1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
56
57 struct qed_ptt {
58 struct list_head list_entry;
59 unsigned int idx;
60 struct pxp_ptt_entry pxp;
61 u8 hwfn_id;
62 };
63
64 struct qed_ptt_pool {
65 struct list_head free_list;
66 spinlock_t lock; /* ptt synchronized access */
67 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69
qed_ptt_pool_alloc(struct qed_hwfn * p_hwfn)70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73 int i;
74
75 if (!p_pool)
76 return -ENOMEM;
77
78 INIT_LIST_HEAD(&p_pool->free_list);
79 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80 p_pool->ptts[i].idx = i;
81 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82 p_pool->ptts[i].pxp.pretend.control = 0;
83 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84 if (i >= RESERVED_PTT_MAX)
85 list_add(&p_pool->ptts[i].list_entry,
86 &p_pool->free_list);
87 }
88
89 p_hwfn->p_ptt_pool = p_pool;
90 spin_lock_init(&p_pool->lock);
91
92 return 0;
93 }
94
qed_ptt_invalidate(struct qed_hwfn * p_hwfn)95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97 struct qed_ptt *p_ptt;
98 int i;
99
100 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103 }
104 }
105
qed_ptt_pool_free(struct qed_hwfn * p_hwfn)106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108 kfree(p_hwfn->p_ptt_pool);
109 p_hwfn->p_ptt_pool = NULL;
110 }
111
qed_ptt_acquire(struct qed_hwfn * p_hwfn)112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114 struct qed_ptt *p_ptt;
115 unsigned int i;
116
117 /* Take the free PTT from the list */
118 for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120
121 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123 struct qed_ptt, list_entry);
124 list_del(&p_ptt->list_entry);
125
126 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127
128 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129 "allocated ptt %d\n", p_ptt->idx);
130 return p_ptt;
131 }
132
133 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134 usleep_range(1000, 2000);
135 }
136
137 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138 return NULL;
139 }
140
qed_ptt_release(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147
qed_ptt_get_hw_addr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150 /* The HW is using DWORDS and we need to translate it to Bytes */
151 return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153
qed_ptt_config_addr(struct qed_ptt * p_ptt)154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157 p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159
qed_ptt_get_bar_addr(struct qed_ptt * p_ptt)160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165
qed_ptt_set_win(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 new_hw_addr)166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167 struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169 u32 prev_hw_addr;
170
171 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172
173 if (new_hw_addr == prev_hw_addr)
174 return;
175
176 /* Update PTT entery in admin window */
177 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178 "Updating PTT entry %d to offset 0x%x\n",
179 p_ptt->idx, new_hw_addr);
180
181 /* The HW is using DWORDS and the address is in Bytes */
182 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183
184 REG_WR(p_hwfn,
185 qed_ptt_config_addr(p_ptt) +
186 offsetof(struct pxp_ptt_entry, offset),
187 le32_to_cpu(p_ptt->pxp.offset));
188 }
189
qed_set_ptt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191 struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194 u32 offset;
195
196 offset = hw_addr - win_hw_addr;
197
198 if (p_ptt->hwfn_id != p_hwfn->my_id)
199 DP_NOTICE(p_hwfn,
200 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202
203 /* Verify the address is within the window */
204 if (hw_addr < win_hw_addr ||
205 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207 offset = 0;
208 }
209
210 return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212
qed_get_reserved_ptt(struct qed_hwfn * p_hwfn,enum reserved_ptts ptt_idx)213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214 enum reserved_ptts ptt_idx)
215 {
216 if (ptt_idx >= RESERVED_PTT_MAX) {
217 DP_NOTICE(p_hwfn,
218 "Requested PTT %d is out of range\n", ptt_idx);
219 return NULL;
220 }
221
222 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224
qed_wr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,u32 val)225 void qed_wr(struct qed_hwfn *p_hwfn,
226 struct qed_ptt *p_ptt,
227 u32 hw_addr, u32 val)
228 {
229 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230
231 REG_WR(p_hwfn, bar_addr, val);
232 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 bar_addr, hw_addr, val);
235 }
236
qed_rd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238 struct qed_ptt *p_ptt,
239 u32 hw_addr)
240 {
241 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242 u32 val = REG_RD(p_hwfn, bar_addr);
243
244 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 bar_addr, hw_addr, val);
