1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Handles the Intel 27x USB Device Controller (UDC)
4 *
5 * Inspired by original driver by Frank Becker, David Brownell, and others.
6 * Copyright (C) 2008 Robert Jarzmik
7 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/proc_fs.h>
18 #include <linux/clk.h>
19 #include <linux/irq.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/slab.h>
23 #include <linux/prefetch.h>
24 #include <linux/byteorder/generic.h>
25 #include <linux/platform_data/pxa2xx_udc.h>
26 #include <linux/of_device.h>
27 #include <linux/of_gpio.h>
28
29 #include <linux/usb.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33
34 #include "pxa27x_udc.h"
35
36 /*
37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
38 * series processors.
39 *
40 * Such controller drivers work with a gadget driver. The gadget driver
41 * returns descriptors, implements configuration and data protocols used
42 * by the host to interact with this device, and allocates endpoints to
43 * the different protocol interfaces. The controller driver virtualizes
44 * usb hardware so that the gadget drivers will be more portable.
45 *
46 * This UDC hardware wants to implement a bit too much USB protocol. The
47 * biggest issues are: that the endpoints have to be set up before the
48 * controller can be enabled (minor, and not uncommon); and each endpoint
49 * can only have one configuration, interface and alternative interface
50 * number (major, and very unusual). Once set up, these cannot be changed
51 * without a controller reset.
52 *
53 * The workaround is to setup all combinations necessary for the gadgets which
54 * will work with this driver. This is done in pxa_udc structure, statically.
55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
56 * (You could modify this if needed. Some drivers have a "fifo_mode" module
57 * parameter to facilitate such changes.)
58 *
59 * The combinations have been tested with these gadgets :
60 * - zero gadget
61 * - file storage gadget
62 * - ether gadget
63 *
64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
66 *
67 * All the requests are handled the same way :
68 * - the drivers tries to handle the request directly to the IO
69 * - if the IO fifo is not big enough, the remaining is send/received in
70 * interrupt handling.
71 */
72
73 #define DRIVER_VERSION "2008-04-18"
74 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
75
76 static const char driver_name[] = "pxa27x_udc";
77 static struct pxa_udc *the_controller;
78
79 static void handle_ep(struct pxa_ep *ep);
80
81 /*
82 * Debug filesystem
83 */
84 #ifdef CONFIG_USB_GADGET_DEBUG_FS
85
86 #include <linux/debugfs.h>
87 #include <linux/uaccess.h>
88 #include <linux/seq_file.h>
89
state_dbg_show(struct seq_file * s,void * p)90 static int state_dbg_show(struct seq_file *s, void *p)
91 {
92 struct pxa_udc *udc = s->private;
93 u32 tmp;
94
95 if (!udc->driver)
96 return -ENODEV;
97
98 /* basic device status */
99 seq_printf(s, DRIVER_DESC "\n"
100 "%s version: %s\n"
101 "Gadget driver: %s\n",
102 driver_name, DRIVER_VERSION,
103 udc->driver ? udc->driver->driver.name : "(none)");
104
105 tmp = udc_readl(udc, UDCCR);
106 seq_printf(s,
107 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
108 tmp,
109 (tmp & UDCCR_OEN) ? " oen":"",
110 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
111 (tmp & UDCCR_AHNP) ? " rem" : "",
112 (tmp & UDCCR_BHNP) ? " rstir" : "",
113 (tmp & UDCCR_DWRE) ? " dwre" : "",
114 (tmp & UDCCR_SMAC) ? " smac" : "",
115 (tmp & UDCCR_EMCE) ? " emce" : "",
116 (tmp & UDCCR_UDR) ? " udr" : "",
117 (tmp & UDCCR_UDA) ? " uda" : "",
118 (tmp & UDCCR_UDE) ? " ude" : "",
119 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
120 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
121 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
122 /* registers for device and ep0 */
123 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
124 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
125 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
126 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
127 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
128 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
129 udc->stats.irqs_reset, udc->stats.irqs_suspend,
130 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
131
132 return 0;
133 }
134 DEFINE_SHOW_ATTRIBUTE(state_dbg);
135
queues_dbg_show(struct seq_file * s,void * p)136 static int queues_dbg_show(struct seq_file *s, void *p)
137 {
138 struct pxa_udc *udc = s->private;
139 struct pxa_ep *ep;
140 struct pxa27x_request *req;
141 int i, maxpkt;
142
143 if (!udc->driver)
144 return -ENODEV;
145
146 /* dump endpoint queues */
147 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
148 ep = &udc->pxa_ep[i];
149 maxpkt = ep->fifo_size;
150 seq_printf(s, "%-12s max_pkt=%d %s\n",
151 EPNAME(ep), maxpkt, "pio");
152
153 if (list_empty(&ep->queue)) {
154 seq_puts(s, "\t(nothing queued)\n");
155 continue;
156 }
157
158 list_for_each_entry(req, &ep->queue, queue) {
159 seq_printf(s, "\treq %p len %d/%d buf %p\n",
160 &req->req, req->req.actual,
161 req->req.length, req->req.buf);
162 }
163 }
164
165 return 0;
166 }
167 DEFINE_SHOW_ATTRIBUTE(queues_dbg);
168
eps_dbg_show(struct seq_file * s,void * p)169 static int eps_dbg_show(struct seq_file *s, void *p)
170 {
171 struct pxa_udc *udc = s->private;
172 struct pxa_ep *ep;
173 int i;
174 u32 tmp;
175
176 if (!udc->driver)
177 return -ENODEV;
178
179 ep = &udc->pxa_ep[0];
180 tmp = udc_ep_readl(ep, UDCCSR);
181 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
182 tmp,
183 (tmp & UDCCSR0_SA) ? " sa" : "",
184 (tmp & UDCCSR0_RNE) ? " rne" : "",
185 (tmp & UDCCSR0_FST) ? " fst" : "",
186 (tmp & UDCCSR0_SST) ? " sst" : "",
187 (tmp & UDCCSR0_DME) ? " dme" : "",
188 (tmp & UDCCSR0_IPR) ? " ipr" : "",
189 (tmp & UDCCSR0_OPC) ? " opc" : "");
190 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
191 ep = &udc->pxa_ep[i];
192 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
193 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
194 EPNAME(ep),
195 ep->stats.in_bytes, ep->stats.in_ops,
196 ep->stats.out_bytes, ep->stats.out_ops,
197 ep->stats.irqs,
198 tmp, udc_ep_readl(ep, UDCCSR),
199 udc_ep_readl(ep, UDCBCR));
200 }
201
202 return 0;
203 }
204 DEFINE_SHOW_ATTRIBUTE(eps_dbg);
205
pxa_init_debugfs(struct pxa_udc * udc)206 static void pxa_init_debugfs(struct pxa_udc *udc)
207 {
208 struct dentry *root;
209
210 root = debugfs_create_dir(udc->gadget.name, NULL);
211 udc->debugfs_root = root;
212
213 debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops);
214 debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops);
215 debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops);
216 }
217
pxa_cleanup_debugfs(struct pxa_udc * udc)218 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
219 {
220 debugfs_remove_recursive(udc->debugfs_root);
221 }
222
223 #else
pxa_init_debugfs(struct pxa_udc * udc)224 static inline void pxa_init_debugfs(struct pxa_udc *udc)
225 {
226 }
227
pxa_cleanup_debugfs(struct pxa_udc * udc)228 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
229 {
230 }
231 #endif
232
233 /**
234 * is_match_usb_pxa - check if usb_ep and pxa_ep match
235 * @udc_usb_ep: usb endpoint
236 * @ep: pxa endpoint
237 * @config: configuration required in pxa_ep
238 * @interface: interface required in pxa_ep
239 * @altsetting: altsetting required in pxa_ep
240 *
241 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
242 */
is_match_usb_pxa(struct udc_usb_ep * udc_usb_ep,struct pxa_ep * ep,int config,int interface,int altsetting)243 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
244 int config, int interface, int altsetting)
245 {
246 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
247 return 0;
248 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
249 return 0;
250 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
251 return 0;
252 if ((ep->config != config) || (ep->interface != interface)
253 || (ep->alternate != altsetting))
254 return 0;
255 return 1;
256 }
257
258 /**
259 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
260 * @udc: pxa udc
261 * @udc_usb_ep: udc_usb_ep structure
262 *
263 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
264 * This is necessary because of the strong pxa hardware restriction requiring
265 * that once pxa endpoints are initialized, their configuration is freezed, and
266 * no change can be made to their address, direction, or in which configuration,
267 * interface or altsetting they are active ... which differs from more usual
268 * models which have endpoints be roughly just addressable fifos, and leave
269 * configuration events up to gadget drivers (like all control messages).
270 *
271 * Note that there is still a blurred point here :
272 * - we rely on UDCCR register "active interface" and "active altsetting".
273 * This is a nonsense in regard of USB spec, where multiple interfaces are
274 * active at the same time.
275 * - if we knew for sure that the pxa can handle multiple interface at the
276 * same time, assuming Intel's Developer Guide is wrong, this function
277 * should be reviewed, and a cache of couples (iface, altsetting) should
278 * be kept in the pxa_udc structure. In this case this function would match
279 * against the cache of couples instead of the "last altsetting" set up.
280 *
281 * Returns the matched pxa_ep structure or NULL if none found
282 */
find_pxa_ep(struct pxa_udc * udc,struct udc_usb_ep * udc_usb_ep)283 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
284 struct udc_usb_ep *udc_usb_ep)
285 {
286 int i;
287 struct pxa_ep *ep;
288 int cfg = udc->config;
289 int iface = udc->last_interface;
290 int alt = udc->last_alternate;
291
292 if (udc_usb_ep == &udc->udc_usb_ep[0])
293 return &udc->pxa_ep[0];
294
295 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
296 ep = &udc->pxa_ep[i];
297 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
298 return ep;
299 }
300 return NULL;
301 }
302
303 /**
304 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
305 * @udc: pxa udc
306 *
307 * Context: in_interrupt()
308 *
309 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
310 * previously set up (and is not NULL). The update is necessary is a
311 * configuration change or altsetting change was issued by the USB host.
