1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * inode.c -- user mode filesystem api for usb gadget controllers
4 *
5 * Copyright (C) 2003-2004 David Brownell
6 * Copyright (C) 2003 Agilent Technologies
7 */
8
9
10 /* #define VERBOSE_DEBUG */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/fs_context.h>
16 #include <linux/pagemap.h>
17 #include <linux/uts.h>
18 #include <linux/wait.h>
19 #include <linux/compiler.h>
20 #include <linux/uaccess.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/kthread.h>
25 #include <linux/aio.h>
26 #include <linux/uio.h>
27 #include <linux/refcount.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/moduleparam.h>
31
32 #include <linux/usb/gadgetfs.h>
33 #include <linux/usb/gadget.h>
34
35
36 /*
37 * The gadgetfs API maps each endpoint to a file descriptor so that you
38 * can use standard synchronous read/write calls for I/O. There's some
39 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
40 * drivers show how this works in practice. You can also use AIO to
41 * eliminate I/O gaps between requests, to help when streaming data.
42 *
43 * Key parts that must be USB-specific are protocols defining how the
44 * read/write operations relate to the hardware state machines. There
45 * are two types of files. One type is for the device, implementing ep0.
46 * The other type is for each IN or OUT endpoint. In both cases, the
47 * user mode driver must configure the hardware before using it.
48 *
49 * - First, dev_config() is called when /dev/gadget/$CHIP is configured
50 * (by writing configuration and device descriptors). Afterwards it
51 * may serve as a source of device events, used to handle all control
52 * requests other than basic enumeration.
53 *
54 * - Then, after a SET_CONFIGURATION control request, ep_config() is
55 * called when each /dev/gadget/ep* file is configured (by writing
56 * endpoint descriptors). Afterwards these files are used to write()
57 * IN data or to read() OUT data. To halt the endpoint, a "wrong
58 * direction" request is issued (like reading an IN endpoint).
59 *
60 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
61 * not possible on all hardware. For example, precise fault handling with
62 * respect to data left in endpoint fifos after aborted operations; or
63 * selective clearing of endpoint halts, to implement SET_INTERFACE.
64 */
65
66 #define DRIVER_DESC "USB Gadget filesystem"
67 #define DRIVER_VERSION "24 Aug 2004"
68
69 static const char driver_desc [] = DRIVER_DESC;
70 static const char shortname [] = "gadgetfs";
71
72 MODULE_DESCRIPTION (DRIVER_DESC);
73 MODULE_AUTHOR ("David Brownell");
74 MODULE_LICENSE ("GPL");
75
76 static int ep_open(struct inode *, struct file *);
77
78
79 /*----------------------------------------------------------------------*/
80
81 #define GADGETFS_MAGIC 0xaee71ee7
82
83 /* /dev/gadget/$CHIP represents ep0 and the whole device */
84 enum ep0_state {
85 /* DISABLED is the initial state. */
86 STATE_DEV_DISABLED = 0,
87
88 /* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 * ep0/device i/o modes and binding to the controller. Driver
90 * must always write descriptors to initialize the device, then
91 * the device becomes UNCONNECTED until enumeration.
92 */
93 STATE_DEV_OPENED,
94
95 /* From then on, ep0 fd is in either of two basic modes:
96 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 * - SETUP: read/write will transfer control data and succeed;
98 * or if "wrong direction", performs protocol stall
99 */
100 STATE_DEV_UNCONNECTED,
101 STATE_DEV_CONNECTED,
102 STATE_DEV_SETUP,
103
104 /* UNBOUND means the driver closed ep0, so the device won't be
105 * accessible again (DEV_DISABLED) until all fds are closed.
106 */
107 STATE_DEV_UNBOUND,
108 };
109
110 /* enough for the whole queue: most events invalidate others */
111 #define N_EVENT 5
112
113 #define RBUF_SIZE 256
114
115 struct dev_data {
116 spinlock_t lock;
117 refcount_t count;
118 int udc_usage;
119 enum ep0_state state; /* P: lock */
120 struct usb_gadgetfs_event event [N_EVENT];
121 unsigned ev_next;
122 struct fasync_struct *fasync;
123 u8 current_config;
124
125 /* drivers reading ep0 MUST handle control requests (SETUP)
126 * reported that way; else the host will time out.
127 */
128 unsigned usermode_setup : 1,
129 setup_in : 1,
130 setup_can_stall : 1,
131 setup_out_ready : 1,
132 setup_out_error : 1,
133 setup_abort : 1,
134 gadget_registered : 1;
135 unsigned setup_wLength;
136
137 /* the rest is basically write-once */
138 struct usb_config_descriptor *config, *hs_config;
139 struct usb_device_descriptor *dev;
140 struct usb_request *req;
141 struct usb_gadget *gadget;
142 struct list_head epfiles;
143 void *buf;
144 wait_queue_head_t wait;
145 struct super_block *sb;
146 struct dentry *dentry;
147
148 /* except this scratch i/o buffer for ep0 */
149 u8 rbuf[RBUF_SIZE];
150 };
151
get_dev(struct dev_data * data)152 static inline void get_dev (struct dev_data *data)
153 {
154 refcount_inc (&data->count);
155 }
156
put_dev(struct dev_data * data)157 static void put_dev (struct dev_data *data)
158 {
159 if (likely (!refcount_dec_and_test (&data->count)))
160 return;
161 /* needs no more cleanup */
162 BUG_ON (waitqueue_active (&data->wait));
163 kfree (data);
164 }
165
dev_new(void)166 static struct dev_data *dev_new (void)
167 {
168 struct dev_data *dev;
169
170 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
171 if (!dev)
172 return NULL;
173 dev->state = STATE_DEV_DISABLED;
174 refcount_set (&dev->count, 1);
175 spin_lock_init (&dev->lock);
176 INIT_LIST_HEAD (&dev->epfiles);
177 init_waitqueue_head (&dev->wait);
178 return dev;
179 }
180
181 /*----------------------------------------------------------------------*/
182
183 /* other /dev/gadget/$ENDPOINT files represent endpoints */
184 enum ep_state {
185 STATE_EP_DISABLED = 0,
186 STATE_EP_READY,
187 STATE_EP_ENABLED,
188 STATE_EP_UNBOUND,
189 };
190
191 struct ep_data {
192 struct mutex lock;
193 enum ep_state state;
194 refcount_t count;
195 struct dev_data *dev;
196 /* must hold dev->lock before accessing ep or req */
197 struct usb_ep *ep;
198 struct usb_request *req;
199 ssize_t status;
200 char name [16];
201 struct usb_endpoint_descriptor desc, hs_desc;
202 struct list_head epfiles;
203 wait_queue_head_t wait;
204 struct dentry *dentry;
205 };
206
get_ep(struct ep_data * data)207 static inline void get_ep (struct ep_data *data)
208 {
209 refcount_inc (&data->count);
210 }
211
put_ep(struct ep_data * data)212 static void put_ep (struct ep_data *data)
213 {
214 if (likely (!refcount_dec_and_test (&data->count)))
215 return;
216 put_dev (data->dev);
217 /* needs no more cleanup */
218 BUG_ON (!list_empty (&data->epfiles));
219 BUG_ON (waitqueue_active (&data->wait));
220 kfree (data);
221 }
222
223 /*----------------------------------------------------------------------*/
224
225 /* most "how to use the hardware" policy choices are in userspace:
226 * mapping endpoint roles (which the driver needs) to the capabilities
227 * which the usb controller has. most of those capabilities are exposed
228 * implicitly, starting with the driver name and then endpoint names.
229 */
230
231 static const char *CHIP;
232
233 /*----------------------------------------------------------------------*/
234
235 /* NOTE: don't use dev_printk calls before binding to the gadget
236 * at the end of ep0 configuration, or after unbind.
237 */
238
239 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
240 #define xprintk(d,level,fmt,args...) \
241 printk(level "%s: " fmt , shortname , ## args)
242
243 #ifdef DEBUG
244 #define DBG(dev,fmt,args...) \
245 xprintk(dev , KERN_DEBUG , fmt , ## args)
246 #else
247 #define DBG(dev,fmt,args...) \
248 do { } while (0)
249 #endif /* DEBUG */
250
251 #ifdef VERBOSE_DEBUG
252 #define VDEBUG DBG
253 #else
254 #define VDEBUG(dev,fmt,args...) \
255 do { } while (0)
256 #endif /* DEBUG */
257
258 #define ERROR(dev,fmt,args...) \
259 xprintk(dev , KERN_ERR , fmt , ## args)
260 #define INFO(dev,fmt,args...) \
261 xprintk(dev , KERN_INFO , fmt , ## args)
262
263
264 /*----------------------------------------------------------------------*/
265
266 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
267 *
268 * After opening, configure non-control endpoints. Then use normal
269 * stream read() and write() requests; and maybe ioctl() to get more
270 * precise FIFO status when recovering from cancellation.
