1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/tracehook.h>
26 #include <linux/unistd.h>
27
28 #include <asm/traps.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/syscalls.h>
32
33 #define REG_PC 15
34 #define REG_PSR 16
35 /*
36 * does not yet catch signals sent when the child dies.
37 * in exit.c or in signal.c.
38 */
39
40 #if 0
41 /*
42 * Breakpoint SWI instruction: SWI &9F0001
43 */
44 #define BREAKINST_ARM 0xef9f0001
45 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
46 #else
47 /*
48 * New breakpoints - use an undefined instruction. The ARM architecture
49 * reference manual guarantees that the following instruction space
50 * will produce an undefined instruction exception on all CPUs:
51 *
52 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53 * Thumb: 1101 1110 xxxx xxxx
54 */
55 #define BREAKINST_ARM 0xe7f001f0
56 #define BREAKINST_THUMB 0xde01
57 #endif
58
59 struct pt_regs_offset {
60 const char *name;
61 int offset;
62 };
63
64 #define REG_OFFSET_NAME(r) \
65 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68 static const struct pt_regs_offset regoffset_table[] = {
69 REG_OFFSET_NAME(r0),
70 REG_OFFSET_NAME(r1),
71 REG_OFFSET_NAME(r2),
72 REG_OFFSET_NAME(r3),
73 REG_OFFSET_NAME(r4),
74 REG_OFFSET_NAME(r5),
75 REG_OFFSET_NAME(r6),
76 REG_OFFSET_NAME(r7),
77 REG_OFFSET_NAME(r8),
78 REG_OFFSET_NAME(r9),
79 REG_OFFSET_NAME(r10),
80 REG_OFFSET_NAME(fp),
81 REG_OFFSET_NAME(ip),
82 REG_OFFSET_NAME(sp),
83 REG_OFFSET_NAME(lr),
84 REG_OFFSET_NAME(pc),
85 REG_OFFSET_NAME(cpsr),
86 REG_OFFSET_NAME(ORIG_r0),
87 REG_OFFSET_END,
88 };
89
90 /**
91 * regs_query_register_offset() - query register offset from its name
92 * @name: the name of a register
93 *
94 * regs_query_register_offset() returns the offset of a register in struct
95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96 */
regs_query_register_offset(const char * name)97 int regs_query_register_offset(const char *name)
98 {
99 const struct pt_regs_offset *roff;
100 for (roff = regoffset_table; roff->name != NULL; roff++)
101 if (!strcmp(roff->name, name))
102 return roff->offset;
103 return -EINVAL;
104 }
105
106 /**
107 * regs_query_register_name() - query register name from its offset
108 * @offset: the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
regs_query_register_name(unsigned int offset)113 const char *regs_query_register_name(unsigned int offset)
114 {
115 const struct pt_regs_offset *roff;
116 for (roff = regoffset_table; roff->name != NULL; roff++)
117 if (roff->offset == offset)
118 return roff->name;
119 return NULL;
120 }
121
122 /**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs: pt_regs which contains kernel stack pointer.
125 * @addr: address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132 return ((addr & ~(THREAD_SIZE - 1)) ==
133 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135
136 /**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs: pt_regs which contains kernel stack pointer.
139 * @n: stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148 addr += n;
149 if (regs_within_kernel_stack(regs, (unsigned long)addr))
150 return *addr;
151 else
152 return 0;
153 }
154
155 /*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
get_user_reg(struct task_struct * task,int offset)161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163 return task_pt_regs(task)->uregs[offset];
164 }
165
166 /*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172 static inline int
put_user_reg(struct task_struct * task,int offset,long data)173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175 struct pt_regs newregs, *regs = task_pt_regs(task);
176 int ret = -EINVAL;
177
178 newregs = *regs;
179 newregs.uregs[offset] = data;
180
181 if (valid_user_regs(&newregs)) {
182 regs->uregs[offset] = data;
183 ret = 0;
184 }
185
186 return ret;
187 }
188
189 /*
190 * Called by kernel/ptrace.c when detaching..
191 */
ptrace_disable(struct task_struct * child)192 void ptrace_disable(struct task_struct *child)
193 {
194 /* Nothing to do. */
195 }
196
197 /*
198 * Handle hitting a breakpoint.
