1 /*
2 * Copyright (c) 2015, Sony Mobile Communications AB.
3 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 and
7 * only version 2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/hwspinlock.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/soc/qcom/smem.h>
23
24 /*
25 * The Qualcomm shared memory system is a allocate only heap structure that
26 * consists of one of more memory areas that can be accessed by the processors
27 * in the SoC.
28 *
29 * All systems contains a global heap, accessible by all processors in the SoC,
30 * with a table of contents data structure (@smem_header) at the beginning of
31 * the main shared memory block.
32 *
33 * The global header contains meta data for allocations as well as a fixed list
34 * of 512 entries (@smem_global_entry) that can be initialized to reference
35 * parts of the shared memory space.
36 *
37 *
38 * In addition to this global heap a set of "private" heaps can be set up at
39 * boot time with access restrictions so that only certain processor pairs can
40 * access the data.
41 *
42 * These partitions are referenced from an optional partition table
43 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
44 * partition table entries (@smem_ptable_entry) lists the involved processors
45 * (or hosts) and their location in the main shared memory region.
46 *
47 * Each partition starts with a header (@smem_partition_header) that identifies
48 * the partition and holds properties for the two internal memory regions. The
49 * two regions are cached and non-cached memory respectively. Each region
50 * contain a link list of allocation headers (@smem_private_entry) followed by
51 * their data.
52 *
53 * Items in the non-cached region are allocated from the start of the partition
54 * while items in the cached region are allocated from the end. The free area
55 * is hence the region between the cached and non-cached offsets. The header of
56 * cached items comes after the data.
57 *
58 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
59 * for the global heap. A new global partition is created from the global heap
60 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
61 * set by the bootloader.
62 *
63 * To synchronize allocations in the shared memory heaps a remote spinlock must
64 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
65 * platforms.
66 *
67 */
68
69 /*
70 * The version member of the smem header contains an array of versions for the
71 * various software components in the SoC. We verify that the boot loader
72 * version is a valid version as a sanity check.
73 */
74 #define SMEM_MASTER_SBL_VERSION_INDEX 7
75 #define SMEM_GLOBAL_HEAP_VERSION 11
76 #define SMEM_GLOBAL_PART_VERSION 12
77
78 /*
79 * The first 8 items are only to be allocated by the boot loader while
80 * initializing the heap.
81 */
82 #define SMEM_ITEM_LAST_FIXED 8
83
84 /* Highest accepted item number, for both global and private heaps */
85 #define SMEM_ITEM_COUNT 512
86
87 /* Processor/host identifier for the application processor */
88 #define SMEM_HOST_APPS 0
89
90 /* Processor/host identifier for the global partition */
91 #define SMEM_GLOBAL_HOST 0xfffe
92
93 /* Max number of processors/hosts in a system */
94 #define SMEM_HOST_COUNT 10
95
96 /**
97 * struct smem_proc_comm - proc_comm communication struct (legacy)
98 * @command: current command to be executed
99 * @status: status of the currently requested command
100 * @params: parameters to the command
101 */
102 struct smem_proc_comm {
103 __le32 command;
104 __le32 status;
105 __le32 params[2];
106 };
107
108 /**
109 * struct smem_global_entry - entry to reference smem items on the heap
110 * @allocated: boolean to indicate if this entry is used
111 * @offset: offset to the allocated space
112 * @size: size of the allocated space, 8 byte aligned
113 * @aux_base: base address for the memory region used by this unit, or 0 for
114 * the default region. bits 0,1 are reserved
115 */
116 struct smem_global_entry {
117 __le32 allocated;
118 __le32 offset;
119 __le32 size;
120 __le32 aux_base; /* bits 1:0 reserved */
121 };
122 #define AUX_BASE_MASK 0xfffffffc
123
124 /**
125 * struct smem_header - header found in beginning of primary smem region
126 * @proc_comm: proc_comm communication interface (legacy)