271 */
272
epio_complete(struct usb_ep * ep,struct usb_request * req)273 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
274 {
275 struct ep_data *epdata = ep->driver_data;
276
277 if (!req->context)
278 return;
279 if (req->status)
280 epdata->status = req->status;
281 else
282 epdata->status = req->actual;
283 complete ((struct completion *)req->context);
284 }
285
286 /* tasklock endpoint, returning when it's connected.
287 * still need dev->lock to use epdata->ep.
288 */
289 static int
get_ready_ep(unsigned f_flags,struct ep_data * epdata,bool is_write)290 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
291 {
292 int val;
293
294 if (f_flags & O_NONBLOCK) {
295 if (!mutex_trylock(&epdata->lock))
296 goto nonblock;
297 if (epdata->state != STATE_EP_ENABLED &&
298 (!is_write || epdata->state != STATE_EP_READY)) {
299 mutex_unlock(&epdata->lock);
300 nonblock:
301 val = -EAGAIN;
302 } else
303 val = 0;
304 return val;
305 }
306
307 val = mutex_lock_interruptible(&epdata->lock);
308 if (val < 0)
309 return val;
310
311 switch (epdata->state) {
312 case STATE_EP_ENABLED:
313 return 0;
314 case STATE_EP_READY: /* not configured yet */
315 if (is_write)
316 return 0;
317 fallthrough;
318 case STATE_EP_UNBOUND: /* clean disconnect */
319 break;
320 // case STATE_EP_DISABLED: /* "can't happen" */
321 default: /* error! */
322 pr_debug ("%s: ep %p not available, state %d\n",
323 shortname, epdata, epdata->state);
324 }
325 mutex_unlock(&epdata->lock);
326 return -ENODEV;
327 }
328
329 static ssize_t
ep_io(struct ep_data * epdata,void * buf,unsigned len)330 ep_io (struct ep_data *epdata, void *buf, unsigned len)
331 {
332 DECLARE_COMPLETION_ONSTACK (done);
333 int value;
334
335 spin_lock_irq (&epdata->dev->lock);
336 if (likely (epdata->ep != NULL)) {
337 struct usb_request *req = epdata->req;
338
339 req->context = &done;
340 req->complete = epio_complete;
341 req->buf = buf;
342 req->length = len;
343 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
344 } else
345 value = -ENODEV;
346 spin_unlock_irq (&epdata->dev->lock);
347
348 if (likely (value == 0)) {
349 value = wait_for_completion_interruptible(&done);
350 if (value != 0) {
351 spin_lock_irq (&epdata->dev->lock);
352 if (likely (epdata->ep != NULL)) {
353 DBG (epdata->dev, "%s i/o interrupted\n",
354 epdata->name);
355 usb_ep_dequeue (epdata->ep, epdata->req);
356 spin_unlock_irq (&epdata->dev->lock);
357
358 wait_for_completion(&done);
359 if (epdata->status == -ECONNRESET)
360 epdata->status = -EINTR;
361 } else {
362 spin_unlock_irq (&epdata->dev->lock);
363
364 DBG (epdata->dev, "endpoint gone\n");
365 wait_for_completion(&done);
366 epdata->status = -ENODEV;
367 }
368 }
369 return epdata->status;
370 }
371 return value;
372 }
373
374 static int
ep_release(struct inode * inode,struct file * fd)375 ep_release (struct inode *inode, struct file *fd)
376 {
377 struct ep_data *data = fd->private_data;
378 int value;
379
380 value = mutex_lock_interruptible(&data->lock);
381 if (value < 0)
382 return value;
383
384 /* clean up if this can be reopened */
385 if (data->state != STATE_EP_UNBOUND) {
386 data->state = STATE_EP_DISABLED;
387 data->desc.bDescriptorType = 0;
388 data->hs_desc.bDescriptorType = 0;
389 usb_ep_disable(data->ep);
390 }
391 mutex_unlock(&data->lock);
392 put_ep (data);
393 return 0;
394 }
395
ep_ioctl(struct file * fd,unsigned code,unsigned long value)396 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
397 {
398 struct ep_data *data = fd->private_data;
399 int status;
400
401 if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
402 return status;
403
404 spin_lock_irq (&data->dev->lock);
405 if (likely (data->ep != NULL)) {
406 switch (code) {
407 case GADGETFS_FIFO_STATUS:
408 status = usb_ep_fifo_status (data->ep);
409 break;
410 case GADGETFS_FIFO_FLUSH:
411 usb_ep_fifo_flush (data->ep);
412 break;
413 case GADGETFS_CLEAR_HALT:
414 status = usb_ep_clear_halt (data->ep);
415 break;
416 default:
417 status = -ENOTTY;
418 }
419 } else
420 status = -ENODEV;
421 spin_unlock_irq (&data->dev->lock);
422 mutex_unlock(&data->lock);
423 return status;
424 }
425
426 /*----------------------------------------------------------------------*/
427
428 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
429
430 struct kiocb_priv {
431 struct usb_request *req;
432 struct ep_data *epdata;
433 struct kiocb *iocb;
434 struct mm_struct *mm;
435 struct work_struct work;
436 void *buf;
437 struct iov_iter to;
438 const void *to_free;
439 unsigned actual;
440 };
441
ep_aio_cancel(struct kiocb * iocb)442 static int ep_aio_cancel(struct kiocb *iocb)
443 {
444 struct kiocb_priv *priv = iocb->private;
445 struct ep_data *epdata;
446 int value;
447
448 local_irq_disable();
449 epdata = priv->epdata;
450 // spin_lock(&epdata->dev->lock);
451 if (likely(epdata && epdata->ep && priv->req))
452 value = usb_ep_dequeue (epdata->ep, priv->req);
453 else
454 value = -EINVAL;
455 // spin_unlock(&epdata->dev->lock);
456 local_irq_enable();
457
458 return value;
459 }
460
ep_user_copy_worker(struct work_struct * work)461 static void ep_user_copy_worker(struct work_struct *work)
462 {
463 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
464 struct mm_struct *mm = priv->mm;
465 struct kiocb *iocb = priv->iocb;
466 size_t ret;
467
468 kthread_use_mm(mm);
469 ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
470 kthread_unuse_mm(mm);
471 if (!ret)
472 ret = -EFAULT;
473
474 /* completing the iocb can drop the ctx and mm, don't touch mm after */
475 iocb->ki_complete(iocb, ret);
476
477 kfree(priv->buf);
478 kfree(priv->to_free);
479 kfree(priv);
480 }
481
ep_aio_complete(struct usb_ep * ep,struct usb_request * req)482 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
483 {
484 struct kiocb *iocb = req->context;
485 struct kiocb_priv *priv = iocb->private;
486 struct ep_data *epdata = priv->epdata;
487
488 /* lock against disconnect (and ideally, cancel) */
489 spin_lock(&epdata->dev->lock);
490 priv->req = NULL;
491 priv->epdata = NULL;
492
493 /* if this was a write or a read returning no data then we
494 * don't need to copy anything to userspace, so we can
495 * complete the aio request immediately.
496 */
497 if (priv->to_free == NULL || unlikely(req->actual == 0)) {
498 kfree(req->buf);
499 kfree(priv->to_free);
500 kfree(priv);
501 iocb->private = NULL;
502 iocb->ki_complete(iocb,
503 req->actual ? req->actual : (long)req->status);
504 } else {
505 /* ep_copy_to_user() won't report both; we hide some faults */
506 if (unlikely(0 != req->status))
507 DBG(epdata->dev, "%s fault %d len %d\n",
508 ep->name, req->status, req->actual);
509
510 priv->buf = req->buf;
511 priv->actual = req->actual;
512 INIT_WORK(&priv->work, ep_user_copy_worker);
513 schedule_work(&priv->work);
514 }
515
516 usb_ep_free_request(ep, req);
517 spin_unlock(&epdata->dev->lock);
518 put_ep(epdata);
519 }
520
ep_aio(struct kiocb * iocb,struct kiocb_priv * priv,struct ep_data * epdata,char * buf,size_t len)521 static ssize_t ep_aio(struct kiocb *iocb,
522 struct kiocb_priv *priv,
523 struct ep_data *epdata,
524 char *buf,
525 size_t len)
526 {
527 struct usb_request *req;
528 ssize_t value;
529
530 iocb->private = priv;
531 priv->iocb = iocb;
532
533 kiocb_set_cancel_fn(iocb, ep_aio_cancel);
534 get_ep(epdata);
535 priv->epdata = epdata;
536 priv->actual = 0;
537 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
538
539 /* each kiocb is coupled to one usb_request, but we can't
540 * allocate or submit those if the host disconnected.
