1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
56
57 struct qed_ptt {
58 struct list_head list_entry;
59 unsigned int idx;
60 struct pxp_ptt_entry pxp;
61 u8 hwfn_id;
62 };
63
64 struct qed_ptt_pool {
65 struct list_head free_list;
66 spinlock_t lock; /* ptt synchronized access */
67 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69
qed_ptt_pool_alloc(struct qed_hwfn * p_hwfn)70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73 int i;
74
75 if (!p_pool)
76 return -ENOMEM;
77
78 INIT_LIST_HEAD(&p_pool->free_list);
79 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80 p_pool->ptts[i].idx = i;
81 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82 p_pool->ptts[i].pxp.pretend.control = 0;
83 p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84 if (i >= RESERVED_PTT_MAX)
85 list_add(&p_pool->ptts[i].list_entry,
86 &p_pool->free_list);
87 }
88
89 p_hwfn->p_ptt_pool = p_pool;
90 spin_lock_init(&p_pool->lock);
91
92 return 0;
93 }
94
qed_ptt_invalidate(struct qed_hwfn * p_hwfn)95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97 struct qed_ptt *p_ptt;
98 int i;
99
100 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103 }
104 }
105
qed_ptt_pool_free(struct qed_hwfn * p_hwfn)106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108 kfree(p_hwfn->p_ptt_pool);
109 p_hwfn->p_ptt_pool = NULL;
110 }
111
qed_ptt_acquire(struct qed_hwfn * p_hwfn)112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114 struct qed_ptt *p_ptt;
115 unsigned int i;
116
117 /* Take the free PTT from the list */
118 for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120
121 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123 struct qed_ptt, list_entry);
124 list_del(&p_ptt->list_entry);
125
126 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127
128 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129 "allocated ptt %d\n", p_ptt->idx);
130 return p_ptt;
131 }
132
133 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134 usleep_range(1000, 2000);
135 }
136
137 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138 return NULL;
139 }
140
qed_ptt_release(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147
qed_ptt_get_hw_addr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150 /* The HW is using DWORDS and we need to translate it to Bytes */
151 return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153
qed_ptt_config_addr(struct qed_ptt * p_ptt)154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157 p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159
qed_ptt_get_bar_addr(struct qed_ptt * p_ptt)160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165
qed_ptt_set_win(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 new_hw_addr)166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167 struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169 u32 prev_hw_addr;
170
171 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172
173 if (new_hw_addr == prev_hw_addr)
174 return;
175
176 /* Update PTT entery in admin window */
177 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178 "Updating PTT entry %d to offset 0x%x\n",
179 p_ptt->idx, new_hw_addr);
180
181 /* The HW is using DWORDS and the address is in Bytes */
182 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183
184 REG_WR(p_hwfn,
185 qed_ptt_config_addr(p_ptt) +
186 offsetof(struct pxp_ptt_entry, offset),
187 le32_to_cpu(p_ptt->pxp.offset));
188 }
189
qed_set_ptt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191 struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194 u32 offset;
195
196 offset = hw_addr - win_hw_addr;
197
198 if (p_ptt->hwfn_id != p_hwfn->my_id)
199 DP_NOTICE(p_hwfn,
200 "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202
203 /* Verify the address is within the window */
204 if (hw_addr < win_hw_addr ||
205 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207 offset = 0;
208 }
209
210 return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212
qed_get_reserved_ptt(struct qed_hwfn * p_hwfn,enum reserved_ptts ptt_idx)213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214 enum reserved_ptts ptt_idx)
215 {
216 if (ptt_idx >= RESERVED_PTT_MAX) {
217 DP_NOTICE(p_hwfn,
218 "Requested PTT %d is out of range\n", ptt_idx);
219 return NULL;
220 }
221
222 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224
qed_wr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,u32 val)225 void qed_wr(struct qed_hwfn *p_hwfn,
226 struct qed_ptt *p_ptt,
227 u32 hw_addr, u32 val)
228 {
229 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230
231 REG_WR(p_hwfn, bar_addr, val);
232 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 bar_addr, hw_addr, val);
235 }
236
qed_rd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238 struct qed_ptt *p_ptt,
239 u32 hw_addr)
240 {
241 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242 u32 val = REG_RD(p_hwfn, bar_addr);
243
244 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 bar_addr, hw_addr, val);
247
248 return val;
249 }
250
qed_memcpy_hw(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * addr,u32 hw_addr,size_t n,bool to_device)251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252 struct qed_ptt *p_ptt,
253 void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255 u32 dw_count, *host_addr, hw_offset;
256 size_t quota, done = 0;
257 u32 __iomem *reg_addr;
258
259 while (done < n) {
260 quota = min_t(size_t, n - done,
261 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262
263 if (IS_PF(p_hwfn->cdev)) {
264 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265 hw_offset = qed_ptt_get_bar_addr(p_ptt);
266 } else {
267 hw_offset = hw_addr + done;
268 }
269
270 dw_count = quota / 4;
271 host_addr = (u32 *)((u8 *)addr + done);
272 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273 if (to_device)
274 while (dw_count--)
275 DIRECT_REG_WR(reg_addr++, *host_addr++);
276 else
277 while (dw_count--)
278 *host_addr++ = DIRECT_REG_RD(reg_addr++);
279
280 done += quota;
281 }
282 }
283
qed_memcpy_from(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * dest,u32 hw_addr,size_t n)284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285 struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 hw_addr, dest, hw_addr, (unsigned long)n);
290
291 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293
qed_memcpy_to(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,void * src,size_t n)294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295 struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 hw_addr, hw_addr, src, (unsigned long)n);
300
301 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303
qed_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 fid)304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306 u16 control = 0;
307
308 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310
311 /* Every pretend undos previous pretends, including
312 * previous port pretend.
