1 // SPDX-License-Identifier: ISC
2 /*
3 * Copyright (c) 2014-2017 Qualcomm Atheros, Inc.
4 */
5
6 #include <linux/types.h>
7 #include <linux/bitops.h>
8 #include <linux/bitfield.h>
9 #include "core.h"
10 #include "hw.h"
11 #include "hif.h"
12 #include "wmi-ops.h"
13 #include "bmi.h"
14
15 const struct ath10k_hw_regs qca988x_regs = {
16 .rtc_soc_base_address = 0x00004000,
17 .rtc_wmac_base_address = 0x00005000,
18 .soc_core_base_address = 0x00009000,
19 .wlan_mac_base_address = 0x00020000,
20 .ce_wrapper_base_address = 0x00057000,
21 .ce0_base_address = 0x00057400,
22 .ce1_base_address = 0x00057800,
23 .ce2_base_address = 0x00057c00,
24 .ce3_base_address = 0x00058000,
25 .ce4_base_address = 0x00058400,
26 .ce5_base_address = 0x00058800,
27 .ce6_base_address = 0x00058c00,
28 .ce7_base_address = 0x00059000,
29 .soc_reset_control_si0_rst_mask = 0x00000001,
30 .soc_reset_control_ce_rst_mask = 0x00040000,
31 .soc_chip_id_address = 0x000000ec,
32 .scratch_3_address = 0x00000030,
33 .fw_indicator_address = 0x00009030,
34 .pcie_local_base_address = 0x00080000,
35 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008,
36 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00,
37 .pcie_intr_fw_mask = 0x00000400,
38 .pcie_intr_ce_mask_all = 0x0007f800,
39 .pcie_intr_clr_address = 0x00000014,
40 };
41
42 const struct ath10k_hw_regs qca6174_regs = {
43 .rtc_soc_base_address = 0x00000800,
44 .rtc_wmac_base_address = 0x00001000,
45 .soc_core_base_address = 0x0003a000,
46 .wlan_mac_base_address = 0x00010000,
47 .ce_wrapper_base_address = 0x00034000,
48 .ce0_base_address = 0x00034400,
49 .ce1_base_address = 0x00034800,
50 .ce2_base_address = 0x00034c00,
51 .ce3_base_address = 0x00035000,
52 .ce4_base_address = 0x00035400,
53 .ce5_base_address = 0x00035800,
54 .ce6_base_address = 0x00035c00,
55 .ce7_base_address = 0x00036000,
56 .soc_reset_control_si0_rst_mask = 0x00000000,
57 .soc_reset_control_ce_rst_mask = 0x00000001,
58 .soc_chip_id_address = 0x000000f0,
59 .scratch_3_address = 0x00000028,
60 .fw_indicator_address = 0x0003a028,
61 .pcie_local_base_address = 0x00080000,
62 .ce_wrap_intr_sum_host_msi_lsb = 0x00000008,
63 .ce_wrap_intr_sum_host_msi_mask = 0x0000ff00,
64 .pcie_intr_fw_mask = 0x00000400,
65 .pcie_intr_ce_mask_all = 0x0007f800,
66 .pcie_intr_clr_address = 0x00000014,
67 .cpu_pll_init_address = 0x00404020,
68 .cpu_speed_address = 0x00404024,
69 .core_clk_div_address = 0x00404028,
70 };
71
72 const struct ath10k_hw_regs qca99x0_regs = {
73 .rtc_soc_base_address = 0x00080000,
74 .rtc_wmac_base_address = 0x00000000,
75 .soc_core_base_address = 0x00082000,
76 .wlan_mac_base_address = 0x00030000,
77 .ce_wrapper_base_address = 0x0004d000,
78 .ce0_base_address = 0x0004a000,
79 .ce1_base_address = 0x0004a400,
80 .ce2_base_address = 0x0004a800,
81 .ce3_base_address = 0x0004ac00,
82 .ce4_base_address = 0x0004b000,
83 .ce5_base_address = 0x0004b400,
84 .ce6_base_address = 0x0004b800,
85 .ce7_base_address = 0x0004bc00,
86 /* Note: qca99x0 supports upto 12 Copy Engines. Other than address of
87 * CE0 and CE1 no other copy engine is directly referred in the code.
88 * It is not really necessary to assign address for newly supported
89 * CEs in this address table.