247
248 return val;
249 }
250
qed_memcpy_hw(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * addr,u32 hw_addr,size_t n,bool to_device)251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252 struct qed_ptt *p_ptt,
253 void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255 u32 dw_count, *host_addr, hw_offset;
256 size_t quota, done = 0;
257 u32 __iomem *reg_addr;
258
259 while (done < n) {
260 quota = min_t(size_t, n - done,
261 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262
263 if (IS_PF(p_hwfn->cdev)) {
264 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265 hw_offset = qed_ptt_get_bar_addr(p_ptt);
266 } else {
267 hw_offset = hw_addr + done;
268 }
269
270 dw_count = quota / 4;
271 host_addr = (u32 *)((u8 *)addr + done);
272 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273 if (to_device)
274 while (dw_count--)
275 DIRECT_REG_WR(reg_addr++, *host_addr++);
276 else
277 while (dw_count--)
278 *host_addr++ = DIRECT_REG_RD(reg_addr++);
279
280 done += quota;
281 }
282 }
283
qed_memcpy_from(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * dest,u32 hw_addr,size_t n)284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285 struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 hw_addr, dest, hw_addr, (unsigned long)n);
290
291 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293
qed_memcpy_to(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,void * src,size_t n)294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295 struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 hw_addr, hw_addr, src, (unsigned long)n);
300
301 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303
qed_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 fid)304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306 u16 control = 0;
307
308 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310
311 /* Every pretend undos previous pretends, including
312 * previous port pretend.
313 */
314 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317
318 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320
321 p_ptt->pxp.pretend.control = cpu_to_le16(control);
322 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323
324 REG_WR(p_hwfn,
325 qed_ptt_config_addr(p_ptt) +
326 offsetof(struct pxp_ptt_entry, pretend),
327 *(u32 *)&p_ptt->pxp.pretend);
328 }
329
qed_port_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id)330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331 struct qed_ptt *p_ptt, u8 port_id)
332 {
333 u16 control = 0;
334
335 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338
339 p_ptt->pxp.pretend.control = cpu_to_le16(control);
340
341 REG_WR(p_hwfn,
342 qed_ptt_config_addr(p_ptt) +
343 offsetof(struct pxp_ptt_entry, pretend),
344 *(u32 *)&p_ptt->pxp.pretend);
345 }
346
qed_port_unpretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349 u16 control = 0;
350
351 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354
355 p_ptt->pxp.pretend.control = cpu_to_le16(control);
356
357 REG_WR(p_hwfn,
358 qed_ptt_config_addr(p_ptt) +
359 offsetof(struct pxp_ptt_entry, pretend),
360 *(u32 *)&p_ptt->pxp.pretend);
361 }
362
qed_port_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id,u16 fid)363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
364 struct qed_ptt *p_ptt, u8 port_id, u16 fid)
365 {
366 u16 control = 0;
367
368 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
369 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
370 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
371 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
372 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
373 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
374 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
375 p_ptt->pxp.pretend.control = cpu_to_le16(control);
376 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
377 REG_WR(p_hwfn,
378 qed_ptt_config_addr(p_ptt) +
379 offsetof(struct pxp_ptt_entry, pretend),
380 *(u32 *)&p_ptt->pxp.pretend);
381 }
382
qed_vfid_to_concrete(struct qed_hwfn * p_hwfn,u8 vfid)383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
384 {
385 u32 concrete_fid = 0;
386
387 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
388 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
389 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
390
391 return concrete_fid;
392 }
393
394 /* DMAE */
395 #define QED_DMAE_FLAGS_IS_SET(params, flag) \
396 ((params) != NULL && ((params)->flags & QED_DMAE_FLAG_##flag))
397
qed_dmae_opcode(struct qed_hwfn * p_hwfn,const u8 is_src_type_grc,const u8 is_dst_type_grc,struct qed_dmae_params * p_params)398 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
399 const u8 is_src_type_grc,
400 const u8 is_dst_type_grc,
401 struct qed_dmae_params *p_params)
402 {
403 u8 src_pfid, dst_pfid, port_id;
404 u16 opcode_b = 0;
405 u32 opcode = 0;
406
407 /* Whether the source is the PCIe or the GRC.