313 */
314 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317
318 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320
321 p_ptt->pxp.pretend.control = cpu_to_le16(control);
322 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323
324 REG_WR(p_hwfn,
325 qed_ptt_config_addr(p_ptt) +
326 offsetof(struct pxp_ptt_entry, pretend),
327 *(u32 *)&p_ptt->pxp.pretend);
328 }
329
qed_port_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id)330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331 struct qed_ptt *p_ptt, u8 port_id)
332 {
333 u16 control = 0;
334
335 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338
339 p_ptt->pxp.pretend.control = cpu_to_le16(control);
340
341 REG_WR(p_hwfn,
342 qed_ptt_config_addr(p_ptt) +
343 offsetof(struct pxp_ptt_entry, pretend),
344 *(u32 *)&p_ptt->pxp.pretend);
345 }
346
qed_port_unpretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349 u16 control = 0;
350
351 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354
355 p_ptt->pxp.pretend.control = cpu_to_le16(control);
356
357 REG_WR(p_hwfn,
358 qed_ptt_config_addr(p_ptt) +
359 offsetof(struct pxp_ptt_entry, pretend),
360 *(u32 *)&p_ptt->pxp.pretend);
361 }
362
qed_port_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id,u16 fid)363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
364 struct qed_ptt *p_ptt, u8 port_id, u16 fid)
365 {
366 u16 control = 0;
367
368 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
369 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
370 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
371 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
372 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
373 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
374 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
375 p_ptt->pxp.pretend.control = cpu_to_le16(control);
376 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
377 REG_WR(p_hwfn,
378 qed_ptt_config_addr(p_ptt) +
379 offsetof(struct pxp_ptt_entry, pretend),
380 *(u32 *)&p_ptt->pxp.pretend);
381 }
382
qed_vfid_to_concrete(struct qed_hwfn * p_hwfn,u8 vfid)383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
384 {
385 u32 concrete_fid = 0;
386
387 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
388 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
389 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
390
391 return concrete_fid;
392 }
393
394 /* DMAE */
qed_dmae_opcode(struct qed_hwfn * p_hwfn,const u8 is_src_type_grc,const u8 is_dst_type_grc,struct qed_dmae_params * p_params)395 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
396 const u8 is_src_type_grc,
397 const u8 is_dst_type_grc,
398 struct qed_dmae_params *p_params)
399 {
400 u16 opcode_b = 0;
401 u32 opcode = 0;
402
403 /* Whether the source is the PCIe or the GRC.
404 * 0- The source is the PCIe
405 * 1- The source is the GRC.