127 * @version: array of versions for the various subsystems
128 * @initialized: boolean to indicate that smem is initialized
129 * @free_offset: index of the first unallocated byte in smem
130 * @available: number of bytes available for allocation
131 * @reserved: reserved field, must be 0
132 * toc: array of references to items
133 */
134 struct smem_header {
135 struct smem_proc_comm proc_comm[4];
136 __le32 version[32];
137 __le32 initialized;
138 __le32 free_offset;
139 __le32 available;
140 __le32 reserved;
141 struct smem_global_entry toc[SMEM_ITEM_COUNT];
142 };
143
144 /**
145 * struct smem_ptable_entry - one entry in the @smem_ptable list
146 * @offset: offset, within the main shared memory region, of the partition
147 * @size: size of the partition
148 * @flags: flags for the partition (currently unused)
149 * @host0: first processor/host with access to this partition
150 * @host1: second processor/host with access to this partition
151 * @cacheline: alignment for "cached" entries
152 * @reserved: reserved entries for later use
153 */
154 struct smem_ptable_entry {
155 __le32 offset;
156 __le32 size;
157 __le32 flags;
158 __le16 host0;
159 __le16 host1;
160 __le32 cacheline;
161 __le32 reserved[7];
162 };
163
164 /**
165 * struct smem_ptable - partition table for the private partitions
166 * @magic: magic number, must be SMEM_PTABLE_MAGIC
167 * @version: version of the partition table
168 * @num_entries: number of partitions in the table
169 * @reserved: for now reserved entries
170 * @entry: list of @smem_ptable_entry for the @num_entries partitions
171 */
172 struct smem_ptable {
173 u8 magic[4];
174 __le32 version;
175 __le32 num_entries;
176 __le32 reserved[5];
177 struct smem_ptable_entry entry[];
178 };
179
180 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
181
182 /**
183 * struct smem_partition_header - header of the partitions
184 * @magic: magic number, must be SMEM_PART_MAGIC
185 * @host0: first processor/host with access to this partition
186 * @host1: second processor/host with access to this partition
187 * @size: size of the partition
188 * @offset_free_uncached: offset to the first free byte of uncached memory in
189 * this partition
190 * @offset_free_cached: offset to the first free byte of cached memory in this
191 * partition
192 * @reserved: for now reserved entries
193 */
194 struct smem_partition_header {
195 u8 magic[4];
196 __le16 host0;
197 __le16 host1;
198 __le32 size;
199 __le32 offset_free_uncached;
200 __le32 offset_free_cached;
201 __le32 reserved[3];
202 };
203
204 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
205
206 /**
207 * struct smem_private_entry - header of each item in the private partition
208 * @canary: magic number, must be SMEM_PRIVATE_CANARY
209 * @item: identifying number of the smem item
210 * @size: size of the data, including padding bytes
211 * @padding_data: number of bytes of padding of data
212 * @padding_hdr: number of bytes of padding between the header and the data
213 * @reserved: for now reserved entry
214 */
215 struct smem_private_entry {
216 u16 canary; /* bytes are the same so no swapping needed */
217 __le16 item;
218 __le32 size; /* includes padding bytes */
219 __le16 padding_data;
220 __le16 padding_hdr;
221 __le32 reserved;
222 };
223 #define SMEM_PRIVATE_CANARY 0xa5a5
224
225 /**
226 * struct smem_info - smem region info located after the table of contents
227 * @magic: magic number, must be SMEM_INFO_MAGIC
228 * @size: size of the smem region
229 * @base_addr: base address of the smem region
230 * @reserved: for now reserved entry
231 * @num_items: highest accepted item number
232 */
233 struct smem_info {
234 u8 magic[4];
235 __le32 size;
236 __le32 base_addr;
237 __le32 reserved;
238 __le16 num_items;
239 };
240
241 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
242
243 /**
244 * struct smem_region - representation of a chunk of memory used for smem
245 * @aux_base: identifier of aux_mem base
246 * @virt_base: virtual base address of memory with this aux_mem identifier
247 * @size: size of the memory region
248 */
249 struct smem_region {
250 u32 aux_base;
251 void __iomem *virt_base;
252 size_t size;
253 };
254
255 /**
256 * struct qcom_smem - device data for the smem device
257 * @dev: device pointer
