1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44 
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48  * Content also used by slowpath *
49  *********************************/
50 
qede_alloc_rx_buffer(struct qede_rx_queue * rxq,bool allow_lazy)51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 	struct sw_rx_data *sw_rx_data;
54 	struct eth_rx_bd *rx_bd;
55 	dma_addr_t mapping;
56 	struct page *data;
57 
58 	/* In case lazy-allocation is allowed, postpone allocation until the
59 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 	 * sufficient buffers to guarantee an additional Rx interrupt.
61 	 */
62 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 		rxq->filled_buffers--;
64 		return 0;
65 	}
66 
67 	data = alloc_pages(GFP_ATOMIC, 0);
68 	if (unlikely(!data))
69 		return -ENOMEM;
70 
71 	/* Map the entire page as it would be used
72 	 * for multiple RX buffer segment size mapping.
73 	 */
74 	mapping = dma_map_page(rxq->dev, data, 0,
75 			       PAGE_SIZE, rxq->data_direction);
76 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 		__free_page(data);
78 		return -ENOMEM;
79 	}
80 
81 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 	sw_rx_data->page_offset = 0;
83 	sw_rx_data->data = data;
84 	sw_rx_data->mapping = mapping;
85 
86 	/* Advance PROD and get BD pointer */
87 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 	WARN_ON(!rx_bd);
89 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 				     rxq->rx_headroom);
92 
93 	rxq->sw_rx_prod++;
94 	rxq->filled_buffers++;
95 
96 	return 0;
97 }
98 
99 /* Unmap the data and free skb */
qede_free_tx_pkt(struct qede_dev * edev,struct qede_tx_queue * txq,int * len)100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101 {
102 	u16 idx = txq->sw_tx_cons;
103 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 	struct eth_tx_1st_bd *first_bd;
105 	struct eth_tx_bd *tx_data_bd;
106 	int bds_consumed = 0;
107 	int nbds;
108 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 	int i, split_bd_len = 0;
110 
111 	if (unlikely(!skb)) {
112 		DP_ERR(edev,
113 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 		return -1;
116 	}
117 
118 	*len = skb->len;
119 
120 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121 
122 	bds_consumed++;
123 
124 	nbds = first_bd->data.nbds;
125 
126 	if (data_split) {
127 		struct eth_tx_bd *split = (struct eth_tx_bd *)
128 			qed_chain_consume(&txq->tx_pbl);
129 		split_bd_len = BD_UNMAP_LEN(split);
130 		bds_consumed++;
131 	}
132 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134 
135 	/* Unmap the data of the skb frags */
136 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 		tx_data_bd = (struct eth_tx_bd *)
138 			qed_chain_consume(&txq->tx_pbl);
139 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 	}
142 
143 	while (bds_consumed++ < nbds)
144 		qed_chain_consume(&txq->tx_pbl);
145 
146 	/* Free skb */
147 	dev_kfree_skb_any(skb);
148 	txq->sw_tx_ring.skbs[idx].skb = NULL;
149 	txq->sw_tx_ring.skbs[idx].flags = 0;
150 
151 	return 0;
152 }
153 
154 /* Unmap the data and free skb when mapping failed during start_xmit */
qede_free_failed_tx_pkt(struct qede_tx_queue * txq,struct eth_tx_1st_bd * first_bd,int nbd,bool data_split)155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 				    struct eth_tx_1st_bd *first_bd,
157 				    int nbd, bool data_split)
158 {
159 	u16 idx = txq->sw_tx_prod;
160 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 	struct eth_tx_bd *tx_data_bd;
162 	int i, split_bd_len = 0;
163 
164 	/* Return prod to its position before this skb was handled */
165 	qed_chain_set_prod(&txq->tx_pbl,
166 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167 
168 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169 
170 	if (data_split) {
171 		struct eth_tx_bd *split = (struct eth_tx_bd *)
172 					  qed_chain_produce(&txq->tx_pbl);
173 		split_bd_len = BD_UNMAP_LEN(split);
174 		nbd--;
175 	}
176 
177 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179 
180 	/* Unmap the data of the skb frags */
181 	for (i = 0; i < nbd; i++) {
182 		tx_data_bd = (struct eth_tx_bd *)
183 			qed_chain_produce(&txq->tx_pbl);
184 		if (tx_data_bd->nbytes)
185 			dma_unmap_page(txq->dev,
186 				       BD_UNMAP_ADDR(tx_data_bd),
187 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 	}
189 
190 	/* Return again prod to its position before this skb was handled */
191 	qed_chain_set_prod(&txq->tx_pbl,
192 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193 
194 	/* Free skb */
195 	dev_kfree_skb_any(skb);
196 	txq->sw_tx_ring.skbs[idx].skb = NULL;
197 	txq->sw_tx_ring.skbs[idx].flags = 0;
198 }
199 
qede_xmit_type(struct sk_buff * skb,int * ipv6_ext)200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201 {
202 	u32 rc = XMIT_L4_CSUM;
203 	__be16 l3_proto;
204 
205 	if (skb->ip_summed != CHECKSUM_PARTIAL)
206 		return XMIT_PLAIN;
207 
208 	l3_proto = vlan_get_protocol(skb);
209 	if (l3_proto == htons(ETH_P_IPV6) &&
210 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 		*ipv6_ext = 1;
212 
213 	if (skb->encapsulation) {
214 		rc |= XMIT_ENC;
215 		if (skb_is_gso(skb)) {
216 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
217 
218 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 			    (gso_type & SKB_GSO_GRE_CSUM))
220 				rc |= XMIT_ENC_GSO_L4_CSUM;
221 
222 			rc |= XMIT_LSO;
223 			return rc;
224 		}
225 	}
226 
227 	if (skb_is_gso(skb))
228 		rc |= XMIT_LSO;
229 
230 	return rc;
231 }
232 
qede_set_params_for_ipv6_ext(struct sk_buff * skb,struct eth_tx_2nd_bd * second_bd,struct eth_tx_3rd_bd * third_bd)233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 					 struct eth_tx_2nd_bd *second_bd,
235 					 struct eth_tx_3rd_bd *third_bd)
236 {
237 	u8 l4_proto;
238 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
239 
240 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241 
242 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245 
246 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248 
249 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 		l4_proto = ipv6_hdr(skb)->nexthdr;
251 	else
252 		l4_proto = ip_hdr(skb)->protocol;
253 
254 	if (l4_proto == IPPROTO_UDP)
255 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256 
257 	if (third_bd)
258 		third_bd->data.bitfields |=
259 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262 
263 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265 }
266 
map_frag_to_bd(struct qede_tx_queue * txq,skb_frag_t * frag,struct eth_tx_bd * bd)267 static int map_frag_to_bd(struct qede_tx_queue *txq,
268 			  skb_frag_t *frag, struct eth_tx_bd *bd)
269 {
270 	dma_addr_t mapping;
271 
272 	/* Map skb non-linear frag data for DMA */
273 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 				   skb_frag_size(frag), DMA_TO_DEVICE);
275 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 		return -ENOMEM;
277 
278 	/* Setup the data pointer of the frag data */
279 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280 
281 	return 0;
282 }
283 
qede_get_skb_hlen(struct sk_buff * skb,bool is_encap_pkt)284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285 {
286 	if (is_encap_pkt)
287 		return (skb_inner_transport_header(skb) +
288 			inner_tcp_hdrlen(skb) - skb->data);
289 	else
290 		return (skb_transport_header(skb) +
291 			tcp_hdrlen(skb) - skb->data);
292 }
293 
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
qede_pkt_req_lin(struct sk_buff * skb,u8 xmit_type)296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297 {
298 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299 
300 	if (xmit_type & XMIT_LSO) {
301 		int hlen;
302 
303 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304 
305 		/* linear payload would require its own BD */
306 		if (skb_headlen(skb) > hlen)
307 			allowed_frags--;
308 	}
309 
310 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
311 }
312 #endif
313 
qede_update_tx_producer(struct qede_tx_queue * txq)314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315 {
316 	/* wmb makes sure that the BDs data is updated before updating the
317 	 * producer, otherwise FW may read old data from the BDs.