90 * Copy Engine Address
91 * CE8 0x0004c000
92 * CE9 0x0004c400
93 * CE10 0x0004c800
94 * CE11 0x0004cc00
95 */
96 .soc_reset_control_si0_rst_mask = 0x00000001,
97 .soc_reset_control_ce_rst_mask = 0x00000100,
98 .soc_chip_id_address = 0x000000ec,
99 .scratch_3_address = 0x00040050,
100 .fw_indicator_address = 0x00040050,
101 .pcie_local_base_address = 0x00000000,
102 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
103 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
104 .pcie_intr_fw_mask = 0x00100000,
105 .pcie_intr_ce_mask_all = 0x000fff00,
106 .pcie_intr_clr_address = 0x00000010,
107 };
108
109 const struct ath10k_hw_regs qca4019_regs = {
110 .rtc_soc_base_address = 0x00080000,
111 .soc_core_base_address = 0x00082000,
112 .wlan_mac_base_address = 0x00030000,
113 .ce_wrapper_base_address = 0x0004d000,
114 .ce0_base_address = 0x0004a000,
115 .ce1_base_address = 0x0004a400,
116 .ce2_base_address = 0x0004a800,
117 .ce3_base_address = 0x0004ac00,
118 .ce4_base_address = 0x0004b000,
119 .ce5_base_address = 0x0004b400,
120 .ce6_base_address = 0x0004b800,
121 .ce7_base_address = 0x0004bc00,
122 /* qca4019 supports upto 12 copy engines. Since base address
123 * of ce8 to ce11 are not directly referred in the code,
124 * no need have them in separate members in this table.
125 * Copy Engine Address
126 * CE8 0x0004c000
127 * CE9 0x0004c400
128 * CE10 0x0004c800
129 * CE11 0x0004cc00
130 */
131 .soc_reset_control_si0_rst_mask = 0x00000001,
132 .soc_reset_control_ce_rst_mask = 0x00000100,
133 .soc_chip_id_address = 0x000000ec,
134 .fw_indicator_address = 0x0004f00c,
135 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
136 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
137 .pcie_intr_fw_mask = 0x00100000,
138 .pcie_intr_ce_mask_all = 0x000fff00,
139 .pcie_intr_clr_address = 0x00000010,
140 };
141
142 const struct ath10k_hw_values qca988x_values = {
143 .rtc_state_val_on = 3,
144 .ce_count = 8,
145 .msi_assign_ce_max = 7,
146 .num_target_ce_config_wlan = 7,
147 .ce_desc_meta_data_mask = 0xFFFC,
148 .ce_desc_meta_data_lsb = 2,
149 };
150
151 const struct ath10k_hw_values qca6174_values = {
152 .rtc_state_val_on = 3,
153 .ce_count = 8,
154 .msi_assign_ce_max = 7,
155 .num_target_ce_config_wlan = 7,
156 .ce_desc_meta_data_mask = 0xFFFC,
157 .ce_desc_meta_data_lsb = 2,
158 };
159
160 const struct ath10k_hw_values qca99x0_values = {
161 .rtc_state_val_on = 7,
162 .ce_count = 12,
163 .msi_assign_ce_max = 12,
164 .num_target_ce_config_wlan = 10,
165 .ce_desc_meta_data_mask = 0xFFF0,
166 .ce_desc_meta_data_lsb = 4,
167 };
168
169 const struct ath10k_hw_values qca9888_values = {
170 .rtc_state_val_on = 3,
171 .ce_count = 12,
172 .msi_assign_ce_max = 12,
173 .num_target_ce_config_wlan = 10,
174 .ce_desc_meta_data_mask = 0xFFF0,
175 .ce_desc_meta_data_lsb = 4,
176 };
177
178 const struct ath10k_hw_values qca4019_values = {
179 .ce_count = 12,
180 .num_target_ce_config_wlan = 10,
181 .ce_desc_meta_data_mask = 0xFFF0,
182 .ce_desc_meta_data_lsb = 4,
183 };
184
185 const struct ath10k_hw_regs wcn3990_regs = {
186 .rtc_soc_base_address = 0x00000000,
187 .rtc_wmac_base_address = 0x00000000,
188 .soc_core_base_address = 0x00000000,
189 .ce_wrapper_base_address = 0x0024C000,
190 .ce0_base_address = 0x00240000,
191 .ce1_base_address = 0x00241000,
192 .ce2_base_address = 0x00242000,
193 .ce3_base_address = 0x00243000,
194 .ce4_base_address = 0x00244000,
195 .ce5_base_address = 0x00245000,
196 .ce6_base_address = 0x00246000,
197 .ce7_base_address = 0x00247000,
198 .ce8_base_address = 0x00248000,
199 .ce9_base_address = 0x00249000,
200 .ce10_base_address = 0x0024A000,
201 .ce11_base_address = 0x0024B000,
202 .soc_chip_id_address = 0x000000f0,
203 .soc_reset_control_si0_rst_mask = 0x00000001,
204 .soc_reset_control_ce_rst_mask = 0x00000100,
205 .ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
206 .ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
207 .pcie_intr_fw_mask = 0x00100000,
208 };
209
210 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = {
211 .msb = 0x00000010,
212 .lsb = 0x00000010,
213 .mask = GENMASK(17, 17),
214 };