258 * @hwlock: reference to a hwspinlock
259 * @global_partition: pointer to global partition when in use
260 * @global_cacheline: cacheline size for global partition
261 * @partitions: list of pointers to partitions affecting the current
262 * processor/host
263 * @cacheline: list of cacheline sizes for each host
264 * @item_count: max accepted item number
265 * @num_regions: number of @regions
266 * @regions: list of the memory regions defining the shared memory
267 */
268 struct qcom_smem {
269 struct device *dev;
270
271 struct hwspinlock *hwlock;
272
273 struct smem_partition_header *global_partition;
274 size_t global_cacheline;
275 struct smem_partition_header *partitions[SMEM_HOST_COUNT];
276 size_t cacheline[SMEM_HOST_COUNT];
277 u32 item_count;
278
279 unsigned num_regions;
280 struct smem_region regions[0];
281 };
282
283 static void *
phdr_to_last_uncached_entry(struct smem_partition_header * phdr)284 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
285 {
286 void *p = phdr;
287
288 return p + le32_to_cpu(phdr->offset_free_uncached);
289 }
290
291 static struct smem_private_entry *
phdr_to_first_cached_entry(struct smem_partition_header * phdr,size_t cacheline)292 phdr_to_first_cached_entry(struct smem_partition_header *phdr,
293 size_t cacheline)
294 {
295 void *p = phdr;
296 struct smem_private_entry *e;
297
298 return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
299 }
300
301 static void *
phdr_to_last_cached_entry(struct smem_partition_header * phdr)302 phdr_to_last_cached_entry(struct smem_partition_header *phdr)
303 {
304 void *p = phdr;
305
306 return p + le32_to_cpu(phdr->offset_free_cached);
307 }
308
309 static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header * phdr)310 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
311 {
312 void *p = phdr;
313
314 return p + sizeof(*phdr);
315 }
316
317 static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry * e)318 uncached_entry_next(struct smem_private_entry *e)
319 {
320 void *p = e;
321
322 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
323 le32_to_cpu(e->size);
324 }
325
326 static struct smem_private_entry *
cached_entry_next(struct smem_private_entry * e,size_t cacheline)327 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
328 {
329 void *p = e;
330
331 return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
332 }
333
uncached_entry_to_item(struct smem_private_entry * e)334 static void *uncached_entry_to_item(struct smem_private_entry *e)
335 {
336 void *p = e;
337
338 return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
339 }
340
cached_entry_to_item(struct smem_private_entry * e)341 static void *cached_entry_to_item(struct smem_private_entry *e)
342 {
343 void *p = e;
344
345 return p - le32_to_cpu(e->size);
346 }
347
348 /* Pointer to the one and only smem handle */
349 static struct qcom_smem *__smem;
350
351 /* Timeout (ms) for the trylock of remote spinlocks */
352 #define HWSPINLOCK_TIMEOUT 1000
353
qcom_smem_alloc_private(struct qcom_smem * smem,struct smem_partition_header * phdr,unsigned item,size_t size)354 static int qcom_smem_alloc_private(struct qcom_smem *smem,
355 struct smem_partition_header *phdr,
356 unsigned item,
357 size_t size)
358 {
359 struct smem_private_entry *hdr, *end;
360 size_t alloc_size;
361 void *cached;
362
363 hdr = phdr_to_first_uncached_entry(phdr);
364 end = phdr_to_last_uncached_entry(phdr);
365 cached = phdr_to_last_cached_entry(phdr);
366
367 while (hdr < end) {
368 if (hdr->canary != SMEM_PRIVATE_CANARY)
369 goto bad_canary;
370 if (le16_to_cpu(hdr->item) == item)
371 return -EEXIST;
372
373 hdr = uncached_entry_next(hdr);
374 }
375
376 /* Check that we don't grow into the cached region */
377 alloc_size = sizeof(*hdr) + ALIGN(size, 8);
378 if ((void *)hdr + alloc_size > cached) {
379 dev_err(smem->dev, "Out of memory\n");
380 return -ENOSPC;
381 }
382
383 hdr->canary = SMEM_PRIVATE_CANARY;
384 hdr->item = cpu_to_le16(item);
385 hdr->size = cpu_to_le32(ALIGN(size, 8));
386 hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
387 hdr->padding_hdr = 0;
388
389 /*
390 * Ensure the header is written before we advance the free offset, so
391 * that remote processors that does not take the remote spinlock still
392 * gets a consistent view of the linked list.
