1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
23
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26
27 enum {
28 PG_DIRECT_MAP_4K = 0,
29 PG_DIRECT_MAP_1M,
30 PG_DIRECT_MAP_2G,
31 PG_DIRECT_MAP_MAX
32 };
33
34 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35
update_page_count(int level,long count)36 static inline void update_page_count(int level, long count)
37 {
38 if (IS_ENABLED(CONFIG_PROC_FS))
39 atomic_long_add(count, &direct_pages_count[level]);
40 }
41
42 struct seq_file;
43 void arch_report_meminfo(struct seq_file *m);
44
45 /*
46 * The S390 doesn't have any external MMU info: the kernel page
47 * tables contain all the necessary information.
48 */
49 #define update_mmu_cache(vma, address, ptep) do { } while (0)
50 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
51
52 /*
53 * ZERO_PAGE is a global shared page that is always zero; used
54 * for zero-mapped memory areas etc..
55 */
56
57 extern unsigned long empty_zero_page;
58 extern unsigned long zero_page_mask;
59
60 #define ZERO_PAGE(vaddr) \
61 (virt_to_page((void *)(empty_zero_page + \
62 (((unsigned long)(vaddr)) &zero_page_mask))))
63 #define __HAVE_COLOR_ZERO_PAGE
64
65 /* TODO: s390 cannot support io_remap_pfn_range... */
66
67 #define FIRST_USER_ADDRESS 0UL
68
69 #define pte_ERROR(e) \
70 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
71 #define pmd_ERROR(e) \
72 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
73 #define pud_ERROR(e) \
74 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
75 #define p4d_ERROR(e) \
76 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
77 #define pgd_ERROR(e) \
78 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
84 * modules will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a 2GB frame
86 * is branch prediction unit friendly.
87 */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long MODULES_VADDR;
97 extern unsigned long MODULES_END;
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187
188 /*
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
192 * table lock held.
193 *
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
197 *
198 * 842100000000
199 * 000084210000
200 * 000000008421
201 * .IR.uswrdy.p
202 * empty .10.00000000
203 * swap .11..ttttt.0
204 * prot-none, clean, old .11.xx0000.1
205 * prot-none, clean, young .11.xx0001.1
206 * prot-none, dirty, old .11.xx0010.1
207 * prot-none, dirty, young .11.xx0011.1
208 * read-only, clean, old .11.xx0100.1
209 * read-only, clean, young .01.xx0101.1
210 * read-only, dirty, old .11.xx0110.1
211 * read-only, dirty, young .01.xx0111.1
212 * read-write, clean, old .11.xx1100.1
213 * read-write, clean, young .01.xx1101.1
214 * read-write, dirty, old .10.xx1110.1
215 * read-write, dirty, young .00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
218 * u unused, l large
219 *
220 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 */
224
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
227 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
228 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
230 #define _ASCE_REAL_SPACE 0x20 /* real space control */
231 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
232 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
233 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
234 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
235 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
236 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
237
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
240 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
241 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
242 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
243 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
244 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
245 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
246 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
247 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
248 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
249
250 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
258 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
260 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
261 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
262 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
263
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269
270 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
271
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_RO
429 #define __P010 PAGE_RO
430 #define __P011 PAGE_RO
431 #define __P100 PAGE_RX
432 #define __P101 PAGE_RX
433 #define __P110 PAGE_RX
434 #define __P111 PAGE_RX
435
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_RO
438 #define __S010 PAGE_RW
439 #define __S011 PAGE_RW
440 #define __S100 PAGE_RX
441 #define __S101 PAGE_RX
442 #define __S110 PAGE_RWX
443 #define __S111 PAGE_RWX
444
445 /*
446 * Segment entry (large page) protection definitions.
447 */
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480 /*
481 * Region3 entry (large page) protection definitions.