408 * 0- The source is the PCIe
409 * 1- The source is the GRC.
410 */
411 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
412 : DMAE_CMD_SRC_MASK_PCIE) <<
413 DMAE_CMD_SRC_SHIFT;
414 src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_SRC) ?
415 p_params->src_pfid : p_hwfn->rel_pf_id;
416 opcode |= ((src_pfid & DMAE_CMD_SRC_PF_ID_MASK) <<
417 DMAE_CMD_SRC_PF_ID_SHIFT);
418
419 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
420 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
421 : DMAE_CMD_DST_MASK_PCIE) <<
422 DMAE_CMD_DST_SHIFT;
423 dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, PF_DST) ?
424 p_params->dst_pfid : p_hwfn->rel_pf_id;
425 opcode |= ((dst_pfid & DMAE_CMD_DST_PF_ID_MASK) <<
426 DMAE_CMD_DST_PF_ID_SHIFT);
427
428 /* Whether to write a completion word to the completion destination:
429 * 0-Do not write a completion word
430 * 1-Write the completion word
431 */
432 opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
433 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
434 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
435
436 if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
437 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
438
439 opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
440
441 port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT)) ?
442 p_params->port_id : p_hwfn->port_id;
443 opcode |= (port_id << DMAE_CMD_PORT_ID_SHIFT);
444
445 /* reset source address in next go */
446 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
447 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
448
449 /* reset dest address in next go */
450 opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
451 DMAE_CMD_DST_ADDR_RESET_SHIFT);
452
453 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
454 if (QED_DMAE_FLAGS_IS_SET(p_params, VF_SRC)) {
455 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
456 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
457 } else {
458 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
459 DMAE_CMD_SRC_VF_ID_SHIFT;
460 }
461
462 if (QED_DMAE_FLAGS_IS_SET(p_params, VF_DST)) {
463 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
464 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
465 } else {
466 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
467 }
468
469 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
470 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
471 }
472
qed_dmae_idx_to_go_cmd(u8 idx)473 u32 qed_dmae_idx_to_go_cmd(u8 idx)
474 {
475 /* All the DMAE 'go' registers form an array in internal memory */
476 return DMAE_REG_GO_C0 + (idx << 2);
477 }
478
qed_dmae_post_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)479 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
480 struct qed_ptt *p_ptt)
481 {
482 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
483 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
484 int qed_status = 0;
485
486 /* verify address is not NULL */
487 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
488 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
489 DP_NOTICE(p_hwfn,
490 "source or destination address 0 idx_cmd=%d\n"
491 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
492 idx_cmd,
493 le32_to_cpu(p_command->opcode),
494 le16_to_cpu(p_command->opcode_b),
495 le16_to_cpu(p_command->length_dw),
496 le32_to_cpu(p_command->src_addr_hi),
497 le32_to_cpu(p_command->src_addr_lo),
498 le32_to_cpu(p_command->dst_addr_hi),
499 le32_to_cpu(p_command->dst_addr_lo));
500
501 return -EINVAL;
502 }
503
504 DP_VERBOSE(p_hwfn,
505 NETIF_MSG_HW,
506 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
507 idx_cmd,
508 le32_to_cpu(p_command->opcode),
509 le16_to_cpu(p_command->opcode_b),
510 le16_to_cpu(p_command->length_dw),
511 le32_to_cpu(p_command->src_addr_hi),
512 le32_to_cpu(p_command->src_addr_lo),
513 le32_to_cpu(p_command->dst_addr_hi),
514 le32_to_cpu(p_command->dst_addr_lo));
515
516 /* Copy the command to DMAE - need to do it before every call
517 * for source/dest address no reset.