393 */
394 wmb();
395 le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
396
397 return 0;
398 bad_canary:
399 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
400 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
401
402 return -EINVAL;
403 }
404
qcom_smem_alloc_global(struct qcom_smem * smem,unsigned item,size_t size)405 static int qcom_smem_alloc_global(struct qcom_smem *smem,
406 unsigned item,
407 size_t size)
408 {
409 struct smem_global_entry *entry;
410 struct smem_header *header;
411
412 header = smem->regions[0].virt_base;
413 entry = &header->toc[item];
414 if (entry->allocated)
415 return -EEXIST;
416
417 size = ALIGN(size, 8);
418 if (WARN_ON(size > le32_to_cpu(header->available)))
419 return -ENOMEM;
420
421 entry->offset = header->free_offset;
422 entry->size = cpu_to_le32(size);
423
424 /*
425 * Ensure the header is consistent before we mark the item allocated,
426 * so that remote processors will get a consistent view of the item
427 * even though they do not take the spinlock on read.
428 */
429 wmb();
430 entry->allocated = cpu_to_le32(1);
431
432 le32_add_cpu(&header->free_offset, size);
433 le32_add_cpu(&header->available, -size);
434
435 return 0;
436 }
437
438 /**
439 * qcom_smem_alloc() - allocate space for a smem item
440 * @host: remote processor id, or -1
441 * @item: smem item handle
442 * @size: number of bytes to be allocated
443 *
444 * Allocate space for a given smem item of size @size, given that the item is
445 * not yet allocated.
446 */
qcom_smem_alloc(unsigned host,unsigned item,size_t size)447 int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
448 {
449 struct smem_partition_header *phdr;
450 unsigned long flags;
451 int ret;
452
453 if (!__smem)
454 return -EPROBE_DEFER;
455
456 if (item < SMEM_ITEM_LAST_FIXED) {
457 dev_err(__smem->dev,
458 "Rejecting allocation of static entry %d\n", item);
459 return -EINVAL;
460 }
461
462 if (WARN_ON(item >= __smem->item_count))
463 return -EINVAL;
464
465 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
466 HWSPINLOCK_TIMEOUT,
467 &flags);
468 if (ret)
469 return ret;
470
471 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
472 phdr = __smem->partitions[host];
473 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
474 } else if (__smem->global_partition) {
475 phdr = __smem->global_partition;
476 ret = qcom_smem_alloc_private(__smem, phdr, item, size);
477 } else {
478 ret = qcom_smem_alloc_global(__smem, item, size);
479 }
480
481 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
482
483 return ret;
484 }
485 EXPORT_SYMBOL(qcom_smem_alloc);
486
qcom_smem_get_global(struct qcom_smem * smem,unsigned item,size_t * size)487 static void *qcom_smem_get_global(struct qcom_smem *smem,
488 unsigned item,
489 size_t *size)
490 {
491 struct smem_header *header;
492 struct smem_region *area;
493 struct smem_global_entry *entry;
494 u32 aux_base;
495 unsigned i;
496
497 header = smem->regions[0].virt_base;
498 entry = &header->toc[item];
499 if (!entry->allocated)
500 return ERR_PTR(-ENXIO);
501
502 aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
503
504 for (i = 0; i < smem->num_regions; i++) {
505 area = &smem->regions[i];
506
507 if (area->aux_base == aux_base || !aux_base) {
508 if (size != NULL)