482 */
483
484 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
mm_p4d_folded(struct mm_struct * mm)498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
mm_pud_folded(struct mm_struct * mm)504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509
mm_pmd_folded(struct mm_struct * mm)510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
mm_has_pgste(struct mm_struct * mm)516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521 #endif
522 return 0;
523 }
524
mm_is_protected(struct mm_struct * mm)525 static inline int mm_is_protected(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 if (unlikely(atomic_read(&mm->context.is_protected)))
529 return 1;
530 #endif
531 return 0;
532 }
533
mm_alloc_pgste(struct mm_struct * mm)534 static inline int mm_alloc_pgste(struct mm_struct *mm)
535 {
536 #ifdef CONFIG_PGSTE
537 if (unlikely(mm->context.alloc_pgste))
538 return 1;
539 #endif
540 return 0;
541 }
542
543 /*
544 * In the case that a guest uses storage keys
545 * faults should no longer be backed by zero pages
546 */
547 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)548 static inline int mm_uses_skeys(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_PGSTE
551 if (mm->context.uses_skeys)
552 return 1;
553 #endif
554 return 0;
555 }
556
csp(unsigned int * ptr,unsigned int old,unsigned int new)557 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
558 {
559 register unsigned long reg2 asm("2") = old;
560 register unsigned long reg3 asm("3") = new;
561 unsigned long address = (unsigned long)ptr | 1;
562
563 asm volatile(
564 " csp %0,%3"
565 : "+d" (reg2), "+m" (*ptr)
566 : "d" (reg3), "d" (address)
567 : "cc");
568 }
569
cspg(unsigned long * ptr,unsigned long old,unsigned long new)570 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
571 {
572 register unsigned long reg2 asm("2") = old;
573 register unsigned long reg3 asm("3") = new;
574 unsigned long address = (unsigned long)ptr | 1;
575
576 asm volatile(
577 " .insn rre,0xb98a0000,%0,%3"
578 : "+d" (reg2), "+m" (*ptr)
579 : "d" (reg3), "d" (address)
580 : "cc");
581 }
582
583 #define CRDTE_DTT_PAGE 0x00UL
584 #define CRDTE_DTT_SEGMENT 0x10UL
585 #define CRDTE_DTT_REGION3 0x14UL
586 #define CRDTE_DTT_REGION2 0x18UL
587 #define CRDTE_DTT_REGION1 0x1cUL
588
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)589 static inline void crdte(unsigned long old, unsigned long new,
590 unsigned long table, unsigned long dtt,
591 unsigned long address, unsigned long asce)
592 {
593 register unsigned long reg2 asm("2") = old;
594 register unsigned long reg3 asm("3") = new;
595 register unsigned long reg4 asm("4") = table | dtt;
596 register unsigned long reg5 asm("5") = address;
597
598 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
599 : "+d" (reg2)
600 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
601 : "memory", "cc");
602 }
603
604 /*
605 * pgd/p4d/pud/pmd/pte query functions
606 */
pgd_folded(pgd_t pgd)607 static inline int pgd_folded(pgd_t pgd)
608 {
609 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
610 }
611
pgd_present(pgd_t pgd)612 static inline int pgd_present(pgd_t pgd)
613 {
614 if (pgd_folded(pgd))
615 return 1;
616 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
617 }
618
pgd_none(pgd_t pgd)619 static inline int pgd_none(pgd_t pgd)
620 {
621 if (pgd_folded(pgd))
622 return 0;
623 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
624 }
625
pgd_bad(pgd_t pgd)626 static inline int pgd_bad(pgd_t pgd)
627 {
628 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
629 return 0;
630 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
631 }
632
pgd_pfn(pgd_t pgd)633 static inline unsigned long pgd_pfn(pgd_t pgd)
634 {
635 unsigned long origin_mask;
636
637 origin_mask = _REGION_ENTRY_ORIGIN;
638 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
639 }
640
p4d_folded(p4d_t p4d)641 static inline int p4d_folded(p4d_t p4d)
642 {
643 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
644 }
645
p4d_present(p4d_t p4d)646 static inline int p4d_present(p4d_t p4d)
647 {
648 if (p4d_folded(p4d))
649 return 1;
650 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
651 }
652
p4d_none(p4d_t p4d)653 static inline int p4d_none(p4d_t p4d)
654 {
655 if (p4d_folded(p4d))
656 return 0;
657 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
658 }
659
p4d_pfn(p4d_t p4d)660 static inline unsigned long p4d_pfn(p4d_t p4d)
661 {
662 unsigned long origin_mask;
663
664 origin_mask = _REGION_ENTRY_ORIGIN;
665 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
666 }
667
pud_folded(pud_t pud)668 static inline int pud_folded(pud_t pud)
669 {
670 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
671 }
672
pud_present(pud_t pud)673 static inline int pud_present(pud_t pud)
674 {
675 if (pud_folded(pud))
676 return 1;
