adapter *qdev,
2942 struct rx_ring *rx_ring)
2943 {
2944 /* Free the small buffer queue. */
2945 if (rx_ring->sbq_base) {
2946 pci_free_consistent(qdev->pdev,
2947 rx_ring->sbq_size,
2948 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2949 rx_ring->sbq_base = NULL;
2950 }
2951
2952 /* Free the small buffer queue control blocks. */
2953 kfree(rx_ring->sbq);
2954 rx_ring->sbq = NULL;
2955
2956 /* Free the large buffer queue. */
2957 if (rx_ring->lbq_base) {
2958 pci_free_consistent(qdev->pdev,
2959 rx_ring->lbq_size,
2960 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2961 rx_ring->lbq_base = NULL;
2962 }
2963
2964 /* Free the large buffer queue control blocks. */
2965 kfree(rx_ring->lbq);
2966 rx_ring->lbq = NULL;
2967
2968 /* Free the rx queue. */
2969 if (rx_ring->cq_base) {
2970 pci_free_consistent(qdev->pdev,
2971 rx_ring->cq_size,
2972 rx_ring->cq_base, rx_ring->cq_base_dma);
2973 rx_ring->cq_base = NULL;
2974 }
2975 }
2976
2977 /* Allocate queues and buffers for this completions queue based
2978 * on the values in the parameter structure. */
ql_alloc_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2979 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2980 struct rx_ring *rx_ring)
2981 {
2982
2983 /*
2984 * Allocate the completion queue for this rx_ring.
2985 */
2986 rx_ring->cq_base =
2987 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2988 &rx_ring->cq_base_dma);
2989
2990 if (rx_ring->cq_base == NULL) {
2991 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2992 return -ENOMEM;
2993 }
2994
2995 if (rx_ring->sbq_len) {
2996 /*
2997 * Allocate small buffer queue.
2998 */
2999 rx_ring->sbq_base =
3000 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3001 &rx_ring->sbq_base_dma);
3002
3003 if (rx_ring->sbq_base == NULL) {
3004 netif_err(qdev, ifup, qdev->ndev,
3005 "Small buffer queue allocation failed.\n");
3006 goto err_mem;
3007 }
3008
3009 /*
3010 * Allocate small buffer queue control blocks.
3011 */
3012 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3013 sizeof(struct bq_desc),
3014 GFP_KERNEL);
3015 if (rx_ring->sbq == NULL)
3016 goto err_mem;
3017
3018 ql_init_sbq_ring(qdev, rx_ring);
3019 }
3020
3021 if (rx_ring->lbq_len) {
3022 /*
3023 * Allocate large buffer queue.
3024 */
3025 rx_ring->lbq_base =
3026 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3027 &rx_ring->lbq_base_dma);
3028
3029 if (rx_ring->lbq_base == NULL) {
3030 netif_err(qdev, ifup, qdev->ndev,
3031 "Large buffer queue allocation failed.\n");
3032 goto err_mem;
3033 }
3034 /*
3035 * Allocate large buffer queue control blocks.
3036 */
3037 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3038 sizeof(struct bq_desc),
3039 GFP_KERNEL);
3040 if (rx_ring->lbq == NULL)
3041 goto err_mem;
3042
3043 ql_init_lbq_ring(qdev, rx_ring);
3044 }
3045
3046 return 0;
3047
3048 err_mem:
3049 ql_free_rx_resources(qdev, rx_ring);
3050 return -ENOMEM;
3051 }
3052
ql_tx_ring_clean(struct ql_adapter * qdev)3053 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3054 {
3055 struct tx_ring *tx_ring;
3056 struct tx_ring_desc *tx_ring_desc;
3057 int i, j;
3058
3059 /*
3060 * Loop through all queues and free
3061 * any resources.
3062 */
3063 for (j = 0; j < qdev->tx_ring_count; j++) {
3064 tx_ring = &qdev->tx_ring[j];
3065 for (i = 0; i < tx_ring->wq_len; i++) {
3066 tx_ring_desc = &tx_ring->q[i];
3067 if (tx_ring_desc && tx_ring_desc->skb) {
3068 netif_err(qdev, ifdown, qdev->ndev,
3069 "Freeing lost SKB %p, from queue %d, index %d.\n",
3070 tx_ring_desc->skb, j,
3071 tx_ring_desc->index);
3072 ql_unmap_send(qdev, tx_ring_desc,
3073 tx_ring_desc->map_cnt);
3074 dev_kfree_skb(tx_ring_desc->skb);
3075 tx_ring_desc->skb = NULL;
3076 }
3077 }
3078 }
3079 }
3080
ql_free_mem_resources(struct ql_adapter * qdev)3081 static void ql_free_mem_resources(struct ql_adapter *qdev)
3082 {
3083 int i;
3084
3085 for (i = 0; i < qdev->tx_ring_count; i++)
3086 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3087 for (i = 0; i < qdev->rx_ring_count; i++)
3088 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3089 ql_free_shadow_space(qdev);
3090 }
3091
ql_alloc_mem_resources(struct ql_adapter * qdev)3092 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3093 {
3094 int i;
3095
3096 /* Allocate space for our shadow registers and such. */
3097 if (ql_alloc_shadow_space(qdev))
3098 return -ENOMEM;
3099
3100 for (i = 0; i < qdev->rx_ring_count; i++) {
3101 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3102 netif_err(qdev, ifup, qdev->ndev,
3103 "RX resource allocation failed.\n");
3104 goto err_mem;
3105 }
3106 }
3107 /* Allocate tx queue resources */
3108 for (i = 0; i < qdev->tx_ring_count; i++) {
3109 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3110 netif_err(qdev, ifup, qdev->ndev,
3111 "TX resource allocation failed.\n");
3112 goto err_mem;
3113 }
3114 }
3115 return 0;
3116
3117 err_mem:
3118 ql_free_mem_resources(qdev);
3119 return -ENOMEM;
3120 }
3121
3122 /* Set up the rx ring control block and pass it to the chip.
3123 * The control block is defined as
3124 * "Completion Queue Initialization Control Block", or cqicb.
3125 */
ql_start_rx_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)3126 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3127 {
3128 struct cqicb *cqicb = &rx_ring->cqicb;
3129 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3130 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3131 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3132 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3133 void __iomem *doorbell_area =
3134 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3135 int err = 0;
3136 u16 bq_len;
3137 u64 tmp;
3138 __le64 *base_indirect_ptr;
3139 int page_entries;
3140
3141 /* Set up the shadow registers for this ring. */
3142 rx_ring->prod_idx_sh_reg = shadow_reg;
3143 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3144 *rx_ring->prod_idx_sh_reg = 0;
3145 shadow_reg += sizeof(u64);
3146 shadow_reg_dma += sizeof(u64);
3147 rx_ring->lbq_base_indirect = shadow_reg;
3148 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3149 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3150 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3151 rx_ring->sbq_base_indirect = shadow_reg;
3152 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3153
3154 /* PCI doorbell mem area + 0x00 for consumer index register */
3155 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3156 rx_ring->cnsmr_idx = 0;
3157 rx_ring->curr_entry = rx_ring->cq_base;
3158
3159 /* PCI doorbell mem area + 0x04 for valid register */
3160 rx_ring->valid_db_reg = doorbell_area + 0x04;
3161
3162 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3163 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3164
3165 /* PCI doorbell mem area + 0x1c */
3166 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3167
3168 memset((void *)cqicb, 0, sizeof(struct cqicb));
3169 cqicb->msix_vect = rx_ring->irq;
3170
3171 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3172 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3173
3174 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3175
3176 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3177
3178 /*
3179 * Set up the control block load flags.