541 */
542 spin_lock_irq(&epdata->dev->lock);
543 value = -ENODEV;
544 if (unlikely(epdata->ep == NULL))
545 goto fail;
546
547 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
548 value = -ENOMEM;
549 if (unlikely(!req))
550 goto fail;
551
552 priv->req = req;
553 req->buf = buf;
554 req->length = len;
555 req->complete = ep_aio_complete;
556 req->context = iocb;
557 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
558 if (unlikely(0 != value)) {
559 usb_ep_free_request(epdata->ep, req);
560 goto fail;
561 }
562 spin_unlock_irq(&epdata->dev->lock);
563 return -EIOCBQUEUED;
564
565 fail:
566 spin_unlock_irq(&epdata->dev->lock);
567 kfree(priv->to_free);
568 kfree(priv);
569 put_ep(epdata);
570 return value;
571 }
572
573 static ssize_t
ep_read_iter(struct kiocb * iocb,struct iov_iter * to)574 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
575 {
576 struct file *file = iocb->ki_filp;
577 struct ep_data *epdata = file->private_data;
578 size_t len = iov_iter_count(to);
579 ssize_t value;
580 char *buf;
581
582 if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
583 return value;
584
585 /* halt any endpoint by doing a "wrong direction" i/o call */
586 if (usb_endpoint_dir_in(&epdata->desc)) {
587 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
588 !is_sync_kiocb(iocb)) {
589 mutex_unlock(&epdata->lock);
590 return -EINVAL;
591 }
592 DBG (epdata->dev, "%s halt\n", epdata->name);
593 spin_lock_irq(&epdata->dev->lock);
594 if (likely(epdata->ep != NULL))
595 usb_ep_set_halt(epdata->ep);
596 spin_unlock_irq(&epdata->dev->lock);
597 mutex_unlock(&epdata->lock);
598 return -EBADMSG;
599 }
600
601 buf = kmalloc(len, GFP_KERNEL);
602 if (unlikely(!buf)) {
603 mutex_unlock(&epdata->lock);
604 return -ENOMEM;
605 }
606 if (is_sync_kiocb(iocb)) {
607 value = ep_io(epdata, buf, len);
608 if (value >= 0 && (copy_to_iter(buf, value, to) != value))
609 value = -EFAULT;
610 } else {
611 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
612 value = -ENOMEM;
613 if (!priv)
614 goto fail;
615 priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
616 if (!priv->to_free) {
617 kfree(priv);
618 goto fail;
619 }
620 value = ep_aio(iocb, priv, epdata, buf, len);
621 if (value == -EIOCBQUEUED)
622 buf = NULL;
623 }
624 fail:
625 kfree(buf);
626 mutex_unlock(&epdata->lock);
627 return value;
628 }
629
630 static ssize_t ep_config(struct ep_data *, const char *, size_t);
631
632 static ssize_t
ep_write_iter(struct kiocb * iocb,struct iov_iter * from)633 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
634 {
635 struct file *file = iocb->ki_filp;
636 struct ep_data *epdata = file->private_data;
637 size_t len = iov_iter_count(from);
638 bool configured;
639 ssize_t value;
640 char *buf;
641
642 if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
643 return value;
644
645 configured = epdata->state == STATE_EP_ENABLED;
646
647 /* halt any endpoint by doing a "wrong direction" i/o call */
648 if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
649 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
650 !is_sync_kiocb(iocb)) {
651 mutex_unlock(&epdata->lock);
652 return -EINVAL;
653 }
654 DBG (epdata->dev, "%s halt\n", epdata->name);
655 spin_lock_irq(&epdata->dev->lock);
656 if (likely(epdata->ep != NULL))
657 usb_ep_set_halt(epdata->ep);
658 spin_unlock_irq(&epdata->dev->lock);
659 mutex_unlock(&epdata->lock);
660 return -EBADMSG;
661 }
662
663 buf = kmalloc(len, GFP_KERNEL);
664 if (unlikely(!buf)) {
665 mutex_unlock(&epdata->lock);
666 return -ENOMEM;
667 }
668
669 if (unlikely(!copy_from_iter_full(buf, len, from))) {
670 value = -EFAULT;
671 goto out;
672 }
673
674 if (unlikely(!configured)) {
675 value = ep_config(epdata, buf, len);
676 } else if (is_sync_kiocb(iocb)) {
677 value = ep_io(epdata, buf, len);
678 } else {
679 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
680 value = -ENOMEM;
681 if (priv) {
682 value = ep_aio(iocb, priv, epdata, buf, len);
683 if (value == -EIOCBQUEUED)
684 buf = NULL;
685 }
686 }
687 out:
688 kfree(buf);
689 mutex_unlock(&epdata->lock);
690 return value;
691 }
692
693 /*----------------------------------------------------------------------*/
694
695 /* used after endpoint configuration */
696 static const struct file_operations ep_io_operations = {
697 .owner = THIS_MODULE,
698
699 .open = ep_open,
700 .release = ep_release,
701 .llseek = no_llseek,
702 .unlocked_ioctl = ep_ioctl,
703 .read_iter = ep_read_iter,
704 .write_iter = ep_write_iter,
705 };
706
707 /* ENDPOINT INITIALIZATION
708 *
709 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
710 * status = write (fd, descriptors, sizeof descriptors)
711 *
712 * That write establishes the endpoint configuration, configuring
713 * the controller to process bulk, interrupt, or isochronous transfers
714 * at the right maxpacket size, and so on.
715 *
716 * The descriptors are message type 1, identified by a host order u32
717 * at the beginning of what's written. Descriptor order is: full/low
718 * speed descriptor, then optional high speed descriptor.
719 */
720 static ssize_t
ep_config(struct ep_data * data,const char * buf,size_t len)721 ep_config (struct ep_data *data, const char *buf, size_t len)
722 {
723 struct usb_ep *ep;
724 u32 tag;
725 int value, length = len;
726
727 if (data->state != STATE_EP_READY) {
728 value = -EL2HLT;
729 goto fail;
730 }
731
732 value = len;
733 if (len < USB_DT_ENDPOINT_SIZE + 4)
734 goto fail0;
735
736 /* we might need to change message format someday */
737 memcpy(&tag, buf, 4);
738 if (tag != 1) {
739 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
740 goto fail0;
741 }
742 buf += 4;
743 len -= 4;
744
745 /* NOTE: audio endpoint extensions not accepted here;
746 * just don't include the extra bytes.
747 */
748
749 /* full/low speed descriptor, then high speed */
750 memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
751 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
752 || data->desc.bDescriptorType != USB_DT_ENDPOINT)
753 goto fail0;
754 if (len != USB_DT_ENDPOINT_SIZE) {
755 if (len != 2 * USB_DT_ENDPOINT_SIZE)
756 goto fail0;
757 memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
758 USB_DT_ENDPOINT_SIZE);
759 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
760 || data->hs_desc.bDescriptorType
761 != USB_DT_ENDPOINT) {
762 DBG(data->dev, "config %s, bad hs length or type\n",
763 data->name);
764 goto fail0;
765 }
766 }
767
768 spin_lock_irq (&data->dev->lock);
769 if (data->dev->state == STATE_DEV_UNBOUND) {
770 value = -ENOENT;
771 goto gone;
772 } else {
773 ep = data->ep;
774 if (ep == NULL) {
775 value = -ENODEV;
776 goto gone;
777 }
778 }
779 switch (data->dev->gadget->speed) {
780 case USB_SPEED_LOW:
781 case USB_SPEED_FULL:
782 ep->desc = &data->desc;
783 break;
784 case USB_SPEED_HIGH:
785 /* fails if caller didn't provide that descriptor... */
786 ep->desc = &data->hs_desc;
787 break;
788 default:
789 DBG(data->dev, "unconnected, %s init abandoned\n",
790 data->name);
791 value = -EINVAL;
792 goto gone;
793 }
794 value = usb_ep_enable(ep);
795 if (value == 0) {
796 data->state = STATE_EP_ENABLED;
797 value = length;
798 }
799 gone:
800 spin_unlock_irq (&data->dev->lock);
801 if (value < 0) {
802 fail:
803 data->desc.bDescriptorType = 0;
804 data->hs_desc.bDescriptorType = 0;
805 }
806 return value;
807 fail0:
808 value = -EINVAL;
809 goto fail;
810 }
811
812 static int
ep_open(struct inode * inode,struct file * fd)813 ep_open (struct inode *inode, struct file *fd)
814 {
815 struct ep_data *data = inode->i_private;
816 int value = -EBUSY;
817
818 if (mutex_lock_interruptible(&data->lock) != 0)
819 return -EINTR;
820 spin_lock_irq (&data->dev->lock);
821 if (data->dev->state == STATE_DEV_UNBOUND)
822 value = -ENOENT;
823 else if (data->state == STATE_EP_DISABLED) {
824 value = 0;
825 data->state = STATE_EP_READY;
826 get_ep (data);
827 fd->private_data = data;
828 VDEBUG (data->dev, "%s ready\n", data->name);
829 } else
830 DBG (data->dev, "%s state %d\n",
831 data->name, data->state);
832 spin_unlock_irq (&data->dev->lock);
833 mutex_unlock(&data->lock);
834 return value;
835 }
836
837 /*----------------------------------------------------------------------*/
838
839 /* EP0 IMPLEMENTATION can be partly in userspace.