677 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
678 }
679
pud_none(pud_t pud)680 static inline int pud_none(pud_t pud)
681 {
682 if (pud_folded(pud))
683 return 0;
684 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
685 }
686
687 #define pud_leaf pud_large
pud_large(pud_t pud)688 static inline int pud_large(pud_t pud)
689 {
690 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
691 return 0;
692 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
693 }
694
695 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)696 static inline int pmd_large(pmd_t pmd)
697 {
698 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
699 }
700
pmd_bad(pmd_t pmd)701 static inline int pmd_bad(pmd_t pmd)
702 {
703 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
704 return 1;
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
706 }
707
pud_bad(pud_t pud)708 static inline int pud_bad(pud_t pud)
709 {
710 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
711
712 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
713 return 1;
714 if (type < _REGION_ENTRY_TYPE_R3)
715 return 0;
716 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
717 }
718
p4d_bad(p4d_t p4d)719 static inline int p4d_bad(p4d_t p4d)
720 {
721 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
722
723 if (type > _REGION_ENTRY_TYPE_R2)
724 return 1;
725 if (type < _REGION_ENTRY_TYPE_R2)
726 return 0;
727 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
728 }
729
pmd_present(pmd_t pmd)730 static inline int pmd_present(pmd_t pmd)
731 {
732 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
733 }
734
pmd_none(pmd_t pmd)735 static inline int pmd_none(pmd_t pmd)
736 {
737 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
738 }
739
740 #define pmd_write pmd_write
pmd_write(pmd_t pmd)741 static inline int pmd_write(pmd_t pmd)
742 {
743 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
744 }
745
746 #define pud_write pud_write
pud_write(pud_t pud)747 static inline int pud_write(pud_t pud)
748 {
749 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
750 }
751
pmd_dirty(pmd_t pmd)752 static inline int pmd_dirty(pmd_t pmd)
753 {
754 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
755 }
756
pmd_young(pmd_t pmd)757 static inline int pmd_young(pmd_t pmd)
758 {
759 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
760 }
761
pte_present(pte_t pte)762 static inline int pte_present(pte_t pte)
763 {
764 /* Bit pattern: (pte & 0x001) == 0x001 */
765 return (pte_val(pte) & _PAGE_PRESENT) != 0;
766 }
767
pte_none(pte_t pte)768 static inline int pte_none(pte_t pte)
769 {
770 /* Bit pattern: pte == 0x400 */
771 return pte_val(pte) == _PAGE_INVALID;
772 }
773
pte_swap(pte_t pte)774 static inline int pte_swap(pte_t pte)
775 {
776 /* Bit pattern: (pte & 0x201) == 0x200 */
777 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
778 == _PAGE_PROTECT;
779 }
780
pte_special(pte_t pte)781 static inline int pte_special(pte_t pte)
782 {
783 return (pte_val(pte) & _PAGE_SPECIAL);
784 }
785
786 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)787 static inline int pte_same(pte_t a, pte_t b)
788 {
789 return pte_val(a) == pte_val(b);
790 }
791
792 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)793 static inline int pte_protnone(pte_t pte)
794 {
795 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
796 }
797
pmd_protnone(pmd_t pmd)798 static inline int pmd_protnone(pmd_t pmd)
799 {
800 /* pmd_large(pmd) implies pmd_present(pmd) */
801 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
802 }
803 #endif
804
pte_soft_dirty(pte_t pte)805 static inline int pte_soft_dirty(pte_t pte)
806 {
807 return pte_val(pte) & _PAGE_SOFT_DIRTY;
808 }
809 #define pte_swp_soft_dirty pte_soft_dirty
810
pte_mksoft_dirty(pte_t pte)811 static inline pte_t pte_mksoft_dirty(pte_t pte)
812 {
813 pte_val(pte) |= _PAGE_SOFT_DIRTY;
814 return pte;
815 }
816 #define pte_swp_mksoft_dirty pte_mksoft_dirty
817
pte_clear_soft_dirty(pte_t pte)818 static inline pte_t pte_clear_soft_dirty(pte_t pte)
819 {
820 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
821 return pte;
822 }
823 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
824
pmd_soft_dirty(pmd_t pmd)825 static inline int pmd_soft_dirty(pmd_t pmd)
826 {
827 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
828 }
829
pmd_mksoft_dirty(pmd_t pmd)830 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
831 {
832 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
833 return pmd;
834 }
835
pmd_clear_soft_dirty(pmd_t pmd)836 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
837 {
838 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
839 return pmd;
840 }
841
842 /*
843 * query functions pte_write/pte_dirty/pte_young only work if
844 * pte_present() is true. Undefined behaviour if not..