3180 */
3181 cqicb->flags = FLAGS_LC | /* Load queue base address */
3182 FLAGS_LV | /* Load MSI-X vector */
3183 FLAGS_LI; /* Load irq delay values */
3184 if (rx_ring->lbq_len) {
3185 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3186 tmp = (u64)rx_ring->lbq_base_dma;
3187 base_indirect_ptr = rx_ring->lbq_base_indirect;
3188 page_entries = 0;
3189 do {
3190 *base_indirect_ptr = cpu_to_le64(tmp);
3191 tmp += DB_PAGE_SIZE;
3192 base_indirect_ptr++;
3193 page_entries++;
3194 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3195 cqicb->lbq_addr =
3196 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3197 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3198 (u16) rx_ring->lbq_buf_size;
3199 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3200 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3201 (u16) rx_ring->lbq_len;
3202 cqicb->lbq_len = cpu_to_le16(bq_len);
3203 rx_ring->lbq_prod_idx = 0;
3204 rx_ring->lbq_curr_idx = 0;
3205 rx_ring->lbq_clean_idx = 0;
3206 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3207 }
3208 if (rx_ring->sbq_len) {
3209 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3210 tmp = (u64)rx_ring->sbq_base_dma;
3211 base_indirect_ptr = rx_ring->sbq_base_indirect;
3212 page_entries = 0;
3213 do {
3214 *base_indirect_ptr = cpu_to_le64(tmp);
3215 tmp += DB_PAGE_SIZE;
3216 base_indirect_ptr++;
3217 page_entries++;
3218 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3219 cqicb->sbq_addr =
3220 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3221 cqicb->sbq_buf_size =
3222 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3223 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3224 (u16) rx_ring->sbq_len;
3225 cqicb->sbq_len = cpu_to_le16(bq_len);
3226 rx_ring->sbq_prod_idx = 0;
3227 rx_ring->sbq_curr_idx = 0;
3228 rx_ring->sbq_clean_idx = 0;
3229 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3230 }
3231 switch (rx_ring->type) {
3232 case TX_Q:
3233 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3234 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3235 break;
3236 case RX_Q:
3237 /* Inbound completion handling rx_rings run in
3238 * separate NAPI contexts.
3239 */
3240 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3241 64);
3242 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3243 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3244 break;
3245 default:
3246 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3247 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3248 }
3249 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3250 CFG_LCQ, rx_ring->cq_id);
3251 if (err) {
3252 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3253 return err;
3254 }
3255 return err;
3256 }
3257
ql_start_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)3258 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3259 {
3260 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3261 void __iomem *doorbell_area =
3262 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3263 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3264 (tx_ring->wq_id * sizeof(u64));
3265 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3266 (tx_ring->wq_id * sizeof(u64));
3267 int err = 0;
3268
3269 /*
3270 * Assign doorbell registers for this tx_ring.
3271 */
3272 /* TX PCI doorbell mem area for tx producer index */
3273 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3274 tx_ring->prod_idx = 0;
3275 /* TX PCI doorbell mem area + 0x04 */
3276 tx_ring->valid_db_reg = doorbell_area + 0x04;
3277
3278 /*
3279 * Assign shadow registers for this tx_ring.
3280 */
3281 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3282 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3283
3284 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3285 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3286 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3287 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3288 wqicb->rid = 0;
3289 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3290
3291 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3292
3293 ql_init_tx_ring(qdev, tx_ring);
3294
3295 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3296 (u16) tx_ring->wq_id);
3297 if (err) {
3298 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3299 return err;
3300 }
3301 return err;
3302 }
3303
ql_disable_msix(struct ql_adapter * qdev)3304 static void ql_disable_msix(struct ql_adapter *qdev)
3305 {
3306 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3307 pci_disable_msix(qdev->pdev);
3308 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3309 kfree(qdev->msi_x_entry);
3310 qdev->msi_x_entry = NULL;
3311 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3312 pci_disable_msi(qdev->pdev);
3313 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3314 }
3315 }
3316
3317 /* We start by trying to get the number of vectors
3318 * stored in qdev->intr_count. If we don't get that
3319 * many then we reduce the count and try again.
3320 */
ql_enable_msix(struct ql_adapter * qdev)3321 static void ql_enable_msix(struct ql_adapter *qdev)
3322 {
3323 int i, err;
3324
3325 /* Get the MSIX vectors. */
3326 if (qlge_irq_type == MSIX_IRQ) {
3327 /* Try to alloc space for the msix struct,
3328 * if it fails then go to MSI/legacy.
3329 */
3330 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3331 sizeof(struct msix_entry),
3332 GFP_KERNEL);
3333 if (!qdev->msi_x_entry) {
3334 qlge_irq_type = MSI_IRQ;
3335 goto msi;
3336 }
3337
3338 for (i = 0; i < qdev->intr_count; i++)
3339 qdev->msi_x_entry[i].entry = i;
3340
3341 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3342 1, qdev->intr_count);
3343 if (err < 0) {
3344 kfree(qdev->msi_x_entry);
3345 qdev->msi_x_entry = NULL;
3346 netif_warn(qdev, ifup, qdev->ndev,
3347 "MSI-X Enable failed, trying MSI.\n");
3348 qlge_irq_type = MSI_IRQ;
3349 } else {
3350 qdev->intr_count = err;
3351 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3352 netif_info(qdev, ifup, qdev->ndev,
3353 "MSI-X Enabled, got %d vectors.\n",
3354 qdev->intr_count);
3355 return;
3356 }
3357 }
3358 msi:
3359 qdev->intr_count = 1;
3360 if (qlge_irq_type == MSI_IRQ) {
3361 if (!pci_enable_msi(qdev->pdev)) {
3362 set_bit(QL_MSI_ENABLED, &qdev->flags);
3363 netif_info(qdev, ifup, qdev->ndev,
3364 "Running with MSI interrupts.\n");
3365 return;
3366 }
3367 }
3368 qlge_irq_type = LEG_IRQ;
3369 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3370 "Running with legacy interrupts.\n");
3371 }
3372
3373 /* Each vector services 1 RSS ring and and 1 or more
3374 * TX completion rings. This function loops through
3375 * the TX completion rings and assigns the vector that
3376 * will service it. An example would be if there are
3377 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3378 * This would mean that vector 0 would service RSS ring 0
3379 * and TX completion rings 0,1,2 and 3. Vector 1 would
3380 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3381 */
ql_set_tx_vect(struct ql_adapter * qdev)3382 static void ql_set_tx_vect(struct ql_adapter *qdev)
3383 {
3384 int i, j, vect;
3385 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3386
3387 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3388 /* Assign irq vectors to TX rx_rings.*/
3389 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3390 i < qdev->rx_ring_count; i++) {
3391 if (j == tx_rings_per_vector) {
3392 vect++;
3393 j = 0;
3394 }
3395 qdev->rx_ring[i].irq = vect;
3396 j++;
3397 }
3398 } else {
3399 /* For single vector all rings have an irq
3400 * of zero.
3401 */
3402 for (i = 0; i < qdev->rx_ring_count; i++)
3403 qdev->rx_ring[i].irq = 0;
3404 }
3405 }
3406
3407 /* Set the interrupt mask for this vector. Each vector
3408 * will service 1 RSS ring and 1 or more TX completion
3409 * rings. This function sets up a bit mask per vector
3410 * that indicates which rings it services.
3411 */
ql_set_irq_mask(struct ql_adapter * qdev,struct intr_context * ctx)3412 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3413 {
3414 int j, vect = ctx->intr;
3415 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3416
3417 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3418 /* Add the RSS ring serviced by this vector
3419 * to the mask.
3420 */
3421 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3422 /* Add the TX ring(s) serviced by this vector
3423 * to the mask. */
3424 for (j = 0; j < tx_rings_per_vector; j++) {
3425 ctx->irq_mask |=
3426 (1 << qdev->rx_ring[qdev->rss_ring_count +
3427 (vect * tx_rings_per_vector) + j].cq_id);
3428 }
3429 } else {
3430 /* For single vector we just shift each queue's
3431 * ID into the mask.
3432 */
3433 for (j = 0; j < qdev->rx_ring_count; j++)
3434 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3435 }
3436 }
3437
3438 /*
3439 * Here we build the intr_context structures based on
3440 * our rx_ring count and intr vector count.
3441 * The intr_context structure is used to hook each vector
3442 * to possibly different handlers.
3443 */
ql_resolve_queues_to_irqs(struct ql_adapter * qdev)3444 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3445 {
3446 int i = 0;
3447 struct intr_context *intr_context = &qdev->intr_context[0];
3448
3449 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3450 /* Each rx_ring has it's
3451 * own intr_context since we have separate
3452 * vectors for each queue.
3453 */
3454 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3455 qdev->rx_ring[i].irq = i;
3456 intr_context->intr = i;
3457 intr_context->qdev = qdev;
3458 /* Set up this vector's bit-mask that indicates
3459 * which queues it services.
3460 */
3461 ql_set_irq_mask(qdev, intr_context);
3462 /*
3463 * We set up each vectors enable/disable/read bits so
3464 * there's no bit/mask calculations in the critical path.