840 *
841 * Drivers that use this facility receive various events, including
842 * control requests the kernel doesn't handle. Drivers that don't
843 * use this facility may be too simple-minded for real applications.
844 */
845
ep0_readable(struct dev_data * dev)846 static inline void ep0_readable (struct dev_data *dev)
847 {
848 wake_up (&dev->wait);
849 kill_fasync (&dev->fasync, SIGIO, POLL_IN);
850 }
851
clean_req(struct usb_ep * ep,struct usb_request * req)852 static void clean_req (struct usb_ep *ep, struct usb_request *req)
853 {
854 struct dev_data *dev = ep->driver_data;
855
856 if (req->buf != dev->rbuf) {
857 kfree(req->buf);
858 req->buf = dev->rbuf;
859 }
860 req->complete = epio_complete;
861 dev->setup_out_ready = 0;
862 }
863
ep0_complete(struct usb_ep * ep,struct usb_request * req)864 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
865 {
866 struct dev_data *dev = ep->driver_data;
867 unsigned long flags;
868 int free = 1;
869
870 /* for control OUT, data must still get to userspace */
871 spin_lock_irqsave(&dev->lock, flags);
872 if (!dev->setup_in) {
873 dev->setup_out_error = (req->status != 0);
874 if (!dev->setup_out_error)
875 free = 0;
876 dev->setup_out_ready = 1;
877 ep0_readable (dev);
878 }
879
880 /* clean up as appropriate */
881 if (free && req->buf != &dev->rbuf)
882 clean_req (ep, req);
883 req->complete = epio_complete;
884 spin_unlock_irqrestore(&dev->lock, flags);
885 }
886
setup_req(struct usb_ep * ep,struct usb_request * req,u16 len)887 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
888 {
889 struct dev_data *dev = ep->driver_data;
890
891 if (dev->setup_out_ready) {
892 DBG (dev, "ep0 request busy!\n");
893 return -EBUSY;
894 }
895 if (len > sizeof (dev->rbuf))
896 req->buf = kmalloc(len, GFP_ATOMIC);
897 if (req->buf == NULL) {
898 req->buf = dev->rbuf;
899 return -ENOMEM;
900 }
901 req->complete = ep0_complete;
902 req->length = len;
903 req->zero = 0;
904 return 0;
905 }
906
907 static ssize_t
ep0_read(struct file * fd,char __user * buf,size_t len,loff_t * ptr)908 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
909 {
910 struct dev_data *dev = fd->private_data;
911 ssize_t retval;
912 enum ep0_state state;
913
914 spin_lock_irq (&dev->lock);
915 if (dev->state <= STATE_DEV_OPENED) {
916 retval = -EINVAL;
917 goto done;
918 }
919
920 /* report fd mode change before acting on it */
921 if (dev->setup_abort) {
922 dev->setup_abort = 0;
923 retval = -EIDRM;
924 goto done;
925 }
926
927 /* control DATA stage */
928 if ((state = dev->state) == STATE_DEV_SETUP) {
929
930 if (dev->setup_in) { /* stall IN */
931 VDEBUG(dev, "ep0in stall\n");
932 (void) usb_ep_set_halt (dev->gadget->ep0);
933 retval = -EL2HLT;
934 dev->state = STATE_DEV_CONNECTED;
935
936 } else if (len == 0) { /* ack SET_CONFIGURATION etc */
937 struct usb_ep *ep = dev->gadget->ep0;
938 struct usb_request *req = dev->req;
939
940 if ((retval = setup_req (ep, req, 0)) == 0) {
941 ++dev->udc_usage;
942 spin_unlock_irq (&dev->lock);
943 retval = usb_ep_queue (ep, req, GFP_KERNEL);
944 spin_lock_irq (&dev->lock);
945 --dev->udc_usage;
946 }
947 dev->state = STATE_DEV_CONNECTED;
948
949 /* assume that was SET_CONFIGURATION */
950 if (dev->current_config) {
951 unsigned power;
952
953 if (gadget_is_dualspeed(dev->gadget)
954 && (dev->gadget->speed
955 == USB_SPEED_HIGH))
956 power = dev->hs_config->bMaxPower;
957 else
958 power = dev->config->bMaxPower;
959 usb_gadget_vbus_draw(dev->gadget, 2 * power);
960 }
961
962 } else { /* collect OUT data */
963 if ((fd->f_flags & O_NONBLOCK) != 0
964 && !dev->setup_out_ready) {
965 retval = -EAGAIN;
966 goto done;
967 }
968 spin_unlock_irq (&dev->lock);
969 retval = wait_event_interruptible (dev->wait,
970 dev->setup_out_ready != 0);
971
972 /* FIXME state could change from under us */
973 spin_lock_irq (&dev->lock);
974 if (retval)
975 goto done;
976
977 if (dev->state != STATE_DEV_SETUP) {
978 retval = -ECANCELED;
979 goto done;
980 }
981 dev->state = STATE_DEV_CONNECTED;
982
983 if (dev->setup_out_error)
984 retval = -EIO;
985 else {
986 len = min (len, (size_t)dev->req->actual);
987 ++dev->udc_usage;
988 spin_unlock_irq(&dev->lock);
989 if (copy_to_user (buf, dev->req->buf, len))
990 retval = -EFAULT;
991 else
992 retval = len;
993 spin_lock_irq(&dev->lock);
994 --dev->udc_usage;
995 clean_req (dev->gadget->ep0, dev->req);
996 /* NOTE userspace can't yet choose to stall */
997 }
998 }
999 goto done;
1000 }
1001
1002 /* else normal: return event data */
1003 if (len < sizeof dev->event [0]) {
1004 retval = -EINVAL;
1005 goto done;
1006 }
1007 len -= len % sizeof (struct usb_gadgetfs_event);
1008 dev->usermode_setup = 1;
1009
1010 scan:
1011 /* return queued events right away */
1012 if (dev->ev_next != 0) {
1013 unsigned i, n;
1014
1015 n = len / sizeof (struct usb_gadgetfs_event);
1016 if (dev->ev_next < n)
1017 n = dev->ev_next;
1018
1019 /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1020 for (i = 0; i < n; i++) {
1021 if (dev->event [i].type == GADGETFS_SETUP) {
1022 dev->state = STATE_DEV_SETUP;
1023 n = i + 1;
1024 break;
1025 }
1026 }
1027 spin_unlock_irq (&dev->lock);
1028 len = n * sizeof (struct usb_gadgetfs_event);
1029 if (copy_to_user (buf, &dev->event, len))
1030 retval = -EFAULT;
1031 else
1032 retval = len;
1033 if (len > 0) {
1034 /* NOTE this doesn't guard against broken drivers;
1035 * concurrent ep0 readers may lose events.