215
216 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = {
217 .msb = 0x00000012,
218 .lsb = 0x00000012,
219 .mask = GENMASK(18, 18),
220 };
221
222 static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = {
223 .msb = 0x00000000,
224 .lsb = 0x00000000,
225 .mask = GENMASK(15, 0),
226 };
227
228 static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = {
229 .addr = 0x00000018,
230 .src_ring = &wcn3990_src_ring,
231 .dst_ring = &wcn3990_dst_ring,
232 .dmax = &wcn3990_dmax,
233 };
234
235 static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = {
236 .mask = GENMASK(0, 0),
237 };
238
239 static struct ath10k_hw_ce_host_ie wcn3990_host_ie = {
240 .copy_complete = &wcn3990_host_ie_cc,
241 };
242
243 static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = {
244 .dstr_lmask = 0x00000010,
245 .dstr_hmask = 0x00000008,
246 .srcr_lmask = 0x00000004,
247 .srcr_hmask = 0x00000002,
248 .cc_mask = 0x00000001,
249 .wm_mask = 0x0000001E,
250 .addr = 0x00000030,
251 };
252
253 static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = {
254 .axi_err = 0x00000100,
255 .dstr_add_err = 0x00000200,
256 .srcr_len_err = 0x00000100,
257 .dstr_mlen_vio = 0x00000080,
258 .dstr_overflow = 0x00000040,
259 .srcr_overflow = 0x00000020,
260 .err_mask = 0x000003E0,
261 .addr = 0x00000038,
262 };
263
264 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = {
265 .msb = 0x00000000,
266 .lsb = 0x00000010,
267 .mask = GENMASK(31, 16),
268 };
269
270 static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = {
271 .msb = 0x0000000f,
272 .lsb = 0x00000000,
273 .mask = GENMASK(15, 0),
274 };
275
276 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = {
277 .addr = 0x0000004c,
278 .low_rst = 0x00000000,
279 .high_rst = 0x00000000,
280 .wm_low = &wcn3990_src_wm_low,
281 .wm_high = &wcn3990_src_wm_high,
282 };
283
284 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = {
285 .lsb = 0x00000010,
286 .mask = GENMASK(31, 16),
287 };
288
289 static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = {
290 .msb = 0x0000000f,
291 .lsb = 0x00000000,
292 .mask = GENMASK(15, 0),
293 };
294
295 static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = {
296 .addr = 0x00000050,
297 .low_rst = 0x00000000,
298 .high_rst = 0x00000000,
299 .wm_low = &wcn3990_dst_wm_low,
300 .wm_high = &wcn3990_dst_wm_high,
301 };
302
303 static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = {
304 .shift = 19,
305 .mask = 0x00080000,
306 .enable = 0x00000000,
307 };
308
309 const struct ath10k_hw_ce_regs wcn3990_ce_regs = {
310 .sr_base_addr_lo = 0x00000000,
311 .sr_base_addr_hi = 0x00000004,
312 .sr_size_addr = 0x00000008,
313 .dr_base_addr_lo = 0x0000000c,
314 .dr_base_addr_hi = 0x00000010,
315 .dr_size_addr = 0x00000014,
316 .misc_ie_addr = 0x00000034,
317 .sr_wr_index_addr = 0x0000003c,
318 .dst_wr_index_addr = 0x00000040,
319 .current_srri_addr = 0x00000044,
320 .current_drri_addr = 0x00000048,
321 .ce_rri_low = 0x0024C004,
322 .ce_rri_high = 0x0024C008,
323 .host_ie_addr = 0x0000002c,
324 .ctrl1_regs = &wcn3990_ctrl1,
325 .host_ie = &wcn3990_host_ie,
326 .wm_regs = &wcn3990_wm_reg,
327 .misc_regs = &wcn3990_misc_reg,
328 .wm_srcr = &wcn3990_wm_src_ring,
329 .wm_dstr = &wcn3990_wm_dst_ring,
330 .upd = &wcn3990_ctrl1_upd,
331 };
332
333 const struct ath10k_hw_values wcn3990_values = {
334 .rtc_state_val_on = 5,
335 .ce_count = 12,
336 .msi_assign_ce_max = 12,
337 .num_target_ce_config_wlan = 12,
338 .ce_desc_meta_data_mask = 0xFFF0,
339 .ce_desc_meta_data_lsb = 4,
340 };
341
342 static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = {
343 .msb = 0x00000010,
344 .lsb = 0x00000010,
345 .mask = GENMASK(16, 16),
346 };
347
348 static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = {
349 .msb = 0x00000011,
350 .lsb = 0x00000011,
351 .mask = GENMASK(17, 17),
352 };
353
354 static struct ath10k_hw_ce_regs_addr_map qcax_dmax = {
355 .msb = 0x0000000f,
356 .lsb = 0x00000000,
357 .mask = GENMASK(15, 0),
358 };
359
360 static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = {
361 .addr = 0x00000010,
362 .hw_mask = 0x0007ffff,
363 .sw_mask = 0x0007ffff,