3465 */
3466 intr_context->intr_en_mask =
3467 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3468 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3469 | i;
3470 intr_context->intr_dis_mask =
3471 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3472 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3473 INTR_EN_IHD | i;
3474 intr_context->intr_read_mask =
3475 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3476 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3477 i;
3478 if (i == 0) {
3479 /* The first vector/queue handles
3480 * broadcast/multicast, fatal errors,
3481 * and firmware events. This in addition
3482 * to normal inbound NAPI processing.
3483 */
3484 intr_context->handler = qlge_isr;
3485 sprintf(intr_context->name, "%s-rx-%d",
3486 qdev->ndev->name, i);
3487 } else {
3488 /*
3489 * Inbound queues handle unicast frames only.
3490 */
3491 intr_context->handler = qlge_msix_rx_isr;
3492 sprintf(intr_context->name, "%s-rx-%d",
3493 qdev->ndev->name, i);
3494 }
3495 }
3496 } else {
3497 /*
3498 * All rx_rings use the same intr_context since
3499 * there is only one vector.
3500 */
3501 intr_context->intr = 0;
3502 intr_context->qdev = qdev;
3503 /*
3504 * We set up each vectors enable/disable/read bits so
3505 * there's no bit/mask calculations in the critical path.
3506 */
3507 intr_context->intr_en_mask =
3508 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3509 intr_context->intr_dis_mask =
3510 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3511 INTR_EN_TYPE_DISABLE;
3512 intr_context->intr_read_mask =
3513 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3514 /*
3515 * Single interrupt means one handler for all rings.
3516 */
3517 intr_context->handler = qlge_isr;
3518 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3519 /* Set up this vector's bit-mask that indicates
3520 * which queues it services. In this case there is
3521 * a single vector so it will service all RSS and
3522 * TX completion rings.
3523 */
3524 ql_set_irq_mask(qdev, intr_context);
3525 }
3526 /* Tell the TX completion rings which MSIx vector
3527 * they will be using.
3528 */
3529 ql_set_tx_vect(qdev);
3530 }
3531
ql_free_irq(struct ql_adapter * qdev)3532 static void ql_free_irq(struct ql_adapter *qdev)
3533 {
3534 int i;
3535 struct intr_context *intr_context = &qdev->intr_context[0];
3536
3537 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3538 if (intr_context->hooked) {
3539 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3540 free_irq(qdev->msi_x_entry[i].vector,
3541 &qdev->rx_ring[i]);
3542 } else {
3543 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3544 }
3545 }
3546 }
3547 ql_disable_msix(qdev);
3548 }
3549
ql_request_irq(struct ql_adapter * qdev)3550 static int ql_request_irq(struct ql_adapter *qdev)
3551 {
3552 int i;
3553 int status = 0;
3554 struct pci_dev *pdev = qdev->pdev;
3555 struct intr_context *intr_context = &qdev->intr_context[0];
3556
3557 ql_resolve_queues_to_irqs(qdev);
3558
3559 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3560 atomic_set(&intr_context->irq_cnt, 0);
3561 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3562 status = request_irq(qdev->msi_x_entry[i].vector,
3563 intr_context->handler,
3564 0,
3565 intr_context->name,
3566 &qdev->rx_ring[i]);
3567 if (status) {
3568 netif_err(qdev, ifup, qdev->ndev,
3569 "Failed request for MSIX interrupt %d.\n",
3570 i);
3571 goto err_irq;
3572 }
3573 } else {
3574 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3575 "trying msi or legacy interrupts.\n");
3576 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3577 "%s: irq = %d.\n", __func__, pdev->irq);
3578 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3579 "%s: context->name = %s.\n", __func__,
3580 intr_context->name);
3581 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3582 "%s: dev_id = 0x%p.\n", __func__,
3583 &qdev->rx_ring[0]);
3584 status =
3585 request_irq(pdev->irq, qlge_isr,
3586 test_bit(QL_MSI_ENABLED,
3587 &qdev->
3588 flags) ? 0 : IRQF_SHARED,
3589 intr_context->name, &qdev->rx_ring[0]);
3590 if (status)
3591 goto err_irq;
3592
3593 netif_err(qdev, ifup, qdev->ndev,
3594 "Hooked intr %d, queue type %s, with name %s.\n",
3595 i,
3596 qdev->rx_ring[0].type == DEFAULT_Q ?
3597 "DEFAULT_Q" :
3598 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3599 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3600 intr_context->name);
3601 }
3602 intr_context->hooked = 1;
3603 }
3604 return status;
3605 err_irq:
3606 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3607 ql_free_irq(qdev);
3608 return status;
3609 }
3610
ql_start_rss(struct ql_adapter * qdev)3611 static int ql_start_rss(struct ql_adapter *qdev)
3612 {
3613 static const u8 init_hash_seed[] = {
3614 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3615 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3616 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3617 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3618 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3619 };
3620 struct ricb *ricb = &qdev->ricb;
3621 int status = 0;
3622 int i;
3623 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3624
3625 memset((void *)ricb, 0, sizeof(*ricb));
3626
3627 ricb->base_cq = RSS_L4K;
3628 ricb->flags =
3629 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3630 ricb->mask = cpu_to_le16((u16)(0x3ff));
3631
3632 /*
3633 * Fill out the Indirection Table.
3634 */
3635 for (i = 0; i < 1024; i++)
3636 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3637
3638 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3639 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3640
3641 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3642 if (status) {
3643 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3644 return status;
3645 }
3646 return status;
3647 }
3648
ql_clear_routing_entries(struct ql_adapter * qdev)3649 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3650 {
3651 int i, status = 0;
3652
3653 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3654 if (status)
3655 return status;
3656 /* Clear all the entries in the routing table. */
3657 for (i = 0; i < 16; i++) {
3658 status = ql_set_routing_reg(qdev, i, 0, 0);
3659 if (status) {
3660 netif_err(qdev, ifup, qdev->ndev,
3661 "Failed to init routing register for CAM packets.\n");
3662 break;
3663 }
3664 }
3665 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3666 return status;
3667 }
3668
3669 /* Initialize the frame-to-queue routing. */
ql_route_initialize(struct ql_adapter * qdev)3670 static int ql_route_initialize(struct ql_adapter *qdev)
3671 {
3672 int status = 0;
3673
3674 /* Clear all the entries in the routing table. */
3675 status = ql_clear_routing_entries(qdev);
3676 if (status)
3677 return status;
3678
3679 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3680 if (status)
3681 return status;
3682
3683 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3684 RT_IDX_IP_CSUM_ERR, 1);
3685 if (status) {
3686 netif_err(qdev, ifup, qdev->ndev,
3687 "Failed to init routing register "
3688 "for IP CSUM error packets.\n");
3689 goto exit;
3690 }
3691 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3692 RT_IDX_TU_CSUM_ERR, 1);
3693 if (status) {
3694 netif_err(qdev, ifup, qdev->ndev,
3695 "Failed to init routing register "
3696 "for TCP/UDP CSUM error packets.\n");
3697 goto exit;
3698 }
3699 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3700 if (status) {
3701 netif_err(qdev, ifup, qdev->ndev,
3702 "Failed to init routing register for broadcast packets.\n");
3703 goto exit;
3704 }
3705 /* If we have more than one inbound queue, then turn on RSS in the
3706 * routing block.
3707 */
3708 if (qdev->rss_ring_count > 1) {
3709 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3710 RT_IDX_RSS_MATCH, 1);
3711 if (status) {
3712 netif_err(qdev, ifup, qdev->ndev,
3713 "Failed to init routing register for MATCH RSS packets.\n");
3714 goto exit;
3715 }
3716 }
3717
3718 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3719 RT_IDX_CAM_HIT, 1);
3720 if (status)
3721 netif_err(qdev, ifup, qdev->ndev,
3722 "Failed to init routing register for CAM packets.\n");
3723 exit:
3724 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3725 return status;
3726 }
3727
ql_cam_route_initialize(struct ql_adapter * qdev)3728 int ql_cam_route_initialize(struct ql_adapter *qdev)
3729 {
3730 int status, set;
3731
3732 /* If check if the link is up and use to
3733 * determine if we are setting or clearing
3734 * the MAC address in the CAM.
3735 */
3736 set = ql_read32(qdev, STS);
3737 set &= qdev->port_link_up;
3738 status = ql_set_mac_addr(qdev, set);
3739 if (status) {
3740 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3741 return status;
3742 }
3743
3744 status = ql_route_initialize(qdev);
3745 if (status)
3746 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3747
3748 return status;
3749 }
3750
ql_adapter_initialize(struct ql_adapter * qdev)3751 static int ql_adapter_initialize(struct ql_adapter *qdev)
3752 {
3753 u32 value, mask;
3754 int i;
3755 int status = 0;
3756
3757 /*
3758 * Set up the System register to halt on errors.
