1 /*
2 * Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Authors: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
7 *
8 * Description:
9 * General Purpose functions for the global management of the
10 * QUICC Engine (QE).
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 */
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/delay.h>
27 #include <linux/ioport.h>
28 #include <linux/crc32.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/of_platform.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <soc/fsl/qe/immap_qe.h>
35 #include <soc/fsl/qe/qe.h>
36 #include <asm/prom.h>
37 #include <asm/rheap.h>
38
39 static void qe_snums_init(void);
40 static int qe_sdma_init(void);
41
42 static DEFINE_SPINLOCK(qe_lock);
43 DEFINE_SPINLOCK(cmxgcr_lock);
44 EXPORT_SYMBOL(cmxgcr_lock);
45
46 /* QE snum state */
47 enum qe_snum_state {
48 QE_SNUM_STATE_USED,
49 QE_SNUM_STATE_FREE
50 };
51
52 /* QE snum */
53 struct qe_snum {
54 u8 num;
55 enum qe_snum_state state;
56 };
57
58 /* We allocate this here because it is used almost exclusively for
59 * the communication processor devices.
60 */
61 struct qe_immap __iomem *qe_immr;
62 EXPORT_SYMBOL(qe_immr);
63
64 static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
65 static unsigned int qe_num_of_snum;
66
67 static phys_addr_t qebase = -1;
68
get_qe_base(void)69 static phys_addr_t get_qe_base(void)
70 {
71 struct device_node *qe;
72 int ret;
73 struct resource res;
74
75 if (qebase != -1)
76 return qebase;
77
78 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
79 if (!qe) {
80 qe = of_find_node_by_type(NULL, "qe");
81 if (!qe)
82 return qebase;
83 }
84
85 ret = of_address_to_resource(qe, 0, &res);
86 if (!ret)
87 qebase = res.start;
88 of_node_put(qe);
89
90 return qebase;
91 }
92
qe_reset(void)93 void qe_reset(void)
94 {
95 if (qe_immr == NULL)
96 qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
97
98 qe_snums_init();
99
100 qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
101 QE_CR_PROTOCOL_UNSPECIFIED, 0);
102
103 /* Reclaim the MURAM memory for our use. */
104 qe_muram_init();
105
106 if (qe_sdma_init())
107 panic("sdma init failed!");
108 }
109
qe_issue_cmd(u32 cmd,u32 device,u8 mcn_protocol,u32 cmd_input)110 int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
111 {
112 unsigned long flags;
113 u8 mcn_shift = 0, dev_shift = 0;
114 u32 ret;
115
116 spin_lock_irqsave(&qe_lock, flags);
117 if (cmd == QE_RESET) {
118 out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
119 } else {
120 if (cmd == QE_ASSIGN_PAGE) {
121 /* Here device is the SNUM, not sub-block */
122 dev_shift = QE_CR_SNUM_SHIFT;
123 } else if (cmd == QE_ASSIGN_RISC) {
124 /* Here device is the SNUM, and mcnProtocol is
125 * e_QeCmdRiscAssignment value */
126 dev_shift = QE_CR_SNUM_SHIFT;
127 mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
128 } else {
129 if (device == QE_CR_SUBBLOCK_USB)
130 mcn_shift = QE_CR_MCN_USB_SHIFT;
131 else
132 mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
133 }
134
135 out_be32(&qe_immr->cp.cecdr, cmd_input);
136 out_be32(&qe_immr->cp.cecr,
137 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
138 mcn_protocol << mcn_shift));
139 }
140
141 /* wait for the QE_CR_FLG to clear */
142 ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
143 100, 0);
144 /* On timeout (e.g. failure), the expression will be false (ret == 0),
145 otherwise it will be true (ret == 1). */
146 spin_unlock_irqrestore(&qe_lock, flags);
147
148 return ret == 1;
149 }
150 EXPORT_SYMBOL(qe_issue_cmd);
151
152 /* Set a baud rate generator. This needs lots of work. There are
153 * 16 BRGs, which can be connected to the QE channels or output
154 * as clocks. The BRGs are in two different block of internal
155 * memory mapped space.
156 * The BRG clock is the QE clock divided by 2.
157 * It was set up long ago during the initial boot phase and is
158 * is given to us.
159 * Baud rate clocks are zero-based in the driver code (as that maps
160 * to port numbers). Documentation uses 1-based numbering.