364 .hw_wr_mask = 0x00000000,
365 .sw_wr_mask = 0x0007ffff,
366 .reset_mask = 0xffffffff,
367 .reset = 0x00000080,
368 .src_ring = &qcax_src_ring,
369 .dst_ring = &qcax_dst_ring,
370 .dmax = &qcax_dmax,
371 };
372
373 static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = {
374 .msb = 0x00000003,
375 .lsb = 0x00000003,
376 .mask = GENMASK(3, 3),
377 };
378
379 static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = {
380 .msb = 0x00000000,
381 .mask = GENMASK(0, 0),
382 .status_reset = 0x00000000,
383 .status = &qcax_cmd_halt_status,
384 };
385
386 static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = {
387 .msb = 0x00000000,
388 .lsb = 0x00000000,
389 .mask = GENMASK(0, 0),
390 };
391
392 static struct ath10k_hw_ce_host_ie qcax_host_ie = {
393 .copy_complete_reset = 0x00000000,
394 .copy_complete = &qcax_host_ie_cc,
395 };
396
397 static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = {
398 .dstr_lmask = 0x00000010,
399 .dstr_hmask = 0x00000008,
400 .srcr_lmask = 0x00000004,
401 .srcr_hmask = 0x00000002,
402 .cc_mask = 0x00000001,
403 .wm_mask = 0x0000001E,
404 .addr = 0x00000030,
405 };
406
407 static struct ath10k_hw_ce_misc_regs qcax_misc_reg = {
408 .axi_err = 0x00000400,
409 .dstr_add_err = 0x00000200,
410 .srcr_len_err = 0x00000100,
411 .dstr_mlen_vio = 0x00000080,
412 .dstr_overflow = 0x00000040,
413 .srcr_overflow = 0x00000020,
414 .err_mask = 0x000007E0,
415 .addr = 0x00000038,
416 };
417
418 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = {
419 .msb = 0x0000001f,
420 .lsb = 0x00000010,
421 .mask = GENMASK(31, 16),
422 };
423
424 static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = {
425 .msb = 0x0000000f,
426 .lsb = 0x00000000,
427 .mask = GENMASK(15, 0),
428 };
429
430 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = {
431 .addr = 0x0000004c,
432 .low_rst = 0x00000000,
433 .high_rst = 0x00000000,
434 .wm_low = &qcax_src_wm_low,
435 .wm_high = &qcax_src_wm_high,
436 };
437
438 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = {
439 .lsb = 0x00000010,
440 .mask = GENMASK(31, 16),
441 };
442
443 static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = {
444 .msb = 0x0000000f,
445 .lsb = 0x00000000,
446 .mask = GENMASK(15, 0),
447 };
448
449 static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = {
450 .addr = 0x00000050,
451 .low_rst = 0x00000000,
452 .high_rst = 0x00000000,
453 .wm_low = &qcax_dst_wm_low,
454 .wm_high = &qcax_dst_wm_high,
455 };
456
457 const struct ath10k_hw_ce_regs qcax_ce_regs = {
458 .sr_base_addr_lo = 0x00000000,
459 .sr_size_addr = 0x00000004,
460 .dr_base_addr_lo = 0x00000008,
461 .dr_size_addr = 0x0000000c,
462 .ce_cmd_addr = 0x00000018,
463 .misc_ie_addr = 0x00000034,
464 .sr_wr_index_addr = 0x0000003c,
465 .dst_wr_index_addr = 0x00000040,
466 .current_srri_addr = 0x00000044,
467 .current_drri_addr = 0x00000048,
468 .host_ie_addr = 0x0000002c,
469 .ctrl1_regs = &qcax_ctrl1,
470 .cmd_halt = &qcax_cmd_halt,
471 .host_ie = &qcax_host_ie,
472 .wm_regs = &qcax_wm_reg,
473 .misc_regs = &qcax_misc_reg,
474 .wm_srcr = &qcax_wm_src_ring,
475 .wm_dstr = &qcax_wm_dst_ring,
476 };
477
478 const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = {
479 {
480 .refclk = 48000000,
481 .div = 0xe,
482 .rnfrac = 0x2aaa8,
483 .settle_time = 2400,
484 .refdiv = 0,
485 .outdiv = 1,
486 },
487 {
488 .refclk = 19200000,
489 .div = 0x24,
490 .rnfrac = 0x2aaa8,
491 .settle_time = 960,
492 .refdiv = 0,
493 .outdiv = 1,
494 },
495 {
496 .refclk = 24000000,
497 .div = 0x1d,
498 .rnfrac = 0x15551,
499 .settle_time = 1200,
500 .refdiv = 0,
501 .outdiv = 1,
502 },
503 {
504 .refclk = 26000000,
505 .div = 0x1b,
506 .rnfrac = 0x4ec4,
507 .settle_time = 1300,
508 .refdiv = 0,
509 .outdiv = 1,
510 },
511 {
512 .refclk = 37400000,
513 .div = 0x12,
514 .rnfrac = 0x34b49,
515 .settle_time = 1870,
516 .refdiv = 0,
517 .outdiv = 1,
518 },
519 {
520 .refclk = 38400000,
521 .div = 0x12,
522 .rnfrac = 0x15551,
523 .settle_time = 1920,
524 .refdiv = 0,
525 .outdiv = 1,
526 },
527 {
528 .refclk = 40000000,
529 .div = 0x12,
530 .rnfrac = 0x26665,
531 .settle_time = 2000,
532 .refdiv = 0,