312 */
update_pxa_ep_matches(struct pxa_udc * udc)313 static void update_pxa_ep_matches(struct pxa_udc *udc)
314 {
315 int i;
316 struct udc_usb_ep *udc_usb_ep;
317
318 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
319 udc_usb_ep = &udc->udc_usb_ep[i];
320 if (udc_usb_ep->pxa_ep)
321 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
322 }
323 }
324
325 /**
326 * pio_irq_enable - Enables irq generation for one endpoint
327 * @ep: udc endpoint
328 */
pio_irq_enable(struct pxa_ep * ep)329 static void pio_irq_enable(struct pxa_ep *ep)
330 {
331 struct pxa_udc *udc = ep->dev;
332 int index = EPIDX(ep);
333 u32 udcicr0 = udc_readl(udc, UDCICR0);
334 u32 udcicr1 = udc_readl(udc, UDCICR1);
335
336 if (index < 16)
337 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
338 else
339 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
340 }
341
342 /**
343 * pio_irq_disable - Disables irq generation for one endpoint
344 * @ep: udc endpoint
345 */
pio_irq_disable(struct pxa_ep * ep)346 static void pio_irq_disable(struct pxa_ep *ep)
347 {
348 struct pxa_udc *udc = ep->dev;
349 int index = EPIDX(ep);
350 u32 udcicr0 = udc_readl(udc, UDCICR0);
351 u32 udcicr1 = udc_readl(udc, UDCICR1);
352
353 if (index < 16)
354 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
355 else
356 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
357 }
358
359 /**
360 * udc_set_mask_UDCCR - set bits in UDCCR
361 * @udc: udc device
362 * @mask: bits to set in UDCCR
363 *
364 * Sets bits in UDCCR, leaving DME and FST bits as they were.
365 */
udc_set_mask_UDCCR(struct pxa_udc * udc,int mask)366 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
367 {
368 u32 udccr = udc_readl(udc, UDCCR);
369 udc_writel(udc, UDCCR,
370 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
371 }
372
373 /**
374 * udc_clear_mask_UDCCR - clears bits in UDCCR
375 * @udc: udc device
376 * @mask: bit to clear in UDCCR
377 *
378 * Clears bits in UDCCR, leaving DME and FST bits as they were.
379 */
udc_clear_mask_UDCCR(struct pxa_udc * udc,int mask)380 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
381 {
382 u32 udccr = udc_readl(udc, UDCCR);
383 udc_writel(udc, UDCCR,
384 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
385 }
386
387 /**
388 * ep_write_UDCCSR - set bits in UDCCSR
389 * @udc: udc device
390 * @mask: bits to set in UDCCR
391 *
392 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
393 *
394 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
395 * SET_INTERFACE and SET_CONFIGURATION.
396 */
ep_write_UDCCSR(struct pxa_ep * ep,int mask)397 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
398 {
399 if (is_ep0(ep))
400 mask |= UDCCSR0_ACM;
401 udc_ep_writel(ep, UDCCSR, mask);
402 }
403
404 /**
405 * ep_count_bytes_remain - get how many bytes in udc endpoint
406 * @ep: udc endpoint
407 *
408 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
409 */
ep_count_bytes_remain(struct pxa_ep * ep)410 static int ep_count_bytes_remain(struct pxa_ep *ep)
411 {
412 if (ep->dir_in)
413 return -EOPNOTSUPP;
414 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
415 }
416
417 /**
418 * ep_is_empty - checks if ep has byte ready for reading
419 * @ep: udc endpoint
420 *
421 * If endpoint is the control endpoint, checks if there are bytes in the
422 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
423 * are ready for reading on OUT endpoint.
424 *
425 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
426 */
ep_is_empty(struct pxa_ep * ep)427 static int ep_is_empty(struct pxa_ep *ep)
428 {
429 int ret;
430
431 if (!is_ep0(ep) && ep->dir_in)
432 return -EOPNOTSUPP;
433 if (is_ep0(ep))
434 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
435 else
436 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
437 return ret;
438 }
439
440 /**
441 * ep_is_full - checks if ep has place to write bytes
442 * @ep: udc endpoint
443 *
444 * If endpoint is not the control endpoint and is an IN endpoint, checks if
445 * there is place to write bytes into the endpoint.
446 *
447 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
448 */
ep_is_full(struct pxa_ep * ep)449 static int ep_is_full(struct pxa_ep *ep)
450 {
451 if (is_ep0(ep))
452 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
453 if (!ep->dir_in)
454 return -EOPNOTSUPP;
455 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
456 }
457
458 /**
459 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
460 * @ep: pxa endpoint
461 *
462 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
463 */
epout_has_pkt(struct pxa_ep * ep)464 static int epout_has_pkt(struct pxa_ep *ep)
465 {
466 if (!is_ep0(ep) && ep->dir_in)
467 return -EOPNOTSUPP;
468 if (is_ep0(ep))
469 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
470 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
471 }
472
473 /**
474 * set_ep0state - Set ep0 automata state
475 * @dev: udc device
476 * @state: state
477 */
set_ep0state(struct pxa_udc * udc,int state)478 static void set_ep0state(struct pxa_udc *udc, int state)
479 {
480 struct pxa_ep *ep = &udc->pxa_ep[0];
481 char *old_stname = EP0_STNAME(udc);
482
483 udc->ep0state = state;
484 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
485 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
486 udc_ep_readl(ep, UDCBCR));
487 }
488
489 /**
490 * ep0_idle - Put control endpoint into idle state
491 * @dev: udc device
492 */
ep0_idle(struct pxa_udc * dev)493 static void ep0_idle(struct pxa_udc *dev)
494 {
495 set_ep0state(dev, WAIT_FOR_SETUP);
496 }
497
498 /**
499 * inc_ep_stats_reqs - Update ep stats counts
500 * @ep: physical endpoint
501 * @req: usb request
502 * @is_in: ep direction (USB_DIR_IN or 0)
503 *
504 */
inc_ep_stats_reqs(struct pxa_ep * ep,int is_in)505 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
506 {
507 if (is_in)
508 ep->stats.in_ops++;
509 else
510 ep->stats.out_ops++;
511 }
512
513 /**
514 * inc_ep_stats_bytes - Update ep stats counts
515 * @ep: physical endpoint
516 * @count: bytes transferred on endpoint
517 * @is_in: ep direction (USB_DIR_IN or 0)
518 */
inc_ep_stats_bytes(struct pxa_ep * ep,int count,int is_in)519 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
520 {
521 if (is_in)
522 ep->stats.in_bytes += count;
523 else
524 ep->stats.out_bytes += count;
525 }
526
527 /**
528 * pxa_ep_setup - Sets up an usb physical endpoint
529 * @ep: pxa27x physical endpoint
530 *
531 * Find the physical pxa27x ep, and setup its UDCCR
532 */
pxa_ep_setup(struct pxa_ep * ep)533 static void pxa_ep_setup(struct pxa_ep *ep)
534 {
535 u32 new_udccr;
536
537 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
538 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
539 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
540 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
541 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
542 | ((ep->dir_in) ? UDCCONR_ED : 0)
543 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
544 | UDCCONR_EE;
545
546 udc_ep_writel(ep, UDCCR, new_udccr);
547 }
548
549 /**
550 * pxa_eps_setup - Sets up all usb physical endpoints
551 * @dev: udc device
552 *
553 * Setup all pxa physical endpoints, except ep0
554 */
pxa_eps_setup(struct pxa_udc * dev)555 static void pxa_eps_setup(struct pxa_udc *dev)
556 {
557 unsigned int i;
558
559 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
560
561 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
562 pxa_ep_setup(&dev->pxa_ep[i]);
563 }
564
565 /**
566 * pxa_ep_alloc_request - Allocate usb request
567 * @_ep: usb endpoint
568 * @gfp_flags:
569 *
570 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
571 * must still pass correctly initialized endpoints, since other controller
572 * drivers may care about how it's currently set up (dma issues etc).
573 */
574 static struct usb_request *
pxa_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)575 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
576 {
577 struct pxa27x_request *req;
578
579 req = kzalloc(sizeof *req, gfp_flags);
580 if (!req)
581 return NULL;
582
583 INIT_LIST_HEAD(&req->queue);
584 req->in_use = 0;
585 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
586
587 return &req->req;
588 }
589
590 /**
591 * pxa_ep_free_request - Free usb request
592 * @_ep: usb endpoint
593 * @_req: usb request
594 *
595 * Wrapper around kfree to free _req
596 */
pxa_ep_free_request(struct usb_ep * _ep,struct usb_request * _req)597 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
598 {
599 struct pxa27x_request *req;
600
601 req = container_of(_req, struct pxa27x_request, req);
602 WARN_ON(!list_empty(&req->queue));
603 kfree(req);
604 }
605
606 /**
607 * ep_add_request - add a request to the endpoint's queue
608 * @ep: usb endpoint
609 * @req: usb request
610 *
611 * Context: ep->lock held
612 *
613 * Queues the request in the endpoint's queue, and enables the interrupts
614 * on the endpoint.
615 */
ep_add_request(struct pxa_ep * ep,struct pxa27x_request * req)616 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
617 {
618 if (unlikely(!req))
619 return;
620 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
621 req->req.length, udc_ep_readl(ep, UDCCSR));
622
623 req->in_use = 1;
624 list_add_tail(&req->queue, &ep->queue);
625 pio_irq_enable(ep);
626 }
627
628 /**
629 * ep_del_request - removes a request from the endpoint's queue
630 * @ep: usb endpoint
631 * @req: usb request
632 *
633 * Context: ep->lock held
634 *
635 * Unqueue the request from the endpoint's queue. If there are no more requests
636 * on the endpoint, and if it's not the control endpoint, interrupts are
637 * disabled on the endpoint.