1036 */
1037 spin_lock_irq (&dev->lock);
1038 if (dev->ev_next > n) {
1039 memmove(&dev->event[0], &dev->event[n],
1040 sizeof (struct usb_gadgetfs_event)
1041 * (dev->ev_next - n));
1042 }
1043 dev->ev_next -= n;
1044 spin_unlock_irq (&dev->lock);
1045 }
1046 return retval;
1047 }
1048 if (fd->f_flags & O_NONBLOCK) {
1049 retval = -EAGAIN;
1050 goto done;
1051 }
1052
1053 switch (state) {
1054 default:
1055 DBG (dev, "fail %s, state %d\n", __func__, state);
1056 retval = -ESRCH;
1057 break;
1058 case STATE_DEV_UNCONNECTED:
1059 case STATE_DEV_CONNECTED:
1060 spin_unlock_irq (&dev->lock);
1061 DBG (dev, "%s wait\n", __func__);
1062
1063 /* wait for events */
1064 retval = wait_event_interruptible (dev->wait,
1065 dev->ev_next != 0);
1066 if (retval < 0)
1067 return retval;
1068 spin_lock_irq (&dev->lock);
1069 goto scan;
1070 }
1071
1072 done:
1073 spin_unlock_irq (&dev->lock);
1074 return retval;
1075 }
1076
1077 static struct usb_gadgetfs_event *
next_event(struct dev_data * dev,enum usb_gadgetfs_event_type type)1078 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1079 {
1080 struct usb_gadgetfs_event *event;
1081 unsigned i;
1082
1083 switch (type) {
1084 /* these events purge the queue */
1085 case GADGETFS_DISCONNECT:
1086 if (dev->state == STATE_DEV_SETUP)
1087 dev->setup_abort = 1;
1088 fallthrough;
1089 case GADGETFS_CONNECT:
1090 dev->ev_next = 0;
1091 break;
1092 case GADGETFS_SETUP: /* previous request timed out */
1093 case GADGETFS_SUSPEND: /* same effect */
1094 /* these events can't be repeated */
1095 for (i = 0; i != dev->ev_next; i++) {
1096 if (dev->event [i].type != type)
1097 continue;
1098 DBG(dev, "discard old event[%d] %d\n", i, type);
1099 dev->ev_next--;
1100 if (i == dev->ev_next)
1101 break;
1102 /* indices start at zero, for simplicity */
1103 memmove (&dev->event [i], &dev->event [i + 1],
1104 sizeof (struct usb_gadgetfs_event)
1105 * (dev->ev_next - i));
1106 }
1107 break;
1108 default:
1109 BUG ();
1110 }
1111 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1112 event = &dev->event [dev->ev_next++];
1113 BUG_ON (dev->ev_next > N_EVENT);
1114 memset (event, 0, sizeof *event);
1115 event->type = type;
1116 return event;
1117 }
1118
1119 static ssize_t
ep0_write(struct file * fd,const char __user * buf,size_t len,loff_t * ptr)1120 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1121 {
1122 struct dev_data *dev = fd->private_data;
1123 ssize_t retval = -ESRCH;
1124
1125 /* report fd mode change before acting on it */
1126 if (dev->setup_abort) {
1127 dev->setup_abort = 0;
1128 retval = -EIDRM;
1129
1130 /* data and/or status stage for control request */
1131 } else if (dev->state == STATE_DEV_SETUP) {
1132
1133 len = min_t(size_t, len, dev->setup_wLength);
1134 if (dev->setup_in) {
1135 retval = setup_req (dev->gadget->ep0, dev->req, len);
1136 if (retval == 0) {
1137 dev->state = STATE_DEV_CONNECTED;
1138 ++dev->udc_usage;
1139 spin_unlock_irq (&dev->lock);
1140 if (copy_from_user (dev->req->buf, buf, len))
1141 retval = -EFAULT;
1142 else {
1143 if (len < dev->setup_wLength)
1144 dev->req->zero = 1;
1145 retval = usb_ep_queue (
1146 dev->gadget->ep0, dev->req,
1147 GFP_KERNEL);
1148 }
1149 spin_lock_irq(&dev->lock);
1150 --dev->udc_usage;
1151 if (retval < 0) {
1152 clean_req (dev->gadget->ep0, dev->req);
1153 } else
1154 retval = len;
1155
1156 return retval;
1157 }
1158
1159 /* can stall some OUT transfers */
1160 } else if (dev->setup_can_stall) {
1161 VDEBUG(dev, "ep0out stall\n");
1162 (void) usb_ep_set_halt (dev->gadget->ep0);
1163 retval = -EL2HLT;
1164 dev->state = STATE_DEV_CONNECTED;
1165 } else {
1166 DBG(dev, "bogus ep0out stall!\n");
1167 }
1168 } else
1169 DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1170
1171 return retval;
1172 }
1173
1174 static int
ep0_fasync(int f,struct file * fd,int on)1175 ep0_fasync (int f, struct file *fd, int on)
1176 {
1177 struct dev_data *dev = fd->private_data;
1178 // caller must F_SETOWN before signal delivery happens
1179 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1180 return fasync_helper (f, fd, on, &dev->fasync);
1181 }
1182
1183 static struct usb_gadget_driver gadgetfs_driver;
1184
1185 static int
dev_release(struct inode * inode,struct file * fd)1186 dev_release (struct inode *inode, struct file *fd)
1187 {
1188 struct dev_data *dev = fd->private_data;
1189
1190 /* closing ep0 === shutdown all */
1191
1192 if (dev->gadget_registered) {
1193 usb_gadget_unregister_driver (&gadgetfs_driver);
1194 dev->gadget_registered = false;
1195 }
1196
1197 /* at this point "good" hardware has disconnected the
1198 * device from USB; the host won't see it any more.
1199 * alternatively, all host requests will time out.
1200 */
1201
1202 kfree (dev->buf);
1203 dev->buf = NULL;
1204
1205 /* other endpoints were all decoupled from this device */
1206 spin_lock_irq(&dev->lock);
1207 dev->state = STATE_DEV_DISABLED;
1208 spin_unlock_irq(&dev->lock);
1209
1210 put_dev (dev);
1211 return 0;
1212 }
1213
1214 static __poll_t
ep0_poll(struct file * fd,poll_table * wait)1215 ep0_poll (struct file *fd, poll_table *wait)
1216 {
1217 struct dev_data *dev = fd->private_data;
1218 __poll_t mask = 0;
1219
1220 if (dev->state <= STATE_DEV_OPENED)
1221 return DEFAULT_POLLMASK;
1222
1223 poll_wait(fd, &dev->wait, wait);
1224
1225 spin_lock_irq(&dev->lock);
1226
1227 /* report fd mode change before acting on it */
1228 if (dev->setup_abort) {
1229 dev->setup_abort = 0;
1230 mask = EPOLLHUP;
1231 goto out;
1232 }
1233
1234 if (dev->state == STATE_DEV_SETUP) {
1235 if (dev->setup_in || dev->setup_can_stall)
1236 mask = EPOLLOUT;
1237 } else {
1238 if (dev->ev_next != 0)
1239 mask = EPOLLIN;
1240 }
1241 out:
1242 spin_unlock_irq(&dev->lock);
1243 return mask;
1244 }
1245
gadget_dev_ioctl(struct file * fd,unsigned code,unsigned long value)1246 static long gadget_dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1247 {
1248 struct dev_data *dev = fd->private_data;
1249 struct usb_gadget *gadget = dev->gadget;
1250 long ret = -ENOTTY;
1251
1252 spin_lock_irq(&dev->lock);
1253 if (dev->state == STATE_DEV_OPENED ||
1254 dev->state == STATE_DEV_UNBOUND) {
1255 /* Not bound to a UDC */
1256 } else if (gadget->ops->ioctl) {
1257 ++dev->udc_usage;
1258 spin_unlock_irq(&dev->lock);
1259
1260 ret = gadget->ops->ioctl (gadget, code, value);
1261
1262 spin_lock_irq(&dev->lock);
1263 --dev->udc_usage;
1264 }
1265 spin_unlock_irq(&dev->lock);
1266
1267 return ret;
1268 }
1269
1270 /*----------------------------------------------------------------------*/
1271
1272 /* The in-kernel gadget driver handles most ep0 issues, in particular
1273 * enumerating the single configuration (as provided from user space).
1274 *
1275 * Unrecognized ep0 requests may be handled in user space.
1276 */
1277
make_qualifier(struct dev_data * dev)1278 static void make_qualifier (struct dev_data *dev)
1279 {
1280 struct usb_qualifier_descriptor qual;
1281 struct usb_device_descriptor *desc;
1282
1283 qual.bLength = sizeof qual;
1284 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1285 qual.bcdUSB = cpu_to_le16 (0x0200);
1286
1287 desc = dev->dev;
1288 qual.bDeviceClass = desc->bDeviceClass;
1289 qual.bDeviceSubClass = desc->bDeviceSubClass;
1290 qual.bDeviceProtocol = desc->bDeviceProtocol;
1291
1292 /* assumes ep0 uses the same value for both speeds ... */
1293 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1294
1295 qual.bNumConfigurations = 1;
1296 qual.bRESERVED = 0;
1297
1298 memcpy (dev->rbuf, &qual, sizeof qual);
1299 }
1300
1301 static int
config_buf(struct dev_data * dev,u8 type,unsigned index)1302 config_buf (struct dev_data *dev, u8 type, unsigned index)
1303 {
1304 int len;
1305 int hs = 0;
1306
1307 /* only one configuration */
1308 if (index > 0)
1309 return -EINVAL;
1310
1311 if (gadget_is_dualspeed(dev->gadget)) {
1312 hs = (dev->gadget->speed == USB_SPEED_HIGH);
1313 if (type == USB_DT_OTHER_SPEED_CONFIG)
1314 hs = !hs;
1315 }
1316 if (hs) {
1317 dev->req->buf = dev->hs_config;
1318 len = le16_to_cpu(dev->hs_config->wTotalLength);
1319 } else {
1320 dev->req->buf = dev->config;
1321 len = le16_to_cpu(dev->config->wTotalLength);
1322 }
1323 ((u8 *)dev->req->buf) [1] = type;
1324 return len;
1325 }
1326
1327 static int
gadgetfs_setup(struct usb_gadget * gadget,const struct usb_ctrlrequest * ctrl)1328 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1329 {
1330 struct dev_data *dev = get_gadget_data (gadget);
1331 struct usb_request *req = dev->req;
1332 int value = -EOPNOTSUPP;
1333 struct usb_gadgetfs_event *event;
1334 u16 w_value = le16_to_cpu(ctrl->wValue);
1335 u16 w_length = le16_to_cpu(ctrl->wLength);
1336
1337 if (w_length > RBUF_SIZE) {
1338 if (ctrl->bRequestType & USB_DIR_IN) {
1339 /* Cast away the const, we are going to overwrite on purpose. */
1340 __le16 *temp = (__le16 *)&ctrl->wLength;
1341
1342 *temp = cpu_to_le16(RBUF_SIZE);
1343 w_length = RBUF_SIZE;
1344 } else {
1345 return value;
1346 }
1347 }
1348
1349 spin_lock (&dev->lock);
1350 dev->setup_abort = 0;
1351 if (dev->state == STATE_DEV_UNCONNECTED) {
1352 if (gadget_is_dualspeed(gadget)
1353 && gadget->speed == USB_SPEED_HIGH
1354 && dev->hs_config == NULL) {
1355 spin_unlock(&dev->lock);
1356 ERROR (dev, "no high speed config??\n");
1357 return -EINVAL;
1358 }
1359
1360 dev->state = STATE_DEV_CONNECTED;
1361
1362 INFO (dev, "connected\n");
1363 event = next_event (dev, GADGETFS_CONNECT);
1364 event->u.speed = gadget->speed;
1365 ep0_readable (dev);
1366
1367 /* host may have given up waiting for response. we can miss control
1368 * requests handled lower down (device/endpoint status and features);
1369 * then ep0_{read,write} will report the wrong status. controller
1370 * driver will have aborted pending i/o.