518 * The first 9 DWs are the command registers, the 10 DW is the
519 * GO register, and the rest are result registers
520 * (which are read only by the client).
521 */
522 for (i = 0; i < DMAE_CMD_SIZE; i++) {
523 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
524 *(((u32 *)p_command) + i) : 0;
525
526 qed_wr(p_hwfn, p_ptt,
527 DMAE_REG_CMD_MEM +
528 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
529 (i * sizeof(u32)), data);
530 }
531
532 qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
533
534 return qed_status;
535 }
536
qed_dmae_info_alloc(struct qed_hwfn * p_hwfn)537 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
538 {
539 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
540 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
541 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
542 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
543
544 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
545 sizeof(u32), p_addr, GFP_KERNEL);
546 if (!*p_comp)
547 goto err;
548
549 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
550 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
551 sizeof(struct dmae_cmd),
552 p_addr, GFP_KERNEL);
553 if (!*p_cmd)
554 goto err;
555
556 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
557 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
558 sizeof(u32) * DMAE_MAX_RW_SIZE,
559 p_addr, GFP_KERNEL);
560 if (!*p_buff)
561 goto err;
562
563 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
564
565 return 0;
566 err:
567 qed_dmae_info_free(p_hwfn);
568 return -ENOMEM;
569 }
570
qed_dmae_info_free(struct qed_hwfn * p_hwfn)571 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
572 {
573 dma_addr_t p_phys;
574
575 /* Just make sure no one is in the middle */
576 mutex_lock(&p_hwfn->dmae_info.mutex);
577
578 if (p_hwfn->dmae_info.p_completion_word) {
579 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
580 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
581 sizeof(u32),
582 p_hwfn->dmae_info.p_completion_word, p_phys);
583 p_hwfn->dmae_info.p_completion_word = NULL;
584 }
585
586 if (p_hwfn->dmae_info.p_dmae_cmd) {
587 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
588 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
589 sizeof(struct dmae_cmd),
590 p_hwfn->dmae_info.p_dmae_cmd, p_phys);
591 p_hwfn->dmae_info.p_dmae_cmd = NULL;
592 }
593
594 if (p_hwfn->dmae_info.p_intermediate_buffer) {
595 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
596 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
597 sizeof(u32) * DMAE_MAX_RW_SIZE,
598 p_hwfn->dmae_info.p_intermediate_buffer,
599 p_phys);
600 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
601 }
602
603 mutex_unlock(&p_hwfn->dmae_info.mutex);
604 }
605
qed_dmae_operation_wait(struct qed_hwfn * p_hwfn)606 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
607 {
608 u32 wait_cnt_limit = 10000, wait_cnt = 0;
609 int qed_status = 0;
610
611 barrier();
612 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
613 udelay(DMAE_MIN_WAIT_TIME);
614 if (++wait_cnt > wait_cnt_limit) {
615 DP_NOTICE(p_hwfn->cdev,
616 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
617 *p_hwfn->dmae_info.p_completion_word,
618 DMAE_COMPLETION_VAL);
619 qed_status = -EBUSY;
620 break;
621 }
622
623 /* to sync the completion_word since we are not
624 * using the volatile keyword for p_completion_word
625 */
626 barrier();
627 }
628
629 if (qed_status == 0)
630 *p_hwfn->dmae_info.p_completion_word = 0;
631
632 return qed_status;
633 }
634
qed_dmae_execute_sub_operation(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 length_dw)635 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
636 struct qed_ptt *p_ptt,
637 u64 src_addr,
638 u64 dst_addr,
639 u8 src_type,
640 u8 dst_type,
641 u32 length_dw)
642 {
643 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
644 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
645 int qed_status = 0;
646
647 switch (src_type) {