161 */
162 static unsigned int brg_clk = 0;
163
164 #define CLK_GRAN (1000)
165 #define CLK_GRAN_LIMIT (5)
166
qe_get_brg_clk(void)167 unsigned int qe_get_brg_clk(void)
168 {
169 struct device_node *qe;
170 int size;
171 const u32 *prop;
172 unsigned int mod;
173
174 if (brg_clk)
175 return brg_clk;
176
177 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
178 if (!qe) {
179 qe = of_find_node_by_type(NULL, "qe");
180 if (!qe)
181 return brg_clk;
182 }
183
184 prop = of_get_property(qe, "brg-frequency", &size);
185 if (prop && size == sizeof(*prop))
186 brg_clk = *prop;
187
188 of_node_put(qe);
189
190 /* round this if near to a multiple of CLK_GRAN */
191 mod = brg_clk % CLK_GRAN;
192 if (mod) {
193 if (mod < CLK_GRAN_LIMIT)
194 brg_clk -= mod;
195 else if (mod > (CLK_GRAN - CLK_GRAN_LIMIT))
196 brg_clk += CLK_GRAN - mod;
197 }
198
199 return brg_clk;
200 }
201 EXPORT_SYMBOL(qe_get_brg_clk);
202
203 #define PVR_VER_836x 0x8083
204 #define PVR_VER_832x 0x8084
205
206 /* Program the BRG to the given sampling rate and multiplier
207 *
208 * @brg: the BRG, QE_BRG1 - QE_BRG16
209 * @rate: the desired sampling rate
210 * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
211 * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
212 * then 'multiplier' should be 8.
213 */
qe_setbrg(enum qe_clock brg,unsigned int rate,unsigned int multiplier)214 int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
215 {
216 u32 divisor, tempval;
217 u32 div16 = 0;
218
219 if ((brg < QE_BRG1) || (brg > QE_BRG16))
220 return -EINVAL;
221
222 divisor = qe_get_brg_clk() / (rate * multiplier);
223
224 if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
225 div16 = QE_BRGC_DIV16;
226 divisor /= 16;
227 }
228
229 /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
230 that the BRG divisor must be even if you're not using divide-by-16
231 mode. */
232 if (pvr_version_is(PVR_VER_836x) || pvr_version_is(PVR_VER_832x))
233 if (!div16 && (divisor & 1) && (divisor > 3))
234 divisor++;
235
236 tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
237 QE_BRGC_ENABLE | div16;
238
239 out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
240
241 return 0;
242 }
243 EXPORT_SYMBOL(qe_setbrg);
244
245 /* Convert a string to a QE clock source enum
246 *
247 * This function takes a string, typically from a property in the device
248 * tree, and returns the corresponding "enum qe_clock" value.
249 */
qe_clock_source(const char * source)250 enum qe_clock qe_clock_source(const char *source)
251 {
252 unsigned int i;
253
254 if (strcasecmp(source, "none") == 0)
255 return QE_CLK_NONE;
256
257 if (strcmp(source, "tsync_pin") == 0)
258 return QE_TSYNC_PIN;
259
260 if (strcmp(source, "rsync_pin") == 0)
261 return QE_RSYNC_PIN;
262
263 if (strncasecmp(source, "brg", 3) == 0) {
264 i = simple_strtoul(source + 3, NULL, 10);
265 if ((i >= 1) && (i <= 16))
266 return (QE_BRG1 - 1) + i;
267 else
268 return QE_CLK_DUMMY;
269 }
270
271 if (strncasecmp(source, "clk", 3) == 0) {
272 i = simple_strtoul(source + 3, NULL, 10);
273 if ((i >= 1) && (i <= 24))
274 return (QE_CLK1 - 1) + i;
275 else
276 return QE_CLK_DUMMY;
277 }
278
279 return QE_CLK_DUMMY;
280 }
281 EXPORT_SYMBOL(qe_clock_source);
282
283 /* Initialize SNUMs (thread serial numbers) according to
284 * QE Module Control chapter, SNUM table
285 */
qe_snums_init(void)286 static void qe_snums_init(void)
287 {
288 int i;
289 static const u8 snum_init_76[] = {
290 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
291 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
292 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
293 0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D,
294 0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D,
295 0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D,
296 0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD,
297 0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD,
298 0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED,
299 0xF4, 0xF5, 0xFC, 0xFD,
300 };
301 static const u8 snum_init_46[] = {
302 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