1371 */
1372 } else if (dev->state == STATE_DEV_SETUP)
1373 dev->setup_abort = 1;
1374
1375 req->buf = dev->rbuf;
1376 req->context = NULL;
1377 switch (ctrl->bRequest) {
1378
1379 case USB_REQ_GET_DESCRIPTOR:
1380 if (ctrl->bRequestType != USB_DIR_IN)
1381 goto unrecognized;
1382 switch (w_value >> 8) {
1383
1384 case USB_DT_DEVICE:
1385 value = min (w_length, (u16) sizeof *dev->dev);
1386 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1387 req->buf = dev->dev;
1388 break;
1389 case USB_DT_DEVICE_QUALIFIER:
1390 if (!dev->hs_config)
1391 break;
1392 value = min (w_length, (u16)
1393 sizeof (struct usb_qualifier_descriptor));
1394 make_qualifier (dev);
1395 break;
1396 case USB_DT_OTHER_SPEED_CONFIG:
1397 case USB_DT_CONFIG:
1398 value = config_buf (dev,
1399 w_value >> 8,
1400 w_value & 0xff);
1401 if (value >= 0)
1402 value = min (w_length, (u16) value);
1403 break;
1404 case USB_DT_STRING:
1405 goto unrecognized;
1406
1407 default: // all others are errors
1408 break;
1409 }
1410 break;
1411
1412 /* currently one config, two speeds */
1413 case USB_REQ_SET_CONFIGURATION:
1414 if (ctrl->bRequestType != 0)
1415 goto unrecognized;
1416 if (0 == (u8) w_value) {
1417 value = 0;
1418 dev->current_config = 0;
1419 usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1420 // user mode expected to disable endpoints
1421 } else {
1422 u8 config, power;
1423
1424 if (gadget_is_dualspeed(gadget)
1425 && gadget->speed == USB_SPEED_HIGH) {
1426 config = dev->hs_config->bConfigurationValue;
1427 power = dev->hs_config->bMaxPower;
1428 } else {
1429 config = dev->config->bConfigurationValue;
1430 power = dev->config->bMaxPower;
1431 }
1432
1433 if (config == (u8) w_value) {
1434 value = 0;
1435 dev->current_config = config;
1436 usb_gadget_vbus_draw(gadget, 2 * power);
1437 }
1438 }
1439
1440 /* report SET_CONFIGURATION like any other control request,
1441 * except that usermode may not stall this. the next
1442 * request mustn't be allowed start until this finishes:
1443 * endpoints and threads set up, etc.
1444 *
1445 * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1446 * has bad/racey automagic that prevents synchronizing here.
1447 * even kernel mode drivers often miss them.
1448 */
1449 if (value == 0) {
1450 INFO (dev, "configuration #%d\n", dev->current_config);
1451 usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1452 if (dev->usermode_setup) {
1453 dev->setup_can_stall = 0;
1454 goto delegate;
1455 }
1456 }
1457 break;
1458
1459 #ifndef CONFIG_USB_PXA25X
1460 /* PXA automagically handles this request too */
1461 case USB_REQ_GET_CONFIGURATION:
1462 if (ctrl->bRequestType != 0x80)
1463 goto unrecognized;
1464 *(u8 *)req->buf = dev->current_config;
1465 value = min (w_length, (u16) 1);
1466 break;
1467 #endif
1468
1469 default:
1470 unrecognized:
1471 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1472 dev->usermode_setup ? "delegate" : "fail",
1473 ctrl->bRequestType, ctrl->bRequest,
1474 w_value, le16_to_cpu(ctrl->wIndex), w_length);
1475
1476 /* if there's an ep0 reader, don't stall */
1477 if (dev->usermode_setup) {
1478 dev->setup_can_stall = 1;
1479 delegate:
1480 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1481 ? 1 : 0;
1482 dev->setup_wLength = w_length;
1483 dev->setup_out_ready = 0;
1484 dev->setup_out_error = 0;
1485
1486 /* read DATA stage for OUT right away */
1487 if (unlikely (!dev->setup_in && w_length)) {
1488 value = setup_req (gadget->ep0, dev->req,
1489 w_length);
1490 if (value < 0)
1491 break;
1492
1493 ++dev->udc_usage;
1494 spin_unlock (&dev->lock);
1495 value = usb_ep_queue (gadget->ep0, dev->req,
1496 GFP_KERNEL);
1497 spin_lock (&dev->lock);
1498 --dev->udc_usage;
1499 if (value < 0) {
1500 clean_req (gadget->ep0, dev->req);
1501 break;
1502 }
1503
1504 /* we can't currently stall these */
1505 dev->setup_can_stall = 0;
1506 }
1507
1508 /* state changes when reader collects event */
1509 event = next_event (dev, GADGETFS_SETUP);
1510 event->u.setup = *ctrl;
1511 ep0_readable (dev);
1512 spin_unlock (&dev->lock);
1513 return 0;
1514 }
1515 }
1516
1517 /* proceed with data transfer and status phases? */
1518 if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1519 req->length = value;
1520 req->zero = value < w_length;
1521
1522 ++dev->udc_usage;
1523 spin_unlock (&dev->lock);
1524 value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1525 spin_lock(&dev->lock);
1526 --dev->udc_usage;
1527 spin_unlock(&dev->lock);
1528 if (value < 0) {
1529 DBG (dev, "ep_queue --> %d\n", value);
1530 req->status = 0;
1531 }
1532 return value;
1533 }
1534
1535 /* device stalls when value < 0 */
1536 spin_unlock (&dev->lock);
1537 return value;
1538 }
1539
destroy_ep_files(struct dev_data * dev)1540 static void destroy_ep_files (struct dev_data *dev)
1541 {
1542 DBG (dev, "%s %d\n", __func__, dev->state);
1543
1544 /* dev->state must prevent interference */
1545 spin_lock_irq (&dev->lock);
1546 while (!list_empty(&dev->epfiles)) {
1547 struct ep_data *ep;
1548 struct inode *parent;
1549 struct dentry *dentry;
1550
1551 /* break link to FS */
1552 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1553 list_del_init (&ep->epfiles);
1554 spin_unlock_irq (&dev->lock);
1555
1556 dentry = ep->dentry;
1557 ep->dentry = NULL;
1558 parent = d_inode(dentry->d_parent);
1559
1560 /* break link to controller */
1561 mutex_lock(&ep->lock);
1562 if (ep->state == STATE_EP_ENABLED)
1563 (void) usb_ep_disable (ep->ep);
1564 ep->state = STATE_EP_UNBOUND;
1565 usb_ep_free_request (ep->ep, ep->req);
1566 ep->ep = NULL;
1567 mutex_unlock(&ep->lock);
1568
1569 wake_up (&ep->wait);
1570 put_ep (ep);
1571
1572 /* break link to dcache */
1573 inode_lock(parent);
1574 d_delete (dentry);
1575 dput (dentry);
1576 inode_unlock(parent);
1577
1578 spin_lock_irq (&dev->lock);
1579 }
1580 spin_unlock_irq (&dev->lock);
1581 }
1582
1583
1584 static struct dentry *
1585 gadgetfs_create_file (struct super_block *sb, char const *name,
1586 void *data, const struct file_operations *fops);
1587
activate_ep_files(struct dev_data * dev)1588 static int activate_ep_files (struct dev_data *dev)
1589 {
1590 struct usb_ep *ep;
1591 struct ep_data *data;
1592
1593 gadget_for_each_ep (ep, dev->gadget) {
1594
1595 data = kzalloc(sizeof(*data), GFP_KERNEL);
1596 if (!data)
1597 goto enomem0;
1598 data->state = STATE_EP_DISABLED;
1599 mutex_init(&data->lock);
1600 init_waitqueue_head (&data->wait);
1601
1602 strncpy (data->name, ep->name, sizeof (data->name) - 1);
1603 refcount_set (&data->count, 1);
1604 data->dev = dev;
1605 get_dev (dev);
1606
1607 data->ep = ep;
1608 ep->driver_data = data;
1609
1610 data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1611 if (!data->req)
1612 goto enomem1;
1613
1614 data->dentry = gadgetfs_create_file (dev->sb, data->name,
1615 data, &ep_io_operations);
1616 if (!data->dentry)
1617 goto enomem2;
1618 list_add_tail (&data->epfiles, &dev->epfiles);
1619 }
1620 return 0;
1621
1622 enomem2:
1623 usb_ep_free_request (ep, data->req);
1624 enomem1:
1625 put_dev (dev);
1626 kfree (data);
1627 enomem0:
1628 DBG (dev, "%s enomem\n", __func__);
1629 destroy_ep_files (dev);
1630 return -ENOMEM;
1631 }
1632
1633 static void
gadgetfs_unbind(struct usb_gadget * gadget)1634 gadgetfs_unbind (struct usb_gadget *gadget)
1635 {
1636 struct dev_data *dev = get_gadget_data (gadget);
1637
1638 DBG (dev, "%s\n", __func__);
1639
1640 spin_lock_irq (&dev->lock);
1641 dev->state = STATE_DEV_UNBOUND;
1642 while (dev->udc_usage > 0) {
1643 spin_unlock_irq(&dev->lock);
1644 usleep_range(1000, 2000);
1645 spin_lock_irq(&dev->lock);
1646 }
1647 spin_unlock_irq (&dev->lock);