845 */
pte_write(pte_t pte)846 static inline int pte_write(pte_t pte)
847 {
848 return (pte_val(pte) & _PAGE_WRITE) != 0;
849 }
850
pte_dirty(pte_t pte)851 static inline int pte_dirty(pte_t pte)
852 {
853 return (pte_val(pte) & _PAGE_DIRTY) != 0;
854 }
855
pte_young(pte_t pte)856 static inline int pte_young(pte_t pte)
857 {
858 return (pte_val(pte) & _PAGE_YOUNG) != 0;
859 }
860
861 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)862 static inline int pte_unused(pte_t pte)
863 {
864 return pte_val(pte) & _PAGE_UNUSED;
865 }
866
867 /*
868 * pgd/pmd/pte modification functions
869 */
870
pgd_clear(pgd_t * pgd)871 static inline void pgd_clear(pgd_t *pgd)
872 {
873 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
874 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
875 }
876
p4d_clear(p4d_t * p4d)877 static inline void p4d_clear(p4d_t *p4d)
878 {
879 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
880 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
881 }
882
pud_clear(pud_t * pud)883 static inline void pud_clear(pud_t *pud)
884 {
885 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
886 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
887 }
888
pmd_clear(pmd_t * pmdp)889 static inline void pmd_clear(pmd_t *pmdp)
890 {
891 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
892 }
893
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)894 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
895 {
896 pte_val(*ptep) = _PAGE_INVALID;
897 }
898
899 /*
900 * The following pte modification functions only work if
901 * pte_present() is true. Undefined behaviour if not..
902 */
pte_modify(pte_t pte,pgprot_t newprot)903 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
904 {
905 pte_val(pte) &= _PAGE_CHG_MASK;
906 pte_val(pte) |= pgprot_val(newprot);
907 /*
908 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
909 * has the invalid bit set, clear it again for readable, young pages
910 */
911 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
912 pte_val(pte) &= ~_PAGE_INVALID;
913 /*
914 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
915 * protection bit set, clear it again for writable, dirty pages
916 */
917 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
918 pte_val(pte) &= ~_PAGE_PROTECT;
919 return pte;
920 }
921
pte_wrprotect(pte_t pte)922 static inline pte_t pte_wrprotect(pte_t pte)
923 {
924 pte_val(pte) &= ~_PAGE_WRITE;
925 pte_val(pte) |= _PAGE_PROTECT;
926 return pte;
927 }
928
pte_mkwrite(pte_t pte)929 static inline pte_t pte_mkwrite(pte_t pte)
930 {
931 pte_val(pte) |= _PAGE_WRITE;
932 if (pte_val(pte) & _PAGE_DIRTY)
933 pte_val(pte) &= ~_PAGE_PROTECT;
934 return pte;
935 }
936
pte_mkclean(pte_t pte)937 static inline pte_t pte_mkclean(pte_t pte)
938 {
939 pte_val(pte) &= ~_PAGE_DIRTY;
940 pte_val(pte) |= _PAGE_PROTECT;
941 return pte;
942 }
943
pte_mkdirty(pte_t pte)944 static inline pte_t pte_mkdirty(pte_t pte)
945 {
946 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
947 if (pte_val(pte) & _PAGE_WRITE)
948 pte_val(pte) &= ~_PAGE_PROTECT;
949 return pte;
950 }
951
pte_mkold(pte_t pte)952 static inline pte_t pte_mkold(pte_t pte)
953 {
954 pte_val(pte) &= ~_PAGE_YOUNG;
955 pte_val(pte) |= _PAGE_INVALID;
956 return pte;
957 }
958
pte_mkyoung(pte_t pte)959 static inline pte_t pte_mkyoung(pte_t pte)
960 {
961 pte_val(pte) |= _PAGE_YOUNG;
962 if (pte_val(pte) & _PAGE_READ)
963 pte_val(pte) &= ~_PAGE_INVALID;
964 return pte;
965 }
966
pte_mkspecial(pte_t pte)967 static inline pte_t pte_mkspecial(pte_t pte)
968 {
969 pte_val(pte) |= _PAGE_SPECIAL;
970 return pte;
971 }
972
973 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)974 static inline pte_t pte_mkhuge(pte_t pte)
975 {
976 pte_val(pte) |= _PAGE_LARGE;
977 return pte;
978 }
979 #endif
980
981 #define IPTE_GLOBAL 0
982 #define IPTE_LOCAL 1
983
984 #define IPTE_NODAT 0x400
985 #define IPTE_GUEST_ASCE 0x800
986
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)987 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
988 unsigned long opt, unsigned long asce,
989 int local)
990 {
991 unsigned long pto = (unsigned long) ptep;
992
993 if (__builtin_constant_p(opt) && opt == 0) {
994 /* Invalidation + TLB flush for the pte */
995 asm volatile(
996 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
997 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
998 [m4] "i" (local));
999 return;
1000 }
1001
1002 /* Invalidate ptes with options + TLB flush of the ptes */
1003 opt = opt | (asce & _ASCE_ORIGIN);
1004 asm volatile(
1005 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1006 : [r2] "+a" (address), [r3] "+a" (opt)
1007 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1008 }
1009
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1010 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1011 pte_t *ptep, int local)
1012 {
1013 unsigned long pto = (unsigned long) ptep;
1014
1015 /* Invalidate a range of ptes + TLB flush of the ptes */
1016 do {
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (nr)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 } while (nr != 255);
1022 }
1023
1024 /*
1025 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1026 * both clear the TLB for the unmapped pte. The reason is that
1027 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1028 * to modify an active pte. The sequence is
1029 * 1) ptep_get_and_clear
1030 * 2) set_pte_at
1031 * 3) flush_tlb_range
1032 * On s390 the tlb needs to get flushed with the modification of the pte
1033 * if the pte is active. The only way how this can be implemented is to
1034 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1035 * is a nop.