303 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
304 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
305 0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
306 0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
307 0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
308 };
309 static const u8 *snum_init;
310
311 qe_num_of_snum = qe_get_num_of_snums();
312
313 if (qe_num_of_snum == 76)
314 snum_init = snum_init_76;
315 else
316 snum_init = snum_init_46;
317
318 for (i = 0; i < qe_num_of_snum; i++) {
319 snums[i].num = snum_init[i];
320 snums[i].state = QE_SNUM_STATE_FREE;
321 }
322 }
323
qe_get_snum(void)324 int qe_get_snum(void)
325 {
326 unsigned long flags;
327 int snum = -EBUSY;
328 int i;
329
330 spin_lock_irqsave(&qe_lock, flags);
331 for (i = 0; i < qe_num_of_snum; i++) {
332 if (snums[i].state == QE_SNUM_STATE_FREE) {
333 snums[i].state = QE_SNUM_STATE_USED;
334 snum = snums[i].num;
335 break;
336 }
337 }
338 spin_unlock_irqrestore(&qe_lock, flags);
339
340 return snum;
341 }
342 EXPORT_SYMBOL(qe_get_snum);
343
qe_put_snum(u8 snum)344 void qe_put_snum(u8 snum)
345 {
346 int i;
347
348 for (i = 0; i < qe_num_of_snum; i++) {
349 if (snums[i].num == snum) {
350 snums[i].state = QE_SNUM_STATE_FREE;
351 break;
352 }
353 }
354 }
355 EXPORT_SYMBOL(qe_put_snum);
356
qe_sdma_init(void)357 static int qe_sdma_init(void)
358 {
359 struct sdma __iomem *sdma = &qe_immr->sdma;
360 static unsigned long sdma_buf_offset = (unsigned long)-ENOMEM;
361
362 if (!sdma)
363 return -ENODEV;
364
365 /* allocate 2 internal temporary buffers (512 bytes size each) for
366 * the SDMA */
367 if (IS_ERR_VALUE(sdma_buf_offset)) {
368 sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
369 if (IS_ERR_VALUE(sdma_buf_offset))
370 return -ENOMEM;
371 }
372
373 out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
374 out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
375 (0x1 << QE_SDMR_CEN_SHIFT)));
376
377 return 0;
378 }
379
380 /* The maximum number of RISCs we support */
381 #define MAX_QE_RISC 4
382
383 /* Firmware information stored here for qe_get_firmware_info() */
384 static struct qe_firmware_info qe_firmware_info;
385
386 /*
387 * Set to 1 if QE firmware has been uploaded, and therefore
388 * qe_firmware_info contains valid data.
389 */
390 static int qe_firmware_uploaded;
391
392 /*
393 * Upload a QE microcode
394 *
395 * This function is a worker function for qe_upload_firmware(). It does
396 * the actual uploading of the microcode.
397 */
qe_upload_microcode(const void * base,const struct qe_microcode * ucode)398 static void qe_upload_microcode(const void *base,
399 const struct qe_microcode *ucode)
400 {
401 const __be32 *code = base + be32_to_cpu(ucode->code_offset);
402 unsigned int i;
403
404 if (ucode->major || ucode->minor || ucode->revision)
405 printk(KERN_INFO "qe-firmware: "
406 "uploading microcode '%s' version %u.%u.%u\n",
407 ucode->id, ucode->major, ucode->minor, ucode->revision);
408 else
409 printk(KERN_INFO "qe-firmware: "
410 "uploading microcode '%s'\n", ucode->id);
411
412 /* Use auto-increment */
413 out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
414 QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
415
416 for (i = 0; i < be32_to_cpu(ucode->count); i++)
417 out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
418
419 /* Set I-RAM Ready Register */
420 out_be32(&qe_immr->iram.iready, be32_to_cpu(QE_IRAM_READY));
421 }
422
423 /*
424 * Upload a microcode to the I-RAM at a specific address.
425 *
426 * See Documentation/powerpc/qe_firmware.txt for information on QE microcode
427 * uploading.
428 *
429 * Currently, only version 1 is supported, so the 'version' field must be
430 * set to 1.
431 *
432 * The SOC model and revision are not validated, they are only displayed for
433 * informational purposes.
434 *
435 * 'calc_size' is the calculated size, in bytes, of the firmware structure and
436 * all of the microcode structures, minus the CRC.
437 *
438 * 'length' is the size that the structure says it is, including the CRC.