318 	 */
319 	wmb();
320 	barrier();
321 	writel(txq->tx_db.raw, txq->doorbell_addr);
322 
323 	/* Fence required to flush the write combined buffer, since another
324 	 * CPU may write to the same doorbell address and data may be lost
325 	 * due to relaxed order nature of write combined bar.
326 	 */
327 	wmb();
328 }
329 
qede_xdp_xmit(struct qede_dev * edev,struct qede_fastpath * fp,struct sw_rx_data * metadata,u16 padding,u16 length)330 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
331 			 struct sw_rx_data *metadata, u16 padding, u16 length)
332 {
333 	struct qede_tx_queue *txq = fp->xdp_tx;
334 	struct eth_tx_1st_bd *first_bd;
335 	u16 idx = txq->sw_tx_prod;
336 	u16 val;
337 
338 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
339 		txq->stopped_cnt++;
340 		return -ENOMEM;
341 	}
342 
343 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344 
345 	memset(first_bd, 0, sizeof(*first_bd));
346 	first_bd->data.bd_flags.bitfields =
347 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
348 
349 	val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
350 	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
351 
352 	first_bd->data.bitfields |= cpu_to_le16(val);
353 	first_bd->data.nbds = 1;
354 
355 	/* We can safely ignore the offset, as it's 0 for XDP */
356 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
357 
358 	/* Synchronize the buffer back to device, as program [probably]
359 	 * has changed it.
360 	 */
361 	dma_sync_single_for_device(&edev->pdev->dev,
362 				   metadata->mapping + padding,
363 				   length, PCI_DMA_TODEVICE);
364 
365 	txq->sw_tx_ring.xdp[idx].page = metadata->data;
366 	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
367 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
368 
369 	/* Mark the fastpath for future XDP doorbell */
370 	fp->xdp_xmit = 1;
371 
372 	return 0;
373 }
374 
qede_txq_has_work(struct qede_tx_queue * txq)375 int qede_txq_has_work(struct qede_tx_queue *txq)
376 {
377 	u16 hw_bd_cons;
378 
379 	/* Tell compiler that consumer and producer can change */
380 	barrier();
381 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
382 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
383 		return 0;
384 
385 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
386 }
387 
qede_xdp_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)388 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
389 {
390 	u16 hw_bd_cons, idx;
391 
392 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
393 	barrier();
394 
395 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
396 		qed_chain_consume(&txq->tx_pbl);
397 		idx = txq->sw_tx_cons;
398 
399 		dma_unmap_page(&edev->pdev->dev,
400 			       txq->sw_tx_ring.xdp[idx].mapping,
401 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
402 		__free_page(txq->sw_tx_ring.xdp[idx].page);
403 
404 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
405 		txq->xmit_pkts++;
406 	}
407 }
408 
qede_tx_int(struct qede_dev * edev,struct qede_tx_queue * txq)409 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
410 {
411 	unsigned int pkts_compl = 0, bytes_compl = 0;
412 	struct netdev_queue *netdev_txq;
413 	u16 hw_bd_cons;
414 	int rc;
415 
416 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
417 
418 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
419 	barrier();
420 
421 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
422 		int len = 0;
423 
424 		rc = qede_free_tx_pkt(edev, txq, &len);
425 		if (rc) {
426 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
427 				  hw_bd_cons,
428 				  qed_chain_get_cons_idx(&txq->tx_pbl));
429 			break;
430 		}
431 
432 		bytes_compl += len;
433 		pkts_compl++;
434 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
435 		txq->xmit_pkts++;
436 	}
437 
438 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
439 
440 	/* Need to make the tx_bd_cons update visible to start_xmit()
441 	 * before checking for netif_tx_queue_stopped().  Without the
442 	 * memory barrier, there is a small possibility that
443 	 * start_xmit() will miss it and cause the queue to be stopped
444 	 * forever.
445 	 * On the other hand we need an rmb() here to ensure the proper
446 	 * ordering of bit testing in the following
447 	 * netif_tx_queue_stopped(txq) call.
448 	 */
449 	smp_mb();
450 
451 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
452 		/* Taking tx_lock is needed to prevent reenabling the queue
453 		 * while it's empty. This could have happen if rx_action() gets
454 		 * suspended in qede_tx_int() after the condition before
455 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
456 		 *
457 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
458 		 * sends some packets consuming the whole queue again->
459 		 * stops the queue
460 		 */
461 
462 		__netif_tx_lock(netdev_txq, smp_processor_id());
463 
464 		if ((netif_tx_queue_stopped(netdev_txq)) &&
465 		    (edev->state == QEDE_STATE_OPEN) &&
466 		    (qed_chain_get_elem_left(&txq->tx_pbl)
467 		      >= (MAX_SKB_FRAGS + 1))) {
468 			netif_tx_wake_queue(netdev_txq);
469 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
470 				   "Wake queue was called\n");
471 		}
472 
473 		__netif_tx_unlock(netdev_txq);
474 	}
475 
476 	return 0;
477 }
478 
qede_has_rx_work(struct qede_rx_queue * rxq)479 bool qede_has_rx_work(struct qede_rx_queue *rxq)
480 {
481 	u16 hw_comp_cons, sw_comp_cons;
482 
483 	/* Tell compiler that status block fields can change */
484 	barrier();
485 
486 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
487 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
488 
489 	return hw_comp_cons != sw_comp_cons;
490 }
491 
qede_rx_bd_ring_consume(struct qede_rx_queue * rxq)492 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
493 {
494 	qed_chain_consume(&rxq->rx_bd_ring);
495 	rxq->sw_rx_cons++;
496 }
497 
498 /* This function reuses the buffer(from an offset) from
499  * consumer index to producer index in the bd ring
500  */
qede_reuse_page(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)501 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
502 				   struct sw_rx_data *curr_cons)
503 {
504 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
505 	struct sw_rx_data *curr_prod;
506 	dma_addr_t new_mapping;
507 
508 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
509 	*curr_prod = *curr_cons;
510 
511 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
512 
513 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
514 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
515 					  rxq->rx_headroom);
516 
517 	rxq->sw_rx_prod++;
518 	curr_cons->data = NULL;
519 }
520 
521 /* In case of allocation failures reuse buffers
522  * from consumer index to produce buffers for firmware
523  */
qede_recycle_rx_bd_ring(struct qede_rx_queue * rxq,u8 count)524 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
525 {
526 	struct sw_rx_data *curr_cons;
527 
528 	for (; count > 0; count--) {
529 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
530 		qede_reuse_page(rxq, curr_cons);
531 		qede_rx_bd_ring_consume(rxq);
532 	}
533 }
534 
qede_realloc_rx_buffer(struct qede_rx_queue * rxq,struct sw_rx_data * curr_cons)535 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
536 					 struct sw_rx_data *curr_cons)
537 {
538 	/* Move to the next segment in the page */
539 	curr_cons->page_offset += rxq->rx_buf_seg_size;
540 
541 	if (curr_cons->page_offset == PAGE_SIZE) {
542 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
543 			/* Since we failed to allocate new buffer
544 			 * current buffer can be used again.