638 */
ep_del_request(struct pxa_ep * ep,struct pxa27x_request * req)639 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
640 {
641 if (unlikely(!req))
642 return;
643 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
644 req->req.length, udc_ep_readl(ep, UDCCSR));
645
646 list_del_init(&req->queue);
647 req->in_use = 0;
648 if (!is_ep0(ep) && list_empty(&ep->queue))
649 pio_irq_disable(ep);
650 }
651
652 /**
653 * req_done - Complete an usb request
654 * @ep: pxa physical endpoint
655 * @req: pxa request
656 * @status: usb request status sent to gadget API
657 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
658 *
659 * Context: ep->lock held if flags not NULL, else ep->lock released
660 *
661 * Retire a pxa27x usb request. Endpoint must be locked.
662 */
req_done(struct pxa_ep * ep,struct pxa27x_request * req,int status,unsigned long * pflags)663 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
664 unsigned long *pflags)
665 {
666 unsigned long flags;
667
668 ep_del_request(ep, req);
669 if (likely(req->req.status == -EINPROGRESS))
670 req->req.status = status;
671 else
672 status = req->req.status;
673
674 if (status && status != -ESHUTDOWN)
675 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
676 &req->req, status,
677 req->req.actual, req->req.length);
678
679 if (pflags)
680 spin_unlock_irqrestore(&ep->lock, *pflags);
681 local_irq_save(flags);
682 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
683 local_irq_restore(flags);
684 if (pflags)
685 spin_lock_irqsave(&ep->lock, *pflags);
686 }
687
688 /**
689 * ep_end_out_req - Ends endpoint OUT request
690 * @ep: physical endpoint
691 * @req: pxa request
692 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
693 *
694 * Context: ep->lock held or released (see req_done())
695 *
696 * Ends endpoint OUT request (completes usb request).
697 */
ep_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)698 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
699 unsigned long *pflags)
700 {
701 inc_ep_stats_reqs(ep, !USB_DIR_IN);
702 req_done(ep, req, 0, pflags);
703 }
704
705 /**
706 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
707 * @ep: physical endpoint
708 * @req: pxa request
709 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
710 *
711 * Context: ep->lock held or released (see req_done())
712 *
713 * Ends control endpoint OUT request (completes usb request), and puts
714 * control endpoint into idle state
715 */
ep0_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)716 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
717 unsigned long *pflags)
718 {
719 set_ep0state(ep->dev, OUT_STATUS_STAGE);
720 ep_end_out_req(ep, req, pflags);
721 ep0_idle(ep->dev);
722 }
723
724 /**
725 * ep_end_in_req - Ends endpoint IN request
726 * @ep: physical endpoint
727 * @req: pxa request
728 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
729 *
730 * Context: ep->lock held or released (see req_done())
731 *
732 * Ends endpoint IN request (completes usb request).
733 */
ep_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)734 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
735 unsigned long *pflags)
736 {
737 inc_ep_stats_reqs(ep, USB_DIR_IN);
738 req_done(ep, req, 0, pflags);
739 }
740
741 /**
742 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
743 * @ep: physical endpoint
744 * @req: pxa request
745 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
746 *
747 * Context: ep->lock held or released (see req_done())
748 *
749 * Ends control endpoint IN request (completes usb request), and puts
750 * control endpoint into status state
751 */
ep0_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)752 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
753 unsigned long *pflags)
754 {
755 set_ep0state(ep->dev, IN_STATUS_STAGE);
756 ep_end_in_req(ep, req, pflags);
757 }
758
759 /**
760 * nuke - Dequeue all requests
761 * @ep: pxa endpoint
762 * @status: usb request status
763 *
764 * Context: ep->lock released
765 *
766 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
767 * disabled on that endpoint (because no more requests).
768 */
nuke(struct pxa_ep * ep,int status)769 static void nuke(struct pxa_ep *ep, int status)
770 {
771 struct pxa27x_request *req;
772 unsigned long flags;
773
774 spin_lock_irqsave(&ep->lock, flags);
775 while (!list_empty(&ep->queue)) {
776 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
777 req_done(ep, req, status, &flags);
778 }
779 spin_unlock_irqrestore(&ep->lock, flags);
780 }
781
782 /**
783 * read_packet - transfer 1 packet from an OUT endpoint into request
784 * @ep: pxa physical endpoint
785 * @req: usb request
786 *
787 * Takes bytes from OUT endpoint and transfers them info the usb request.
788 * If there is less space in request than bytes received in OUT endpoint,
789 * bytes are left in the OUT endpoint.
790 *
791 * Returns how many bytes were actually transferred
792 */
read_packet(struct pxa_ep * ep,struct pxa27x_request * req)793 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
794 {
795 u32 *buf;
796 int bytes_ep, bufferspace, count, i;
797
798 bytes_ep = ep_count_bytes_remain(ep);
799 bufferspace = req->req.length - req->req.actual;
800
801 buf = (u32 *)(req->req.buf + req->req.actual);
802 prefetchw(buf);
803
804 if (likely(!ep_is_empty(ep)))
805 count = min(bytes_ep, bufferspace);
806 else /* zlp */
807 count = 0;
808
809 for (i = count; i > 0; i -= 4)
810 *buf++ = udc_ep_readl(ep, UDCDR);
811 req->req.actual += count;
812
813 ep_write_UDCCSR(ep, UDCCSR_PC);
814
815 return count;
816 }
817
818 /**
819 * write_packet - transfer 1 packet from request into an IN endpoint
820 * @ep: pxa physical endpoint
821 * @req: usb request
822 * @max: max bytes that fit into endpoint
823 *
824 * Takes bytes from usb request, and transfers them into the physical
825 * endpoint. If there are no bytes to transfer, doesn't write anything
826 * to physical endpoint.
827 *
828 * Returns how many bytes were actually transferred.
829 */
write_packet(struct pxa_ep * ep,struct pxa27x_request * req,unsigned int max)830 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
831 unsigned int max)
832 {
833 int length, count, remain, i;
834 u32 *buf;
835 u8 *buf_8;
836
837 buf = (u32 *)(req->req.buf + req->req.actual);
838 prefetch(buf);
839
840 length = min(req->req.length - req->req.actual, max);
841 req->req.actual += length;
842
843 remain = length & 0x3;
844 count = length & ~(0x3);
845 for (i = count; i > 0 ; i -= 4)
846 udc_ep_writel(ep, UDCDR, *buf++);
847
848 buf_8 = (u8 *)buf;
849 for (i = remain; i > 0; i--)
850 udc_ep_writeb(ep, UDCDR, *buf_8++);
851
852 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
853 udc_ep_readl(ep, UDCCSR));
854
855 return length;
856 }
857
858 /**
859 * read_fifo - Transfer packets from OUT endpoint into usb request
860 * @ep: pxa physical endpoint
861 * @req: usb request
862 *
863 * Context: callable when in_interrupt()
864 *
865 * Unload as many packets as possible from the fifo we use for usb OUT
866 * transfers and put them into the request. Caller should have made sure
867 * there's at least one packet ready.
868 * Doesn't complete the request, that's the caller's job
869 *
870 * Returns 1 if the request completed, 0 otherwise
871 */
read_fifo(struct pxa_ep * ep,struct pxa27x_request * req)872 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
873 {
874 int count, is_short, completed = 0;
875
876 while (epout_has_pkt(ep)) {
877 count = read_packet(ep, req);
878 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
879
880 is_short = (count < ep->fifo_size);
881 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
882 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
883 &req->req, req->req.actual, req->req.length);
884
885 /* completion */
886 if (is_short || req->req.actual == req->req.length) {
887 completed = 1;
888 break;
889 }
890 /* finished that packet. the next one may be waiting... */
891 }
892 return completed;
893 }
894
895 /**
896 * write_fifo - transfer packets from usb request into an IN endpoint
897 * @ep: pxa physical endpoint
898 * @req: pxa usb request
899 *
900 * Write to an IN endpoint fifo, as many packets as possible.
901 * irqs will use this to write the rest later.
902 * caller guarantees at least one packet buffer is ready (or a zlp).
903 * Doesn't complete the request, that's the caller's job
904 *
905 * Returns 1 if request fully transferred, 0 if partial transfer
906 */
write_fifo(struct pxa_ep * ep,struct pxa27x_request * req)907 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
908 {
909 unsigned max;
910 int count, is_short, is_last = 0, completed = 0, totcount = 0;
911 u32 udccsr;
912
913 max = ep->fifo_size;
914 do {
915 udccsr = udc_ep_readl(ep, UDCCSR);
916 if (udccsr & UDCCSR_PC) {
917 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
918 udccsr);
919 ep_write_UDCCSR(ep, UDCCSR_PC);
920 }
921 if (udccsr & UDCCSR_TRN) {
922 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
923 udccsr);
924 ep_write_UDCCSR(ep, UDCCSR_TRN);
925 }
926
927 count = write_packet(ep, req, max);
928 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
929 totcount += count;
930
931 /* last packet is usually short (or a zlp) */
932 if (unlikely(count < max)) {
933 is_last = 1;
934 is_short = 1;
935 } else {
936 if (likely(req->req.length > req->req.actual)
937 || req->req.zero)
938 is_last = 0;
939 else
940 is_last = 1;
941 /* interrupt/iso maxpacket may not fill the fifo */
942 is_short = unlikely(max < ep->fifo_size);
943 }
944
945 if (is_short)
946 ep_write_UDCCSR(ep, UDCCSR_SP);
947
948 /* requests complete when all IN data is in the FIFO */
949 if (is_last) {
950 completed = 1;
951 break;
952 }
953 } while (!ep_is_full(ep));
954
955 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
956 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
957 req->req.length - req->req.actual, &req->req);
958
959 return completed;
960 }
961
962 /**
963 * read_ep0_fifo - Transfer packets from control endpoint into usb request
964 * @ep: control endpoint
965 * @req: pxa usb request
966 *
967 * Special ep0 version of the above read_fifo. Reads as many bytes from control
968 * endpoint as can be read, and stores them into usb request (limited by request
969 * maximum length).