199 */
ptrace_break(struct pt_regs * regs)200 void ptrace_break(struct pt_regs *regs)
201 {
202 force_sig_fault(SIGTRAP, TRAP_BRKPT,
203 (void __user *)instruction_pointer(regs));
204 }
205
break_trap(struct pt_regs * regs,unsigned int instr)206 static int break_trap(struct pt_regs *regs, unsigned int instr)
207 {
208 ptrace_break(regs);
209 return 0;
210 }
211
212 static struct undef_hook arm_break_hook = {
213 .instr_mask = 0x0fffffff,
214 .instr_val = 0x07f001f0,
215 .cpsr_mask = PSR_T_BIT,
216 .cpsr_val = 0,
217 .fn = break_trap,
218 };
219
220 static struct undef_hook thumb_break_hook = {
221 .instr_mask = 0xffffffff,
222 .instr_val = 0x0000de01,
223 .cpsr_mask = PSR_T_BIT,
224 .cpsr_val = PSR_T_BIT,
225 .fn = break_trap,
226 };
227
228 static struct undef_hook thumb2_break_hook = {
229 .instr_mask = 0xffffffff,
230 .instr_val = 0xf7f0a000,
231 .cpsr_mask = PSR_T_BIT,
232 .cpsr_val = PSR_T_BIT,
233 .fn = break_trap,
234 };
235
ptrace_break_init(void)236 static int __init ptrace_break_init(void)
237 {
238 register_undef_hook(&arm_break_hook);
239 register_undef_hook(&thumb_break_hook);
240 register_undef_hook(&thumb2_break_hook);
241 return 0;
242 }
243
244 core_initcall(ptrace_break_init);
245
246 /*
247 * Read the word at offset "off" into the "struct user". We
248 * actually access the pt_regs stored on the kernel stack.
249 */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * ret)250 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251 unsigned long __user *ret)
252 {
253 unsigned long tmp;
254
255 if (off & 3)
256 return -EIO;
257
258 tmp = 0;
259 if (off == PT_TEXT_ADDR)
260 tmp = tsk->mm->start_code;
261 else if (off == PT_DATA_ADDR)
262 tmp = tsk->mm->start_data;
263 else if (off == PT_TEXT_END_ADDR)
264 tmp = tsk->mm->end_code;
265 else if (off < sizeof(struct pt_regs))
266 tmp = get_user_reg(tsk, off >> 2);
267 else if (off >= sizeof(struct user))
268 return -EIO;
269
270 return put_user(tmp, ret);
271 }
272
273 /*
274 * Write the word at offset "off" into "struct user". We
275 * actually access the pt_regs stored on the kernel stack.
276 */
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long val)277 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278 unsigned long val)
279 {
280 if (off & 3 || off >= sizeof(struct user))
281 return -EIO;
282
283 if (off >= sizeof(struct pt_regs))
284 return 0;
285
286 return put_user_reg(tsk, off >> 2, val);
287 }
288
289 #ifdef CONFIG_IWMMXT
290
291 /*
292 * Get the child iWMMXt state.
293 */
ptrace_getwmmxregs(struct task_struct * tsk,void __user * ufp)294 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295 {
296 struct thread_info *thread = task_thread_info(tsk);
297
298 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299 return -ENODATA;
300 iwmmxt_task_disable(thread); /* force it to ram */
301 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302 ? -EFAULT : 0;
303 }
304
305 /*
306 * Set the child iWMMXt state.
307 */
ptrace_setwmmxregs(struct task_struct * tsk,void __user * ufp)308 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309 {
310 struct thread_info *thread = task_thread_info(tsk);
311
312 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313 return -EACCES;
314 iwmmxt_task_release(thread); /* force a reload */
315 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316 ? -EFAULT : 0;
317 }
318
319 #endif
320
321 #ifdef CONFIG_CRUNCH
322 /*
323 * Get the child Crunch state.
324 */
ptrace_getcrunchregs(struct task_struct * tsk,void __user * ufp)325 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
326 {
327 struct thread_info *thread = task_thread_info(tsk);
328
329 crunch_task_disable(thread); /* force it to ram */
330 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
331 ? -EFAULT : 0;
332 }
333
334 /*
335 * Set the child Crunch state.