545 			 */
546 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
547 
548 			return -ENOMEM;
549 		}
550 
551 		dma_unmap_page(rxq->dev, curr_cons->mapping,
552 			       PAGE_SIZE, rxq->data_direction);
553 	} else {
554 		/* Increment refcount of the page as we don't want
555 		 * network stack to take the ownership of the page
556 		 * which can be recycled multiple times by the driver.
557 		 */
558 		page_ref_inc(curr_cons->data);
559 		qede_reuse_page(rxq, curr_cons);
560 	}
561 
562 	return 0;
563 }
564 
qede_update_rx_prod(struct qede_dev * edev,struct qede_rx_queue * rxq)565 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
566 {
567 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
568 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
569 	struct eth_rx_prod_data rx_prods = {0};
570 
571 	/* Update producers */
572 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
573 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
574 
575 	/* Make sure that the BD and SGE data is updated before updating the
576 	 * producers since FW might read the BD/SGE right after the producer
577 	 * is updated.
578 	 */
579 	wmb();
580 
581 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
582 			(u32 *)&rx_prods);
583 }
584 
qede_get_rxhash(struct sk_buff * skb,u8 bitfields,__le32 rss_hash)585 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
586 {
587 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
588 	enum rss_hash_type htype;
589 	u32 hash = 0;
590 
591 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
592 	if (htype) {
593 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
594 			     (htype == RSS_HASH_TYPE_IPV6)) ?
595 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
596 		hash = le32_to_cpu(rss_hash);
597 	}
598 	skb_set_hash(skb, hash, hash_type);
599 }
600 
qede_set_skb_csum(struct sk_buff * skb,u8 csum_flag)601 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
602 {
603 	skb_checksum_none_assert(skb);
604 
605 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
606 		skb->ip_summed = CHECKSUM_UNNECESSARY;
607 
608 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
609 		skb->csum_level = 1;
610 		skb->encapsulation = 1;
611 	}
612 }
613 
qede_skb_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct sk_buff * skb,u16 vlan_tag)614 static inline void qede_skb_receive(struct qede_dev *edev,
615 				    struct qede_fastpath *fp,
616 				    struct qede_rx_queue *rxq,
617 				    struct sk_buff *skb, u16 vlan_tag)
618 {
619 	if (vlan_tag)
620 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
621 
622 	napi_gro_receive(&fp->napi, skb);
623 }
624 
qede_set_gro_params(struct qede_dev * edev,struct sk_buff * skb,struct eth_fast_path_rx_tpa_start_cqe * cqe)625 static void qede_set_gro_params(struct qede_dev *edev,
626 				struct sk_buff *skb,
627 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
628 {
629 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
630 
631 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
632 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
633 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
634 	else
635 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
636 
637 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
638 				    cqe->header_len;
639 }
640 
qede_fill_frag_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,u8 tpa_agg_index,u16 len_on_bd)641 static int qede_fill_frag_skb(struct qede_dev *edev,
642 			      struct qede_rx_queue *rxq,
643 			      u8 tpa_agg_index, u16 len_on_bd)
644 {
645 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
646 							 NUM_RX_BDS_MAX];
647 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
648 	struct sk_buff *skb = tpa_info->skb;
649 
650 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
651 		goto out;
652 
653 	/* Add one frag and update the appropriate fields in the skb */
654 	skb_fill_page_desc(skb, tpa_info->frag_id++,
655 			   current_bd->data,
656 			   current_bd->page_offset + rxq->rx_headroom,
657 			   len_on_bd);
658 
659 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
660 		/* Incr page ref count to reuse on allocation failure
661 		 * so that it doesn't get freed while freeing SKB.
662 		 */
663 		page_ref_inc(current_bd->data);
664 		goto out;
665 	}
666 
667 	qede_rx_bd_ring_consume(rxq);
668 
669 	skb->data_len += len_on_bd;
670 	skb->truesize += rxq->rx_buf_seg_size;
671 	skb->len += len_on_bd;
672 
673 	return 0;
674 
675 out:
676 	tpa_info->state = QEDE_AGG_STATE_ERROR;
677 	qede_recycle_rx_bd_ring(rxq, 1);
678 
679 	return -ENOMEM;
680 }
681 
qede_tunn_exist(u16 flag)682 static bool qede_tunn_exist(u16 flag)
683 {
684 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
685 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
686 }
687 
qede_check_tunn_csum(u16 flag)688 static u8 qede_check_tunn_csum(u16 flag)
689 {
690 	u16 csum_flag = 0;
691 	u8 tcsum = 0;
692 
693 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
694 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
695 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
696 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
697 
698 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
699 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
700 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
701 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
702 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
703 	}
704 
705 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
706 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
707 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
708 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
709 
710 	if (csum_flag & flag)
711 		return QEDE_CSUM_ERROR;
712 
713 	return QEDE_CSUM_UNNECESSARY | tcsum;
714 }
715 
716 static inline struct sk_buff *
qede_build_skb(struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)717 qede_build_skb(struct qede_rx_queue *rxq,
718 	       struct sw_rx_data *bd, u16 len, u16 pad)
719 {
720 	struct sk_buff *skb;
721 	void *buf;
722 
723 	buf = page_address(bd->data) + bd->page_offset;
724 	skb = build_skb(buf, rxq->rx_buf_seg_size);
725 
726 	skb_reserve(skb, pad);
727 	skb_put(skb, len);
728 
729 	return skb;
730 }
731 
732 static struct sk_buff *
qede_tpa_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad,bool alloc_skb)733 qede_tpa_rx_build_skb(struct qede_dev *edev,
734 		      struct qede_rx_queue *rxq,
735 		      struct sw_rx_data *bd, u16 len, u16 pad,
736 		      bool alloc_skb)
737 {
738 	struct sk_buff *skb;
739 
740 	skb = qede_build_skb(rxq, bd, len, pad);
741 	bd->page_offset += rxq->rx_buf_seg_size;
742 
743 	if (bd->page_offset == PAGE_SIZE) {
744 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
745 			DP_NOTICE(edev,
746 				  "Failed to allocate RX buffer for tpa start\n");
747 			bd->page_offset -= rxq->rx_buf_seg_size;
748 			page_ref_inc(bd->data);
749 			dev_kfree_skb_any(skb);
750 			return NULL;
751 		}
752 	} else {
753 		page_ref_inc(bd->data);
754 		qede_reuse_page(rxq, bd);
755 	}
756 
757 	/* We've consumed the first BD and prepared an SKB */
758 	qede_rx_bd_ring_consume(rxq);
759 
760 	return skb;
761 }
762 
763 static struct sk_buff *
qede_rx_build_skb(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sw_rx_data * bd,u16 len,u16 pad)764 qede_rx_build_skb(struct qede_dev *edev,
765 		  struct qede_rx_queue *rxq,
766 		  struct sw_rx_data *bd, u16 len, u16 pad)
767 {
768 	struct sk_buff *skb = NULL;
769 
770 	/* For smaller frames still need to allocate skb, memcpy
771 	 * data and benefit in reusing the page segment instead of
772 	 * un-mapping it.