406 */
407 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
408 : DMAE_CMD_SRC_MASK_PCIE) <<
409 DMAE_CMD_SRC_SHIFT;
410 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
411 DMAE_CMD_SRC_PF_ID_SHIFT);
412
413 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
414 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
415 : DMAE_CMD_DST_MASK_PCIE) <<
416 DMAE_CMD_DST_SHIFT;
417 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
418 DMAE_CMD_DST_PF_ID_SHIFT);
419
420 /* Whether to write a completion word to the completion destination:
421 * 0-Do not write a completion word
422 * 1-Write the completion word
423 */
424 opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
425 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
426 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
427
428 if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
429 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
430
431 opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
432
433 opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
434
435 /* reset source address in next go */
436 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
437 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
438
439 /* reset dest address in next go */
440 opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
441 DMAE_CMD_DST_ADDR_RESET_SHIFT);
442
443 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
444 if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
445 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
446 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
447 } else {
448 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
449 DMAE_CMD_SRC_VF_ID_SHIFT;
450 }
451
452 if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
453 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
454 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
455 } else {
456 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
457 }
458
459 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
460 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
461 }
462
qed_dmae_idx_to_go_cmd(u8 idx)463 u32 qed_dmae_idx_to_go_cmd(u8 idx)
464 {
465 /* All the DMAE 'go' registers form an array in internal memory */
466 return DMAE_REG_GO_C0 + (idx << 2);
467 }
468
qed_dmae_post_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)469 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
470 struct qed_ptt *p_ptt)
471 {
472 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
473 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
474 int qed_status = 0;
475
476 /* verify address is not NULL */
477 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
478 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
479 DP_NOTICE(p_hwfn,
480 "source or destination address 0 idx_cmd=%d\n"
481 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
482 idx_cmd,
483 le32_to_cpu(p_command->opcode),
484 le16_to_cpu(p_command->opcode_b),
485 le16_to_cpu(p_command->length_dw),
486 le32_to_cpu(p_command->src_addr_hi),
487 le32_to_cpu(p_command->src_addr_lo),
488 le32_to_cpu(p_command->dst_addr_hi),
489 le32_to_cpu(p_command->dst_addr_lo));
490
491 return -EINVAL;
492 }
493
494 DP_VERBOSE(p_hwfn,
495 NETIF_MSG_HW,
496 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
497 idx_cmd,
498 le32_to_cpu(p_command->opcode),
499 le16_to_cpu(p_command->opcode_b),
500 le16_to_cpu(p_command->length_dw),
501 le32_to_cpu(p_command->src_addr_hi),
502 le32_to_cpu(p_command->src_addr_lo),
503 le32_to_cpu(p_command->dst_addr_hi),
504 le32_to_cpu(p_command->dst_addr_lo));
505
506 /* Copy the command to DMAE - need to do it before every call
507 * for source/dest address no reset.
508 * The first 9 DWs are the command registers, the 10 DW is the
509 * GO register, and the rest are result registers
510 * (which are read only by the client).
511 */
512 for (i = 0; i < DMAE_CMD_SIZE; i++) {
513 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
514 *(((u32 *)p_command) + i) : 0;
515
516 qed_wr(p_hwfn, p_ptt,
517 DMAE_REG_CMD_MEM +
518 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
519 (i * sizeof(u32)), data);
520 }
521
522 qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
523
524 return qed_status;
525 }
526
qed_dmae_info_alloc(struct qed_hwfn * p_hwfn)527 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
528 {
529 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
530 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
531 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
532 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
533
534 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
535 sizeof(u32), p_addr, GFP_KERNEL);
536 if (!*p_comp)
537 goto err;
538
539 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
540 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
541 sizeof(struct dmae_cmd),
542 p_addr, GFP_KERNEL);
543 if (!*p_cmd)
544 goto err;
545
546 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
547 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
548 sizeof(u32) * DMAE_MAX_RW_SIZE,
549 p_addr, GFP_KERNEL);
550 if (!*p_buff)
551 goto err;
552
553 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
554