1036 */
1037 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1038 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039
1040 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1041 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1042 unsigned long addr, pte_t *ptep)
1043 {
1044 pte_t pte = *ptep;
1045
1046 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1047 return pte_young(pte);
1048 }
1049
1050 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1051 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1052 unsigned long address, pte_t *ptep)
1053 {
1054 return ptep_test_and_clear_young(vma, address, ptep);
1055 }
1056
1057 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1058 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1059 unsigned long addr, pte_t *ptep)
1060 {
1061 pte_t res;
1062
1063 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1064 if (mm_is_protected(mm) && pte_present(res))
1065 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1066 return res;
1067 }
1068
1069 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1070 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1071 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1072 pte_t *, pte_t, pte_t);
1073
1074 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1075 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1076 unsigned long addr, pte_t *ptep)
1077 {
1078 pte_t res;
1079
1080 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1081 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1082 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1083 return res;
1084 }
1085
1086 /*
1087 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1088 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1089 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1090 * cannot be accessed while the batched unmap is running. In this case
1091 * full==1 and a simple pte_clear is enough. See tlb.h.
1092 */
1093 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1094 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1095 unsigned long addr,
1096 pte_t *ptep, int full)
1097 {
1098 pte_t res;
1099
1100 if (full) {
1101 res = *ptep;
1102 *ptep = __pte(_PAGE_INVALID);
1103 } else {
1104 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1105 }
1106 if (mm_is_protected(mm) && pte_present(res))
1107 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1108 return res;
1109 }
1110
1111 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1112 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1113 unsigned long addr, pte_t *ptep)
1114 {
1115 pte_t pte = *ptep;
1116
1117 if (pte_write(pte))
1118 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1119 }
1120
1121 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1122 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1123 unsigned long addr, pte_t *ptep,
1124 pte_t entry, int dirty)
1125 {
1126 if (pte_same(*ptep, entry))
1127 return 0;
1128 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1129 return 1;
1130 }
1131
1132 /*
1133 * Additional functions to handle KVM guest page tables
1134 */
1135 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1136 pte_t *ptep, pte_t entry);
1137 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1138 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1139 pte_t *ptep, unsigned long bits);
1140 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1141 pte_t *ptep, int prot, unsigned long bit);
1142 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1143 pte_t *ptep , int reset);
1144 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1145 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1146 pte_t *sptep, pte_t *tptep, pte_t pte);
1147 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1148
1149 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1150 pte_t *ptep);
1151 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 unsigned char key, bool nq);
1153 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1154 unsigned char key, unsigned char *oldkey,
1155 bool nq, bool mr, bool mc);
1156 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1157 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1158 unsigned char *key);
1159
1160 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1161 unsigned long bits, unsigned long value);
1162 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1163 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1164 unsigned long *oldpte, unsigned long *oldpgste);
1165 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1166 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1167 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1168 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1169
1170 #define pgprot_writecombine pgprot_writecombine
1171 pgprot_t pgprot_writecombine(pgprot_t prot);
1172
1173 #define pgprot_writethrough pgprot_writethrough
1174 pgprot_t pgprot_writethrough(pgprot_t prot);
1175
1176 /*
1177 * Certain architectures need to do special things when PTEs
1178 * within a page table are directly modified. Thus, the following
1179 * hook is made available.