773 	 */
774 	if ((len + pad <= edev->rx_copybreak)) {
775 		unsigned int offset = bd->page_offset + pad;
776 
777 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
778 		if (unlikely(!skb))
779 			return NULL;
780 
781 		skb_reserve(skb, pad);
782 		skb_put_data(skb, page_address(bd->data) + offset, len);
783 		qede_reuse_page(rxq, bd);
784 		goto out;
785 	}
786 
787 	skb = qede_build_skb(rxq, bd, len, pad);
788 
789 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
790 		/* Incr page ref count to reuse on allocation failure so
791 		 * that it doesn't get freed while freeing SKB [as its
792 		 * already mapped there].
793 		 */
794 		page_ref_inc(bd->data);
795 		dev_kfree_skb_any(skb);
796 		return NULL;
797 	}
798 out:
799 	/* We've consumed the first BD and prepared an SKB */
800 	qede_rx_bd_ring_consume(rxq);
801 
802 	return skb;
803 }
804 
qede_tpa_start(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_start_cqe * cqe)805 static void qede_tpa_start(struct qede_dev *edev,
806 			   struct qede_rx_queue *rxq,
807 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
808 {
809 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
810 	struct sw_rx_data *sw_rx_data_cons;
811 	u16 pad;
812 
813 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
814 	pad = cqe->placement_offset + rxq->rx_headroom;
815 
816 	tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
817 					      le16_to_cpu(cqe->len_on_first_bd),
818 					      pad, false);
819 	tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
820 	tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
821 
822 	if (unlikely(!tpa_info->skb)) {
823 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
824 
825 		/* Consume from ring but do not produce since
826 		 * this might be used by FW still, it will be re-used
827 		 * at TPA end.
828 		 */
829 		tpa_info->tpa_start_fail = true;
830 		qede_rx_bd_ring_consume(rxq);
831 		tpa_info->state = QEDE_AGG_STATE_ERROR;
832 		goto cons_buf;
833 	}
834 
835 	tpa_info->frag_id = 0;
836 	tpa_info->state = QEDE_AGG_STATE_START;
837 
838 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
839 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
840 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
841 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
842 	else
843 		tpa_info->vlan_tag = 0;
844 
845 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
846 
847 	/* This is needed in order to enable forwarding support */
848 	qede_set_gro_params(edev, tpa_info->skb, cqe);
849 
850 cons_buf: /* We still need to handle bd_len_list to consume buffers */
851 	if (likely(cqe->ext_bd_len_list[0]))
852 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
853 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
854 
855 	if (unlikely(cqe->ext_bd_len_list[1])) {
856 		DP_ERR(edev,
857 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
858 		tpa_info->state = QEDE_AGG_STATE_ERROR;
859 	}
860 }
861 
862 #ifdef CONFIG_INET
qede_gro_ip_csum(struct sk_buff * skb)863 static void qede_gro_ip_csum(struct sk_buff *skb)
864 {
865 	const struct iphdr *iph = ip_hdr(skb);
866 	struct tcphdr *th;
867 
868 	skb_set_transport_header(skb, sizeof(struct iphdr));
869 	th = tcp_hdr(skb);
870 
871 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
872 				  iph->saddr, iph->daddr, 0);
873 
874 	tcp_gro_complete(skb);
875 }
876 
qede_gro_ipv6_csum(struct sk_buff * skb)877 static void qede_gro_ipv6_csum(struct sk_buff *skb)
878 {
879 	struct ipv6hdr *iph = ipv6_hdr(skb);
880 	struct tcphdr *th;
881 
882 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
883 	th = tcp_hdr(skb);
884 
885 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
886 				  &iph->saddr, &iph->daddr, 0);
887 	tcp_gro_complete(skb);
888 }
889 #endif
890 
qede_gro_receive(struct qede_dev * edev,struct qede_fastpath * fp,struct sk_buff * skb,u16 vlan_tag)891 static void qede_gro_receive(struct qede_dev *edev,
892 			     struct qede_fastpath *fp,
893 			     struct sk_buff *skb,
894 			     u16 vlan_tag)
895 {
896 	/* FW can send a single MTU sized packet from gro flow
897 	 * due to aggregation timeout/last segment etc. which
898 	 * is not expected to be a gro packet. If a skb has zero
899 	 * frags then simply push it in the stack as non gso skb.