533 .outdiv = 1,
534 },
535 {
536 .refclk = 52000000,
537 .div = 0x1b,
538 .rnfrac = 0x4ec4,
539 .settle_time = 2600,
540 .refdiv = 0,
541 .outdiv = 1,
542 },
543 };
544
ath10k_hw_fill_survey_time(struct ath10k * ar,struct survey_info * survey,u32 cc,u32 rcc,u32 cc_prev,u32 rcc_prev)545 void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey,
546 u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev)
547 {
548 u32 cc_fix = 0;
549 u32 rcc_fix = 0;
550 enum ath10k_hw_cc_wraparound_type wraparound_type;
551
552 survey->filled |= SURVEY_INFO_TIME |
553 SURVEY_INFO_TIME_BUSY;
554
555 wraparound_type = ar->hw_params.cc_wraparound_type;
556
557 if (cc < cc_prev || rcc < rcc_prev) {
558 switch (wraparound_type) {
559 case ATH10K_HW_CC_WRAP_SHIFTED_ALL:
560 if (cc < cc_prev) {
561 cc_fix = 0x7fffffff;
562 survey->filled &= ~SURVEY_INFO_TIME_BUSY;
563 }
564 break;
565 case ATH10K_HW_CC_WRAP_SHIFTED_EACH:
566 if (cc < cc_prev)
567 cc_fix = 0x7fffffff;
568
569 if (rcc < rcc_prev)
570 rcc_fix = 0x7fffffff;
571 break;
572 case ATH10K_HW_CC_WRAP_DISABLED:
573 break;
574 }
575 }
576
577 cc -= cc_prev - cc_fix;
578 rcc -= rcc_prev - rcc_fix;
579
580 survey->time = CCNT_TO_MSEC(ar, cc);
581 survey->time_busy = CCNT_TO_MSEC(ar, rcc);
582 }
583
584 /* The firmware does not support setting the coverage class. Instead this
585 * function monitors and modifies the corresponding MAC registers.
586 */
ath10k_hw_qca988x_set_coverage_class(struct ath10k * ar,s16 value)587 static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar,
588 s16 value)
589 {
590 u32 slottime_reg;
591 u32 slottime;
592 u32 timeout_reg;
593 u32 ack_timeout;
594 u32 cts_timeout;
595 u32 phyclk_reg;
596 u32 phyclk;
597 u64 fw_dbglog_mask;
598 u32 fw_dbglog_level;
599
600 mutex_lock(&ar->conf_mutex);
601
602 /* Only modify registers if the core is started. */
603 if ((ar->state != ATH10K_STATE_ON) &&
604 (ar->state != ATH10K_STATE_RESTARTED)) {
605 spin_lock_bh(&ar->data_lock);
606 /* Store config value for when radio boots up */
607 ar->fw_coverage.coverage_class = value;
608 spin_unlock_bh(&ar->data_lock);
609 goto unlock;
610 }
611
612 /* Retrieve the current values of the two registers that need to be
613 * adjusted.
614 */
615 slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
616 WAVE1_PCU_GBL_IFS_SLOT);
617 timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
618 WAVE1_PCU_ACK_CTS_TIMEOUT);
619 phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
620 WAVE1_PHYCLK);
621 phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1;
622
623 if (value < 0)
624 value = ar->fw_coverage.coverage_class;
625
626 /* Break out if the coverage class and registers have the expected
627 * value.
628 */
629 if (value == ar->fw_coverage.coverage_class &&
630 slottime_reg == ar->fw_coverage.reg_slottime_conf &&
631 timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf &&
632 phyclk_reg == ar->fw_coverage.reg_phyclk)
633 goto unlock;
634
635 /* Store new initial register values from the firmware. */
636 if (slottime_reg != ar->fw_coverage.reg_slottime_conf)
637 ar->fw_coverage.reg_slottime_orig = slottime_reg;
638 if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf)
639 ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg;
640 ar->fw_coverage.reg_phyclk = phyclk_reg;
641
642 /* Calculate new value based on the (original) firmware calculation. */
643 slottime_reg = ar->fw_coverage.reg_slottime_orig;
644 timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig;
645
646 /* Do some sanity checks on the slottime register. */
647 if (slottime_reg % phyclk) {
648 ath10k_warn(ar,
649 "failed to set coverage class: expected integer microsecond value in register\n");
650
651 goto store_regs;
652 }
653
654 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
655 slottime = slottime / phyclk;
656 if (slottime != 9 && slottime != 20) {
657 ath10k_warn(ar,
658 "failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n",
659 slottime);
660
661 goto store_regs;
662 }
663
664 /* Recalculate the register values by adding the additional propagation
665 * delay (3us per coverage class).