336 */
ptrace_setcrunchregs(struct task_struct * tsk,void __user * ufp)337 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
338 {
339 struct thread_info *thread = task_thread_info(tsk);
340
341 crunch_task_release(thread); /* force a reload */
342 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
343 ? -EFAULT : 0;
344 }
345 #endif
346
347 #ifdef CONFIG_HAVE_HW_BREAKPOINT
348 /*
349 * Convert a virtual register number into an index for a thread_info
350 * breakpoint array. Breakpoints are identified using positive numbers
351 * whilst watchpoints are negative. The registers are laid out as pairs
352 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
353 * Register 0 is reserved for describing resource information.
354 */
ptrace_hbp_num_to_idx(long num)355 static int ptrace_hbp_num_to_idx(long num)
356 {
357 if (num < 0)
358 num = (ARM_MAX_BRP << 1) - num;
359 return (num - 1) >> 1;
360 }
361
362 /*
363 * Returns the virtual register number for the address of the
364 * breakpoint at index idx.
365 */
ptrace_hbp_idx_to_num(int idx)366 static long ptrace_hbp_idx_to_num(int idx)
367 {
368 long mid = ARM_MAX_BRP << 1;
369 long num = (idx << 1) + 1;
370 return num > mid ? mid - num : num;
371 }
372
373 /*
374 * Handle hitting a HW-breakpoint.
375 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)376 static void ptrace_hbptriggered(struct perf_event *bp,
377 struct perf_sample_data *data,
378 struct pt_regs *regs)
379 {
380 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
381 long num;
382 int i;
383
384 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
385 if (current->thread.debug.hbp[i] == bp)
386 break;
387
388 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
389
390 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
391 }
392
393 /*
394 * Set ptrace breakpoint pointers to zero for this task.
395 * This is required in order to prevent child processes from unregistering
396 * breakpoints held by their parent.
397 */
clear_ptrace_hw_breakpoint(struct task_struct * tsk)398 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
399 {
400 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
401 }
402
403 /*
404 * Unregister breakpoints from this task and reset the pointers in
405 * the thread_struct.
406 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)407 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408 {
409 int i;
410 struct thread_struct *t = &tsk->thread;
411
412 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
413 if (t->debug.hbp[i]) {
414 unregister_hw_breakpoint(t->debug.hbp[i]);
415 t->debug.hbp[i] = NULL;
416 }
417 }
418 }
419
ptrace_get_hbp_resource_info(void)420 static u32 ptrace_get_hbp_resource_info(void)
421 {
422 u8 num_brps, num_wrps, debug_arch, wp_len;
423 u32 reg = 0;
424
425 num_brps = hw_breakpoint_slots(TYPE_INST);
426 num_wrps = hw_breakpoint_slots(TYPE_DATA);
427 debug_arch = arch_get_debug_arch();
428 wp_len = arch_get_max_wp_len();
429
430 reg |= debug_arch;
431 reg <<= 8;
432 reg |= wp_len;
433 reg <<= 8;
434 reg |= num_wrps;
435 reg <<= 8;
436 reg |= num_brps;
437
438 return reg;
439 }
440
ptrace_hbp_create(struct task_struct * tsk,int type)441 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
442 {
443 struct perf_event_attr attr;
444
445 ptrace_breakpoint_init(&attr);
446
447 /* Initialise fields to sane defaults. */
448 attr.bp_addr = 0;
449 attr.bp_len = HW_BREAKPOINT_LEN_4;
450 attr.bp_type = type;
451 attr.disabled = 1;
452
453 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
454 tsk);
455 }
456
ptrace_gethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)457 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
458 unsigned long __user *data)
459 {
460 u32 reg;
461 int idx, ret = 0;
462 struct perf_event *bp;
463 struct arch_hw_breakpoint_ctrl arch_ctrl;
464
465 if (num == 0) {
466 reg = ptrace_get_hbp_resource_info();
467 } else {
468 idx = ptrace_hbp_num_to_idx(num);
469 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
470 ret = -EINVAL;
471 goto out;
472 }
473
474 bp = tsk->thread.debug.hbp[idx];
475 if (!bp) {
476 reg = 0;
477 goto put;
478 }
479
480 arch_ctrl = counter_arch_bp(bp)->ctrl;
481
482 /*
483 * Fix up the len because we may have adjusted it
484 * to compensate for an unaligned address.