1648
1649 destroy_ep_files (dev);
1650 gadget->ep0->driver_data = NULL;
1651 set_gadget_data (gadget, NULL);
1652
1653 /* we've already been disconnected ... no i/o is active */
1654 if (dev->req)
1655 usb_ep_free_request (gadget->ep0, dev->req);
1656 DBG (dev, "%s done\n", __func__);
1657 put_dev (dev);
1658 }
1659
1660 static struct dev_data *the_device;
1661
gadgetfs_bind(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1662 static int gadgetfs_bind(struct usb_gadget *gadget,
1663 struct usb_gadget_driver *driver)
1664 {
1665 struct dev_data *dev = the_device;
1666
1667 if (!dev)
1668 return -ESRCH;
1669 if (0 != strcmp (CHIP, gadget->name)) {
1670 pr_err("%s expected %s controller not %s\n",
1671 shortname, CHIP, gadget->name);
1672 return -ENODEV;
1673 }
1674
1675 set_gadget_data (gadget, dev);
1676 dev->gadget = gadget;
1677 gadget->ep0->driver_data = dev;
1678
1679 /* preallocate control response and buffer */
1680 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1681 if (!dev->req)
1682 goto enomem;
1683 dev->req->context = NULL;
1684 dev->req->complete = epio_complete;
1685
1686 if (activate_ep_files (dev) < 0)
1687 goto enomem;
1688
1689 INFO (dev, "bound to %s driver\n", gadget->name);
1690 spin_lock_irq(&dev->lock);
1691 dev->state = STATE_DEV_UNCONNECTED;
1692 spin_unlock_irq(&dev->lock);
1693 get_dev (dev);
1694 return 0;
1695
1696 enomem:
1697 gadgetfs_unbind (gadget);
1698 return -ENOMEM;
1699 }
1700
1701 static void
gadgetfs_disconnect(struct usb_gadget * gadget)1702 gadgetfs_disconnect (struct usb_gadget *gadget)
1703 {
1704 struct dev_data *dev = get_gadget_data (gadget);
1705 unsigned long flags;
1706
1707 spin_lock_irqsave (&dev->lock, flags);
1708 if (dev->state == STATE_DEV_UNCONNECTED)
1709 goto exit;
1710 dev->state = STATE_DEV_UNCONNECTED;
1711
1712 INFO (dev, "disconnected\n");
1713 next_event (dev, GADGETFS_DISCONNECT);
1714 ep0_readable (dev);
1715 exit:
1716 spin_unlock_irqrestore (&dev->lock, flags);
1717 }
1718
1719 static void
gadgetfs_suspend(struct usb_gadget * gadget)1720 gadgetfs_suspend (struct usb_gadget *gadget)
1721 {
1722 struct dev_data *dev = get_gadget_data (gadget);
1723 unsigned long flags;
1724
1725 INFO (dev, "suspended from state %d\n", dev->state);
1726 spin_lock_irqsave(&dev->lock, flags);
1727 switch (dev->state) {
1728 case STATE_DEV_SETUP: // VERY odd... host died??
1729 case STATE_DEV_CONNECTED:
1730 case STATE_DEV_UNCONNECTED:
1731 next_event (dev, GADGETFS_SUSPEND);
1732 ep0_readable (dev);
1733 fallthrough;
1734 default:
1735 break;
1736 }
1737 spin_unlock_irqrestore(&dev->lock, flags);
1738 }
1739
1740 static struct usb_gadget_driver gadgetfs_driver = {
1741 .function = (char *) driver_desc,
1742 .bind = gadgetfs_bind,
1743 .unbind = gadgetfs_unbind,
1744 .setup = gadgetfs_setup,
1745 .reset = gadgetfs_disconnect,
1746 .disconnect = gadgetfs_disconnect,
1747 .suspend = gadgetfs_suspend,
1748
1749 .driver = {
1750 .name = shortname,
1751 },
1752 };
1753
1754 /*----------------------------------------------------------------------*/
1755 /* DEVICE INITIALIZATION
1756 *
1757 * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1758 * status = write (fd, descriptors, sizeof descriptors)
1759 *
1760 * That write establishes the device configuration, so the kernel can
1761 * bind to the controller ... guaranteeing it can handle enumeration
1762 * at all necessary speeds. Descriptor order is:
1763 *
1764 * . message tag (u32, host order) ... for now, must be zero; it
1765 * would change to support features like multi-config devices
1766 * . full/low speed config ... all wTotalLength bytes (with interface,
1767 * class, altsetting, endpoint, and other descriptors)
1768 * . high speed config ... all descriptors, for high speed operation;
1769 * this one's optional except for high-speed hardware
1770 * . device descriptor
1771 *
1772 * Endpoints are not yet enabled. Drivers must wait until device
1773 * configuration and interface altsetting changes create
1774 * the need to configure (or unconfigure) them.
1775 *
1776 * After initialization, the device stays active for as long as that
1777 * $CHIP file is open. Events must then be read from that descriptor,
1778 * such as configuration notifications.
1779 */
1780
is_valid_config(struct usb_config_descriptor * config,unsigned int total)1781 static int is_valid_config(struct usb_config_descriptor *config,
1782 unsigned int total)
1783 {
1784 return config->bDescriptorType == USB_DT_CONFIG
1785 && config->bLength == USB_DT_CONFIG_SIZE
1786 && total >= USB_DT_CONFIG_SIZE
1787 && config->bConfigurationValue != 0
1788 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1789 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1790 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1791 /* FIXME check lengths: walk to end */
1792 }
1793
1794 static ssize_t
dev_config(struct file * fd,const char __user * buf,size_t len,loff_t * ptr)1795 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1796 {
1797 struct dev_data *dev = fd->private_data;
1798 ssize_t value, length = len;
1799 unsigned total;
1800 u32 tag;
1801 char *kbuf;
1802
1803 spin_lock_irq(&dev->lock);
1804 if (dev->state > STATE_DEV_OPENED) {
1805 value = ep0_write(fd, buf, len, ptr);
1806 spin_unlock_irq(&dev->lock);
1807 return value;
1808 }
1809 spin_unlock_irq(&dev->lock);
1810
1811 if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1812 (len > PAGE_SIZE * 4))
1813 return -EINVAL;
1814
1815 /* we might need to change message format someday */
1816 if (copy_from_user (&tag, buf, 4))
1817 return -EFAULT;
1818 if (tag != 0)
1819 return -EINVAL;
1820 buf += 4;
1821 length -= 4;
1822
1823 kbuf = memdup_user(buf, length);
1824 if (IS_ERR(kbuf))
1825 return PTR_ERR(kbuf);
1826
1827 spin_lock_irq (&dev->lock);
1828 value = -EINVAL;
1829 if (dev->buf) {
1830 spin_unlock_irq(&dev->lock);
1831 kfree(kbuf);
1832 return value;
1833 }
1834 dev->buf = kbuf;
1835
1836 /* full or low speed config */
1837 dev->config = (void *) kbuf;
1838 total = le16_to_cpu(dev->config->wTotalLength);
1839 if (!is_valid_config(dev->config, total) ||
1840 total > length - USB_DT_DEVICE_SIZE)
1841 goto fail;
1842 kbuf += total;
1843 length -= total;
1844
1845 /* optional high speed config */
1846 if (kbuf [1] == USB_DT_CONFIG) {
1847 dev->hs_config = (void *) kbuf;
1848 total = le16_to_cpu(dev->hs_config->wTotalLength);
1849 if (!is_valid_config(dev->hs_config, total) ||
1850 total > length - USB_DT_DEVICE_SIZE)
1851 goto fail;
1852 kbuf += total;
1853 length -= total;
1854 } else {
1855 dev->hs_config = NULL;
1856 }
1857
1858 /* could support multiple configs, using another encoding! */
1859
1860 /* device descriptor (tweaked for paranoia) */
1861 if (length != USB_DT_DEVICE_SIZE)
1862 goto fail;
1863 dev->dev = (void *)kbuf;
1864 if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1865 || dev->dev->bDescriptorType != USB_DT_DEVICE
1866 || dev->dev->bNumConfigurations != 1)
1867 goto fail;
1868 dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1869
1870 /* triggers gadgetfs_bind(); then we can enumerate. */
1871 spin_unlock_irq (&dev->lock);
1872 if (dev->hs_config)
1873 gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1874 else
1875 gadgetfs_driver.max_speed = USB_SPEED_FULL;
1876
1877 value = usb_gadget_register_driver(&gadgetfs_driver);
1878 if (value != 0) {
1879 spin_lock_irq(&dev->lock);
1880 goto fail;
1881 } else {
1882 /* at this point "good" hardware has for the first time
1883 * let the USB the host see us. alternatively, if users
1884 * unplug/replug that will clear all the error state.