439 */
qe_upload_firmware(const struct qe_firmware * firmware)440 int qe_upload_firmware(const struct qe_firmware *firmware)
441 {
442 unsigned int i;
443 unsigned int j;
444 u32 crc;
445 size_t calc_size = sizeof(struct qe_firmware);
446 size_t length;
447 const struct qe_header *hdr;
448
449 if (!firmware) {
450 printk(KERN_ERR "qe-firmware: invalid pointer\n");
451 return -EINVAL;
452 }
453
454 hdr = &firmware->header;
455 length = be32_to_cpu(hdr->length);
456
457 /* Check the magic */
458 if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
459 (hdr->magic[2] != 'F')) {
460 printk(KERN_ERR "qe-firmware: not a microcode\n");
461 return -EPERM;
462 }
463
464 /* Check the version */
465 if (hdr->version != 1) {
466 printk(KERN_ERR "qe-firmware: unsupported version\n");
467 return -EPERM;
468 }
469
470 /* Validate some of the fields */
471 if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
472 printk(KERN_ERR "qe-firmware: invalid data\n");
473 return -EINVAL;
474 }
475
476 /* Validate the length and check if there's a CRC */
477 calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
478
479 for (i = 0; i < firmware->count; i++)
480 /*
481 * For situations where the second RISC uses the same microcode
482 * as the first, the 'code_offset' and 'count' fields will be
483 * zero, so it's okay to add those.
484 */
485 calc_size += sizeof(__be32) *
486 be32_to_cpu(firmware->microcode[i].count);
487
488 /* Validate the length */
489 if (length != calc_size + sizeof(__be32)) {
490 printk(KERN_ERR "qe-firmware: invalid length\n");
491 return -EPERM;
492 }
493
494 /* Validate the CRC */
495 crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
496 if (crc != crc32(0, firmware, calc_size)) {
497 printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
498 return -EIO;
499 }
500
501 /*
502 * If the microcode calls for it, split the I-RAM.
503 */
504 if (!firmware->split)
505 setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
506
507 if (firmware->soc.model)
508 printk(KERN_INFO
509 "qe-firmware: firmware '%s' for %u V%u.%u\n",
510 firmware->id, be16_to_cpu(firmware->soc.model),
511 firmware->soc.major, firmware->soc.minor);
512 else
513 printk(KERN_INFO "qe-firmware: firmware '%s'\n",
514 firmware->id);
515
516 /*
517 * The QE only supports one microcode per RISC, so clear out all the
518 * saved microcode information and put in the new.
519 */
520 memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
521 strlcpy(qe_firmware_info.id, firmware->id, sizeof(qe_firmware_info.id));
522 qe_firmware_info.extended_modes = firmware->extended_modes;
523 memcpy(qe_firmware_info.vtraps, firmware->vtraps,
524 sizeof(firmware->vtraps));
525
526 /* Loop through each microcode. */
527 for (i = 0; i < firmware->count; i++) {
528 const struct qe_microcode *ucode = &firmware->microcode[i];
529
530 /* Upload a microcode if it's present */
531 if (ucode->code_offset)
532 qe_upload_microcode(firmware, ucode);
533
534 /* Program the traps for this processor */
535 for (j = 0; j < 16; j++) {
536 u32 trap = be32_to_cpu(ucode->traps[j]);
537
538 if (trap)
539 out_be32(&qe_immr->rsp[i].tibcr[j], trap);
540 }
541
542 /* Enable traps */
543 out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
544 }
545
546 qe_firmware_uploaded = 1;
547
548 return 0;
549 }
550 EXPORT_SYMBOL(qe_upload_firmware);
551
552 /*
553 * Get info on the currently-loaded firmware
554 *
555 * This function also checks the device tree to see if the boot loader has
556 * uploaded a firmware already.
557 */
qe_get_firmware_info(void)558 struct qe_firmware_info *qe_get_firmware_info(void)
559 {
560 static int initialized;
561 struct property *prop;
562 struct device_node *qe;
563 struct device_node *fw = NULL;
564 const char *sprop;
565 unsigned int i;
566
567 /*
568 * If we haven't checked yet, and a driver hasn't uploaded a firmware
569 * yet, then check the device tree for information.
570 */
571 if (qe_firmware_uploaded)
572 return &qe_firmware_info;
573
574 if (initialized)
575 return NULL;
576
577 initialized = 1;
578
579 /*
580 * Newer device trees have an "fsl,qe" compatible property for the QE
581 * node, but we still need to support older device trees.