666 */
667
668 slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
669 slottime += value * 3 * phyclk;
670 slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX);
671 slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT);
672 slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime;
673
674 /* Update ack timeout (lower halfword). */
675 ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
676 ack_timeout += 3 * value * phyclk;
677 ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
678 ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
679
680 /* Update cts timeout (upper halfword). */
681 cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
682 cts_timeout += 3 * value * phyclk;
683 cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
684 cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
685
686 timeout_reg = ack_timeout | cts_timeout;
687
688 ath10k_hif_write32(ar,
689 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT,
690 slottime_reg);
691 ath10k_hif_write32(ar,
692 WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT,
693 timeout_reg);
694
695 /* Ensure we have a debug level of WARN set for the case that the
696 * coverage class is larger than 0. This is important as we need to
697 * set the registers again if the firmware does an internal reset and
698 * this way we will be notified of the event.
699 */
700 fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar);
701 fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar);
702
703 if (value > 0) {
704 if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN)
705 fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN;
706 fw_dbglog_mask = ~0;
707 }
708
709 ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level);
710
711 store_regs:
712 /* After an error we will not retry setting the coverage class. */
713 spin_lock_bh(&ar->data_lock);
714 ar->fw_coverage.coverage_class = value;
715 spin_unlock_bh(&ar->data_lock);
716
717 ar->fw_coverage.reg_slottime_conf = slottime_reg;
718 ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg;
719
720 unlock:
721 mutex_unlock(&ar->conf_mutex);
722 }
723
724 /**
725 * ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock
726 * @ar: the ath10k blob
727 *
728 * This function is very hardware specific, the clock initialization
729 * steps is very sensitive and could lead to unknown crash, so they
730 * should be done in sequence.
731 *
732 * *** Be aware if you planned to refactor them. ***
733 *
734 * Return: 0 if successfully enable the pll, otherwise EINVAL
735 */
ath10k_hw_qca6174_enable_pll_clock(struct ath10k * ar)736 static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar)
737 {
738 int ret, wait_limit;
739 u32 clk_div_addr, pll_init_addr, speed_addr;
740 u32 addr, reg_val, mem_val;
741 struct ath10k_hw_params *hw;
742 const struct ath10k_hw_clk_params *hw_clk;
743
744 hw = &ar->hw_params;
745
746 if (ar->regs->core_clk_div_address == 0 ||
747 ar->regs->cpu_pll_init_address == 0 ||
748 ar->regs->cpu_speed_address == 0)
749 return -EINVAL;
750
751 clk_div_addr = ar->regs->core_clk_div_address;
752 pll_init_addr = ar->regs->cpu_pll_init_address;
753 speed_addr = ar->regs->cpu_speed_address;
754
755 /* Read efuse register to find out the right hw clock configuration */
756 addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET);
757 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
758 if (ret)
759 return -EINVAL;
760
761 /* sanitize if the hw refclk index is out of the boundary */
762 if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT)
763 return -EINVAL;
764
765 hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)];
766
767 /* Set the rnfrac and outdiv params to bb_pll register */
768 addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET);
769 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
770 if (ret)
771 return -EINVAL;
772
773 reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK);
774 reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) |
775 SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV));
776 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
777 if (ret)
778 return -EINVAL;
779
780 /* Set the correct settle time value to pll_settle register */
781 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET);
782 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
783 if (ret)
784 return -EINVAL;
785
786 reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK;
787 reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME);
788 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
789 if (ret)
790 return -EINVAL;
791
792 /* Set the clock_ctrl div to core_clk_ctrl register */
793 addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET);
794 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
795 if (ret)
796 return -EINVAL;
797
798 reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK;
799 reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV);
800 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
801 if (ret)
802 return -EINVAL;
803
804 /* Set the clock_div register */
805 mem_val = 1;
806 ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val,
807 sizeof(mem_val));
808 if (ret)
809 return -EINVAL;
810
811 /* Configure the pll_control register */
812 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
813 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
814 if (ret)
815 return -EINVAL;
816
817 reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) |
818 SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) |
819 SM(1, WLAN_PLL_CONTROL_NOPWD));
820 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
821 if (ret)
822 return -EINVAL;
823
824 /* busy wait (max 1s) the rtc_sync status register indicate ready */
825 wait_limit = 100000;
826 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
827 do {
828 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
829 if (ret)
830 return -EINVAL;
831
832 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
833 break;
834
835 wait_limit--;
836 udelay(10);
837
838 } while (wait_limit > 0);
839
840 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
841 return -EINVAL;
842
843 /* Unset the pll_bypass in pll_control register */
844 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
845 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
846 if (ret)
847 return -EINVAL;
848
849 reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK;
850 reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS);
851 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
852 if (ret)
853 return -EINVAL;
854
855 /* busy wait (max 1s) the rtc_sync status register indicate ready */
856 wait_limit = 100000;
857 addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
858 do {
859 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
860 if (ret)
861 return -EINVAL;
862
863 if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
864 break;
865
866 wait_limit--;
867 udelay(10);
868
869 } while (wait_limit > 0);
870
871 if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
872 return -EINVAL;
873
874 /* Enable the hardware cpu clock register */
875 addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET);
876 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
877 if (ret)
878 return -EINVAL;
879
880 reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK;
881 reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD);
882 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
883 if (ret)
884 return -EINVAL;
885
886 /* unset the nopwd from pll_control register */
887 addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
888 ret = ath10k_bmi_read_soc_reg(ar, addr, ®_val);
889 if (ret)
890 return -EINVAL;
891
892 reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK;
893 ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
894 if (ret)
895 return -EINVAL;
896
897 /* enable the pll_init register */
898 mem_val = 1;
899 ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val,
900 sizeof(mem_val));
901 if (ret)
902 return -EINVAL;
903
904 /* set the target clock frequency to speed register */
905 ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq,
906 sizeof(hw->target_cpu_freq));
907 if (ret)
908 return -EINVAL;
909
910 return 0;
911 }
912
913 /* Program CPU_ADDR_MSB to allow different memory
914 * region access.