1885 *
1886 * note: everything running before here was guaranteed
1887 * to choke driver model style diagnostics. from here
1888 * on, they can work ... except in cleanup paths that
1889 * kick in after the ep0 descriptor is closed.
1890 */
1891 value = len;
1892 dev->gadget_registered = true;
1893 }
1894 return value;
1895
1896 fail:
1897 dev->config = NULL;
1898 dev->hs_config = NULL;
1899 dev->dev = NULL;
1900 spin_unlock_irq (&dev->lock);
1901 pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1902 kfree (dev->buf);
1903 dev->buf = NULL;
1904 return value;
1905 }
1906
1907 static int
gadget_dev_open(struct inode * inode,struct file * fd)1908 gadget_dev_open (struct inode *inode, struct file *fd)
1909 {
1910 struct dev_data *dev = inode->i_private;
1911 int value = -EBUSY;
1912
1913 spin_lock_irq(&dev->lock);
1914 if (dev->state == STATE_DEV_DISABLED) {
1915 dev->ev_next = 0;
1916 dev->state = STATE_DEV_OPENED;
1917 fd->private_data = dev;
1918 get_dev (dev);
1919 value = 0;
1920 }
1921 spin_unlock_irq(&dev->lock);
1922 return value;
1923 }
1924
1925 static const struct file_operations ep0_operations = {
1926 .llseek = no_llseek,
1927
1928 .open = gadget_dev_open,
1929 .read = ep0_read,
1930 .write = dev_config,
1931 .fasync = ep0_fasync,
1932 .poll = ep0_poll,
1933 .unlocked_ioctl = gadget_dev_ioctl,
1934 .release = dev_release,
1935 };
1936
1937 /*----------------------------------------------------------------------*/
1938
1939 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1940 *
1941 * Mounting the filesystem creates a controller file, used first for
1942 * device configuration then later for event monitoring.
1943 */
1944
1945
1946 /* FIXME PAM etc could set this security policy without mount options
1947 * if epfiles inherited ownership and permissons from ep0 ...
1948 */
1949
1950 static unsigned default_uid;
1951 static unsigned default_gid;
1952 static unsigned default_perm = S_IRUSR | S_IWUSR;
1953
1954 module_param (default_uid, uint, 0644);
1955 module_param (default_gid, uint, 0644);
1956 module_param (default_perm, uint, 0644);
1957
1958
1959 static struct inode *
gadgetfs_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,int mode)1960 gadgetfs_make_inode (struct super_block *sb,
1961 void *data, const struct file_operations *fops,
1962 int mode)
1963 {
1964 struct inode *inode = new_inode (sb);
1965
1966 if (inode) {
1967 inode->i_ino = get_next_ino();
1968 inode->i_mode = mode;
1969 inode->i_uid = make_kuid(&init_user_ns, default_uid);
1970 inode->i_gid = make_kgid(&init_user_ns, default_gid);
1971 inode->i_atime = inode->i_mtime = inode->i_ctime
1972 = current_time(inode);
1973 inode->i_private = data;
1974 inode->i_fop = fops;
1975 }
1976 return inode;
1977 }
1978
1979 /* creates in fs root directory, so non-renamable and non-linkable.
1980 * so inode and dentry are paired, until device reconfig.
1981 */
1982 static struct dentry *
gadgetfs_create_file(struct super_block * sb,char const * name,void * data,const struct file_operations * fops)1983 gadgetfs_create_file (struct super_block *sb, char const *name,
1984 void *data, const struct file_operations *fops)
1985 {
1986 struct dentry *dentry;
1987 struct inode *inode;
1988
1989 dentry = d_alloc_name(sb->s_root, name);
1990 if (!dentry)
1991 return NULL;
1992
1993 inode = gadgetfs_make_inode (sb, data, fops,
1994 S_IFREG | (default_perm & S_IRWXUGO));
1995 if (!inode) {
1996 dput(dentry);
1997 return NULL;
1998 }
1999 d_add (dentry, inode);
2000 return dentry;
2001 }
2002
2003 static const struct super_operations gadget_fs_operations = {
2004 .statfs = simple_statfs,
2005 .drop_inode = generic_delete_inode,
2006 };
2007
2008 static int
gadgetfs_fill_super(struct super_block * sb,struct fs_context * fc)2009 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc)
2010 {
2011 struct inode *inode;
2012 struct dev_data *dev;
2013
2014 if (the_device)
2015 return -ESRCH;
2016
2017 CHIP = usb_get_gadget_udc_name();
2018 if (!CHIP)
2019 return -ENODEV;
2020
2021 /* superblock */
2022 sb->s_blocksize = PAGE_SIZE;
2023 sb->s_blocksize_bits = PAGE_SHIFT;
2024 sb->s_magic = GADGETFS_MAGIC;
2025 sb->s_op = &gadget_fs_operations;
2026 sb->s_time_gran = 1;
2027
2028 /* root inode */
2029 inode = gadgetfs_make_inode (sb,
2030 NULL, &simple_dir_operations,
2031 S_IFDIR | S_IRUGO | S_IXUGO);
2032 if (!inode)
2033 goto Enomem;
2034 inode->i_op = &simple_dir_inode_operations;
2035 if (!(sb->s_root = d_make_root (inode)))
2036 goto Enomem;
2037
2038 /* the ep0 file is named after the controller we expect;
2039 * user mode code can use it for sanity checks, like we do.
2040 */
2041 dev = dev_new ();
2042 if (!dev)
2043 goto Enomem;
2044
2045 dev->sb = sb;
2046 dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2047 if (!dev->dentry) {
2048 put_dev(dev);
2049 goto Enomem;
2050 }
2051
2052 /* other endpoint files are available after hardware setup,
2053 * from binding to a controller.
2054 */
2055 the_device = dev;
2056 return 0;
2057
2058 Enomem:
2059 kfree(CHIP);
2060 CHIP = NULL;
2061
2062 return -ENOMEM;
2063 }
2064
2065 /* "mount -t gadgetfs path /dev/gadget" ends up here */
gadgetfs_get_tree(struct fs_context * fc)2066 static int gadgetfs_get_tree(struct fs_context *fc)
2067 {
2068 return get_tree_single(fc, gadgetfs_fill_super);
2069 }
2070
2071 static const struct fs_context_operations gadgetfs_context_ops = {
2072 .get_tree = gadgetfs_get_tree,
2073 };
2074
gadgetfs_init_fs_context(struct fs_context * fc)2075 static int gadgetfs_init_fs_context(struct fs_context *fc)
2076 {
2077 fc->ops = &gadgetfs_context_ops;
2078 return 0;
2079 }
2080
2081 static void
gadgetfs_kill_sb(struct super_block * sb)2082 gadgetfs_kill_sb (struct super_block *sb)
2083 {
2084 kill_litter_super (sb);
2085 if (the_device) {
2086 put_dev (the_device);
2087 the_device = NULL;
2088 }
2089 kfree(CHIP);
2090 CHIP = NULL;
2091 }
2092
2093 /*----------------------------------------------------------------------*/
2094
2095 static struct file_system_type gadgetfs_type = {
2096 .owner = THIS_MODULE,
2097 .name = shortname,
2098 .init_fs_context = gadgetfs_init_fs_context,
2099 .kill_sb = gadgetfs_kill_sb,
2100 };
2101 MODULE_ALIAS_FS("gadgetfs");
2102
2103 /*----------------------------------------------------------------------*/
2104
gadgetfs_init(void)2105 static int __init gadgetfs_init (void)
2106 {
2107 int status;
2108
2109 status = register_filesystem (&gadgetfs_type);
2110 if (status == 0)
2111 pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2112 shortname, driver_desc);
2113 return status;
2114 }
2115 module_init (gadgetfs_init);
2116
gadgetfs_cleanup(void)2117 static void __exit gadgetfs_cleanup (void)
2118 {
2119 pr_debug ("unregister %s\n", shortname);
2120 unregister_filesystem (&gadgetfs_type);
2121 }
2122 module_exit (gadgetfs_cleanup);
2123
2124