3759 */
3760 value = SYS_EFE | SYS_FAE;
3761 mask = value << 16;
3762 ql_write32(qdev, SYS, mask | value);
3763
3764 /* Set the default queue, and VLAN behavior. */
3765 value = NIC_RCV_CFG_DFQ;
3766 mask = NIC_RCV_CFG_DFQ_MASK;
3767 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3768 value |= NIC_RCV_CFG_RV;
3769 mask |= (NIC_RCV_CFG_RV << 16);
3770 }
3771 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3772
3773 /* Set the MPI interrupt to enabled. */
3774 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3775
3776 /* Enable the function, set pagesize, enable error checking. */
3777 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3778 FSC_EC | FSC_VM_PAGE_4K;
3779 value |= SPLT_SETTING;
3780
3781 /* Set/clear header splitting. */
3782 mask = FSC_VM_PAGESIZE_MASK |
3783 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3784 ql_write32(qdev, FSC, mask | value);
3785
3786 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3787
3788 /* Set RX packet routing to use port/pci function on which the
3789 * packet arrived on in addition to usual frame routing.
3790 * This is helpful on bonding where both interfaces can have
3791 * the same MAC address.
3792 */
3793 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3794 /* Reroute all packets to our Interface.
3795 * They may have been routed to MPI firmware
3796 * due to WOL.
3797 */
3798 value = ql_read32(qdev, MGMT_RCV_CFG);
3799 value &= ~MGMT_RCV_CFG_RM;
3800 mask = 0xffff0000;
3801
3802 /* Sticky reg needs clearing due to WOL. */
3803 ql_write32(qdev, MGMT_RCV_CFG, mask);
3804 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3805
3806 /* Default WOL is enable on Mezz cards */
3807 if (qdev->pdev->subsystem_device == 0x0068 ||
3808 qdev->pdev->subsystem_device == 0x0180)
3809 qdev->wol = WAKE_MAGIC;
3810
3811 /* Start up the rx queues. */
3812 for (i = 0; i < qdev->rx_ring_count; i++) {
3813 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3814 if (status) {
3815 netif_err(qdev, ifup, qdev->ndev,
3816 "Failed to start rx ring[%d].\n", i);
3817 return status;
3818 }
3819 }
3820
3821 /* If there is more than one inbound completion queue
3822 * then download a RICB to configure RSS.
3823 */
3824 if (qdev->rss_ring_count > 1) {
3825 status = ql_start_rss(qdev);
3826 if (status) {
3827 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3828 return status;
3829 }
3830 }
3831
3832 /* Start up the tx queues. */
3833 for (i = 0; i < qdev->tx_ring_count; i++) {
3834 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3835 if (status) {
3836 netif_err(qdev, ifup, qdev->ndev,
3837 "Failed to start tx ring[%d].\n", i);
3838 return status;
3839 }
3840 }
3841
3842 /* Initialize the port and set the max framesize. */
3843 status = qdev->nic_ops->port_initialize(qdev);
3844 if (status)
3845 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3846
3847 /* Set up the MAC address and frame routing filter. */
3848 status = ql_cam_route_initialize(qdev);
3849 if (status) {
3850 netif_err(qdev, ifup, qdev->ndev,
3851 "Failed to init CAM/Routing tables.\n");
3852 return status;
3853 }
3854
3855 /* Start NAPI for the RSS queues. */
3856 for (i = 0; i < qdev->rss_ring_count; i++)
3857 napi_enable(&qdev->rx_ring[i].napi);
3858
3859 return status;
3860 }
3861
3862 /* Issue soft reset to chip. */
ql_adapter_reset(struct ql_adapter * qdev)3863 static int ql_adapter_reset(struct ql_adapter *qdev)
3864 {
3865 u32 value;
3866 int status = 0;
3867 unsigned long end_jiffies;
3868
3869 /* Clear all the entries in the routing table. */
3870 status = ql_clear_routing_entries(qdev);
3871 if (status) {
3872 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3873 return status;
3874 }
3875
3876 /* Check if bit is set then skip the mailbox command and
3877 * clear the bit, else we are in normal reset process.
3878 */
3879 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3880 /* Stop management traffic. */
3881 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3882
3883 /* Wait for the NIC and MGMNT FIFOs to empty. */
3884 ql_wait_fifo_empty(qdev);
3885 } else
3886 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3887
3888 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3889
3890 end_jiffies = jiffies + usecs_to_jiffies(30);
3891 do {
3892 value = ql_read32(qdev, RST_FO);
3893 if ((value & RST_FO_FR) == 0)
3894 break;
3895 cpu_relax();
3896 } while (time_before(jiffies, end_jiffies));
3897
3898 if (value & RST_FO_FR) {
3899 netif_err(qdev, ifdown, qdev->ndev,
3900 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3901 status = -ETIMEDOUT;
3902 }
3903
3904 /* Resume management traffic. */
3905 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3906 return status;
3907 }
3908
ql_display_dev_info(struct net_device * ndev)3909 static void ql_display_dev_info(struct net_device *ndev)
3910 {
3911 struct ql_adapter *qdev = netdev_priv(ndev);
3912
3913 netif_info(qdev, probe, qdev->ndev,
3914 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3915 "XG Roll = %d, XG Rev = %d.\n",
3916 qdev->func,
3917 qdev->port,
3918 qdev->chip_rev_id & 0x0000000f,
3919 qdev->chip_rev_id >> 4 & 0x0000000f,
3920 qdev->chip_rev_id >> 8 & 0x0000000f,
3921 qdev->chip_rev_id >> 12 & 0x0000000f);
3922 netif_info(qdev, probe, qdev->ndev,
3923 "MAC address %pM\n", ndev->dev_addr);
3924 }
3925
ql_wol(struct ql_adapter * qdev)3926 static int ql_wol(struct ql_adapter *qdev)
3927 {
3928 int status = 0;
3929 u32 wol = MB_WOL_DISABLE;
3930
3931 /* The CAM is still intact after a reset, but if we
3932 * are doing WOL, then we may need to program the
3933 * routing regs. We would also need to issue the mailbox
3934 * commands to instruct the MPI what to do per the ethtool
3935 * settings.
3936 */
3937
3938 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3939 WAKE_MCAST | WAKE_BCAST)) {
3940 netif_err(qdev, ifdown, qdev->ndev,
3941 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3942 qdev->wol);
3943 return -EINVAL;
3944 }
3945
3946 if (qdev->wol & WAKE_MAGIC) {
3947 status = ql_mb_wol_set_magic(qdev, 1);
3948 if (status) {
3949 netif_err(qdev, ifdown, qdev->ndev,
3950 "Failed to set magic packet on %s.\n",
3951 qdev->ndev->name);
3952 return status;
3953 } else
3954 netif_info(qdev, drv, qdev->ndev,
3955 "Enabled magic packet successfully on %s.\n",
3956 qdev->ndev->name);
3957
3958 wol |= MB_WOL_MAGIC_PKT;
3959 }
3960
3961 if (qdev->wol) {
3962 wol |= MB_WOL_MODE_ON;
3963 status = ql_mb_wol_mode(qdev, wol);
3964 netif_err(qdev, drv, qdev->ndev,
3965 "WOL %s (wol code 0x%x) on %s\n",
3966 (status == 0) ? "Successfully set" : "Failed",
3967 wol, qdev->ndev->name);
3968 }
3969
3970 return status;
3971 }
3972
ql_cancel_all_work_sync(struct ql_adapter * qdev)3973 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3974 {
3975
3976 /* Don't kill the reset worker thread if we
3977 * are in the process of recovery.
3978 */
3979 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3980 cancel_delayed_work_sync(&qdev->asic_reset_work);
3981 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3982 cancel_delayed_work_sync(&qdev->mpi_work);
3983 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3984 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3985 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3986 }
3987
ql_adapter_down(struct ql_adapter * qdev)3988 static int ql_adapter_down(struct ql_adapter *qdev)
3989 {
3990 int i, status = 0;
3991
3992 ql_link_off(qdev);
3993
3994 ql_cancel_all_work_sync(qdev);
3995
3996 for (i = 0; i < qdev->rss_ring_count; i++)
3997 napi_disable(&qdev->rx_ring[i].napi);
3998
3999 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4000
4001 ql_disable_interrupts(qdev);
4002
4003 ql_tx_ring_clean(qdev);
4004
4005 /* Call netif_napi_del() from common point.