509 *size = le32_to_cpu(entry->size);
510 return area->virt_base + le32_to_cpu(entry->offset);
511 }
512 }
513
514 return ERR_PTR(-ENOENT);
515 }
516
qcom_smem_get_private(struct qcom_smem * smem,struct smem_partition_header * phdr,size_t cacheline,unsigned item,size_t * size)517 static void *qcom_smem_get_private(struct qcom_smem *smem,
518 struct smem_partition_header *phdr,
519 size_t cacheline,
520 unsigned item,
521 size_t *size)
522 {
523 struct smem_private_entry *e, *end;
524
525 e = phdr_to_first_uncached_entry(phdr);
526 end = phdr_to_last_uncached_entry(phdr);
527
528 while (e < end) {
529 if (e->canary != SMEM_PRIVATE_CANARY)
530 goto invalid_canary;
531
532 if (le16_to_cpu(e->item) == item) {
533 if (size != NULL)
534 *size = le32_to_cpu(e->size) -
535 le16_to_cpu(e->padding_data);
536
537 return uncached_entry_to_item(e);
538 }
539
540 e = uncached_entry_next(e);
541 }
542
543 /* Item was not found in the uncached list, search the cached list */
544
545 e = phdr_to_first_cached_entry(phdr, cacheline);
546 end = phdr_to_last_cached_entry(phdr);
547
548 while (e > end) {
549 if (e->canary != SMEM_PRIVATE_CANARY)
550 goto invalid_canary;
551
552 if (le16_to_cpu(e->item) == item) {
553 if (size != NULL)
554 *size = le32_to_cpu(e->size) -
555 le16_to_cpu(e->padding_data);
556
557 return cached_entry_to_item(e);
558 }
559
560 e = cached_entry_next(e, cacheline);
561 }
562
563 return ERR_PTR(-ENOENT);
564
565 invalid_canary:
566 dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
567 le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
568
569 return ERR_PTR(-EINVAL);
570 }
571
572 /**
573 * qcom_smem_get() - resolve ptr of size of a smem item
574 * @host: the remote processor, or -1
575 * @item: smem item handle
576 * @size: pointer to be filled out with size of the item
577 *
578 * Looks up smem item and returns pointer to it. Size of smem
579 * item is returned in @size.
580 */
qcom_smem_get(unsigned host,unsigned item,size_t * size)581 void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
582 {
583 struct smem_partition_header *phdr;
584 unsigned long flags;
585 size_t cacheln;
586 int ret;
587 void *ptr = ERR_PTR(-EPROBE_DEFER);
588
589 if (!__smem)
590 return ptr;
591
592 if (WARN_ON(item >= __smem->item_count))
593 return ERR_PTR(-EINVAL);
594
595 ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
596 HWSPINLOCK_TIMEOUT,
597 &flags);
598 if (ret)
599 return ERR_PTR(ret);
600
601 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
602 phdr = __smem->partitions[host];
603 cacheln = __smem->cacheline[host];
604 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
605 } else if (__smem->global_partition) {
606 phdr = __smem->global_partition;
607 cacheln = __smem->global_cacheline;
608 ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
609 } else {
610 ptr = qcom_smem_get_global(__smem, item, size);
611 }
612
613 hwspin_unlock_irqrestore(__smem->hwlock, &flags);
614
615 return ptr;
616
617 }
618 EXPORT_SYMBOL(qcom_smem_get);
619
620 /**
621 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
622 * @host: the remote processor identifying a partition, or -1
623 *
624 * To be used by smem clients as a quick way to determine if any new
625 * allocations has been made.