485 */
486 while (!(arch_ctrl.len & 0x1))
487 arch_ctrl.len >>= 1;
488
489 if (num & 0x1)
490 reg = bp->attr.bp_addr;
491 else
492 reg = encode_ctrl_reg(arch_ctrl);
493 }
494
495 put:
496 if (put_user(reg, data))
497 ret = -EFAULT;
498
499 out:
500 return ret;
501 }
502
ptrace_sethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)503 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
504 unsigned long __user *data)
505 {
506 int idx, gen_len, gen_type, implied_type, ret = 0;
507 u32 user_val;
508 struct perf_event *bp;
509 struct arch_hw_breakpoint_ctrl ctrl;
510 struct perf_event_attr attr;
511
512 if (num == 0)
513 goto out;
514 else if (num < 0)
515 implied_type = HW_BREAKPOINT_RW;
516 else
517 implied_type = HW_BREAKPOINT_X;
518
519 idx = ptrace_hbp_num_to_idx(num);
520 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
521 ret = -EINVAL;
522 goto out;
523 }
524
525 if (get_user(user_val, data)) {
526 ret = -EFAULT;
527 goto out;
528 }
529
530 bp = tsk->thread.debug.hbp[idx];
531 if (!bp) {
532 bp = ptrace_hbp_create(tsk, implied_type);
533 if (IS_ERR(bp)) {
534 ret = PTR_ERR(bp);
535 goto out;
536 }
537 tsk->thread.debug.hbp[idx] = bp;
538 }
539
540 attr = bp->attr;
541
542 if (num & 0x1) {
543 /* Address */
544 attr.bp_addr = user_val;
545 } else {
546 /* Control */
547 decode_ctrl_reg(user_val, &ctrl);
548 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
549 if (ret)
550 goto out;
551
552 if ((gen_type & implied_type) != gen_type) {
553 ret = -EINVAL;
554 goto out;
555 }
556
557 attr.bp_len = gen_len;
558 attr.bp_type = gen_type;
559 attr.disabled = !ctrl.enabled;
560 }
561
562 ret = modify_user_hw_breakpoint(bp, &attr);
563 out:
564 return ret;
565 }
566 #endif
567
568 /* regset get/set implementations */
569
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)570 static int gpr_get(struct task_struct *target,
571 const struct user_regset *regset,
572 struct membuf to)
573 {
574 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
575 }
576
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)577 static int gpr_set(struct task_struct *target,
578 const struct user_regset *regset,
579 unsigned int pos, unsigned int count,
580 const void *kbuf, const void __user *ubuf)
581 {
582 int ret;
583 struct pt_regs newregs = *task_pt_regs(target);
584
585 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
586 &newregs,
587 0, sizeof(newregs));
588 if (ret)
589 return ret;
590
591 if (!valid_user_regs(&newregs))
592 return -EINVAL;
593
594 *task_pt_regs(target) = newregs;
595 return 0;
596 }
597
fpa_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)598 static int fpa_get(struct task_struct *target,
599 const struct user_regset *regset,
600 struct membuf to)
601 {
602 return membuf_write(&to, &task_thread_info(target)->fpstate,
603 sizeof(struct user_fp));
604 }
605
fpa_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)606 static int fpa_set(struct task_struct *target,
607 const struct user_regset *regset,
608 unsigned int pos, unsigned int count,
609 const void *kbuf, const void __user *ubuf)
610 {
611 struct thread_info *thread = task_thread_info(target);
612
613 thread->used_cp[1] = thread->used_cp[2] = 1;
614
615 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
616 &thread->fpstate,
617 0, sizeof(struct user_fp));
618 }
619
620 #ifdef CONFIG_VFP
621 /*
622 * VFP register get/set implementations.
623 *
624 * With respect to the kernel, struct user_fp is divided into three chunks:
625 * 16 or 32 real VFP registers (d0-d15 or d0-31)
626 * These are transferred to/from the real registers in the task's
627 * vfp_hard_struct. The number of registers depends on the kernel
628 * configuration.