970 *
971 * Returns 0 if usb request only partially filled, 1 if fully filled
972 */
read_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)973 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
974 {
975 int count, is_short, completed = 0;
976
977 while (epout_has_pkt(ep)) {
978 count = read_packet(ep, req);
979 ep_write_UDCCSR(ep, UDCCSR0_OPC);
980 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
981
982 is_short = (count < ep->fifo_size);
983 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
984 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
985 &req->req, req->req.actual, req->req.length);
986
987 if (is_short || req->req.actual >= req->req.length) {
988 completed = 1;
989 break;
990 }
991 }
992
993 return completed;
994 }
995
996 /**
997 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
998 * @ep: control endpoint
999 * @req: request
1000 *
1001 * Context: callable when in_interrupt()
1002 *
1003 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1004 * If the request doesn't fit, the remaining part will be sent from irq.
1005 * The request is considered fully written only if either :
1006 * - last write transferred all remaining bytes, but fifo was not fully filled
1007 * - last write was a 0 length write
1008 *
1009 * Returns 1 if request fully written, 0 if request only partially sent
1010 */
write_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)1011 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1012 {
1013 unsigned count;
1014 int is_last, is_short;
1015
1016 count = write_packet(ep, req, EP0_FIFO_SIZE);
1017 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1018
1019 is_short = (count < EP0_FIFO_SIZE);
1020 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1021
1022 /* Sends either a short packet or a 0 length packet */
1023 if (unlikely(is_short))
1024 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1025
1026 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1027 count, is_short ? "/S" : "", is_last ? "/L" : "",
1028 req->req.length - req->req.actual,
1029 &req->req, udc_ep_readl(ep, UDCCSR));
1030
1031 return is_last;
1032 }
1033
1034 /**
1035 * pxa_ep_queue - Queue a request into an IN endpoint
1036 * @_ep: usb endpoint
1037 * @_req: usb request
1038 * @gfp_flags: flags
1039 *
1040 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1041 * in the special case of ep0 setup :
1042 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1043 *
1044 * Returns 0 if succedeed, error otherwise
1045 */
pxa_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1046 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1047 gfp_t gfp_flags)
1048 {
1049 struct udc_usb_ep *udc_usb_ep;
1050 struct pxa_ep *ep;
1051 struct pxa27x_request *req;
1052 struct pxa_udc *dev;
1053 unsigned long flags;
1054 int rc = 0;
1055 int is_first_req;
1056 unsigned length;
1057 int recursion_detected;
1058
1059 req = container_of(_req, struct pxa27x_request, req);
1060 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1061
1062 if (unlikely(!_req || !_req->complete || !_req->buf))
1063 return -EINVAL;
1064
1065 if (unlikely(!_ep))
1066 return -EINVAL;
1067
1068 ep = udc_usb_ep->pxa_ep;
1069 if (unlikely(!ep))
1070 return -EINVAL;
1071
1072 dev = ep->dev;
1073 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1074 ep_dbg(ep, "bogus device state\n");
1075 return -ESHUTDOWN;
1076 }
1077
1078 /* iso is always one packet per request, that's the only way
1079 * we can report per-packet status. that also helps with dma.
1080 */
1081 if (unlikely(EPXFERTYPE_is_ISO(ep)
1082 && req->req.length > ep->fifo_size))
1083 return -EMSGSIZE;
1084
1085 spin_lock_irqsave(&ep->lock, flags);
1086 recursion_detected = ep->in_handle_ep;
1087
1088 is_first_req = list_empty(&ep->queue);
1089 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1090 _req, is_first_req ? "yes" : "no",
1091 _req->length, _req->buf);
1092
1093 if (!ep->enabled) {
1094 _req->status = -ESHUTDOWN;
1095 rc = -ESHUTDOWN;
1096 goto out_locked;
1097 }
1098
1099 if (req->in_use) {
1100 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1101 goto out_locked;
1102 }
1103
1104 length = _req->length;
1105 _req->status = -EINPROGRESS;
1106 _req->actual = 0;
1107
1108 ep_add_request(ep, req);
1109 spin_unlock_irqrestore(&ep->lock, flags);
1110
1111 if (is_ep0(ep)) {
1112 switch (dev->ep0state) {
1113 case WAIT_ACK_SET_CONF_INTERF:
1114 if (length == 0) {
1115 ep_end_in_req(ep, req, NULL);
1116 } else {
1117 ep_err(ep, "got a request of %d bytes while"
1118 "in state WAIT_ACK_SET_CONF_INTERF\n",
1119 length);
1120 ep_del_request(ep, req);
1121 rc = -EL2HLT;
1122 }
1123 ep0_idle(ep->dev);
1124 break;
1125 case IN_DATA_STAGE:
1126 if (!ep_is_full(ep))
1127 if (write_ep0_fifo(ep, req))
1128 ep0_end_in_req(ep, req, NULL);
1129 break;
1130 case OUT_DATA_STAGE:
1131 if ((length == 0) || !epout_has_pkt(ep))
1132 if (read_ep0_fifo(ep, req))
1133 ep0_end_out_req(ep, req, NULL);
1134 break;
1135 default:
1136 ep_err(ep, "odd state %s to send me a request\n",
1137 EP0_STNAME(ep->dev));
1138 ep_del_request(ep, req);
1139 rc = -EL2HLT;
1140 break;
1141 }
1142 } else {
1143 if (!recursion_detected)
1144 handle_ep(ep);
1145 }
1146
1147 out:
1148 return rc;
1149 out_locked:
1150 spin_unlock_irqrestore(&ep->lock, flags);
1151 goto out;
1152 }
1153
1154 /**
1155 * pxa_ep_dequeue - Dequeue one request
1156 * @_ep: usb endpoint
1157 * @_req: usb request
1158 *
1159 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1160 */
pxa_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1161 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1162 {
1163 struct pxa_ep *ep;
1164 struct udc_usb_ep *udc_usb_ep;
1165 struct pxa27x_request *req;
1166 unsigned long flags;
1167 int rc = -EINVAL;
1168
1169 if (!_ep)
1170 return rc;
1171 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1172 ep = udc_usb_ep->pxa_ep;
1173 if (!ep || is_ep0(ep))
1174 return rc;
1175
1176 spin_lock_irqsave(&ep->lock, flags);
1177
1178 /* make sure it's actually queued on this endpoint */
1179 list_for_each_entry(req, &ep->queue, queue) {
1180 if (&req->req == _req) {
1181 rc = 0;
1182 break;
1183 }
1184 }
1185
1186 spin_unlock_irqrestore(&ep->lock, flags);
1187 if (!rc)
1188 req_done(ep, req, -ECONNRESET, NULL);
1189 return rc;
1190 }
1191
1192 /**
1193 * pxa_ep_set_halt - Halts operations on one endpoint
1194 * @_ep: usb endpoint
1195 * @value:
1196 *
1197 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1198 */
pxa_ep_set_halt(struct usb_ep * _ep,int value)1199 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1200 {
1201 struct pxa_ep *ep;
1202 struct udc_usb_ep *udc_usb_ep;
1203 unsigned long flags;
1204 int rc;
1205
1206
1207 if (!_ep)
1208 return -EINVAL;
1209 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1210 ep = udc_usb_ep->pxa_ep;
1211 if (!ep || is_ep0(ep))
1212 return -EINVAL;
1213
1214 if (value == 0) {
1215 /*
1216 * This path (reset toggle+halt) is needed to implement
1217 * SET_INTERFACE on normal hardware. but it can't be
1218 * done from software on the PXA UDC, and the hardware
1219 * forgets to do it as part of SET_INTERFACE automagic.
1220 */
1221 ep_dbg(ep, "only host can clear halt\n");
1222 return -EROFS;
1223 }
1224
1225 spin_lock_irqsave(&ep->lock, flags);
1226
1227 rc = -EAGAIN;
1228 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1229 goto out;
1230
1231 /* FST, FEF bits are the same for control and non control endpoints */
1232 rc = 0;
1233 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1234 if (is_ep0(ep))
1235 set_ep0state(ep->dev, STALL);
1236
1237 out:
1238 spin_unlock_irqrestore(&ep->lock, flags);
1239 return rc;
1240 }
1241
1242 /**
1243 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1244 * @_ep: usb endpoint
1245 *
1246 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1247 */
pxa_ep_fifo_status(struct usb_ep * _ep)1248 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1249 {
1250 struct pxa_ep *ep;
1251 struct udc_usb_ep *udc_usb_ep;
1252
1253 if (!_ep)
1254 return -ENODEV;
1255 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1256 ep = udc_usb_ep->pxa_ep;
1257 if (!ep || is_ep0(ep))
1258 return -ENODEV;
1259
1260 if (ep->dir_in)
1261 return -EOPNOTSUPP;
1262 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1263 return 0;
1264 else
1265 return ep_count_bytes_remain(ep) + 1;
1266 }
1267
1268 /**
1269 * pxa_ep_fifo_flush - Flushes one endpoint
1270 * @_ep: usb endpoint
1271 *
1272 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1273 */
pxa_ep_fifo_flush(struct usb_ep * _ep)1274 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1275 {
1276 struct pxa_ep *ep;
1277 struct udc_usb_ep *udc_usb_ep;
1278 unsigned long flags;
1279
1280 if (!_ep)
1281 return;
1282 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1283 ep = udc_usb_ep->pxa_ep;
1284 if (!ep || is_ep0(ep))
1285 return;
1286
1287 spin_lock_irqsave(&ep->lock, flags);
1288
1289 if (unlikely(!list_empty(&ep->queue)))
1290 ep_dbg(ep, "called while queue list not empty\n");
1291 ep_dbg(ep, "called\n");
1292
1293 /* for OUT, just read and discard the FIFO contents. */
1294 if (!ep->dir_in) {
1295 while (!ep_is_empty(ep))
1296 udc_ep_readl(ep, UDCDR);
1297 } else {
1298 /* most IN status is the same, but ISO can't stall */
1299 ep_write_UDCCSR(ep,
1300 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1301 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1302 }
1303
1304 spin_unlock_irqrestore(&ep->lock, flags);
1305 }
1306
1307 /**
1308 * pxa_ep_enable - Enables usb endpoint
1309 * @_ep: usb endpoint
1310 * @desc: usb endpoint descriptor
1311 *
1312 * Nothing much to do here, as ep configuration is done once and for all
1313 * before udc is enabled. After udc enable, no physical endpoint configuration
1314 * can be changed.