648 case QED_DMAE_ADDRESS_GRC:
649 case QED_DMAE_ADDRESS_HOST_PHYS:
650 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
651 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
652 break;
653 /* for virtual source addresses we use the intermediate buffer. */
654 case QED_DMAE_ADDRESS_HOST_VIRT:
655 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
656 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
657 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
658 (void *)(uintptr_t)src_addr,
659 length_dw * sizeof(u32));
660 break;
661 default:
662 return -EINVAL;
663 }
664
665 switch (dst_type) {
666 case QED_DMAE_ADDRESS_GRC:
667 case QED_DMAE_ADDRESS_HOST_PHYS:
668 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
669 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
670 break;
671 /* for virtual source addresses we use the intermediate buffer. */
672 case QED_DMAE_ADDRESS_HOST_VIRT:
673 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
674 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
675 break;
676 default:
677 return -EINVAL;
678 }
679
680 cmd->length_dw = cpu_to_le16((u16)length_dw);
681
682 qed_dmae_post_command(p_hwfn, p_ptt);
683
684 qed_status = qed_dmae_operation_wait(p_hwfn);
685
686 if (qed_status) {
687 DP_NOTICE(p_hwfn,
688 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
689 src_addr, dst_addr, length_dw);
690 return qed_status;
691 }
692
693 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
694 memcpy((void *)(uintptr_t)(dst_addr),
695 &p_hwfn->dmae_info.p_intermediate_buffer[0],
696 length_dw * sizeof(u32));
697
698 return 0;
699 }
700
qed_dmae_execute_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 size_in_dwords,struct qed_dmae_params * p_params)701 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
702 struct qed_ptt *p_ptt,
703 u64 src_addr, u64 dst_addr,
704 u8 src_type, u8 dst_type,
705 u32 size_in_dwords,
706 struct qed_dmae_params *p_params)
707 {
708 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
709 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
710 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
711 u64 src_addr_split = 0, dst_addr_split = 0;
712 u16 length_limit = DMAE_MAX_RW_SIZE;
713 int qed_status = 0;
714 u32 offset = 0;
715
716 if (p_hwfn->cdev->recov_in_prog) {
717 DP_VERBOSE(p_hwfn,
718 NETIF_MSG_HW,
719 "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
720 src_addr, src_type, dst_addr, dst_type,
721 size_in_dwords);
722
723 /* Let the flow complete w/o any error handling */
724 return 0;
725 }
726
727 qed_dmae_opcode(p_hwfn,
728 (src_type == QED_DMAE_ADDRESS_GRC),
729 (dst_type == QED_DMAE_ADDRESS_GRC),
730 p_params);
731
732 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
733 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
734 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
735
736 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
737 cnt_split = size_in_dwords / length_limit;
738 length_mod = size_in_dwords % length_limit;
739
740 src_addr_split = src_addr;
741 dst_addr_split = dst_addr;
742
743 for (i = 0; i <= cnt_split; i++) {
744 offset = length_limit * i;
745
746 if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
747 if (src_type == QED_DMAE_ADDRESS_GRC)
748 src_addr_split = src_addr + offset;
749 else
750 src_addr_split = src_addr + (offset * 4);
751 }
752
753 if (dst_type == QED_DMAE_ADDRESS_GRC)
754 dst_addr_split = dst_addr + offset;
755 else
756 dst_addr_split = dst_addr + (offset * 4);
757
758 length_cur = (cnt_split == i) ? length_mod : length_limit;
759
760 /* might be zero on last iteration */
761 if (!length_cur)
762 continue;
763
764 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
765 p_ptt,
766 src_addr_split,
767 dst_addr_split,
768 src_type,
769 dst_type,
770 length_cur);
771 if (qed_status) {
772 DP_NOTICE(p_hwfn,
773 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
774 qed_status, src_addr, dst_addr, length_cur);
775 break;
776 }
777 }
778
779 return qed_status;