626 */
qcom_smem_get_free_space(unsigned host)627 int qcom_smem_get_free_space(unsigned host)
628 {
629 struct smem_partition_header *phdr;
630 struct smem_header *header;
631 unsigned ret;
632
633 if (!__smem)
634 return -EPROBE_DEFER;
635
636 if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
637 phdr = __smem->partitions[host];
638 ret = le32_to_cpu(phdr->offset_free_cached) -
639 le32_to_cpu(phdr->offset_free_uncached);
640 } else if (__smem->global_partition) {
641 phdr = __smem->global_partition;
642 ret = le32_to_cpu(phdr->offset_free_cached) -
643 le32_to_cpu(phdr->offset_free_uncached);
644 } else {
645 header = __smem->regions[0].virt_base;
646 ret = le32_to_cpu(header->available);
647 }
648
649 return ret;
650 }
651 EXPORT_SYMBOL(qcom_smem_get_free_space);
652
653 /**
654 * qcom_smem_virt_to_phys() - return the physical address associated
655 * with an smem item pointer (previously returned by qcom_smem_get()
656 * @p: the virtual address to convert
657 *
658 * Returns 0 if the pointer provided is not within any smem region.
659 */
qcom_smem_virt_to_phys(void * p)660 phys_addr_t qcom_smem_virt_to_phys(void *p)
661 {
662 unsigned i;
663
664 for (i = 0; i < __smem->num_regions; i++) {
665 struct smem_region *region = &__smem->regions[i];
666
667 if (p < region->virt_base)
668 continue;
669 if (p < region->virt_base + region->size) {
670 u64 offset = p - region->virt_base;
671
672 return (phys_addr_t)region->aux_base + offset;
673 }
674 }
675
676 return 0;
677 }
678 EXPORT_SYMBOL(qcom_smem_virt_to_phys);
679
qcom_smem_get_sbl_version(struct qcom_smem * smem)680 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
681 {
682 struct smem_header *header;
683 __le32 *versions;
684
685 header = smem->regions[0].virt_base;
686 versions = header->version;
687
688 return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
689 }
690
qcom_smem_get_ptable(struct qcom_smem * smem)691 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
692 {
693 struct smem_ptable *ptable;
694 u32 version;
695
696 ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
697 if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
698 return ERR_PTR(-ENOENT);
699
700 version = le32_to_cpu(ptable->version);
701 if (version != 1) {
702 dev_err(smem->dev,
703 "Unsupported partition header version %d\n", version);
704 return ERR_PTR(-EINVAL);
705 }
706 return ptable;
707 }
708
qcom_smem_get_item_count(struct qcom_smem * smem)709 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
710 {
711 struct smem_ptable *ptable;
712 struct smem_info *info;
713
714 ptable = qcom_smem_get_ptable(smem);
715 if (IS_ERR_OR_NULL(ptable))
716 return SMEM_ITEM_COUNT;
717
718 info = (struct smem_info *)&ptable->entry[ptable->num_entries];
719 if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
720 return SMEM_ITEM_COUNT;
721
722 return le16_to_cpu(info->num_items);
723 }
724
qcom_smem_set_global_partition(struct qcom_smem * smem)725 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
726 {
727 struct smem_partition_header *header;
728 struct smem_ptable_entry *entry;
729 struct smem_ptable *ptable;
730 u32 host0, host1, size;
731 bool found = false;
732 int i;
733
734 if (smem->global_partition) {
735 dev_err(smem->dev, "Already found the global partition\n");
736 return -EINVAL;
737 }
738
739 ptable = qcom_smem_get_ptable(smem);
740 if (IS_ERR(ptable))
741 return PTR_ERR(ptable);
742
743 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
744 entry = &ptable->entry[i];
745 host0 = le16_to_cpu(entry->host0);
746 host1 = le16_to_cpu(entry->host1);
747
748 if (host0 == SMEM_GLOBAL_HOST && host0 == host1) {
749 found = true;
750 break;