1315 * Function makes sanity checks and flushes the endpoint.
1316 */
pxa_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)1317 static int pxa_ep_enable(struct usb_ep *_ep,
1318 const struct usb_endpoint_descriptor *desc)
1319 {
1320 struct pxa_ep *ep;
1321 struct udc_usb_ep *udc_usb_ep;
1322 struct pxa_udc *udc;
1323
1324 if (!_ep || !desc)
1325 return -EINVAL;
1326
1327 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1328 if (udc_usb_ep->pxa_ep) {
1329 ep = udc_usb_ep->pxa_ep;
1330 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1331 _ep->name);
1332 } else {
1333 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1334 }
1335
1336 if (!ep || is_ep0(ep)) {
1337 dev_err(udc_usb_ep->dev->dev,
1338 "unable to match pxa_ep for ep %s\n",
1339 _ep->name);
1340 return -EINVAL;
1341 }
1342
1343 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1344 || (ep->type != usb_endpoint_type(desc))) {
1345 ep_err(ep, "type mismatch\n");
1346 return -EINVAL;
1347 }
1348
1349 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1350 ep_err(ep, "bad maxpacket\n");
1351 return -ERANGE;
1352 }
1353
1354 udc_usb_ep->pxa_ep = ep;
1355 udc = ep->dev;
1356
1357 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1358 ep_err(ep, "bogus device state\n");
1359 return -ESHUTDOWN;
1360 }
1361
1362 ep->enabled = 1;
1363
1364 /* flush fifo (mostly for OUT buffers) */
1365 pxa_ep_fifo_flush(_ep);
1366
1367 ep_dbg(ep, "enabled\n");
1368 return 0;
1369 }
1370
1371 /**
1372 * pxa_ep_disable - Disable usb endpoint
1373 * @_ep: usb endpoint
1374 *
1375 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1376 * changed.
1377 * Function flushes the endpoint and related requests.
1378 */
pxa_ep_disable(struct usb_ep * _ep)1379 static int pxa_ep_disable(struct usb_ep *_ep)
1380 {
1381 struct pxa_ep *ep;
1382 struct udc_usb_ep *udc_usb_ep;
1383
1384 if (!_ep)
1385 return -EINVAL;
1386
1387 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1388 ep = udc_usb_ep->pxa_ep;
1389 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1390 return -EINVAL;
1391
1392 ep->enabled = 0;
1393 nuke(ep, -ESHUTDOWN);
1394
1395 pxa_ep_fifo_flush(_ep);
1396 udc_usb_ep->pxa_ep = NULL;
1397
1398 ep_dbg(ep, "disabled\n");
1399 return 0;
1400 }
1401
1402 static const struct usb_ep_ops pxa_ep_ops = {
1403 .enable = pxa_ep_enable,
1404 .disable = pxa_ep_disable,
1405
1406 .alloc_request = pxa_ep_alloc_request,
1407 .free_request = pxa_ep_free_request,
1408
1409 .queue = pxa_ep_queue,
1410 .dequeue = pxa_ep_dequeue,
1411
1412 .set_halt = pxa_ep_set_halt,
1413 .fifo_status = pxa_ep_fifo_status,
1414 .fifo_flush = pxa_ep_fifo_flush,
1415 };
1416
1417 /**
1418 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1419 * @udc: udc device
1420 * @on: 0 if disconnect pullup resistor, 1 otherwise
1421 * Context: any
1422 *
1423 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1424 * declare it as a full speed usb device
1425 */
dplus_pullup(struct pxa_udc * udc,int on)1426 static void dplus_pullup(struct pxa_udc *udc, int on)
1427 {
1428 if (udc->gpiod) {
1429 gpiod_set_value(udc->gpiod, on);
1430 } else if (udc->udc_command) {
1431 if (on)
1432 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1433 else
1434 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1435 }
1436 udc->pullup_on = on;
1437 }
1438
1439 /**
1440 * pxa_udc_get_frame - Returns usb frame number
1441 * @_gadget: usb gadget
1442 */
pxa_udc_get_frame(struct usb_gadget * _gadget)1443 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1444 {
1445 struct pxa_udc *udc = to_gadget_udc(_gadget);
1446
1447 return (udc_readl(udc, UDCFNR) & 0x7ff);
1448 }
1449
1450 /**
1451 * pxa_udc_wakeup - Force udc device out of suspend
1452 * @_gadget: usb gadget
1453 *
1454 * Returns 0 if successful, error code otherwise
1455 */
pxa_udc_wakeup(struct usb_gadget * _gadget)1456 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1457 {
1458 struct pxa_udc *udc = to_gadget_udc(_gadget);
1459
1460 /* host may not have enabled remote wakeup */
1461 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1462 return -EHOSTUNREACH;
1463 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1464 return 0;
1465 }
1466
1467 static void udc_enable(struct pxa_udc *udc);
1468 static void udc_disable(struct pxa_udc *udc);
1469
1470 /**
1471 * should_enable_udc - Tells if UDC should be enabled
1472 * @udc: udc device
1473 * Context: any
1474 *
1475 * The UDC should be enabled if :
1476
1477 * - the pullup resistor is connected
1478 * - and a gadget driver is bound
1479 * - and vbus is sensed (or no vbus sense is available)
1480 *
1481 * Returns 1 if UDC should be enabled, 0 otherwise
1482 */
should_enable_udc(struct pxa_udc * udc)1483 static int should_enable_udc(struct pxa_udc *udc)
1484 {
1485 int put_on;
1486
1487 put_on = ((udc->pullup_on) && (udc->driver));
1488 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1489 return put_on;
1490 }
1491
1492 /**
1493 * should_disable_udc - Tells if UDC should be disabled
1494 * @udc: udc device
1495 * Context: any
1496 *
1497 * The UDC should be disabled if :
1498 * - the pullup resistor is not connected
1499 * - or no gadget driver is bound
1500 * - or no vbus is sensed (when vbus sesing is available)
1501 *
1502 * Returns 1 if UDC should be disabled
1503 */
should_disable_udc(struct pxa_udc * udc)1504 static int should_disable_udc(struct pxa_udc *udc)
1505 {
1506 int put_off;
1507
1508 put_off = ((!udc->pullup_on) || (!udc->driver));
1509 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1510 return put_off;
1511 }
1512
1513 /**
1514 * pxa_udc_pullup - Offer manual D+ pullup control
1515 * @_gadget: usb gadget using the control
1516 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1517 * Context: !in_interrupt()
1518 *
1519 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1520 */
pxa_udc_pullup(struct usb_gadget * _gadget,int is_active)1521 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1522 {
1523 struct pxa_udc *udc = to_gadget_udc(_gadget);
1524
1525 if (!udc->gpiod && !udc->udc_command)
1526 return -EOPNOTSUPP;
1527
1528 dplus_pullup(udc, is_active);
1529
1530 if (should_enable_udc(udc))
1531 udc_enable(udc);
1532 if (should_disable_udc(udc))
1533 udc_disable(udc);
1534 return 0;
1535 }
1536
1537 /**
1538 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1539 * @_gadget: usb gadget
1540 * @is_active: 0 if should disable the udc, 1 if should enable
1541 *
1542 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1543 * udc, and deactivates D+ pullup resistor.
1544 *
1545 * Returns 0
1546 */
pxa_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1547 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1548 {
1549 struct pxa_udc *udc = to_gadget_udc(_gadget);
1550
1551 udc->vbus_sensed = is_active;
1552 if (should_enable_udc(udc))
1553 udc_enable(udc);
1554 if (should_disable_udc(udc))
1555 udc_disable(udc);
1556
1557 return 0;
1558 }
1559
1560 /**
1561 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1562 * @_gadget: usb gadget
1563 * @mA: current drawn
1564 *
1565 * Context: !in_interrupt()
1566 *
1567 * Called after a configuration was chosen by a USB host, to inform how much
1568 * current can be drawn by the device from VBus line.
1569 *
1570 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1571 */
pxa_udc_vbus_draw(struct usb_gadget * _gadget,unsigned mA)1572 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1573 {
1574 struct pxa_udc *udc;
1575
1576 udc = to_gadget_udc(_gadget);
1577 if (!IS_ERR_OR_NULL(udc->transceiver))
1578 return usb_phy_set_power(udc->transceiver, mA);
1579 return -EOPNOTSUPP;
1580 }
1581
1582 /**
1583 * pxa_udc_phy_event - Called by phy upon VBus event
1584 * @nb: notifier block
1585 * @action: phy action, is vbus connect or disconnect
1586 * @data: the usb_gadget structure in pxa_udc
1587 *
1588 * Called by the USB Phy when a cable connect or disconnect is sensed.
1589 *
1590 * Returns 0
1591 */
pxa_udc_phy_event(struct notifier_block * nb,unsigned long action,void * data)1592 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1593 void *data)
1594 {
1595 struct usb_gadget *gadget = data;
1596
1597 switch (action) {
1598 case USB_EVENT_VBUS:
1599 usb_gadget_vbus_connect(gadget);
1600 return NOTIFY_OK;
1601 case USB_EVENT_NONE:
1602 usb_gadget_vbus_disconnect(gadget);
1603 return NOTIFY_OK;
1604 default:
1605 return NOTIFY_DONE;
1606 }
1607 }
1608
1609 static struct notifier_block pxa27x_udc_phy = {
1610 .notifier_call = pxa_udc_phy_event,
1611 };
1612
1613 static int pxa27x_udc_start(struct usb_gadget *g,
1614 struct usb_gadget_driver *driver);
1615 static int pxa27x_udc_stop(struct usb_gadget *g);
1616
1617 static const struct usb_gadget_ops pxa_udc_ops = {
1618 .get_frame = pxa_udc_get_frame,
1619 .wakeup = pxa_udc_wakeup,
1620 .pullup = pxa_udc_pullup,
1621 .vbus_session = pxa_udc_vbus_session,
1622 .vbus_draw = pxa_udc_vbus_draw,
1623 .udc_start = pxa27x_udc_start,
1624 .udc_stop = pxa27x_udc_stop,
1625 };
1626
1627 /**
1628 * udc_disable - disable udc device controller
1629 * @udc: udc device
1630 * Context: any
1631 *
1632 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1633 * interrupts.