900 	 */
901 	if (unlikely(!skb->data_len)) {
902 		skb_shinfo(skb)->gso_type = 0;
903 		skb_shinfo(skb)->gso_size = 0;
904 		goto send_skb;
905 	}
906 
907 #ifdef CONFIG_INET
908 	if (skb_shinfo(skb)->gso_size) {
909 		skb_reset_network_header(skb);
910 
911 		switch (skb->protocol) {
912 		case htons(ETH_P_IP):
913 			qede_gro_ip_csum(skb);
914 			break;
915 		case htons(ETH_P_IPV6):
916 			qede_gro_ipv6_csum(skb);
917 			break;
918 		default:
919 			DP_ERR(edev,
920 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
921 			       ntohs(skb->protocol));
922 		}
923 	}
924 #endif
925 
926 send_skb:
927 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
928 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
929 }
930 
qede_tpa_cont(struct qede_dev * edev,struct qede_rx_queue * rxq,struct eth_fast_path_rx_tpa_cont_cqe * cqe)931 static inline void qede_tpa_cont(struct qede_dev *edev,
932 				 struct qede_rx_queue *rxq,
933 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
934 {
935 	int i;
936 
937 	for (i = 0; cqe->len_list[i]; i++)
938 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
939 				   le16_to_cpu(cqe->len_list[i]));
940 
941 	if (unlikely(i > 1))
942 		DP_ERR(edev,
943 		       "Strange - TPA cont with more than a single len_list entry\n");
944 }
945 
qede_tpa_end(struct qede_dev * edev,struct qede_fastpath * fp,struct eth_fast_path_rx_tpa_end_cqe * cqe)946 static int qede_tpa_end(struct qede_dev *edev,
947 			struct qede_fastpath *fp,
948 			struct eth_fast_path_rx_tpa_end_cqe *cqe)
949 {
950 	struct qede_rx_queue *rxq = fp->rxq;
951 	struct qede_agg_info *tpa_info;
952 	struct sk_buff *skb;
953 	int i;
954 
955 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
956 	skb = tpa_info->skb;
957 
958 	if (tpa_info->buffer.page_offset == PAGE_SIZE)
959 		dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
960 			       PAGE_SIZE, rxq->data_direction);
961 
962 	for (i = 0; cqe->len_list[i]; i++)
963 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
964 				   le16_to_cpu(cqe->len_list[i]));
965 	if (unlikely(i > 1))
966 		DP_ERR(edev,
967 		       "Strange - TPA emd with more than a single len_list entry\n");
968 
969 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
970 		goto err;
971 
972 	/* Sanity */
973 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
974 		DP_ERR(edev,
975 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
976 		       cqe->num_of_bds, tpa_info->frag_id);
977 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
978 		DP_ERR(edev,
979 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
980 		       le16_to_cpu(cqe->total_packet_len), skb->len);
981 
982 	/* Finalize the SKB */
983 	skb->protocol = eth_type_trans(skb, edev->ndev);
984 	skb->ip_summed = CHECKSUM_UNNECESSARY;
985 
986 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
987 	 * to skb_shinfo(skb)->gso_segs
988 	 */
989 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
990 
991 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
992 
993 	tpa_info->state = QEDE_AGG_STATE_NONE;
994 
995 	return 1;
996 err:
997 	tpa_info->state = QEDE_AGG_STATE_NONE;
998 
999 	if (tpa_info->tpa_start_fail) {
1000 		qede_reuse_page(rxq, &tpa_info->buffer);
1001 		tpa_info->tpa_start_fail = false;
1002 	}
1003 
1004 	dev_kfree_skb_any(tpa_info->skb);
1005 	tpa_info->skb = NULL;
1006 	return 0;
1007 }
1008 
qede_check_notunn_csum(u16 flag)1009 static u8 qede_check_notunn_csum(u16 flag)
1010 {
1011 	u16 csum_flag = 0;
1012 	u8 csum = 0;
1013 
1014 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1015 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1016 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1017 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1018 		csum = QEDE_CSUM_UNNECESSARY;
1019 	}
1020 
1021 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1022 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1023 
1024 	if (csum_flag & flag)
1025 		return QEDE_CSUM_ERROR;
1026 
1027 	return csum;
1028 }
1029 
qede_check_csum(u16 flag)1030 static u8 qede_check_csum(u16 flag)
1031 {
1032 	if (!qede_tunn_exist(flag))
1033 		return qede_check_notunn_csum(flag);
1034 	else
1035 		return qede_check_tunn_csum(flag);
1036 }
1037 
qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe * cqe,u16 flag)1038 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1039 				      u16 flag)
1040 {
1041 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1042 
1043 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1044 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1045 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1046 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1047 		return true;
1048 
1049 	return false;
1050 }
1051 
1052 /* Return true iff packet is to be passed to stack */
qede_rx_xdp(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,struct bpf_prog * prog,struct sw_rx_data * bd,struct eth_fast_path_rx_reg_cqe * cqe,u16 * data_offset,u16 * len)1053 static bool qede_rx_xdp(struct qede_dev *edev,
1054 			struct qede_fastpath *fp,
1055 			struct qede_rx_queue *rxq,
1056 			struct bpf_prog *prog,
1057 			struct sw_rx_data *bd,
1058 			struct eth_fast_path_rx_reg_cqe *cqe,
1059 			u16 *data_offset, u16 *len)
1060 {
1061 	struct xdp_buff xdp;
1062 	enum xdp_action act;
1063 
1064 	xdp.data_hard_start = page_address(bd->data);
1065 	xdp.data = xdp.data_hard_start + *data_offset;
1066 	xdp_set_data_meta_invalid(&xdp);
1067 	xdp.data_end = xdp.data + *len;
1068 	xdp.rxq = &rxq->xdp_rxq;
1069 
1070 	/* Queues always have a full reset currently, so for the time
1071 	 * being until there's atomic program replace just mark read
1072 	 * side for map helpers.
1073 	 */
1074 	rcu_read_lock();
1075 	act = bpf_prog_run_xdp(prog, &xdp);
1076 	rcu_read_unlock();
1077 
1078 	/* Recalculate, as XDP might have changed the headers */
1079 	*data_offset = xdp.data - xdp.data_hard_start;
1080 	*len = xdp.data_end - xdp.data;
1081 
1082 	if (act == XDP_PASS)
1083 		return true;
1084 
1085 	/* Count number of packets not to be passed to stack */
1086 	rxq->xdp_no_pass++;
1087 
1088 	switch (act) {
1089 	case XDP_TX:
1090 		/* We need the replacement buffer before transmit. */
1091 		if (qede_alloc_rx_buffer(rxq, true)) {
1092 			qede_recycle_rx_bd_ring(rxq, 1);
1093 			trace_xdp_exception(edev->ndev, prog, act);
1094 			return false;
1095 		}
1096 
1097 		/* Now if there's a transmission problem, we'd still have to
1098 		 * throw current buffer, as replacement was already allocated.