4006 */
4007 for (i = 0; i < qdev->rss_ring_count; i++)
4008 netif_napi_del(&qdev->rx_ring[i].napi);
4009
4010 status = ql_adapter_reset(qdev);
4011 if (status)
4012 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4013 qdev->func);
4014 ql_free_rx_buffers(qdev);
4015
4016 return status;
4017 }
4018
ql_adapter_up(struct ql_adapter * qdev)4019 static int ql_adapter_up(struct ql_adapter *qdev)
4020 {
4021 int err = 0;
4022
4023 err = ql_adapter_initialize(qdev);
4024 if (err) {
4025 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4026 goto err_init;
4027 }
4028 set_bit(QL_ADAPTER_UP, &qdev->flags);
4029 ql_alloc_rx_buffers(qdev);
4030 /* If the port is initialized and the
4031 * link is up the turn on the carrier.
4032 */
4033 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4034 (ql_read32(qdev, STS) & qdev->port_link_up))
4035 ql_link_on(qdev);
4036 /* Restore rx mode. */
4037 clear_bit(QL_ALLMULTI, &qdev->flags);
4038 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4039 qlge_set_multicast_list(qdev->ndev);
4040
4041 /* Restore vlan setting. */
4042 qlge_restore_vlan(qdev);
4043
4044 ql_enable_interrupts(qdev);
4045 ql_enable_all_completion_interrupts(qdev);
4046 netif_tx_start_all_queues(qdev->ndev);
4047
4048 return 0;
4049 err_init:
4050 ql_adapter_reset(qdev);
4051 return err;
4052 }
4053
ql_release_adapter_resources(struct ql_adapter * qdev)4054 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4055 {
4056 ql_free_mem_resources(qdev);
4057 ql_free_irq(qdev);
4058 }
4059
ql_get_adapter_resources(struct ql_adapter * qdev)4060 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4061 {
4062 int status = 0;
4063
4064 if (ql_alloc_mem_resources(qdev)) {
4065 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4066 return -ENOMEM;
4067 }
4068 status = ql_request_irq(qdev);
4069 return status;
4070 }
4071
qlge_close(struct net_device * ndev)4072 static int qlge_close(struct net_device *ndev)
4073 {
4074 struct ql_adapter *qdev = netdev_priv(ndev);
4075
4076 /* If we hit pci_channel_io_perm_failure
4077 * failure condition, then we already
4078 * brought the adapter down.
4079 */
4080 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4081 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4082 clear_bit(QL_EEH_FATAL, &qdev->flags);
4083 return 0;
4084 }
4085
4086 /*
4087 * Wait for device to recover from a reset.
4088 * (Rarely happens, but possible.)
4089 */
4090 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4091 msleep(1);
4092 ql_adapter_down(qdev);
4093 ql_release_adapter_resources(qdev);
4094 return 0;
4095 }
4096
ql_configure_rings(struct ql_adapter * qdev)4097 static int ql_configure_rings(struct ql_adapter *qdev)
4098 {
4099 int i;
4100 struct rx_ring *rx_ring;
4101 struct tx_ring *tx_ring;
4102 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4103 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4104 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4105
4106 qdev->lbq_buf_order = get_order(lbq_buf_len);
4107
4108 /* In a perfect world we have one RSS ring for each CPU
4109 * and each has it's own vector. To do that we ask for
4110 * cpu_cnt vectors. ql_enable_msix() will adjust the
4111 * vector count to what we actually get. We then
4112 * allocate an RSS ring for each.
4113 * Essentially, we are doing min(cpu_count, msix_vector_count).
4114 */
4115 qdev->intr_count = cpu_cnt;
4116 ql_enable_msix(qdev);
4117 /* Adjust the RSS ring count to the actual vector count. */
4118 qdev->rss_ring_count = qdev->intr_count;
4119 qdev->tx_ring_count = cpu_cnt;
4120 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4121
4122 for (i = 0; i < qdev->tx_ring_count; i++) {
4123 tx_ring = &qdev->tx_ring[i];
4124 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4125 tx_ring->qdev = qdev;
4126 tx_ring->wq_id = i;
4127 tx_ring->wq_len = qdev->tx_ring_size;
4128 tx_ring->wq_size =
4129 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4130
4131 /*
4132 * The completion queue ID for the tx rings start
4133 * immediately after the rss rings.
4134 */
4135 tx_ring->cq_id = qdev->rss_ring_count + i;
4136 }
4137
4138 for (i = 0; i < qdev->rx_ring_count; i++) {
4139 rx_ring = &qdev->rx_ring[i];
4140 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4141 rx_ring->qdev = qdev;
4142 rx_ring->cq_id = i;
4143 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4144 if (i < qdev->rss_ring_count) {
4145 /*
4146 * Inbound (RSS) queues.
4147 */
4148 rx_ring->cq_len = qdev->rx_ring_size;
4149 rx_ring->cq_size =
4150 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4151 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4152 rx_ring->lbq_size =
4153 rx_ring->lbq_len * sizeof(__le64);
4154 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4155 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4156 rx_ring->sbq_size =
4157 rx_ring->sbq_len * sizeof(__le64);
4158 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4159 rx_ring->type = RX_Q;
4160 } else {
4161 /*
4162 * Outbound queue handles outbound completions only.
4163 */
4164 /* outbound cq is same size as tx_ring it services. */
4165 rx_ring->cq_len = qdev->tx_ring_size;
4166 rx_ring->cq_size =
4167 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4168 rx_ring->lbq_len = 0;
4169 rx_ring->lbq_size = 0;
4170 rx_ring->lbq_buf_size = 0;
4171 rx_ring->sbq_len = 0;
4172 rx_ring->sbq_size = 0;
4173 rx_ring->sbq_buf_size = 0;
4174 rx_ring->type = TX_Q;
4175 }
4176 }
4177 return 0;
4178 }
4179
qlge_open(struct net_device * ndev)4180 static int qlge_open(struct net_device *ndev)
4181 {
4182 int err = 0;
4183 struct ql_adapter *qdev = netdev_priv(ndev);
4184
4185 err = ql_adapter_reset(qdev);
4186 if (err)
4187 return err;
4188
4189 err = ql_configure_rings(qdev);
4190 if (err)
4191 return err;
4192
4193 err = ql_get_adapter_resources(qdev);
4194 if (err)
4195 goto error_up;
4196
4197 err = ql_adapter_up(qdev);
4198 if (err)
4199 goto error_up;
4200
4201 return err;
4202
4203 error_up:
4204 ql_release_adapter_resources(qdev);
4205 return err;
4206 }
4207
ql_change_rx_buffers(struct ql_adapter * qdev)4208 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4209 {
4210 struct rx_ring *rx_ring;
4211 int i, status;
4212 u32 lbq_buf_len;
4213
4214 /* Wait for an outstanding reset to complete. */
4215 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4216 int i = 4;
4217
4218 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4219 netif_err(qdev, ifup, qdev->ndev,
4220 "Waiting for adapter UP...\n");
4221 ssleep(1);
4222 }
4223
4224 if (!i) {
4225 netif_err(qdev, ifup, qdev->ndev,
4226 "Timed out waiting for adapter UP\n");
4227 return -ETIMEDOUT;
4228 }
4229 }
4230
4231 status = ql_adapter_down(qdev);
4232 if (status)
4233 goto error;
4234
4235 /* Get the new rx buffer size. */
4236 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4237 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4238 qdev->lbq_buf_order = get_order(lbq_buf_len);
4239
4240 for (i = 0; i < qdev->rss_ring_count; i++) {
4241 rx_ring = &qdev->rx_ring[i];
4242 /* Set the new size. */
4243 rx_ring->lbq_buf_size = lbq_buf_len;
4244 }
4245
4246 status = ql_adapter_up(qdev);
4247 if (status)
4248 goto error;
4249
4250 return status;
4251 error:
4252 netif_alert(qdev, ifup, qdev->ndev,
4253 "Driver up/down cycle failed, closing device.\n");
4254 set_bit(QL_ADAPTER_UP, &qdev->flags);
4255 dev_close(qdev->ndev);
4256 return status;
4257 }
4258
qlge_change_mtu(struct net_device * ndev,int new_mtu)4259 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4260 {
4261 struct ql_adapter *qdev = netdev_priv(ndev);
4262 int status;
4263
4264 if (ndev->mtu == 1500 && new_mtu == 9000) {
4265 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4266 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4267 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4268 } else
4269 return -EINVAL;
4270
4271 queue_delayed_work(qdev->workqueue,
4272 &qdev->mpi_port_cfg_work, 3*HZ);
4273
4274 ndev->mtu = new_mtu;
4275
4276 if (!netif_running(qdev->ndev)) {
4277 return 0;
4278 }
4279
4280 status = ql_change_rx_buffers(qdev);
4281 if (status) {
4282 netif_err(qdev, ifup, qdev->ndev,
4283 "Changing MTU failed.\n");
4284 }
4285
4286 return status;
4287 }
4288
qlge_get_stats(struct net_device * ndev)4289 static struct net_device_stats *qlge_get_stats(struct net_device
4290 *ndev)
4291 {
4292 struct ql_adapter *qdev = netdev_priv(ndev);
4293 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4294 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4295 unsigned long pkts, mcast, dropped, errors, bytes;
4296 int i;
4297
4298 /* Get RX stats. */
4299 pkts = mcast = dropped = errors = bytes = 0;
4300 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4301 pkts += rx_ring->rx_packets;
4302 bytes += rx_ring->rx_bytes;
4303 dropped += rx_ring->rx_dropped;
4304 errors += rx_ring->rx_errors;
4305 mcast += rx_ring->rx_multicast;
4306 }
4307 ndev->stats.rx_packets = pkts;
4308 ndev->stats.rx_bytes = bytes;
4309 ndev->stats.rx_dropped = dropped;
4310 ndev->stats.rx_errors = errors;
4311 ndev->stats.multicast = mcast;
4312
4313 /* Get TX stats. */
4314 pkts = errors = bytes = 0;
4315 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4316 pkts += tx_ring->tx_packets;
4317 bytes += tx_ring->tx_bytes;
4318 errors += tx_ring->tx_errors;
4319 }
4320 ndev->stats.tx_packets = pkts;
4321 ndev->stats.tx_bytes = bytes;
4322 ndev->stats.tx_errors = errors;
4323 return &ndev->stats;
4324 }
4325
qlge_set_multicast_list(struct net_device * ndev)4326 static void qlge_set_multicast_list(struct net_device *ndev)
4327 {
4328 struct ql_adapter *qdev = netdev_priv(ndev);
4329 struct netdev_hw_addr *ha;
4330 int i, status;
4331
4332 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4333 if (status)
4334 return;
4335 /*
4336 * Set or clear promiscuous mode if a
4337 * transition is taking place.