1634 */
udc_disable(struct pxa_udc * udc)1635 static void udc_disable(struct pxa_udc *udc)
1636 {
1637 if (!udc->enabled)
1638 return;
1639
1640 udc_writel(udc, UDCICR0, 0);
1641 udc_writel(udc, UDCICR1, 0);
1642
1643 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1644
1645 ep0_idle(udc);
1646 udc->gadget.speed = USB_SPEED_UNKNOWN;
1647 clk_disable(udc->clk);
1648
1649 udc->enabled = 0;
1650 }
1651
1652 /**
1653 * udc_init_data - Initialize udc device data structures
1654 * @dev: udc device
1655 *
1656 * Initializes gadget endpoint list, endpoints locks. No action is taken
1657 * on the hardware.
1658 */
udc_init_data(struct pxa_udc * dev)1659 static void udc_init_data(struct pxa_udc *dev)
1660 {
1661 int i;
1662 struct pxa_ep *ep;
1663
1664 /* device/ep0 records init */
1665 INIT_LIST_HEAD(&dev->gadget.ep_list);
1666 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1667 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1668 dev->gadget.quirk_altset_not_supp = 1;
1669 ep0_idle(dev);
1670
1671 /* PXA endpoints init */
1672 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1673 ep = &dev->pxa_ep[i];
1674
1675 ep->enabled = is_ep0(ep);
1676 INIT_LIST_HEAD(&ep->queue);
1677 spin_lock_init(&ep->lock);
1678 }
1679
1680 /* USB endpoints init */
1681 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1682 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1683 &dev->gadget.ep_list);
1684 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1685 dev->udc_usb_ep[i].usb_ep.maxpacket);
1686 }
1687 }
1688
1689 /**
1690 * udc_enable - Enables the udc device
1691 * @dev: udc device
1692 *
1693 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1694 * interrupts, sets usb as UDC client and setups endpoints.
1695 */
udc_enable(struct pxa_udc * udc)1696 static void udc_enable(struct pxa_udc *udc)
1697 {
1698 if (udc->enabled)
1699 return;
1700
1701 clk_enable(udc->clk);
1702 udc_writel(udc, UDCICR0, 0);
1703 udc_writel(udc, UDCICR1, 0);
1704 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1705
1706 ep0_idle(udc);
1707 udc->gadget.speed = USB_SPEED_FULL;
1708 memset(&udc->stats, 0, sizeof(udc->stats));
1709
1710 pxa_eps_setup(udc);
1711 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1712 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1713 udelay(2);
1714 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1715 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1716
1717 /*
1718 * Caller must be able to sleep in order to cope with startup transients
1719 */
1720 msleep(100);
1721
1722 /* enable suspend/resume and reset irqs */
1723 udc_writel(udc, UDCICR1,
1724 UDCICR1_IECC | UDCICR1_IERU
1725 | UDCICR1_IESU | UDCICR1_IERS);
1726
1727 /* enable ep0 irqs */
1728 pio_irq_enable(&udc->pxa_ep[0]);
1729
1730 udc->enabled = 1;
1731 }
1732
1733 /**
1734 * pxa27x_start - Register gadget driver
1735 * @driver: gadget driver
1736 * @bind: bind function
1737 *
1738 * When a driver is successfully registered, it will receive control requests
1739 * including set_configuration(), which enables non-control requests. Then
1740 * usb traffic follows until a disconnect is reported. Then a host may connect
1741 * again, or the driver might get unbound.
1742 *
1743 * Note that the udc is not automatically enabled. Check function
1744 * should_enable_udc().
1745 *
1746 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1747 */
pxa27x_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1748 static int pxa27x_udc_start(struct usb_gadget *g,
1749 struct usb_gadget_driver *driver)
1750 {
1751 struct pxa_udc *udc = to_pxa(g);
1752 int retval;
1753
1754 /* first hook up the driver ... */
1755 udc->driver = driver;
1756
1757 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1758 retval = otg_set_peripheral(udc->transceiver->otg,
1759 &udc->gadget);
1760 if (retval) {
1761 dev_err(udc->dev, "can't bind to transceiver\n");
1762 goto fail;
1763 }
1764 }
1765
1766 if (should_enable_udc(udc))
1767 udc_enable(udc);
1768 return 0;
1769
1770 fail:
1771 udc->driver = NULL;
1772 return retval;
1773 }
1774
1775 /**
1776 * stop_activity - Stops udc endpoints
1777 * @udc: udc device
1778 * @driver: gadget driver
1779 *
1780 * Disables all udc endpoints (even control endpoint), report disconnect to
1781 * the gadget user.
1782 */
stop_activity(struct pxa_udc * udc)1783 static void stop_activity(struct pxa_udc *udc)
1784 {
1785 int i;
1786
1787 udc->gadget.speed = USB_SPEED_UNKNOWN;
1788
1789 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1790 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1791 }
1792
1793 /**
1794 * pxa27x_udc_stop - Unregister the gadget driver
1795 * @driver: gadget driver
1796 *
1797 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1798 */
pxa27x_udc_stop(struct usb_gadget * g)1799 static int pxa27x_udc_stop(struct usb_gadget *g)
1800 {
1801 struct pxa_udc *udc = to_pxa(g);
1802
1803 stop_activity(udc);
1804 udc_disable(udc);
1805
1806 udc->driver = NULL;
1807
1808 if (!IS_ERR_OR_NULL(udc->transceiver))
1809 return otg_set_peripheral(udc->transceiver->otg, NULL);
1810 return 0;
1811 }
1812
1813 /**
1814 * handle_ep0_ctrl_req - handle control endpoint control request
1815 * @udc: udc device
1816 * @req: control request
1817 */
handle_ep0_ctrl_req(struct pxa_udc * udc,struct pxa27x_request * req)1818 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1819 struct pxa27x_request *req)
1820 {
1821 struct pxa_ep *ep = &udc->pxa_ep[0];
1822 union {
1823 struct usb_ctrlrequest r;
1824 u32 word[2];
1825 } u;
1826 int i;
1827 int have_extrabytes = 0;
1828 unsigned long flags;
1829
1830 nuke(ep, -EPROTO);
1831 spin_lock_irqsave(&ep->lock, flags);
1832
1833 /*
1834 * In the PXA320 manual, in the section about Back-to-Back setup
1835 * packets, it describes this situation. The solution is to set OPC to
1836 * get rid of the status packet, and then continue with the setup
1837 * packet. Generalize to pxa27x CPUs.
1838 */
1839 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1840 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1841
1842 /* read SETUP packet */
1843 for (i = 0; i < 2; i++) {
1844 if (unlikely(ep_is_empty(ep)))
1845 goto stall;
1846 u.word[i] = udc_ep_readl(ep, UDCDR);
1847 }
1848
1849 have_extrabytes = !ep_is_empty(ep);
1850 while (!ep_is_empty(ep)) {
1851 i = udc_ep_readl(ep, UDCDR);
1852 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1853 }
1854
1855 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1856 u.r.bRequestType, u.r.bRequest,
1857 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1858 le16_to_cpu(u.r.wLength));
1859 if (unlikely(have_extrabytes))
1860 goto stall;
1861
1862 if (u.r.bRequestType & USB_DIR_IN)
1863 set_ep0state(udc, IN_DATA_STAGE);
1864 else
1865 set_ep0state(udc, OUT_DATA_STAGE);
1866
1867 /* Tell UDC to enter Data Stage */
1868 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1869
1870 spin_unlock_irqrestore(&ep->lock, flags);
1871 i = udc->driver->setup(&udc->gadget, &u.r);
1872 spin_lock_irqsave(&ep->lock, flags);
1873 if (i < 0)
1874 goto stall;
1875 out:
1876 spin_unlock_irqrestore(&ep->lock, flags);
1877 return;
1878 stall:
1879 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1880 udc_ep_readl(ep, UDCCSR), i);
1881 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1882 set_ep0state(udc, STALL);
1883 goto out;
1884 }
1885
1886 /**
1887 * handle_ep0 - Handle control endpoint data transfers
1888 * @udc: udc device
1889 * @fifo_irq: 1 if triggered by fifo service type irq
1890 * @opc_irq: 1 if triggered by output packet complete type irq
1891 *
1892 * Context : when in_interrupt() or with ep->lock held
1893 *
1894 * Tries to transfer all pending request data into the endpoint and/or
1895 * transfer all pending data in the endpoint into usb requests.
1896 * Handles states of ep0 automata.
1897 *
1898 * PXA27x hardware handles several standard usb control requests without
1899 * driver notification. The requests fully handled by hardware are :
1900 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1901 * GET_STATUS
1902 * The requests handled by hardware, but with irq notification are :
1903 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1904 * The remaining standard requests really handled by handle_ep0 are :
1905 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1906 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1907 * uniformly, by gadget drivers.
1908 *
1909 * The control endpoint state machine is _not_ USB spec compliant, it's even
1910 * hardly compliant with Intel PXA270 developers guide.
1911 * The key points which inferred this state machine are :
1912 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1913 * software.
1914 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1915 * cleared by software.
1916 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1917 * before reading ep0.
1918 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1919 * (check Back-to-Back setup packet in developers guide).
1920 * - irq can be called on a "packet complete" event (opc_irq=1), while
1921 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1922 * from experimentation).