555 return 0;
556 err:
557 qed_dmae_info_free(p_hwfn);
558 return -ENOMEM;
559 }
560
qed_dmae_info_free(struct qed_hwfn * p_hwfn)561 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
562 {
563 dma_addr_t p_phys;
564
565 /* Just make sure no one is in the middle */
566 mutex_lock(&p_hwfn->dmae_info.mutex);
567
568 if (p_hwfn->dmae_info.p_completion_word) {
569 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
570 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
571 sizeof(u32),
572 p_hwfn->dmae_info.p_completion_word, p_phys);
573 p_hwfn->dmae_info.p_completion_word = NULL;
574 }
575
576 if (p_hwfn->dmae_info.p_dmae_cmd) {
577 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
578 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
579 sizeof(struct dmae_cmd),
580 p_hwfn->dmae_info.p_dmae_cmd, p_phys);
581 p_hwfn->dmae_info.p_dmae_cmd = NULL;
582 }
583
584 if (p_hwfn->dmae_info.p_intermediate_buffer) {
585 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
586 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
587 sizeof(u32) * DMAE_MAX_RW_SIZE,
588 p_hwfn->dmae_info.p_intermediate_buffer,
589 p_phys);
590 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
591 }
592
593 mutex_unlock(&p_hwfn->dmae_info.mutex);
594 }
595
qed_dmae_operation_wait(struct qed_hwfn * p_hwfn)596 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
597 {
598 u32 wait_cnt_limit = 10000, wait_cnt = 0;
599 int qed_status = 0;
600
601 barrier();
602 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
603 udelay(DMAE_MIN_WAIT_TIME);
604 if (++wait_cnt > wait_cnt_limit) {
605 DP_NOTICE(p_hwfn->cdev,
606 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
607 *p_hwfn->dmae_info.p_completion_word,
608 DMAE_COMPLETION_VAL);
609 qed_status = -EBUSY;
610 break;
611 }
612
613 /* to sync the completion_word since we are not
614 * using the volatile keyword for p_completion_word
615 */
616 barrier();
617 }
618
619 if (qed_status == 0)
620 *p_hwfn->dmae_info.p_completion_word = 0;
621
622 return qed_status;
623 }
624
qed_dmae_execute_sub_operation(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 length_dw)625 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
626 struct qed_ptt *p_ptt,
627 u64 src_addr,
628 u64 dst_addr,
629 u8 src_type,
630 u8 dst_type,
631 u32 length_dw)
632 {
633 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
634 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
635 int qed_status = 0;
636
637 switch (src_type) {
638 case QED_DMAE_ADDRESS_GRC:
639 case QED_DMAE_ADDRESS_HOST_PHYS:
640 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
641 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
642 break;
643 /* for virtual source addresses we use the intermediate buffer. */
644 case QED_DMAE_ADDRESS_HOST_VIRT:
645 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
646 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
647 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
648 (void *)(uintptr_t)src_addr,
649 length_dw * sizeof(u32));
650 break;
651 default:
652 return -EINVAL;
653 }
654
655 switch (dst_type) {
656 case QED_DMAE_ADDRESS_GRC:
657 case QED_DMAE_ADDRESS_HOST_PHYS:
658 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
659 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
660 break;
661 /* for virtual source addresses we use the intermediate buffer. */
662 case QED_DMAE_ADDRESS_HOST_VIRT:
663 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
664 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
665 break;
666 default:
667 return -EINVAL;
668 }
669
670 cmd->length_dw = cpu_to_le16((u16)length_dw);
671
672 qed_dmae_post_command(p_hwfn, p_ptt);
673
674 qed_status = qed_dmae_operation_wait(p_hwfn);
675
676 if (qed_status) {
677 DP_NOTICE(p_hwfn,
678 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
679 src_addr, dst_addr, length_dw);
680 return qed_status;
681 }
682
683 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
684 memcpy((void *)(uintptr_t)(dst_addr),
685 &p_hwfn->dmae_info.p_intermediate_buffer[0],
686 length_dw * sizeof(u32));
687
688 return 0;
689 }
690
qed_dmae_execute_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 size_in_dwords,struct qed_dmae_params * p_params)691 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
692 struct qed_ptt *p_ptt,
693 u64 src_addr, u64 dst_addr,
694 u8 src_type, u8 dst_type,
695 u32 size_in_dwords,
696 struct qed_dmae_params *p_params)
697 {
698 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
699 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
700 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
701 u64 src_addr_split = 0, dst_addr_split = 0;
702 u16 length_limit = DMAE_MAX_RW_SIZE;
703 int qed_status = 0;
704 u32 offset = 0;
705
706 qed_dmae_opcode(p_hwfn,
707 (src_type == QED_DMAE_ADDRESS_GRC),
708 (dst_type == QED_DMAE_ADDRESS_GRC),
709 p_params);
710
711 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
712 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
713 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
714
715 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
716 cnt_split = size_in_dwords / length_limit;
717 length_mod = size_in_dwords % length_limit;