751 }
752 }
753
754 if (!found) {
755 dev_err(smem->dev, "Missing entry for global partition\n");
756 return -EINVAL;
757 }
758
759 if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) {
760 dev_err(smem->dev, "Invalid entry for global partition\n");
761 return -EINVAL;
762 }
763
764 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
765 host0 = le16_to_cpu(header->host0);
766 host1 = le16_to_cpu(header->host1);
767
768 if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
769 dev_err(smem->dev, "Global partition has invalid magic\n");
770 return -EINVAL;
771 }
772
773 if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) {
774 dev_err(smem->dev, "Global partition hosts are invalid\n");
775 return -EINVAL;
776 }
777
778 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
779 dev_err(smem->dev, "Global partition has invalid size\n");
780 return -EINVAL;
781 }
782
783 size = le32_to_cpu(header->offset_free_uncached);
784 if (size > le32_to_cpu(header->size)) {
785 dev_err(smem->dev,
786 "Global partition has invalid free pointer\n");
787 return -EINVAL;
788 }
789
790 smem->global_partition = header;
791 smem->global_cacheline = le32_to_cpu(entry->cacheline);
792
793 return 0;
794 }
795
qcom_smem_enumerate_partitions(struct qcom_smem * smem,unsigned int local_host)796 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
797 unsigned int local_host)
798 {
799 struct smem_partition_header *header;
800 struct smem_ptable_entry *entry;
801 struct smem_ptable *ptable;
802 unsigned int remote_host;
803 u32 host0, host1;
804 int i;
805
806 ptable = qcom_smem_get_ptable(smem);
807 if (IS_ERR(ptable))
808 return PTR_ERR(ptable);
809
810 for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
811 entry = &ptable->entry[i];
812 host0 = le16_to_cpu(entry->host0);
813 host1 = le16_to_cpu(entry->host1);
814
815 if (host0 != local_host && host1 != local_host)
816 continue;
817
818 if (!le32_to_cpu(entry->offset))
819 continue;
820
821 if (!le32_to_cpu(entry->size))
822 continue;
823
824 if (host0 == local_host)
825 remote_host = host1;
826 else
827 remote_host = host0;
828
829 if (remote_host >= SMEM_HOST_COUNT) {
830 dev_err(smem->dev,
831 "Invalid remote host %d\n",
832 remote_host);
833 return -EINVAL;
834 }
835
836 if (smem->partitions[remote_host]) {
837 dev_err(smem->dev,
838 "Already found a partition for host %d\n",
839 remote_host);
840 return -EINVAL;
841 }
842
843 header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
844 host0 = le16_to_cpu(header->host0);
845 host1 = le16_to_cpu(header->host1);
846
847 if (memcmp(header->magic, SMEM_PART_MAGIC,
848 sizeof(header->magic))) {
849 dev_err(smem->dev,
850 "Partition %d has invalid magic\n", i);
851 return -EINVAL;
852 }
853
854 if (host0 != local_host && host1 != local_host) {
855 dev_err(smem->dev,
856 "Partition %d hosts are invalid\n", i);
857 return -EINVAL;
858 }
859
860 if (host0 != remote_host && host1 != remote_host) {
861 dev_err(smem->dev,
862 "Partition %d hosts are invalid\n", i);
863 return -EINVAL;
864 }
865
866 if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
867 dev_err(smem->dev,
868 "Partition %d has invalid size\n", i);
869 return -EINVAL;
870 }
871
872 if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
873 dev_err(smem->dev,
874 "Partition %d has invalid free pointer\n", i);
875 return -EINVAL;
876 }
877
878 smem->partitions[remote_host] = header;
879 smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
880 }
881
882 return 0;
883 }
884
qcom_smem_map_memory(struct qcom_smem * smem,struct device * dev,const char * name,int i)885 static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