4338 */
4339 if (ndev->flags & IFF_PROMISC) {
4340 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4341 if (ql_set_routing_reg
4342 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4343 netif_err(qdev, hw, qdev->ndev,
4344 "Failed to set promiscuous mode.\n");
4345 } else {
4346 set_bit(QL_PROMISCUOUS, &qdev->flags);
4347 }
4348 }
4349 } else {
4350 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4351 if (ql_set_routing_reg
4352 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4353 netif_err(qdev, hw, qdev->ndev,
4354 "Failed to clear promiscuous mode.\n");
4355 } else {
4356 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4357 }
4358 }
4359 }
4360
4361 /*
4362 * Set or clear all multicast mode if a
4363 * transition is taking place.
4364 */
4365 if ((ndev->flags & IFF_ALLMULTI) ||
4366 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4367 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4368 if (ql_set_routing_reg
4369 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4370 netif_err(qdev, hw, qdev->ndev,
4371 "Failed to set all-multi mode.\n");
4372 } else {
4373 set_bit(QL_ALLMULTI, &qdev->flags);
4374 }
4375 }
4376 } else {
4377 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4378 if (ql_set_routing_reg
4379 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4380 netif_err(qdev, hw, qdev->ndev,
4381 "Failed to clear all-multi mode.\n");
4382 } else {
4383 clear_bit(QL_ALLMULTI, &qdev->flags);
4384 }
4385 }
4386 }
4387
4388 if (!netdev_mc_empty(ndev)) {
4389 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4390 if (status)
4391 goto exit;
4392 i = 0;
4393 netdev_for_each_mc_addr(ha, ndev) {
4394 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4395 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4396 netif_err(qdev, hw, qdev->ndev,
4397 "Failed to loadmulticast address.\n");
4398 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4399 goto exit;
4400 }
4401 i++;
4402 }
4403 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4404 if (ql_set_routing_reg
4405 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4406 netif_err(qdev, hw, qdev->ndev,
4407 "Failed to set multicast match mode.\n");
4408 } else {
4409 set_bit(QL_ALLMULTI, &qdev->flags);
4410 }
4411 }
4412 exit:
4413 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4414 }
4415
qlge_set_mac_address(struct net_device * ndev,void * p)4416 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4417 {
4418 struct ql_adapter *qdev = netdev_priv(ndev);
4419 struct sockaddr *addr = p;
4420 int status;
4421
4422 if (!is_valid_ether_addr(addr->sa_data))
4423 return -EADDRNOTAVAIL;
4424 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4425 /* Update local copy of current mac address. */
4426 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4427
4428 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4429 if (status)
4430 return status;
4431 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4432 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4433 if (status)
4434 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4435 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4436 return status;
4437 }
4438
qlge_tx_timeout(struct net_device * ndev)4439 static void qlge_tx_timeout(struct net_device *ndev)
4440 {
4441 struct ql_adapter *qdev = netdev_priv(ndev);
4442 ql_queue_asic_error(qdev);
4443 }
4444
ql_asic_reset_work(struct work_struct * work)4445 static void ql_asic_reset_work(struct work_struct *work)
4446 {
4447 struct ql_adapter *qdev =
4448 container_of(work, struct ql_adapter, asic_reset_work.work);
4449 int status;
4450 rtnl_lock();
4451 status = ql_adapter_down(qdev);
4452 if (status)
4453 goto error;
4454
4455 status = ql_adapter_up(qdev);
4456 if (status)
4457 goto error;
4458
4459 /* Restore rx mode. */
4460 clear_bit(QL_ALLMULTI, &qdev->flags);
4461 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4462 qlge_set_multicast_list(qdev->ndev);
4463
4464 rtnl_unlock();
4465 return;
4466 error:
4467 netif_alert(qdev, ifup, qdev->ndev,
4468 "Driver up/down cycle failed, closing device\n");
4469
4470 set_bit(QL_ADAPTER_UP, &qdev->flags);
4471 dev_close(qdev->ndev);
4472 rtnl_unlock();
4473 }
4474
4475 static const struct nic_operations qla8012_nic_ops = {
4476 .get_flash = ql_get_8012_flash_params,
4477 .port_initialize = ql_8012_port_initialize,
4478 };
4479
4480 static const struct nic_operations qla8000_nic_ops = {
4481 .get_flash = ql_get_8000_flash_params,
4482 .port_initialize = ql_8000_port_initialize,
4483 };
4484
4485 /* Find the pcie function number for the other NIC
4486 * on this chip. Since both NIC functions share a
4487 * common firmware we have the lowest enabled function
4488 * do any common work. Examples would be resetting
4489 * after a fatal firmware error, or doing a firmware
4490 * coredump.