718
719 src_addr_split = src_addr;
720 dst_addr_split = dst_addr;
721
722 for (i = 0; i <= cnt_split; i++) {
723 offset = length_limit * i;
724
725 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
726 if (src_type == QED_DMAE_ADDRESS_GRC)
727 src_addr_split = src_addr + offset;
728 else
729 src_addr_split = src_addr + (offset * 4);
730 }
731
732 if (dst_type == QED_DMAE_ADDRESS_GRC)
733 dst_addr_split = dst_addr + offset;
734 else
735 dst_addr_split = dst_addr + (offset * 4);
736
737 length_cur = (cnt_split == i) ? length_mod : length_limit;
738
739 /* might be zero on last iteration */
740 if (!length_cur)
741 continue;
742
743 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
744 p_ptt,
745 src_addr_split,
746 dst_addr_split,
747 src_type,
748 dst_type,
749 length_cur);
750 if (qed_status) {
751 DP_NOTICE(p_hwfn,
752 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
753 qed_status, src_addr, dst_addr, length_cur);
754 break;
755 }
756 }
757
758 return qed_status;
759 }
760
qed_dmae_host2grc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 source_addr,u32 grc_addr,u32 size_in_dwords,u32 flags)761 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
762 struct qed_ptt *p_ptt,
763 u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
764 {
765 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
766 struct qed_dmae_params params;
767 int rc;
768
769 memset(¶ms, 0, sizeof(struct qed_dmae_params));
770 params.flags = flags;
771
772 mutex_lock(&p_hwfn->dmae_info.mutex);
773
774 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
775 grc_addr_in_dw,
776 QED_DMAE_ADDRESS_HOST_VIRT,
777 QED_DMAE_ADDRESS_GRC,
778 size_in_dwords, ¶ms);
779
780 mutex_unlock(&p_hwfn->dmae_info.mutex);
781
782 return rc;
783 }
784
qed_dmae_grc2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 grc_addr,dma_addr_t dest_addr,u32 size_in_dwords,u32 flags)785 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
786 struct qed_ptt *p_ptt,
787 u32 grc_addr,
788 dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
789 {
790 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
791 struct qed_dmae_params params;
792 int rc;
793
794 memset(¶ms, 0, sizeof(struct qed_dmae_params));
795 params.flags = flags;
796
797 mutex_lock(&p_hwfn->dmae_info.mutex);
798
799 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
800 dest_addr, QED_DMAE_ADDRESS_GRC,
801 QED_DMAE_ADDRESS_HOST_VIRT,
802 size_in_dwords, ¶ms);
803
804 mutex_unlock(&p_hwfn->dmae_info.mutex);
805
806 return rc;
807 }
808
qed_dmae_host2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t source_addr,dma_addr_t dest_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)809 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
810 struct qed_ptt *p_ptt,
811 dma_addr_t source_addr,
812 dma_addr_t dest_addr,
813 u32 size_in_dwords, struct qed_dmae_params *p_params)
814 {
815 int rc;
816
817 mutex_lock(&(p_hwfn->dmae_info.mutex));
818
819 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
820 dest_addr,
821 QED_DMAE_ADDRESS_HOST_PHYS,
822 QED_DMAE_ADDRESS_HOST_PHYS,
823 size_in_dwords, p_params);
824
825 mutex_unlock(&(p_hwfn->dmae_info.mutex));
826
827 return rc;
828 }
829
qed_dmae_sanity(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,const char * phase)830 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
831 struct qed_ptt *p_ptt, const char *phase)
832 {
833 u32 size = PAGE_SIZE / 2, val;
834 struct qed_dmae_params params;
835 int rc = 0;
836 dma_addr_t p_phys;
837 void *p_virt;
838 u32 *p_tmp;
839
840 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
841 2 * size, &p_phys, GFP_KERNEL);
842 if (!p_virt) {
843 DP_NOTICE(p_hwfn,
844 "DMAE sanity [%s]: failed to allocate memory\n",
845 phase);
846 return -ENOMEM;
847 }
848
849 /* Fill the bottom half of the allocated memory with a known pattern */
850 for (p_tmp = (u32 *)p_virt;
851 p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
852 /* Save the address itself as the value */
853 val = (u32)(uintptr_t)p_tmp;
854 *p_tmp = val;
855 }
856
857 /* Zero the top half of the allocated memory */
858 memset((u8 *)p_virt + size, 0, size);
859
860 DP_VERBOSE(p_hwfn,
861 QED_MSG_SP,
862 "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
863 phase,
864 (u64)p_phys,
865 p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
866
867 memset(¶ms, 0, sizeof(params));
868 rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
869 size / 4 /* size_in_dwords */, ¶ms);
870 if (rc) {
871 DP_NOTICE(p_hwfn,
872 "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
873 phase, rc);
874 goto out;
875 }
876
877 /* Verify that the top half of the allocated memory has the pattern */
878 for (p_tmp = (u32 *)((u8 *)p_virt + size);
879 p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
880 /* The corresponding address in the bottom half */
881 val = (u32)(uintptr_t)p_tmp - size;
882
883 if (*p_tmp != val) {
884 DP_NOTICE(p_hwfn,
885 "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
886 phase,
887 (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
888 p_tmp, *p_tmp, val);
889 rc = -EINVAL;
890 goto out;
891 }
892 }
893
894 out:
895 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
896 return rc;
897 }
898