1099 		 */
1100 		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1101 			dma_unmap_page(rxq->dev, bd->mapping,
1102 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1103 			__free_page(bd->data);
1104 			trace_xdp_exception(edev->ndev, prog, act);
1105 		}
1106 
1107 		/* Regardless, we've consumed an Rx BD */
1108 		qede_rx_bd_ring_consume(rxq);
1109 		return false;
1110 
1111 	default:
1112 		bpf_warn_invalid_xdp_action(act);
1113 		/* Fall through */
1114 	case XDP_ABORTED:
1115 		trace_xdp_exception(edev->ndev, prog, act);
1116 		/* Fall through */
1117 	case XDP_DROP:
1118 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1119 	}
1120 
1121 	return false;
1122 }
1123 
qede_rx_build_jumbo(struct qede_dev * edev,struct qede_rx_queue * rxq,struct sk_buff * skb,struct eth_fast_path_rx_reg_cqe * cqe,u16 first_bd_len)1124 static int qede_rx_build_jumbo(struct qede_dev *edev,
1125 			       struct qede_rx_queue *rxq,
1126 			       struct sk_buff *skb,
1127 			       struct eth_fast_path_rx_reg_cqe *cqe,
1128 			       u16 first_bd_len)
1129 {
1130 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1131 	struct sw_rx_data *bd;
1132 	u16 bd_cons_idx;
1133 	u8 num_frags;
1134 
1135 	pkt_len -= first_bd_len;
1136 
1137 	/* We've already used one BD for the SKB. Now take care of the rest */
1138 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1139 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1140 		    pkt_len;
1141 
1142 		if (unlikely(!cur_size)) {
1143 			DP_ERR(edev,
1144 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1145 			       num_frags);
1146 			goto out;
1147 		}
1148 
1149 		/* We need a replacement buffer for each BD */
1150 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1151 			goto out;
1152 
1153 		/* Now that we've allocated the replacement buffer,
1154 		 * we can safely consume the next BD and map it to the SKB.
1155 		 */
1156 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1157 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1158 		qede_rx_bd_ring_consume(rxq);
1159 
1160 		dma_unmap_page(rxq->dev, bd->mapping,
1161 			       PAGE_SIZE, DMA_FROM_DEVICE);
1162 
1163 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1164 				   bd->data, rxq->rx_headroom, cur_size);
1165 
1166 		skb->truesize += PAGE_SIZE;
1167 		skb->data_len += cur_size;
1168 		skb->len += cur_size;
1169 		pkt_len -= cur_size;
1170 	}
1171 
1172 	if (unlikely(pkt_len))
1173 		DP_ERR(edev,
1174 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1175 		       pkt_len);
1176 
1177 out:
1178 	return num_frags;
1179 }
1180 
qede_rx_process_tpa_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq,union eth_rx_cqe * cqe,enum eth_rx_cqe_type type)1181 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1182 				   struct qede_fastpath *fp,
1183 				   struct qede_rx_queue *rxq,
1184 				   union eth_rx_cqe *cqe,
1185 				   enum eth_rx_cqe_type type)
1186 {
1187 	switch (type) {
1188 	case ETH_RX_CQE_TYPE_TPA_START:
1189 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1190 		return 0;
1191 	case ETH_RX_CQE_TYPE_TPA_CONT:
1192 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1193 		return 0;
1194 	case ETH_RX_CQE_TYPE_TPA_END:
1195 		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1196 	default:
1197 		return 0;
1198 	}
1199 }
1200 
qede_rx_process_cqe(struct qede_dev * edev,struct qede_fastpath * fp,struct qede_rx_queue * rxq)1201 static int qede_rx_process_cqe(struct qede_dev *edev,
1202 			       struct qede_fastpath *fp,
1203 			       struct qede_rx_queue *rxq)
1204 {
1205 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1206 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1207 	u16 len, pad, bd_cons_idx, parse_flag;
1208 	enum eth_rx_cqe_type cqe_type;
1209 	union eth_rx_cqe *cqe;
1210 	struct sw_rx_data *bd;
1211 	struct sk_buff *skb;
1212 	__le16 flags;
1213 	u8 csum_flag;
1214 
1215 	/* Get the CQE from the completion ring */
1216 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1217 	cqe_type = cqe->fast_path_regular.type;
1218 
1219 	/* Process an unlikely slowpath event */
1220 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1221 		struct eth_slow_path_rx_cqe *sp_cqe;
1222 
1223 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1224 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1225 		return 0;
1226 	}
1227 
1228 	/* Handle TPA cqes */
1229 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1230 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1231 
1232 	/* Get the data from the SW ring; Consume it only after it's evident
1233 	 * we wouldn't recycle it.
1234 	 */
1235 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1236 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1237 
1238 	fp_cqe = &cqe->fast_path_regular;
1239 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1240 	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1241 
1242 	/* Run eBPF program if one is attached */
1243 	if (xdp_prog)
1244 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1245 				 &pad, &len))
1246 			return 0;
1247 
1248 	/* If this is an error packet then drop it */
1249 	flags = cqe->fast_path_regular.pars_flags.flags;
1250 	parse_flag = le16_to_cpu(flags);
1251 
1252 	csum_flag = qede_check_csum(parse_flag);
1253 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1254 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1255 			rxq->rx_ip_frags++;
1256 		else
1257 			rxq->rx_hw_errors++;
1258 	}
1259 
1260 	/* Basic validation passed; Need to prepare an SKB. This would also
1261 	 * guarantee to finally consume the first BD upon success.
1262 	 */
1263 	skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1264 	if (!skb) {
1265 		rxq->rx_alloc_errors++;
1266 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1267 		return 0;
1268 	}
1269 
1270 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1271 	 * by a single cqe.
1272 	 */
1273 	if (fp_cqe->bd_num > 1) {
1274 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1275 							 fp_cqe, len);
1276 
1277 		if (unlikely(unmapped_frags > 0)) {
1278 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1279 			dev_kfree_skb_any(skb);
1280 			return 0;
1281 		}
1282 	}
1283 
1284 	/* The SKB contains all the data. Now prepare meta-magic */
1285 	skb->protocol = eth_type_trans(skb, edev->ndev);
1286 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1287 	qede_set_skb_csum(skb, csum_flag);
1288 	skb_record_rx_queue(skb, rxq->rxq_id);
1289 	qede_ptp_record_rx_ts(edev, cqe, skb);
1290 
1291 	/* SKB is prepared - pass it to stack */
1292 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1293 
1294 	return 1;
1295 }
1296 
qede_rx_int(struct qede_fastpath * fp,int budget)1297 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1298 {
1299 	struct qede_rx_queue *rxq = fp->rxq;
1300 	struct qede_dev *edev = fp->edev;
1301 	int work_done = 0, rcv_pkts = 0;
1302 	u16 hw_comp_cons, sw_comp_cons;
1303 
1304 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1305 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1306 
1307 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1308 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1309 	 * read before it is written by FW, then FW writes CQE and SB, and then
1310 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1311 	 */
1312 	rmb();
1313 
1314 	/* Loop to complete all indicated BDs */
1315 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1316 		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1317 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1318 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1319 		work_done++;
1320 	}
1321 
1322 	rxq->rcv_pkts += rcv_pkts;
1323 
1324 	/* Allocate replacement buffers */
1325 	while (rxq->num_rx_buffers - rxq->filled_buffers)
1326 		if (qede_alloc_rx_buffer(rxq, false))
1327 			break;
1328 
1329 	/* Update producers */
1330 	qede_update_rx_prod(edev, rxq);
1331 
1332 	return work_done;
1333 }
1334 
qede_poll_is_more_work(struct qede_fastpath * fp)1335 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1336 {
1337 	qed_sb_update_sb_idx(fp->sb_info);
1338 
1339 	/* *_has_*_work() reads the status block, thus we need to ensure that
1340 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1341 	 * prior to this check (*_has_*_work) so that we won't write the
1342 	 * "newer" value of the status block to HW (if there was a DMA right
1343 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1344 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1345 	 * In this case there will never be another interrupt until there is
1346 	 * another update of the status block, while there is still unhandled
1347 	 * work.