4491 */
ql_get_alt_pcie_func(struct ql_adapter * qdev)4492 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4493 {
4494 int status = 0;
4495 u32 temp;
4496 u32 nic_func1, nic_func2;
4497
4498 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4499 &temp);
4500 if (status)
4501 return status;
4502
4503 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4504 MPI_TEST_NIC_FUNC_MASK);
4505 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4506 MPI_TEST_NIC_FUNC_MASK);
4507
4508 if (qdev->func == nic_func1)
4509 qdev->alt_func = nic_func2;
4510 else if (qdev->func == nic_func2)
4511 qdev->alt_func = nic_func1;
4512 else
4513 status = -EIO;
4514
4515 return status;
4516 }
4517
ql_get_board_info(struct ql_adapter * qdev)4518 static int ql_get_board_info(struct ql_adapter *qdev)
4519 {
4520 int status;
4521 qdev->func =
4522 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4523 if (qdev->func > 3)
4524 return -EIO;
4525
4526 status = ql_get_alt_pcie_func(qdev);
4527 if (status)
4528 return status;
4529
4530 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4531 if (qdev->port) {
4532 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4533 qdev->port_link_up = STS_PL1;
4534 qdev->port_init = STS_PI1;
4535 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4536 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4537 } else {
4538 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4539 qdev->port_link_up = STS_PL0;
4540 qdev->port_init = STS_PI0;
4541 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4542 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4543 }
4544 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4545 qdev->device_id = qdev->pdev->device;
4546 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4547 qdev->nic_ops = &qla8012_nic_ops;
4548 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4549 qdev->nic_ops = &qla8000_nic_ops;
4550 return status;
4551 }
4552
ql_release_all(struct pci_dev * pdev)4553 static void ql_release_all(struct pci_dev *pdev)
4554 {
4555 struct net_device *ndev = pci_get_drvdata(pdev);
4556 struct ql_adapter *qdev = netdev_priv(ndev);
4557
4558 if (qdev->workqueue) {
4559 destroy_workqueue(qdev->workqueue);
4560 qdev->workqueue = NULL;
4561 }
4562
4563 if (qdev->reg_base)
4564 iounmap(qdev->reg_base);
4565 if (qdev->doorbell_area)
4566 iounmap(qdev->doorbell_area);
4567 vfree(qdev->mpi_coredump);
4568 pci_release_regions(pdev);
4569 }
4570
ql_init_device(struct pci_dev * pdev,struct net_device * ndev,int cards_found)4571 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4572 int cards_found)
4573 {
4574 struct ql_adapter *qdev = netdev_priv(ndev);
4575 int err = 0;
4576
4577 memset((void *)qdev, 0, sizeof(*qdev));
4578 err = pci_enable_device(pdev);
4579 if (err) {
4580 dev_err(&pdev->dev, "PCI device enable failed.\n");
4581 return err;
4582 }
4583
4584 qdev->ndev = ndev;
4585 qdev->pdev = pdev;
4586 pci_set_drvdata(pdev, ndev);
4587
4588 /* Set PCIe read request size */
4589 err = pcie_set_readrq(pdev, 4096);
4590 if (err) {
4591 dev_err(&pdev->dev, "Set readrq failed.\n");
4592 goto err_out1;
4593 }
4594
4595 err = pci_request_regions(pdev, DRV_NAME);
4596 if (err) {
4597 dev_err(&pdev->dev, "PCI region request failed.\n");
4598 return err;
4599 }
4600
4601 pci_set_master(pdev);
4602 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4603 set_bit(QL_DMA64, &qdev->flags);
4604 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4605 } else {
4606 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4607 if (!err)
4608 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4609 }
4610
4611 if (err) {
4612 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4613 goto err_out2;
4614 }
4615
4616 /* Set PCIe reset type for EEH to fundamental. */
4617 pdev->needs_freset = 1;
4618 pci_save_state(pdev);
4619 qdev->reg_base =
4620 ioremap_nocache(pci_resource_start(pdev, 1),
4621 pci_resource_len(pdev, 1));
4622 if (!qdev->reg_base) {
4623 dev_err(&pdev->dev, "Register mapping failed.\n");
4624 err = -ENOMEM;
4625 goto err_out2;
4626 }
4627
4628 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4629 qdev->doorbell_area =
4630 ioremap_nocache(pci_resource_start(pdev, 3),
4631 pci_resource_len(pdev, 3));
4632 if (!qdev->doorbell_area) {
4633 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4634 err = -ENOMEM;
4635 goto err_out2;
4636 }
4637
4638 err = ql_get_board_info(qdev);
4639 if (err) {
4640 dev_err(&pdev->dev, "Register access failed.\n");
4641 err = -EIO;
4642 goto err_out2;
4643 }
4644 qdev->msg_enable = netif_msg_init(debug, default_msg);
4645 spin_lock_init(&qdev->hw_lock);
4646 spin_lock_init(&qdev->stats_lock);
4647
4648 if (qlge_mpi_coredump) {
4649 qdev->mpi_coredump =
4650 vmalloc(sizeof(struct ql_mpi_coredump));
4651 if (qdev->mpi_coredump == NULL) {
4652 err = -ENOMEM;
4653 goto err_out2;
4654 }
4655 if (qlge_force_coredump)
4656 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4657 }
4658 /* make sure the EEPROM is good */
4659 err = qdev->nic_ops->get_flash(qdev);
4660 if (err) {
4661 dev_err(&pdev->dev, "Invalid FLASH.\n");
4662 goto err_out2;
4663 }
4664
4665 /* Keep local copy of current mac address. */
4666 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4667
4668 /* Set up the default ring sizes. */
4669 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4670 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4671
4672 /* Set up the coalescing parameters. */
4673 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4674 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4675 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4676 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4677
4678 /*
4679 * Set up the operating parameters.
4680 */
4681 qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4682 ndev->name);
4683 if (!qdev->workqueue) {
4684 err = -ENOMEM;
4685 goto err_out2;
4686 }
4687
4688 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4689 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4690 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4691 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4694 init_completion(&qdev->ide_completion);
4695 mutex_init(&qdev->mpi_mutex);
4696
4697 if (!cards_found) {
4698 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4699 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4700 DRV_NAME, DRV_VERSION);
4701 }
4702 return 0;
4703 err_out2:
4704 ql_release_all(pdev);
4705 err_out1:
4706 pci_disable_device(pdev);
4707 return err;
4708 }
4709
4710 static const struct net_device_ops qlge_netdev_ops = {
4711 .ndo_open = qlge_open,
4712 .ndo_stop = qlge_close,
4713 .ndo_start_xmit = qlge_send,
4714 .ndo_change_mtu = qlge_change_mtu,
4715 .ndo_get_stats = qlge_get_stats,
4716 .ndo_set_rx_mode = qlge_set_multicast_list,
4717 .ndo_set_mac_address = qlge_set_mac_address,
4718 .ndo_validate_addr = eth_validate_addr,
4719 .ndo_tx_timeout = qlge_tx_timeout,
4720 .ndo_set_features = qlge_set_features,
4721 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4722 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4723 };
4724
ql_timer(struct timer_list * t)4725 static void ql_timer(struct timer_list *t)
4726 {
4727 struct ql_adapter *qdev = from_timer(qdev, t, timer);
4728 u32 var = 0;
4729
4730 var = ql_read32(qdev, STS);
4731 if (pci_channel_offline(qdev->pdev)) {
4732 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4733 return;
4734 }
4735
4736 mod_timer(&qdev->timer, jiffies + (5*HZ));
4737 }
4738
qlge_probe(struct pci_dev * pdev,const struct pci_device_id * pci_entry)4739 static int qlge_probe(struct pci_dev *pdev,
4740 const struct pci_device_id *pci_entry)
4741 {
4742 struct net_device *ndev = NULL;
4743 struct ql_adapter *qdev = NULL;
4744 static int cards_found = 0;
4745 int err = 0;
4746
4747 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4748 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4749 if (!ndev)
4750 return -ENOMEM;
4751
4752 err = ql_init_device(pdev, ndev, cards_found);
4753 if (err < 0) {
4754 free_netdev(ndev);
4755 return err;
4756 }
4757
4758 qdev = netdev_priv(ndev);
4759 SET_NETDEV_DEV(ndev, &pdev->dev);
4760 ndev->hw_features = NETIF_F_SG |
4761 NETIF_F_IP_CSUM |
4762 NETIF_F_TSO |
4763 NETIF_F_TSO_ECN |
4764 NETIF_F_HW_VLAN_CTAG_TX |
4765 NETIF_F_HW_VLAN_CTAG_RX |
4766 NETIF_F_HW_VLAN_CTAG_FILTER |
4767 NETIF_F_RXCSUM;
4768 ndev->features = ndev->hw_features;
4769 ndev->vlan_features = ndev->hw_features;
4770 /* vlan gets same features (except vlan filter) */
4771 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4772 NETIF_F_HW_VLAN_CTAG_TX |
4773 NETIF_F_HW_VLAN_CTAG_RX);
4774
4775 if (test_bit(QL_DMA64, &qdev->flags))
4776 ndev->features |= NETIF_F_HIGHDMA;
4777
4778 /*
4779 * Set up net_device structure.