1923 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1924 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1925 * => we never actually read the "status stage" packet of an IN data stage
1926 * => this is not documented in Intel documentation
1927 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1928 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1929 * OUT_STATUS_STAGE.
1930 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1931 * event is detected, we terminate the status stage without ackowledging the
1932 * packet (not to risk to loose a potential SETUP packet)
1933 */
handle_ep0(struct pxa_udc * udc,int fifo_irq,int opc_irq)1934 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1935 {
1936 u32 udccsr0;
1937 struct pxa_ep *ep = &udc->pxa_ep[0];
1938 struct pxa27x_request *req = NULL;
1939 int completed = 0;
1940
1941 if (!list_empty(&ep->queue))
1942 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1943
1944 udccsr0 = udc_ep_readl(ep, UDCCSR);
1945 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1946 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1947 (fifo_irq << 1 | opc_irq));
1948
1949 if (udccsr0 & UDCCSR0_SST) {
1950 ep_dbg(ep, "clearing stall status\n");
1951 nuke(ep, -EPIPE);
1952 ep_write_UDCCSR(ep, UDCCSR0_SST);
1953 ep0_idle(udc);
1954 }
1955
1956 if (udccsr0 & UDCCSR0_SA) {
1957 nuke(ep, 0);
1958 set_ep0state(udc, SETUP_STAGE);
1959 }
1960
1961 switch (udc->ep0state) {
1962 case WAIT_FOR_SETUP:
1963 /*
1964 * Hardware bug : beware, we cannot clear OPC, since we would
1965 * miss a potential OPC irq for a setup packet.
1966 * So, we only do ... nothing, and hope for a next irq with
1967 * UDCCSR0_SA set.
1968 */
1969 break;
1970 case SETUP_STAGE:
1971 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1972 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1973 handle_ep0_ctrl_req(udc, req);
1974 break;
1975 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
1976 if (epout_has_pkt(ep))
1977 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1978 if (req && !ep_is_full(ep))
1979 completed = write_ep0_fifo(ep, req);
1980 if (completed)
1981 ep0_end_in_req(ep, req, NULL);
1982 break;
1983 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
1984 if (epout_has_pkt(ep) && req)
1985 completed = read_ep0_fifo(ep, req);
1986 if (completed)
1987 ep0_end_out_req(ep, req, NULL);
1988 break;
1989 case STALL:
1990 ep_write_UDCCSR(ep, UDCCSR0_FST);
1991 break;
1992 case IN_STATUS_STAGE:
1993 /*
1994 * Hardware bug : beware, we cannot clear OPC, since we would
1995 * miss a potential PC irq for a setup packet.
1996 * So, we only put the ep0 into WAIT_FOR_SETUP state.
1997 */
1998 if (opc_irq)
1999 ep0_idle(udc);
2000 break;
2001 case OUT_STATUS_STAGE:
2002 case WAIT_ACK_SET_CONF_INTERF:
2003 ep_warn(ep, "should never get in %s state here!!!\n",
2004 EP0_STNAME(ep->dev));
2005 ep0_idle(udc);
2006 break;
2007 }
2008 }
2009
2010 /**
2011 * handle_ep - Handle endpoint data tranfers
2012 * @ep: pxa physical endpoint
2013 *
2014 * Tries to transfer all pending request data into the endpoint and/or
2015 * transfer all pending data in the endpoint into usb requests.
2016 *
2017 * Is always called when in_interrupt() and with ep->lock released.
2018 */
handle_ep(struct pxa_ep * ep)2019 static void handle_ep(struct pxa_ep *ep)
2020 {
2021 struct pxa27x_request *req;
2022 int completed;
2023 u32 udccsr;
2024 int is_in = ep->dir_in;
2025 int loop = 0;
2026 unsigned long flags;
2027
2028 spin_lock_irqsave(&ep->lock, flags);
2029 if (ep->in_handle_ep)
2030 goto recursion_detected;
2031 ep->in_handle_ep = 1;
2032
2033 do {
2034 completed = 0;
2035 udccsr = udc_ep_readl(ep, UDCCSR);
2036
2037 if (likely(!list_empty(&ep->queue)))
2038 req = list_entry(ep->queue.next,
2039 struct pxa27x_request, queue);
2040 else
2041 req = NULL;
2042
2043 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2044 req, udccsr, loop++);
2045
2046 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2047 udc_ep_writel(ep, UDCCSR,
2048 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2049 if (!req)
2050 break;
2051
2052 if (unlikely(is_in)) {
2053 if (likely(!ep_is_full(ep)))
2054 completed = write_fifo(ep, req);
2055 } else {
2056 if (likely(epout_has_pkt(ep)))
2057 completed = read_fifo(ep, req);
2058 }
2059
2060 if (completed) {
2061 if (is_in)
2062 ep_end_in_req(ep, req, &flags);
2063 else
2064 ep_end_out_req(ep, req, &flags);
2065 }
2066 } while (completed);
2067
2068 ep->in_handle_ep = 0;
2069 recursion_detected:
2070 spin_unlock_irqrestore(&ep->lock, flags);
2071 }
2072
2073 /**
2074 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2075 * @udc: udc device
2076 * @config: usb configuration
2077 *
2078 * Post the request to upper level.
2079 * Don't use any pxa specific harware configuration capabilities
2080 */
pxa27x_change_configuration(struct pxa_udc * udc,int config)2081 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2082 {
2083 struct usb_ctrlrequest req ;
2084
2085 dev_dbg(udc->dev, "config=%d\n", config);
2086
2087 udc->config = config;
2088 udc->last_interface = 0;
2089 udc->last_alternate = 0;
2090
2091 req.bRequestType = 0;
2092 req.bRequest = USB_REQ_SET_CONFIGURATION;
2093 req.wValue = config;
2094 req.wIndex = 0;
2095 req.wLength = 0;
2096
2097 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2098 udc->driver->setup(&udc->gadget, &req);
2099 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2100 }
2101
2102 /**
2103 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2104 * @udc: udc device
2105 * @iface: interface number
2106 * @alt: alternate setting number
2107 *
2108 * Post the request to upper level.
2109 * Don't use any pxa specific harware configuration capabilities
2110 */
pxa27x_change_interface(struct pxa_udc * udc,int iface,int alt)2111 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2112 {
2113 struct usb_ctrlrequest req;
2114
2115 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2116
2117 udc->last_interface = iface;
2118 udc->last_alternate = alt;
2119
2120 req.bRequestType = USB_RECIP_INTERFACE;
2121 req.bRequest = USB_REQ_SET_INTERFACE;
2122 req.wValue = alt;
2123 req.wIndex = iface;
2124 req.wLength = 0;
2125
2126 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2127 udc->driver->setup(&udc->gadget, &req);
2128 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2129 }
2130
2131 /*
2132 * irq_handle_data - Handle data transfer
2133 * @irq: irq IRQ number
2134 * @udc: dev pxa_udc device structure
2135 *
2136 * Called from irq handler, transferts data to or from endpoint to queue
2137 */
irq_handle_data(int irq,struct pxa_udc * udc)2138 static void irq_handle_data(int irq, struct pxa_udc *udc)
2139 {
2140 int i;
2141 struct pxa_ep *ep;
2142 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2143 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2144
2145 if (udcisr0 & UDCISR_INT_MASK) {
2146 udc->pxa_ep[0].stats.irqs++;
2147 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2148 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2149 !!(udcisr0 & UDCICR_PKTCOMPL));
2150 }
2151
2152 udcisr0 >>= 2;
2153 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2154 if (!(udcisr0 & UDCISR_INT_MASK))
2155 continue;
2156
2157 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2158
2159 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2160 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2161 ep = &udc->pxa_ep[i];
2162 ep->stats.irqs++;
2163 handle_ep(ep);
2164 }
2165 }
2166
2167 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2168 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2169 if (!(udcisr1 & UDCISR_INT_MASK))
2170 continue;
2171
2172 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2173 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2174 ep = &udc->pxa_ep[i];
2175 ep->stats.irqs++;
2176 handle_ep(ep);
2177 }
2178 }
2179
2180 }
2181
2182 /**
2183 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2184 * @udc: udc device
2185 */
irq_udc_suspend(struct pxa_udc * udc)2186 static void irq_udc_suspend(struct pxa_udc *udc)
2187 {
2188 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2189 udc->stats.irqs_suspend++;
2190
2191 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2192 && udc->driver && udc->driver->suspend)
2193 udc->driver->suspend(&udc->gadget);
2194 ep0_idle(udc);
2195 }
2196
2197 /**
2198 * irq_udc_resume - Handle IRQ "UDC Resume"
2199 * @udc: udc device
2200 */
irq_udc_resume(struct pxa_udc * udc)2201 static void irq_udc_resume(struct pxa_udc *udc)
2202 {
2203 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2204 udc->stats.irqs_resume++;
2205
2206 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2207 && udc->driver && udc->driver->resume)
2208 udc->driver->resume(&udc->gadget);
2209 }
2210
2211 /**
2212 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2213 * @udc: udc device
2214 */
irq_udc_reconfig(struct pxa_udc * udc)2215 static void irq_udc_reconfig(struct pxa_udc *udc)
2216 {
2217 unsigned config, interface, alternate, config_change;
2218 u32 udccr = udc_readl(udc, UDCCR);
2219
2220 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2221 udc->stats.irqs_reconfig++;
2222
2223 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2224 config_change = (config != udc->config);
2225 pxa27x_change_configuration(udc, config);
2226
2227 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2228 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2229 pxa27x_change_interface(udc, interface, alternate);
2230
2231 if (config_change)
2232 update_pxa_ep_matches(udc);
2233 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2234 }
2235
2236 /**
2237 * irq_udc_reset - Handle IRQ "UDC Reset"
2238 * @udc: udc device
2239 */
irq_udc_reset(struct pxa_udc * udc)2240 static void irq_udc_reset(struct pxa_udc *udc)
2241 {
2242 u32 udccr = udc_readl(udc, UDCCR);
2243 struct pxa_ep *ep = &udc->pxa_ep[0];
2244
2245 dev_info(udc->dev, "USB reset\n");
2246 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2247 udc->stats.irqs_reset++;
2248
2249 if ((udccr & UDCCR_UDA) == 0) {
2250 dev_dbg(udc->dev, "USB reset start\n");
2251 stop_activity(udc);
2252 }
2253 udc->gadget.speed = USB_SPEED_FULL;
2254 memset(&udc->stats, 0, sizeof udc->stats);
2255
2256 nuke(ep, -EPROTO);
2257 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2258 ep0_idle(udc);
2259 }
2260
2261 /**
2262 * pxa_udc_irq - Main irq handler
2263 * @irq: irq number
2264 * @_dev: udc device
2265 *
2266 * Handles all udc interrupts
2267 */
pxa_udc_irq(int irq,void * _dev)2268 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2269 {
2270 struct pxa_udc *udc = _dev;
2271 u32 udcisr0 = udc_readl(udc, UDCISR0);
2272 u32 udcisr1 = udc_readl(udc, UDCISR1);
2273 u32 udccr = udc_readl(udc, UDCCR);
2274 u32 udcisr1_spec;
2275
2276 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2277 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2278
2279 udcisr1_spec = udcisr1 & 0xf8000000;
2280 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2281 irq_udc_suspend(udc);
2282 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2283 irq_udc_resume(udc);
2284 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2285 irq_udc_reconfig(udc);
2286 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2287 irq_udc_reset(udc);
2288
2289 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2290 irq_handle_data(irq, udc);
2291
2292 return IRQ_HANDLED;
2293 }
2294
2295 static struct pxa_udc memory = {
2296 .gadget = {
2297 .ops = &pxa_udc_ops,
2298 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2299 .name = driver_name,
2300 .dev = {
2301 .init_name = "gadget",
2302 },
2303 },
2304
2305 .udc_usb_ep = {
2306 USB_EP_CTRL,
2307 USB_EP_OUT_BULK(1),
2308 USB_EP_IN_BULK(2),
2309 USB_EP_IN_ISO(3),
2310 USB_EP_OUT_ISO(4),
2311 USB_EP_IN_INT(5),
2312 },
2313
2314 .pxa_ep = {
2315 PXA_EP_CTRL,
2316 /* Endpoints for gadget zero */
2317 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2318 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2319 /* Endpoints for ether gadget, file storage gadget */
2320 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2321 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2322 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2323 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2324 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2325 /* Endpoints for RNDIS, serial */
2326 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2327 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2328 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2329 /*
2330 * All the following endpoints are only for completion. They
2331 * won't never work, as multiple interfaces are really broken on
2332 * the pxa.