886 const char *name, int i)
887 {
888 struct device_node *np;
889 struct resource r;
890 int ret;
891
892 np = of_parse_phandle(dev->of_node, name, 0);
893 if (!np) {
894 dev_err(dev, "No %s specified\n", name);
895 return -EINVAL;
896 }
897
898 ret = of_address_to_resource(np, 0, &r);
899 of_node_put(np);
900 if (ret)
901 return ret;
902
903 smem->regions[i].aux_base = (u32)r.start;
904 smem->regions[i].size = resource_size(&r);
905 smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, resource_size(&r));
906 if (!smem->regions[i].virt_base)
907 return -ENOMEM;
908
909 return 0;
910 }
911
qcom_smem_probe(struct platform_device * pdev)912 static int qcom_smem_probe(struct platform_device *pdev)
913 {
914 struct smem_header *header;
915 struct qcom_smem *smem;
916 size_t array_size;
917 int num_regions;
918 int hwlock_id;
919 u32 version;
920 int ret;
921
922 num_regions = 1;
923 if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
924 num_regions++;
925
926 array_size = num_regions * sizeof(struct smem_region);
927 smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
928 if (!smem)
929 return -ENOMEM;
930
931 smem->dev = &pdev->dev;
932 smem->num_regions = num_regions;
933
934 ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
935 if (ret)
936 return ret;
937
938 if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
939 "qcom,rpm-msg-ram", 1)))
940 return ret;
941
942 header = smem->regions[0].virt_base;
943 if (le32_to_cpu(header->initialized) != 1 ||
944 le32_to_cpu(header->reserved)) {
945 dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
946 return -EINVAL;
947 }
948
949 version = qcom_smem_get_sbl_version(smem);
950 switch (version >> 16) {
951 case SMEM_GLOBAL_PART_VERSION:
952 ret = qcom_smem_set_global_partition(smem);
953 if (ret < 0)
954 return ret;
955 smem->item_count = qcom_smem_get_item_count(smem);
956 break;
957 case SMEM_GLOBAL_HEAP_VERSION:
958 smem->item_count = SMEM_ITEM_COUNT;
959 break;
960 default:
961 dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
962 return -EINVAL;
963 }
964
965 ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
966 if (ret < 0 && ret != -ENOENT)
967 return ret;
968
969 hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
970 if (hwlock_id < 0) {
971 if (hwlock_id != -EPROBE_DEFER)
972 dev_err(&pdev->dev, "failed to retrieve hwlock\n");
973 return hwlock_id;
974 }
975
976 smem->hwlock = hwspin_lock_request_specific(hwlock_id);
977 if (!smem->hwlock)
978 return -ENXIO;
979
980 __smem = smem;
981
982 return 0;
983 }
984
qcom_smem_remove(struct platform_device * pdev)985 static int qcom_smem_remove(struct platform_device *pdev)
986 {
987 hwspin_lock_free(__smem->hwlock);
988 __smem = NULL;
989
990 return 0;
991 }
992
993 static const struct of_device_id qcom_smem_of_match[] = {
994 { .compatible = "qcom,smem" },
995 {}
996 };
997 MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
998
999 static struct platform_driver qcom_smem_driver = {
1000 .probe = qcom_smem_probe,
1001 .remove = qcom_smem_remove,
1002 .driver = {
1003 .name = "qcom-smem",
1004 .of_match_table = qcom_smem_of_match,
1005 .suppress_bind_attrs = true,
1006 },
1007 };
1008
qcom_smem_init(void)1009 static int __init qcom_smem_init(void)
1010 {
1011 return platform_driver_register(&qcom_smem_driver);
1012 }
1013 arch_initcall(qcom_smem_init);
1014
qcom_smem_exit(void)1015 static void __exit qcom_smem_exit(void)
1016 {
1017 platform_driver_unregister(&qcom_smem_driver);
1018 }
1019 module_exit(qcom_smem_exit)
1020
1021 MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1022 MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1023 MODULE_LICENSE("GPL v2");
1024