1180 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1181 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1182 pte_t *ptep, pte_t entry)
1183 {
1184 if (pte_present(entry))
1185 pte_val(entry) &= ~_PAGE_UNUSED;
1186 if (mm_has_pgste(mm))
1187 ptep_set_pte_at(mm, addr, ptep, entry);
1188 else
1189 *ptep = entry;
1190 }
1191
1192 /*
1193 * Conversion functions: convert a page and protection to a page entry,
1194 * and a page entry and page directory to the page they refer to.
1195 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1196 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1197 {
1198 pte_t __pte;
1199
1200 pte_val(__pte) = physpage | pgprot_val(pgprot);
1201 if (!MACHINE_HAS_NX)
1202 pte_val(__pte) &= ~_PAGE_NOEXEC;
1203 return pte_mkyoung(__pte);
1204 }
1205
mk_pte(struct page * page,pgprot_t pgprot)1206 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1207 {
1208 unsigned long physpage = page_to_phys(page);
1209 pte_t __pte = mk_pte_phys(physpage, pgprot);
1210
1211 if (pte_write(__pte) && PageDirty(page))
1212 __pte = pte_mkdirty(__pte);
1213 return __pte;
1214 }
1215
1216 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1217 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1218 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1219 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1220
1221 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1222 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1223
pmd_deref(pmd_t pmd)1224 static inline unsigned long pmd_deref(pmd_t pmd)
1225 {
1226 unsigned long origin_mask;
1227
1228 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1229 if (pmd_large(pmd))
1230 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1231 return pmd_val(pmd) & origin_mask;
1232 }
1233
pmd_pfn(pmd_t pmd)1234 static inline unsigned long pmd_pfn(pmd_t pmd)
1235 {
1236 return pmd_deref(pmd) >> PAGE_SHIFT;
1237 }
1238
pud_deref(pud_t pud)1239 static inline unsigned long pud_deref(pud_t pud)
1240 {
1241 unsigned long origin_mask;
1242
1243 origin_mask = _REGION_ENTRY_ORIGIN;
1244 if (pud_large(pud))
1245 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1246 return pud_val(pud) & origin_mask;
1247 }
1248
pud_pfn(pud_t pud)1249 static inline unsigned long pud_pfn(pud_t pud)
1250 {
1251 return pud_deref(pud) >> PAGE_SHIFT;
1252 }
1253
1254 /*
1255 * The pgd_offset function *always* adds the index for the top-level
1256 * region/segment table. This is done to get a sequence like the
1257 * following to work:
1258 * pgdp = pgd_offset(current->mm, addr);
1259 * pgd = READ_ONCE(*pgdp);
1260 * p4dp = p4d_offset(&pgd, addr);
1261 * ...
1262 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1263 * only add an index if they dereferenced the pointer.
1264 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1265 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1266 {
1267 unsigned long rste;
1268 unsigned int shift;
1269
1270 /* Get the first entry of the top level table */
1271 rste = pgd_val(*pgd);
1272 /* Pick up the shift from the table type of the first entry */
1273 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1274 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1275 }
1276
1277 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1278
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1279 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1280 {
1281 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1282 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1283 return (p4d_t *) pgdp;
1284 }
1285 #define p4d_offset_lockless p4d_offset_lockless
1286
p4d_offset(pgd_t * pgdp,unsigned long address)1287 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1288 {
1289 return p4d_offset_lockless(pgdp, *pgdp, address);
1290 }
1291
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1292 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1293 {
1294 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1295 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1296 return (pud_t *) p4dp;
1297 }
1298 #define pud_offset_lockless pud_offset_lockless
1299
pud_offset(p4d_t * p4dp,unsigned long address)1300 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1301 {
1302 return pud_offset_lockless(p4dp, *p4dp, address);
1303 }
1304 #define pud_offset pud_offset
1305
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1306 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1307 {
1308 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1309 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1310 return (pmd_t *) pudp;
1311 }
1312 #define pmd_offset_lockless pmd_offset_lockless
1313
pmd_offset(pud_t * pudp,unsigned long address)1314 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1315 {
1316 return pmd_offset_lockless(pudp, *pudp, address);
1317 }
1318 #define pmd_offset pmd_offset
1319
pmd_page_vaddr(pmd_t pmd)1320 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1321 {
1322 return (unsigned long) pmd_deref(pmd);
1323 }
1324
gup_fast_permitted(unsigned long start,unsigned long end)1325 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1326 {
1327 return end <= current->mm->context.asce_limit;
1328 }
1329 #define gup_fast_permitted gup_fast_permitted
1330
1331 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1332 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1333 #define pte_page(x) pfn_to_page(pte_pfn(x))
1334
1335 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1336 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1337 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1338 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1339
pmd_wrprotect(pmd_t pmd)1340 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1341 {
1342 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1343 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1344 return pmd;
1345 }
1346
pmd_mkwrite(pmd_t pmd)1347 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1348 {
1349 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1350 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1351 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1352 return pmd;
1353 }
1354