1348 	 */
1349 	rmb();
1350 
1351 	if (likely(fp->type & QEDE_FASTPATH_RX))
1352 		if (qede_has_rx_work(fp->rxq))
1353 			return true;
1354 
1355 	if (fp->type & QEDE_FASTPATH_XDP)
1356 		if (qede_txq_has_work(fp->xdp_tx))
1357 			return true;
1358 
1359 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1360 		int cos;
1361 
1362 		for_each_cos_in_txq(fp->edev, cos) {
1363 			if (qede_txq_has_work(&fp->txq[cos]))
1364 				return true;
1365 		}
1366 	}
1367 
1368 	return false;
1369 }
1370 
1371 /*********************
1372  * NDO & API related *
1373  *********************/
qede_poll(struct napi_struct * napi,int budget)1374 int qede_poll(struct napi_struct *napi, int budget)
1375 {
1376 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1377 						napi);
1378 	struct qede_dev *edev = fp->edev;
1379 	int rx_work_done = 0;
1380 
1381 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1382 		int cos;
1383 
1384 		for_each_cos_in_txq(fp->edev, cos) {
1385 			if (qede_txq_has_work(&fp->txq[cos]))
1386 				qede_tx_int(edev, &fp->txq[cos]);
1387 		}
1388 	}
1389 
1390 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1391 		qede_xdp_tx_int(edev, fp->xdp_tx);
1392 
1393 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1394 			qede_has_rx_work(fp->rxq)) ?
1395 			qede_rx_int(fp, budget) : 0;
1396 	if (rx_work_done < budget) {
1397 		if (!qede_poll_is_more_work(fp)) {
1398 			napi_complete_done(napi, rx_work_done);
1399 
1400 			/* Update and reenable interrupts */
1401 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1402 		} else {
1403 			rx_work_done = budget;
1404 		}
1405 	}
1406 
1407 	if (fp->xdp_xmit) {
1408 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1409 
1410 		fp->xdp_xmit = 0;
1411 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1412 		qede_update_tx_producer(fp->xdp_tx);
1413 	}
1414 
1415 	return rx_work_done;
1416 }
1417 
qede_msix_fp_int(int irq,void * fp_cookie)1418 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1419 {
1420 	struct qede_fastpath *fp = fp_cookie;
1421 
1422 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1423 
1424 	napi_schedule_irqoff(&fp->napi);
1425 	return IRQ_HANDLED;
1426 }
1427 
1428 /* Main transmit function */
qede_start_xmit(struct sk_buff * skb,struct net_device * ndev)1429 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1430 {
1431 	struct qede_dev *edev = netdev_priv(ndev);
1432 	struct netdev_queue *netdev_txq;
1433 	struct qede_tx_queue *txq;
1434 	struct eth_tx_1st_bd *first_bd;
1435 	struct eth_tx_2nd_bd *second_bd = NULL;
1436 	struct eth_tx_3rd_bd *third_bd = NULL;
1437 	struct eth_tx_bd *tx_data_bd = NULL;
1438 	u16 txq_index, val = 0;
1439 	u8 nbd = 0;
1440 	dma_addr_t mapping;
1441 	int rc, frag_idx = 0, ipv6_ext = 0;
1442 	u8 xmit_type;
1443 	u16 idx;
1444 	u16 hlen;
1445 	bool data_split = false;
1446 
1447 	/* Get tx-queue context and netdev index */
1448 	txq_index = skb_get_queue_mapping(skb);
1449 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1450 	txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1451 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1452 
1453 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1454 
1455 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1456 
1457 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1458 	if (qede_pkt_req_lin(skb, xmit_type)) {
1459 		if (skb_linearize(skb)) {
1460 			txq->tx_mem_alloc_err++;
1461 
1462 			dev_kfree_skb_any(skb);
1463 			return NETDEV_TX_OK;
1464 		}
1465 	}
1466 #endif
1467 
1468 	/* Fill the entry in the SW ring and the BDs in the FW ring */
1469 	idx = txq->sw_tx_prod;
1470 	txq->sw_tx_ring.skbs[idx].skb = skb;
1471 	first_bd = (struct eth_tx_1st_bd *)
1472 		   qed_chain_produce(&txq->tx_pbl);
1473 	memset(first_bd, 0, sizeof(*first_bd));
1474 	first_bd->data.bd_flags.bitfields =
1475 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1476 
1477 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1478 		qede_ptp_tx_ts(edev, skb);
1479 
1480 	/* Map skb linear data for DMA and set in the first BD */
1481 	mapping = dma_map_single(txq->dev, skb->data,
1482 				 skb_headlen(skb), DMA_TO_DEVICE);
1483 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1484 		DP_NOTICE(edev, "SKB mapping failed\n");
1485 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1486 		qede_update_tx_producer(txq);
1487 		return NETDEV_TX_OK;
1488 	}
1489 	nbd++;
1490 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1491 
1492 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1493 	 * 3rd BDs.
1494 	 */
1495 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1496 		second_bd = (struct eth_tx_2nd_bd *)
1497 			qed_chain_produce(&txq->tx_pbl);
1498 		memset(second_bd, 0, sizeof(*second_bd));
1499 
1500 		nbd++;
1501 		third_bd = (struct eth_tx_3rd_bd *)
1502 			qed_chain_produce(&txq->tx_pbl);
1503 		memset(third_bd, 0, sizeof(*third_bd));
1504 
1505 		nbd++;
1506 		/* We need to fill in additional data in second_bd... */
1507 		tx_data_bd = (struct eth_tx_bd *)second_bd;
1508 	}
1509 
1510 	if (skb_vlan_tag_present(skb)) {
1511 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1512 		first_bd->data.bd_flags.bitfields |=
1513 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1514 	}
1515 
1516 	/* Fill the parsing flags & params according to the requested offload */
1517 	if (xmit_type & XMIT_L4_CSUM) {
1518 		/* We don't re-calculate IP checksum as it is already done by
1519 		 * the upper stack
1520 		 */
1521 		first_bd->data.bd_flags.bitfields |=
1522 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1523 
1524 		if (xmit_type & XMIT_ENC) {
1525 			first_bd->data.bd_flags.bitfields |=
1526 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1527 
1528 			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1529 		}
1530 
1531 		/* Legacy FW had flipped behavior in regard to this bit -
1532 		 * I.e., needed to set to prevent FW from touching encapsulated
1533 		 * packets when it didn't need to.