582 */
583 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
584 if (!qe) {
585 qe = of_find_node_by_type(NULL, "qe");
586 if (!qe)
587 return NULL;
588 }
589
590 /* Find the 'firmware' child node */
591 for_each_child_of_node(qe, fw) {
592 if (strcmp(fw->name, "firmware") == 0)
593 break;
594 }
595
596 of_node_put(qe);
597
598 /* Did we find the 'firmware' node? */
599 if (!fw)
600 return NULL;
601
602 qe_firmware_uploaded = 1;
603
604 /* Copy the data into qe_firmware_info*/
605 sprop = of_get_property(fw, "id", NULL);
606 if (sprop)
607 strlcpy(qe_firmware_info.id, sprop,
608 sizeof(qe_firmware_info.id));
609
610 prop = of_find_property(fw, "extended-modes", NULL);
611 if (prop && (prop->length == sizeof(u64))) {
612 const u64 *iprop = prop->value;
613
614 qe_firmware_info.extended_modes = *iprop;
615 }
616
617 prop = of_find_property(fw, "virtual-traps", NULL);
618 if (prop && (prop->length == 32)) {
619 const u32 *iprop = prop->value;
620
621 for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
622 qe_firmware_info.vtraps[i] = iprop[i];
623 }
624
625 of_node_put(fw);
626
627 return &qe_firmware_info;
628 }
629 EXPORT_SYMBOL(qe_get_firmware_info);
630
qe_get_num_of_risc(void)631 unsigned int qe_get_num_of_risc(void)
632 {
633 struct device_node *qe;
634 int size;
635 unsigned int num_of_risc = 0;
636 const u32 *prop;
637
638 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
639 if (!qe) {
640 /* Older devices trees did not have an "fsl,qe"
641 * compatible property, so we need to look for
642 * the QE node by name.
643 */
644 qe = of_find_node_by_type(NULL, "qe");
645 if (!qe)
646 return num_of_risc;
647 }
648
649 prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
650 if (prop && size == sizeof(*prop))
651 num_of_risc = *prop;
652
653 of_node_put(qe);
654
655 return num_of_risc;
656 }
657 EXPORT_SYMBOL(qe_get_num_of_risc);
658
qe_get_num_of_snums(void)659 unsigned int qe_get_num_of_snums(void)
660 {
661 struct device_node *qe;
662 int size;
663 unsigned int num_of_snums;
664 const u32 *prop;
665
666 num_of_snums = 28; /* The default number of snum for threads is 28 */
667 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
668 if (!qe) {
669 /* Older devices trees did not have an "fsl,qe"
670 * compatible property, so we need to look for
671 * the QE node by name.
672 */
673 qe = of_find_node_by_type(NULL, "qe");
674 if (!qe)
675 return num_of_snums;
676 }
677
678 prop = of_get_property(qe, "fsl,qe-num-snums", &size);
679 if (prop && size == sizeof(*prop)) {
680 num_of_snums = *prop;
681 if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
682 /* No QE ever has fewer than 28 SNUMs */
683 pr_err("QE: number of snum is invalid\n");
684 of_node_put(qe);
685 return -EINVAL;
686 }
687 }
688
689 of_node_put(qe);
690
691 return num_of_snums;
692 }
693 EXPORT_SYMBOL(qe_get_num_of_snums);
694
qe_init(void)695 static int __init qe_init(void)
696 {
697 struct device_node *np;
698
699 np = of_find_compatible_node(NULL, NULL, "fsl,qe");
700 if (!np)
701 return -ENODEV;
702 qe_reset();
703 of_node_put(np);
704 return 0;
705 }
706 subsys_initcall(qe_init);
707
708 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
qe_resume(struct platform_device * ofdev)709 static int qe_resume(struct platform_device *ofdev)
710 {
711 if (!qe_alive_during_sleep())
712 qe_reset();
713 return 0;
714 }
715
qe_probe(struct platform_device * ofdev)716 static int qe_probe(struct platform_device *ofdev)
717 {
718 return 0;
719 }
720
721 static const struct of_device_id qe_ids[] = {
722 { .compatible = "fsl,qe", },
723 { },
724 };
725
726 static struct platform_driver qe_driver = {
727 .driver = {
728 .name = "fsl-qe",
729 .of_match_table = qe_ids,
730 },
731 .probe = qe_probe,
732 .resume = qe_resume,
733 };
734
735 builtin_platform_driver(qe_driver);
736 #endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */
737