pmd_mkclean(pmd_t pmd)1355 static inline pmd_t pmd_mkclean(pmd_t pmd)
1356 {
1357 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1358 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1359 return pmd;
1360 }
1361
pmd_mkdirty(pmd_t pmd)1362 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1363 {
1364 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1365 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1366 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1367 return pmd;
1368 }
1369
pud_wrprotect(pud_t pud)1370 static inline pud_t pud_wrprotect(pud_t pud)
1371 {
1372 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1373 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1374 return pud;
1375 }
1376
pud_mkwrite(pud_t pud)1377 static inline pud_t pud_mkwrite(pud_t pud)
1378 {
1379 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1380 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1381 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1382 return pud;
1383 }
1384
pud_mkclean(pud_t pud)1385 static inline pud_t pud_mkclean(pud_t pud)
1386 {
1387 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1388 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1389 return pud;
1390 }
1391
pud_mkdirty(pud_t pud)1392 static inline pud_t pud_mkdirty(pud_t pud)
1393 {
1394 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1395 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1396 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1397 return pud;
1398 }
1399
1400 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1401 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1402 {
1403 /*
1404 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1405 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1406 */
1407 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1408 return pgprot_val(SEGMENT_NONE);
1409 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1410 return pgprot_val(SEGMENT_RO);
1411 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1412 return pgprot_val(SEGMENT_RX);
1413 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1414 return pgprot_val(SEGMENT_RW);
1415 return pgprot_val(SEGMENT_RWX);
1416 }
1417
pmd_mkyoung(pmd_t pmd)1418 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1419 {
1420 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1421 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1422 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1423 return pmd;
1424 }
1425
pmd_mkold(pmd_t pmd)1426 static inline pmd_t pmd_mkold(pmd_t pmd)
1427 {
1428 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1429 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1430 return pmd;
1431 }
1432
pmd_modify(pmd_t pmd,pgprot_t newprot)1433 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1434 {
1435 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1436 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1437 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1438 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1439 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1440 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1441 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1442 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1443 return pmd;
1444 }
1445
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1446 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1447 {
1448 pmd_t __pmd;
1449 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1450 return __pmd;
1451 }
1452
1453 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1454
__pmdp_csp(pmd_t * pmdp)1455 static inline void __pmdp_csp(pmd_t *pmdp)
1456 {
1457 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1458 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1459 }
1460
1461 #define IDTE_GLOBAL 0
1462 #define IDTE_LOCAL 1
1463
1464 #define IDTE_PTOA 0x0800
1465 #define IDTE_NODAT 0x1000
1466 #define IDTE_GUEST_ASCE 0x2000
1467
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1468 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1469 unsigned long opt, unsigned long asce,
1470 int local)
1471 {
1472 unsigned long sto;
1473
1474 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1475 if (__builtin_constant_p(opt) && opt == 0) {
1476 /* flush without guest asce */
1477 asm volatile(
1478 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1479 : "+m" (*pmdp)
1480 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1481 [m4] "i" (local)
1482 : "cc" );
1483 } else {
1484 /* flush with guest asce */
1485 asm volatile(
1486 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1487 : "+m" (*pmdp)
1488 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1489 [r3] "a" (asce), [m4] "i" (local)
1490 : "cc" );
1491 }
1492 }
1493
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1494 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1495 unsigned long opt, unsigned long asce,
1496 int local)
1497 {
1498 unsigned long r3o;
1499
1500 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1501 r3o |= _ASCE_TYPE_REGION3;
1502 if (__builtin_constant_p(opt) && opt == 0) {
1503 /* flush without guest asce */
1504 asm volatile(
1505 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1506 : "+m" (*pudp)
1507 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1508 [m4] "i" (local)
1509 : "cc");
1510 } else {
1511 /* flush with guest asce */
1512 asm volatile(
1513 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1514 : "+m" (*pudp)
1515 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1516 [r3] "a" (asce), [m4] "i" (local)
1517 : "cc" );
1518 }
1519 }
1520
1521 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1522 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1523 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1524
1525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1526
1527 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1528 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1529 pgtable_t pgtable);
1530
1531 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1532 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1533