780 }
781
qed_dmae_host2grc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 source_addr,u32 grc_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)782 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
783 struct qed_ptt *p_ptt,
784 u64 source_addr, u32 grc_addr, u32 size_in_dwords,
785 struct qed_dmae_params *p_params)
786 {
787 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
788 int rc;
789
790
791 mutex_lock(&p_hwfn->dmae_info.mutex);
792
793 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
794 grc_addr_in_dw,
795 QED_DMAE_ADDRESS_HOST_VIRT,
796 QED_DMAE_ADDRESS_GRC,
797 size_in_dwords, p_params);
798
799 mutex_unlock(&p_hwfn->dmae_info.mutex);
800
801 return rc;
802 }
803
qed_dmae_grc2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 grc_addr,dma_addr_t dest_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)804 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
805 struct qed_ptt *p_ptt,
806 u32 grc_addr,
807 dma_addr_t dest_addr, u32 size_in_dwords,
808 struct qed_dmae_params *p_params)
809 {
810 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
811 int rc;
812
813
814 mutex_lock(&p_hwfn->dmae_info.mutex);
815
816 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
817 dest_addr, QED_DMAE_ADDRESS_GRC,
818 QED_DMAE_ADDRESS_HOST_VIRT,
819 size_in_dwords, p_params);
820
821 mutex_unlock(&p_hwfn->dmae_info.mutex);
822
823 return rc;
824 }
825
qed_dmae_host2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t source_addr,dma_addr_t dest_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)826 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
827 struct qed_ptt *p_ptt,
828 dma_addr_t source_addr,
829 dma_addr_t dest_addr,
830 u32 size_in_dwords, struct qed_dmae_params *p_params)
831 {
832 int rc;
833
834 mutex_lock(&(p_hwfn->dmae_info.mutex));
835
836 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
837 dest_addr,
838 QED_DMAE_ADDRESS_HOST_PHYS,
839 QED_DMAE_ADDRESS_HOST_PHYS,
840 size_in_dwords, p_params);
841
842 mutex_unlock(&(p_hwfn->dmae_info.mutex));
843
844 return rc;
845 }
846
qed_dmae_sanity(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,const char * phase)847 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
848 struct qed_ptt *p_ptt, const char *phase)
849 {
850 u32 size = PAGE_SIZE / 2, val;
851 int rc = 0;
852 dma_addr_t p_phys;
853 void *p_virt;
854 u32 *p_tmp;
855
856 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
857 2 * size, &p_phys, GFP_KERNEL);
858 if (!p_virt) {
859 DP_NOTICE(p_hwfn,
860 "DMAE sanity [%s]: failed to allocate memory\n",
861 phase);
862 return -ENOMEM;
863 }
864
865 /* Fill the bottom half of the allocated memory with a known pattern */
866 for (p_tmp = (u32 *)p_virt;
867 p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
868 /* Save the address itself as the value */
869 val = (u32)(uintptr_t)p_tmp;
870 *p_tmp = val;
871 }
872
873 /* Zero the top half of the allocated memory */
874 memset((u8 *)p_virt + size, 0, size);
875
876 DP_VERBOSE(p_hwfn,
877 QED_MSG_SP,
878 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
879 phase,
880 (u64)p_phys,
881 p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
882
883 rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
884 size / 4, NULL);
885 if (rc) {
886 DP_NOTICE(p_hwfn,
887 "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
888 phase, rc);
889 goto out;
890 }
891
892 /* Verify that the top half of the allocated memory has the pattern */
893 for (p_tmp = (u32 *)((u8 *)p_virt + size);
894 p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
895 /* The corresponding address in the bottom half */
896 val = (u32)(uintptr_t)p_tmp - size;
897
898 if (*p_tmp != val) {
899 DP_NOTICE(p_hwfn,
900 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
901 phase,
902 (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
903 p_tmp, *p_tmp, val);
904 rc = -EINVAL;
905 goto out;
906 }
907 }
908
909 out:
910 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
911 return rc;
912 }
913