915 */
ath10k_hw_map_target_mem(struct ath10k * ar,u32 msb)916 static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb)
917 {
918 u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS;
919
920 ath10k_hif_write32(ar, address, msb);
921 }
922
923 /* 1. Write to memory region of target, such as IRAM adn DRAM.
924 * 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000)
925 * can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too.
926 * 3. In order to access the region other than the above,
927 * we need to set the value of register CPU_ADDR_MSB.
928 * 4. Target memory access space is limited to 1M size. If the size is larger
929 * than 1M, need to split it and program CPU_ADDR_MSB accordingly.
930 */
ath10k_hw_diag_segment_msb_download(struct ath10k * ar,const void * buffer,u32 address,u32 length)931 static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar,
932 const void *buffer,
933 u32 address,
934 u32 length)
935 {
936 u32 addr = address & REGION_ACCESS_SIZE_MASK;
937 int ret, remain_size, size;
938 const u8 *buf;
939
940 ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address));
941
942 if (addr + length > REGION_ACCESS_SIZE_LIMIT) {
943 size = REGION_ACCESS_SIZE_LIMIT - addr;
944 remain_size = length - size;
945
946 ret = ath10k_hif_diag_write(ar, address, buffer, size);
947 if (ret) {
948 ath10k_warn(ar,
949 "failed to download the first %d bytes segment to address:0x%x: %d\n",
950 size, address, ret);
951 goto done;
952 }
953
954 /* Change msb to the next memory region*/
955 ath10k_hw_map_target_mem(ar,
956 CPU_ADDR_MSB_REGION_VAL(address) + 1);
957 buf = buffer + size;
958 ret = ath10k_hif_diag_write(ar,
959 address & ~REGION_ACCESS_SIZE_MASK,
960 buf, remain_size);
961 if (ret) {
962 ath10k_warn(ar,
963 "failed to download the second %d bytes segment to address:0x%x: %d\n",
964 remain_size,
965 address & ~REGION_ACCESS_SIZE_MASK,
966 ret);
967 goto done;
968 }
969 } else {
970 ret = ath10k_hif_diag_write(ar, address, buffer, length);
971 if (ret) {
972 ath10k_warn(ar,
973 "failed to download the only %d bytes segment to address:0x%x: %d\n",
974 length, address, ret);
975 goto done;
976 }
977 }
978
979 done:
980 /* Change msb to DRAM */
981 ath10k_hw_map_target_mem(ar,
982 CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS));
983 return ret;
984 }
985
ath10k_hw_diag_segment_download(struct ath10k * ar,const void * buffer,u32 address,u32 length)986 static int ath10k_hw_diag_segment_download(struct ath10k *ar,
987 const void *buffer,
988 u32 address,
989 u32 length)
990 {
991 if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT)
992 /* Needs to change MSB for memory write */
993 return ath10k_hw_diag_segment_msb_download(ar, buffer,
994 address, length);
995 else
996 return ath10k_hif_diag_write(ar, address, buffer, length);
997 }
998
ath10k_hw_diag_fast_download(struct ath10k * ar,u32 address,const void * buffer,u32 length)999 int ath10k_hw_diag_fast_download(struct ath10k *ar,
1000 u32 address,
1001 const void *buffer,
1002 u32 length)
1003 {
1004 const u8 *buf = buffer;
1005 bool sgmt_end = false;
1006 u32 base_addr = 0;
1007 u32 base_len = 0;
1008 u32 left = 0;
1009 struct bmi_segmented_file_header *hdr;
1010 struct bmi_segmented_metadata *metadata;
1011 int ret = 0;
1012
1013 if (length < sizeof(*hdr))
1014 return -EINVAL;
1015
1016 /* check firmware header. If it has no correct magic number
1017 * or it's compressed, returns error.