1534 		 */
1535 		if (unlikely(txq->is_legacy))
1536 			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1537 
1538 		/* If the packet is IPv6 with extension header, indicate that
1539 		 * to FW and pass few params, since the device cracker doesn't
1540 		 * support parsing IPv6 with extension header/s.
1541 		 */
1542 		if (unlikely(ipv6_ext))
1543 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1544 	}
1545 
1546 	if (xmit_type & XMIT_LSO) {
1547 		first_bd->data.bd_flags.bitfields |=
1548 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1549 		third_bd->data.lso_mss =
1550 			cpu_to_le16(skb_shinfo(skb)->gso_size);
1551 
1552 		if (unlikely(xmit_type & XMIT_ENC)) {
1553 			first_bd->data.bd_flags.bitfields |=
1554 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1555 
1556 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1557 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1558 
1559 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1560 			}
1561 			hlen = qede_get_skb_hlen(skb, true);
1562 		} else {
1563 			first_bd->data.bd_flags.bitfields |=
1564 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1565 			hlen = qede_get_skb_hlen(skb, false);
1566 		}
1567 
1568 		/* @@@TBD - if will not be removed need to check */
1569 		third_bd->data.bitfields |=
1570 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1571 
1572 		/* Make life easier for FW guys who can't deal with header and
1573 		 * data on same BD. If we need to split, use the second bd...
1574 		 */
1575 		if (unlikely(skb_headlen(skb) > hlen)) {
1576 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1577 				   "TSO split header size is %d (%x:%x)\n",
1578 				   first_bd->nbytes, first_bd->addr.hi,
1579 				   first_bd->addr.lo);
1580 
1581 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1582 					   le32_to_cpu(first_bd->addr.lo)) +
1583 					   hlen;
1584 
1585 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1586 					      le16_to_cpu(first_bd->nbytes) -
1587 					      hlen);
1588 
1589 			/* this marks the BD as one that has no
1590 			 * individual mapping
1591 			 */
1592 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1593 
1594 			first_bd->nbytes = cpu_to_le16(hlen);
1595 
1596 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1597 			data_split = true;
1598 		}
1599 	} else {
1600 		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1601 			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1602 	}
1603 
1604 	first_bd->data.bitfields = cpu_to_le16(val);
1605 
1606 	/* Handle fragmented skb */
1607 	/* special handle for frags inside 2nd and 3rd bds.. */
1608 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1609 		rc = map_frag_to_bd(txq,
1610 				    &skb_shinfo(skb)->frags[frag_idx],
1611 				    tx_data_bd);
1612 		if (rc) {
1613 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1614 			qede_update_tx_producer(txq);
1615 			return NETDEV_TX_OK;
1616 		}
1617 
1618 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1619 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1620 		else
1621 			tx_data_bd = NULL;
1622 
1623 		frag_idx++;
1624 	}
1625 
1626 	/* map last frags into 4th, 5th .... */
1627 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1628 		tx_data_bd = (struct eth_tx_bd *)
1629 			     qed_chain_produce(&txq->tx_pbl);
1630 
1631 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1632 
1633 		rc = map_frag_to_bd(txq,
1634 				    &skb_shinfo(skb)->frags[frag_idx],
1635 				    tx_data_bd);
1636 		if (rc) {
1637 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1638 			qede_update_tx_producer(txq);
1639 			return NETDEV_TX_OK;
1640 		}
1641 	}
1642 
1643 	/* update the first BD with the actual num BDs */
1644 	first_bd->data.nbds = nbd;
1645 
1646 	netdev_tx_sent_queue(netdev_txq, skb->len);
1647 
1648 	skb_tx_timestamp(skb);
1649 
1650 	/* Advance packet producer only before sending the packet since mapping
1651 	 * of pages may fail.
1652 	 */
1653 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1654 
1655 	/* 'next page' entries are counted in the producer value */
1656 	txq->tx_db.data.bd_prod =
1657 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1658 
1659 	if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1660 		qede_update_tx_producer(txq);
1661 
1662 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1663 		      < (MAX_SKB_FRAGS + 1))) {
1664 		if (netdev_xmit_more())
1665 			qede_update_tx_producer(txq);
1666 
1667 		netif_tx_stop_queue(netdev_txq);
1668 		txq->stopped_cnt++;
1669 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1670 			   "Stop queue was called\n");
1671 		/* paired memory barrier is in qede_tx_int(), we have to keep
1672 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1673 		 * fp->bd_tx_cons
1674 		 */
1675 		smp_mb();
1676 
1677 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1678 		     (MAX_SKB_FRAGS + 1)) &&
1679 		    (edev->state == QEDE_STATE_OPEN)) {
1680 			netif_tx_wake_queue(netdev_txq);
1681 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1682 				   "Wake queue was called\n");
1683 		}
1684 	}
1685 
1686 	return NETDEV_TX_OK;
1687 }
1688 
qede_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1689 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1690 		      struct net_device *sb_dev)
1691 {
1692 	struct qede_dev *edev = netdev_priv(dev);
1693 	int total_txq;
1694 
1695 	total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1696 
1697 	return QEDE_TSS_COUNT(edev) ?
1698 		netdev_pick_tx(dev, skb, NULL) % total_txq :  0;
1699 }
1700 
1701 /* 8B udp header + 8B base tunnel header + 32B option length */
1702 #define QEDE_MAX_TUN_HDR_LEN 48
1703 
qede_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1704 netdev_features_t qede_features_check(struct sk_buff *skb,
1705 				      struct net_device *dev,
1706 				      netdev_features_t features)
1707 {
1708 	if (skb->encapsulation) {
1709 		u8 l4_proto = 0;
1710 
1711 		switch (vlan_get_protocol(skb)) {
1712 		case htons(ETH_P_IP):
1713 			l4_proto = ip_hdr(skb)->protocol;
1714 			break;
1715 		case htons(ETH_P_IPV6):
1716 			l4_proto = ipv6_hdr(skb)->nexthdr;
1717 			break;
1718 		default:
1719 			return features;
1720 		}
1721 
1722 		/* Disable offloads for geneve tunnels, as HW can't parse
1723 		 * the geneve header which has option length greater than 32b
1724 		 * and disable offloads for the ports which are not offloaded.
1725 		 */
1726 		if (l4_proto == IPPROTO_UDP) {
1727 			struct qede_dev *edev = netdev_priv(dev);
1728 			u16 hdrlen, vxln_port, gnv_port;
1729 
1730 			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1731 			vxln_port = edev->vxlan_dst_port;
1732 			gnv_port = edev->geneve_dst_port;
1733 
1734 			if ((skb_inner_mac_header(skb) -
1735 			     skb_transport_header(skb)) > hdrlen ||
1736 			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1737 			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1738 				return features & ~(NETIF_F_CSUM_MASK |
1739 						    NETIF_F_GSO_MASK);
1740 		}
1741 	}
1742 
1743 	return features;
1744 }
1745