1534 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1535 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1536 unsigned long addr, pmd_t *pmdp,
1537 pmd_t entry, int dirty)
1538 {
1539 VM_BUG_ON(addr & ~HPAGE_MASK);
1540
1541 entry = pmd_mkyoung(entry);
1542 if (dirty)
1543 entry = pmd_mkdirty(entry);
1544 if (pmd_val(*pmdp) == pmd_val(entry))
1545 return 0;
1546 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1547 return 1;
1548 }
1549
1550 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1551 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1552 unsigned long addr, pmd_t *pmdp)
1553 {
1554 pmd_t pmd = *pmdp;
1555
1556 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1557 return pmd_young(pmd);
1558 }
1559
1560 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1561 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1562 unsigned long addr, pmd_t *pmdp)
1563 {
1564 VM_BUG_ON(addr & ~HPAGE_MASK);
1565 return pmdp_test_and_clear_young(vma, addr, pmdp);
1566 }
1567
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1568 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1569 pmd_t *pmdp, pmd_t entry)
1570 {
1571 if (!MACHINE_HAS_NX)
1572 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1573 *pmdp = entry;
1574 }
1575
pmd_mkhuge(pmd_t pmd)1576 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1577 {
1578 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1579 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1580 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1581 return pmd;
1582 }
1583
1584 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1585 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1586 unsigned long addr, pmd_t *pmdp)
1587 {
1588 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1589 }
1590
1591 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1592 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1593 unsigned long addr,
1594 pmd_t *pmdp, int full)
1595 {
1596 if (full) {
1597 pmd_t pmd = *pmdp;
1598 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1599 return pmd;
1600 }
1601 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1602 }
1603
1604 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1605 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1606 unsigned long addr, pmd_t *pmdp)
1607 {
1608 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1609 }
1610
1611 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1612 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1613 unsigned long addr, pmd_t *pmdp)
1614 {
1615 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1616
1617 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1618 }
1619
1620 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1621 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1622 unsigned long addr, pmd_t *pmdp)
1623 {
1624 pmd_t pmd = *pmdp;
1625
1626 if (pmd_write(pmd))
1627 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1628 }
1629
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1630 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1631 unsigned long address,
1632 pmd_t *pmdp)
1633 {
1634 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1635 }
1636 #define pmdp_collapse_flush pmdp_collapse_flush
1637
1638 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1639 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1640
pmd_trans_huge(pmd_t pmd)1641 static inline int pmd_trans_huge(pmd_t pmd)
1642 {
1643 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1644 }
1645
1646 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1647 static inline int has_transparent_hugepage(void)
1648 {
1649 return MACHINE_HAS_EDAT1 ? 1 : 0;
1650 }
1651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1652
1653 /*
1654 * 64 bit swap entry format:
1655 * A page-table entry has some bits we have to treat in a special way.
1656 * Bits 52 and bit 55 have to be zero, otherwise a specification
1657 * exception will occur instead of a page translation exception. The
1658 * specification exception has the bad habit not to store necessary
1659 * information in the lowcore.
1660 * Bits 54 and 63 are used to indicate the page type.
1661 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1662 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1663 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1664 * for the offset.
1665 * | offset |01100|type |00|
1666 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1667 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1668 */
1669
1670 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1671 #define __SWP_OFFSET_SHIFT 12
1672 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1673 #define __SWP_TYPE_SHIFT 2
1674
mk_swap_pte(unsigned long type,unsigned long offset)1675 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1676 {
1677 pte_t pte;
1678
1679 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1680 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1681 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1682 return pte;
1683 }
1684
__swp_type(swp_entry_t entry)1685 static inline unsigned long __swp_type(swp_entry_t entry)
1686 {
1687 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1688 }
1689
__swp_offset(swp_entry_t entry)1690 static inline unsigned long __swp_offset(swp_entry_t entry)
1691 {
1692 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1693 }
1694
__swp_entry(unsigned long type,unsigned long offset)1695 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1696 {
1697 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1698 }
1699
1700 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1701 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1702
1703 #define kern_addr_valid(addr) (1)
1704
1705 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1706 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1707 extern int s390_enable_sie(void);
1708 extern int s390_enable_skey(void);
1709 extern void s390_reset_cmma(struct mm_struct *mm);
1710
1711 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1712 #define HAVE_ARCH_UNMAPPED_AREA
1713 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1714
1715 #endif /* _S390_PAGE_H */
1716