1018 */
1019 hdr = (struct bmi_segmented_file_header *)buf;
1020 if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) {
1021 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1022 "Not a supported firmware, magic_num:0x%x\n",
1023 hdr->magic_num);
1024 return -EINVAL;
1025 }
1026
1027 if (hdr->file_flags != 0) {
1028 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1029 "Not a supported firmware, file_flags:0x%x\n",
1030 hdr->file_flags);
1031 return -EINVAL;
1032 }
1033
1034 metadata = (struct bmi_segmented_metadata *)hdr->data;
1035 left = length - sizeof(*hdr);
1036
1037 while (left > 0) {
1038 if (left < sizeof(*metadata)) {
1039 ath10k_warn(ar, "firmware segment is truncated: %d\n",
1040 left);
1041 ret = -EINVAL;
1042 break;
1043 }
1044 base_addr = __le32_to_cpu(metadata->addr);
1045 base_len = __le32_to_cpu(metadata->length);
1046 buf = metadata->data;
1047 left -= sizeof(*metadata);
1048
1049 switch (base_len) {
1050 case BMI_SGMTFILE_BEGINADDR:
1051 /* base_addr is the start address to run */
1052 ret = ath10k_bmi_set_start(ar, base_addr);
1053 base_len = 0;
1054 break;
1055 case BMI_SGMTFILE_DONE:
1056 /* no more segment */
1057 base_len = 0;
1058 sgmt_end = true;
1059 ret = 0;
1060 break;
1061 case BMI_SGMTFILE_BDDATA:
1062 case BMI_SGMTFILE_EXEC:
1063 ath10k_warn(ar,
1064 "firmware has unsupported segment:%d\n",
1065 base_len);
1066 ret = -EINVAL;
1067 break;
1068 default:
1069 if (base_len > left) {
1070 /* sanity check */
1071 ath10k_warn(ar,
1072 "firmware has invalid segment length, %d > %d\n",
1073 base_len, left);
1074 ret = -EINVAL;
1075 break;
1076 }
1077
1078 ret = ath10k_hw_diag_segment_download(ar,
1079 buf,
1080 base_addr,
1081 base_len);
1082
1083 if (ret)
1084 ath10k_warn(ar,
1085 "failed to download firmware via diag interface:%d\n",
1086 ret);
1087 break;
1088 }
1089
1090 if (ret || sgmt_end)
1091 break;
1092
1093 metadata = (struct bmi_segmented_metadata *)(buf + base_len);
1094 left -= base_len;
1095 }
1096
1097 if (ret == 0)
1098 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1099 "boot firmware fast diag download successfully.\n");
1100 return ret;
1101 }
1102
ath10k_htt_tx_rssi_enable(struct htt_resp * resp)1103 static int ath10k_htt_tx_rssi_enable(struct htt_resp *resp)
1104 {
1105 return (resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_DATA_RSSI);
1106 }
1107
ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp * resp)1108 static int ath10k_htt_tx_rssi_enable_wcn3990(struct htt_resp *resp)
1109 {
1110 return (resp->data_tx_completion.flags2 &
1111 HTT_TX_DATA_RSSI_ENABLE_WCN3990);
1112 }
1113
ath10k_get_htt_tx_data_rssi_pad(struct htt_resp * resp)1114 static int ath10k_get_htt_tx_data_rssi_pad(struct htt_resp *resp)
1115 {
1116 struct htt_data_tx_completion_ext extd;
1117 int pad_bytes = 0;
1118
1119 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_RETRIES)
1120 pad_bytes += sizeof(extd.a_retries) /
1121 sizeof(extd.msdus_rssi[0]);
1122
1123 if (resp->data_tx_completion.flags2 & HTT_TX_DATA_APPEND_TIMESTAMP)
1124 pad_bytes += sizeof(extd.t_stamp) / sizeof(extd.msdus_rssi[0]);
1125
1126 return pad_bytes;
1127 }
1128
1129 const struct ath10k_hw_ops qca988x_ops = {
1130 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1131 };
1132
ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc * rxd)1133 static int ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc *rxd)
1134 {
1135 return MS(__le32_to_cpu(rxd->msdu_end.qca99x0.info1),
1136 RX_MSDU_END_INFO1_L3_HDR_PAD);
1137 }
1138
ath10k_qca99x0_rx_desc_msdu_limit_error(struct htt_rx_desc * rxd)1139 static bool ath10k_qca99x0_rx_desc_msdu_limit_error(struct htt_rx_desc *rxd)
1140 {
1141 return !!(rxd->msdu_end.common.info0 &
1142 __cpu_to_le32(RX_MSDU_END_INFO0_MSDU_LIMIT_ERR));
1143 }
1144
1145 const struct ath10k_hw_ops qca99x0_ops = {
1146 .rx_desc_get_l3_pad_bytes = ath10k_qca99x0_rx_desc_get_l3_pad_bytes,
1147 .rx_desc_get_msdu_limit_error = ath10k_qca99x0_rx_desc_msdu_limit_error,
1148 };
1149
1150 const struct ath10k_hw_ops qca6174_ops = {
1151 .set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
1152 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1153 .is_rssi_enable = ath10k_htt_tx_rssi_enable,
1154 };
1155
1156 const struct ath10k_hw_ops qca6174_sdio_ops = {
1157 .enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
1158 };
1159
1160 const struct ath10k_hw_ops wcn3990_ops = {
1161 .tx_data_rssi_pad_bytes = ath10k_get_htt_tx_data_rssi_pad,
1162 .is_rssi_enable = ath10k_htt_tx_rssi_enable_wcn3990,
1163 };
1164