2333 */
2334 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2335 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2336 /* Endpoint for CDC Ether */
2337 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2338 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2339 }
2340 };
2341
2342 #if defined(CONFIG_OF)
2343 static const struct of_device_id udc_pxa_dt_ids[] = {
2344 { .compatible = "marvell,pxa270-udc" },
2345 {}
2346 };
2347 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2348 #endif
2349
2350 /**
2351 * pxa_udc_probe - probes the udc device
2352 * @_dev: platform device
2353 *
2354 * Perform basic init : allocates udc clock, creates sysfs files, requests
2355 * irq.
2356 */
pxa_udc_probe(struct platform_device * pdev)2357 static int pxa_udc_probe(struct platform_device *pdev)
2358 {
2359 struct resource *regs;
2360 struct pxa_udc *udc = &memory;
2361 int retval = 0, gpio;
2362 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2363 unsigned long gpio_flags;
2364
2365 if (mach) {
2366 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2367 gpio = mach->gpio_pullup;
2368 if (gpio_is_valid(gpio)) {
2369 retval = devm_gpio_request_one(&pdev->dev, gpio,
2370 gpio_flags,
2371 "USB D+ pullup");
2372 if (retval)
2373 return retval;
2374 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2375 }
2376 udc->udc_command = mach->udc_command;
2377 } else {
2378 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2379 }
2380
2381 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2382 udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2383 if (IS_ERR(udc->regs))
2384 return PTR_ERR(udc->regs);
2385 udc->irq = platform_get_irq(pdev, 0);
2386 if (udc->irq < 0)
2387 return udc->irq;
2388
2389 udc->dev = &pdev->dev;
2390 if (of_have_populated_dt()) {
2391 udc->transceiver =
2392 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2393 if (IS_ERR(udc->transceiver))
2394 return PTR_ERR(udc->transceiver);
2395 } else {
2396 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2397 }
2398
2399 if (IS_ERR(udc->gpiod)) {
2400 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2401 PTR_ERR(udc->gpiod));
2402 return PTR_ERR(udc->gpiod);
2403 }
2404 if (udc->gpiod)
2405 gpiod_direction_output(udc->gpiod, 0);
2406
2407 udc->clk = devm_clk_get(&pdev->dev, NULL);
2408 if (IS_ERR(udc->clk))
2409 return PTR_ERR(udc->clk);
2410
2411 retval = clk_prepare(udc->clk);
2412 if (retval)
2413 return retval;
2414
2415 udc->vbus_sensed = 0;
2416
2417 the_controller = udc;
2418 platform_set_drvdata(pdev, udc);
2419 udc_init_data(udc);
2420
2421 /* irq setup after old hardware state is cleaned up */
2422 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2423 IRQF_SHARED, driver_name, udc);
2424 if (retval != 0) {
2425 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2426 driver_name, udc->irq, retval);
2427 goto err;
2428 }
2429
2430 if (!IS_ERR_OR_NULL(udc->transceiver))
2431 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2432 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2433 if (retval)
2434 goto err_add_gadget;
2435
2436 pxa_init_debugfs(udc);
2437 if (should_enable_udc(udc))
2438 udc_enable(udc);
2439 return 0;
2440
2441 err_add_gadget:
2442 if (!IS_ERR_OR_NULL(udc->transceiver))
2443 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2444 err:
2445 clk_unprepare(udc->clk);
2446 return retval;
2447 }
2448
2449 /**
2450 * pxa_udc_remove - removes the udc device driver
2451 * @_dev: platform device
2452 */
pxa_udc_remove(struct platform_device * _dev)2453 static int pxa_udc_remove(struct platform_device *_dev)
2454 {
2455 struct pxa_udc *udc = platform_get_drvdata(_dev);
2456
2457 usb_del_gadget_udc(&udc->gadget);
2458 pxa_cleanup_debugfs(udc);
2459
2460 if (!IS_ERR_OR_NULL(udc->transceiver)) {
2461 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2462 usb_put_phy(udc->transceiver);
2463 }
2464
2465 udc->transceiver = NULL;
2466 the_controller = NULL;
2467 clk_unprepare(udc->clk);
2468
2469 return 0;
2470 }
2471
pxa_udc_shutdown(struct platform_device * _dev)2472 static void pxa_udc_shutdown(struct platform_device *_dev)
2473 {
2474 struct pxa_udc *udc = platform_get_drvdata(_dev);
2475
2476 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2477 udc_disable(udc);
2478 }
2479
2480 #ifdef CONFIG_PXA27x
2481 extern void pxa27x_clear_otgph(void);
2482 #else
2483 #define pxa27x_clear_otgph() do {} while (0)
2484 #endif
2485
2486 #ifdef CONFIG_PM
2487 /**
2488 * pxa_udc_suspend - Suspend udc device
2489 * @_dev: platform device
2490 * @state: suspend state
2491 *
2492 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2493 * device.
2494 */
pxa_udc_suspend(struct platform_device * _dev,pm_message_t state)2495 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2496 {
2497 struct pxa_udc *udc = platform_get_drvdata(_dev);
2498 struct pxa_ep *ep;
2499
2500 ep = &udc->pxa_ep[0];
2501 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2502
2503 udc_disable(udc);
2504 udc->pullup_resume = udc->pullup_on;
2505 dplus_pullup(udc, 0);
2506
2507 if (udc->driver)
2508 udc->driver->disconnect(&udc->gadget);
2509
2510 return 0;
2511 }
2512
2513 /**
2514 * pxa_udc_resume - Resume udc device
2515 * @_dev: platform device
2516 *
2517 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2518 * device.
2519 */
pxa_udc_resume(struct platform_device * _dev)2520 static int pxa_udc_resume(struct platform_device *_dev)
2521 {
2522 struct pxa_udc *udc = platform_get_drvdata(_dev);
2523 struct pxa_ep *ep;
2524
2525 ep = &udc->pxa_ep[0];
2526 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2527
2528 dplus_pullup(udc, udc->pullup_resume);
2529 if (should_enable_udc(udc))
2530 udc_enable(udc);
2531 /*
2532 * We do not handle OTG yet.
2533 *
2534 * OTGPH bit is set when sleep mode is entered.
2535 * it indicates that OTG pad is retaining its state.
2536 * Upon exit from sleep mode and before clearing OTGPH,
2537 * Software must configure the USB OTG pad, UDC, and UHC
2538 * to the state they were in before entering sleep mode.
2539 */
2540 pxa27x_clear_otgph();
2541
2542 return 0;
2543 }
2544 #endif
2545
2546 /* work with hotplug and coldplug */
2547 MODULE_ALIAS("platform:pxa27x-udc");
2548
2549 static struct platform_driver udc_driver = {
2550 .driver = {
2551 .name = "pxa27x-udc",
2552 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2553 },
2554 .probe = pxa_udc_probe,
2555 .remove = pxa_udc_remove,
2556 .shutdown = pxa_udc_shutdown,
2557 #ifdef CONFIG_PM
2558 .suspend = pxa_udc_suspend,
2559 .resume = pxa_udc_resume
2560 #endif
2561 };
2562
2563 module_platform_driver(udc_driver);
2564
2565 MODULE_DESCRIPTION(DRIVER_DESC);
2566 MODULE_AUTHOR("Robert Jarzmik");
2567 MODULE_LICENSE("GPL");
2568