4780 */
4781 ndev->tx_queue_len = qdev->tx_ring_size;
4782 ndev->irq = pdev->irq;
4783
4784 ndev->netdev_ops = &qlge_netdev_ops;
4785 ndev->ethtool_ops = &qlge_ethtool_ops;
4786 ndev->watchdog_timeo = 10 * HZ;
4787
4788 /* MTU range: this driver only supports 1500 or 9000, so this only
4789 * filters out values above or below, and we'll rely on
4790 * qlge_change_mtu to make sure only 1500 or 9000 are allowed
4791 */
4792 ndev->min_mtu = ETH_DATA_LEN;
4793 ndev->max_mtu = 9000;
4794
4795 err = register_netdev(ndev);
4796 if (err) {
4797 dev_err(&pdev->dev, "net device registration failed.\n");
4798 ql_release_all(pdev);
4799 pci_disable_device(pdev);
4800 free_netdev(ndev);
4801 return err;
4802 }
4803 /* Start up the timer to trigger EEH if
4804 * the bus goes dead
4805 */
4806 timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
4807 mod_timer(&qdev->timer, jiffies + (5*HZ));
4808 ql_link_off(qdev);
4809 ql_display_dev_info(ndev);
4810 atomic_set(&qdev->lb_count, 0);
4811 cards_found++;
4812 return 0;
4813 }
4814
ql_lb_send(struct sk_buff * skb,struct net_device * ndev)4815 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4816 {
4817 return qlge_send(skb, ndev);
4818 }
4819
ql_clean_lb_rx_ring(struct rx_ring * rx_ring,int budget)4820 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4821 {
4822 return ql_clean_inbound_rx_ring(rx_ring, budget);
4823 }
4824
qlge_remove(struct pci_dev * pdev)4825 static void qlge_remove(struct pci_dev *pdev)
4826 {
4827 struct net_device *ndev = pci_get_drvdata(pdev);
4828 struct ql_adapter *qdev = netdev_priv(ndev);
4829 del_timer_sync(&qdev->timer);
4830 ql_cancel_all_work_sync(qdev);
4831 unregister_netdev(ndev);
4832 ql_release_all(pdev);
4833 pci_disable_device(pdev);
4834 free_netdev(ndev);
4835 }
4836
4837 /* Clean up resources without touching hardware. */
ql_eeh_close(struct net_device * ndev)4838 static void ql_eeh_close(struct net_device *ndev)
4839 {
4840 int i;
4841 struct ql_adapter *qdev = netdev_priv(ndev);
4842
4843 if (netif_carrier_ok(ndev)) {
4844 netif_carrier_off(ndev);
4845 netif_stop_queue(ndev);
4846 }
4847
4848 /* Disabling the timer */
4849 ql_cancel_all_work_sync(qdev);
4850
4851 for (i = 0; i < qdev->rss_ring_count; i++)
4852 netif_napi_del(&qdev->rx_ring[i].napi);
4853
4854 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4855 ql_tx_ring_clean(qdev);
4856 ql_free_rx_buffers(qdev);
4857 ql_release_adapter_resources(qdev);
4858 }
4859
4860 /*
4861 * This callback is called by the PCI subsystem whenever
4862 * a PCI bus error is detected.
4863 */
qlge_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)4864 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4865 enum pci_channel_state state)
4866 {
4867 struct net_device *ndev = pci_get_drvdata(pdev);
4868 struct ql_adapter *qdev = netdev_priv(ndev);
4869
4870 switch (state) {
4871 case pci_channel_io_normal:
4872 return PCI_ERS_RESULT_CAN_RECOVER;
4873 case pci_channel_io_frozen:
4874 netif_device_detach(ndev);
4875 del_timer_sync(&qdev->timer);
4876 if (netif_running(ndev))
4877 ql_eeh_close(ndev);
4878 pci_disable_device(pdev);
4879 return PCI_ERS_RESULT_NEED_RESET;
4880 case pci_channel_io_perm_failure:
4881 dev_err(&pdev->dev,
4882 "%s: pci_channel_io_perm_failure.\n", __func__);
4883 del_timer_sync(&qdev->timer);
4884 ql_eeh_close(ndev);
4885 set_bit(QL_EEH_FATAL, &qdev->flags);
4886 return PCI_ERS_RESULT_DISCONNECT;
4887 }
4888
4889 /* Request a slot reset. */
4890 return PCI_ERS_RESULT_NEED_RESET;
4891 }
4892
4893 /*
4894 * This callback is called after the PCI buss has been reset.
4895 * Basically, this tries to restart the card from scratch.
4896 * This is a shortened version of the device probe/discovery code,
4897 * it resembles the first-half of the () routine.
4898 */
qlge_io_slot_reset(struct pci_dev * pdev)4899 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4900 {
4901 struct net_device *ndev = pci_get_drvdata(pdev);
4902 struct ql_adapter *qdev = netdev_priv(ndev);
4903
4904 pdev->error_state = pci_channel_io_normal;
4905
4906 pci_restore_state(pdev);
4907 if (pci_enable_device(pdev)) {
4908 netif_err(qdev, ifup, qdev->ndev,
4909 "Cannot re-enable PCI device after reset.\n");
4910 return PCI_ERS_RESULT_DISCONNECT;
4911 }
4912 pci_set_master(pdev);
4913
4914 if (ql_adapter_reset(qdev)) {
4915 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4916 set_bit(QL_EEH_FATAL, &qdev->flags);
4917 return PCI_ERS_RESULT_DISCONNECT;
4918 }
4919
4920 return PCI_ERS_RESULT_RECOVERED;
4921 }
4922
qlge_io_resume(struct pci_dev * pdev)4923 static void qlge_io_resume(struct pci_dev *pdev)
4924 {
4925 struct net_device *ndev = pci_get_drvdata(pdev);
4926 struct ql_adapter *qdev = netdev_priv(ndev);
4927 int err = 0;
4928
4929 if (netif_running(ndev)) {
4930 err = qlge_open(ndev);
4931 if (err) {
4932 netif_err(qdev, ifup, qdev->ndev,
4933 "Device initialization failed after reset.\n");
4934 return;
4935 }
4936 } else {
4937 netif_err(qdev, ifup, qdev->ndev,
4938 "Device was not running prior to EEH.\n");
4939 }
4940 mod_timer(&qdev->timer, jiffies + (5*HZ));
4941 netif_device_attach(ndev);
4942 }
4943
4944 static const struct pci_error_handlers qlge_err_handler = {
4945 .error_detected = qlge_io_error_detected,
4946 .slot_reset = qlge_io_slot_reset,
4947 .resume = qlge_io_resume,
4948 };
4949
qlge_suspend(struct pci_dev * pdev,pm_message_t state)4950 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4951 {
4952 struct net_device *ndev = pci_get_drvdata(pdev);
4953 struct ql_adapter *qdev = netdev_priv(ndev);
4954 int err;
4955
4956 netif_device_detach(ndev);
4957 del_timer_sync(&qdev->timer);
4958
4959 if (netif_running(ndev)) {
4960 err = ql_adapter_down(qdev);
4961 if (!err)
4962 return err;
4963 }
4964
4965 ql_wol(qdev);
4966 err = pci_save_state(pdev);
4967 if (err)
4968 return err;
4969
4970 pci_disable_device(pdev);
4971
4972 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4973
4974 return 0;
4975 }
4976
4977 #ifdef CONFIG_PM
qlge_resume(struct pci_dev * pdev)4978 static int qlge_resume(struct pci_dev *pdev)
4979 {
4980 struct net_device *ndev = pci_get_drvdata(pdev);
4981 struct ql_adapter *qdev = netdev_priv(ndev);
4982 int err;
4983
4984 pci_set_power_state(pdev, PCI_D0);
4985 pci_restore_state(pdev);
4986 err = pci_enable_device(pdev);
4987 if (err) {
4988 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4989 return err;
4990 }
4991 pci_set_master(pdev);
4992
4993 pci_enable_wake(pdev, PCI_D3hot, 0);
4994 pci_enable_wake(pdev, PCI_D3cold, 0);
4995
4996 if (netif_running(ndev)) {
4997 err = ql_adapter_up(qdev);
4998 if (err)
4999 return err;
5000 }
5001
5002 mod_timer(&qdev->timer, jiffies + (5*HZ));
5003 netif_device_attach(ndev);
5004
5005 return 0;
5006 }
5007 #endif /* CONFIG_PM */
5008
qlge_shutdown(struct pci_dev * pdev)5009 static void qlge_shutdown(struct pci_dev *pdev)
5010 {
5011 qlge_suspend(pdev, PMSG_SUSPEND);
5012 }
5013
5014 static struct pci_driver qlge_driver = {
5015 .name = DRV_NAME,
5016 .id_table = qlge_pci_tbl,
5017 .probe = qlge_probe,
5018 .remove = qlge_remove,
5019 #ifdef CONFIG_PM
5020 .suspend = qlge_suspend,
5021 .resume = qlge_resume,
5022 #endif
5023 .shutdown = qlge_shutdown,
5024 .err_handler = &qlge_err_handler
5025 };
5026
5027 module_pci_driver(qlge_driver);
5028