629 *
630 * 16 or 0 fake VFP registers (d16-d31 or empty)
631 * i.e., the user_vfp structure has space for 32 registers even if
632 * the kernel doesn't have them all.
633 *
634 * vfp_get() reads this chunk as zero where applicable
635 * vfp_set() ignores this chunk
636 *
637 * 1 word for the FPSCR
638 */
vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)639 static int vfp_get(struct task_struct *target,
640 const struct user_regset *regset,
641 struct membuf to)
642 {
643 struct thread_info *thread = task_thread_info(target);
644 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
645 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
646
647 vfp_sync_hwstate(thread);
648
649 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
650 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
651 return membuf_store(&to, vfp->fpscr);
652 }
653
654 /*
655 * For vfp_set() a read-modify-write is done on the VFP registers,
656 * in order to avoid writing back a half-modified set of registers on
657 * failure.
658 */
vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)659 static int vfp_set(struct task_struct *target,
660 const struct user_regset *regset,
661 unsigned int pos, unsigned int count,
662 const void *kbuf, const void __user *ubuf)
663 {
664 int ret;
665 struct thread_info *thread = task_thread_info(target);
666 struct vfp_hard_struct new_vfp;
667 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670 vfp_sync_hwstate(thread);
671 new_vfp = thread->vfpstate.hard;
672
673 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674 &new_vfp.fpregs,
675 user_fpregs_offset,
676 user_fpregs_offset + sizeof(new_vfp.fpregs));
677 if (ret)
678 return ret;
679
680 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
681 user_fpregs_offset + sizeof(new_vfp.fpregs),
682 user_fpscr_offset);
683 if (ret)
684 return ret;
685
686 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
687 &new_vfp.fpscr,
688 user_fpscr_offset,
689 user_fpscr_offset + sizeof(new_vfp.fpscr));
690 if (ret)
691 return ret;
692
693 thread->vfpstate.hard = new_vfp;
694 vfp_flush_hwstate(thread);
695
696 return 0;
697 }
698 #endif /* CONFIG_VFP */
699
700 enum arm_regset {
701 REGSET_GPR,
702 REGSET_FPR,
703 #ifdef CONFIG_VFP
704 REGSET_VFP,
705 #endif
706 };
707
708 static const struct user_regset arm_regsets[] = {
709 [REGSET_GPR] = {
710 .core_note_type = NT_PRSTATUS,
711 .n = ELF_NGREG,
712 .size = sizeof(u32),
713 .align = sizeof(u32),
714 .regset_get = gpr_get,
715 .set = gpr_set
716 },
717 [REGSET_FPR] = {
718 /*
719 * For the FPA regs in fpstate, the real fields are a mixture
720 * of sizes, so pretend that the registers are word-sized:
721 */
722 .core_note_type = NT_PRFPREG,
723 .n = sizeof(struct user_fp) / sizeof(u32),
724 .size = sizeof(u32),
725 .align = sizeof(u32),
726 .regset_get = fpa_get,
727 .set = fpa_set
728 },
729 #ifdef CONFIG_VFP
730 [REGSET_VFP] = {
731 /*
732 * Pretend that the VFP regs are word-sized, since the FPSCR is
733 * a single word dangling at the end of struct user_vfp:
734 */
735 .core_note_type = NT_ARM_VFP,
736 .n = ARM_VFPREGS_SIZE / sizeof(u32),
737 .size = sizeof(u32),
738 .align = sizeof(u32),
739 .regset_get = vfp_get,
740 .set = vfp_set
741 },
742 #endif /* CONFIG_VFP */
743 };
744
745 static const struct user_regset_view user_arm_view = {
746 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
747 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
748 };
749
task_user_regset_view(struct task_struct * task)750 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
751 {
752 return &user_arm_view;
753 }
754
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)755 long arch_ptrace(struct task_struct *child, long request,
756 unsigned long addr, unsigned long data)
757 {
758 int ret;
759 unsigned long __user *datap = (unsigned long __user *) data;
760
761 switch (request) {
762 case PTRACE_PEEKUSR:
763 ret = ptrace_read_user(child, addr, datap);
764 break;
765
766 case PTRACE_POKEUSR:
767 ret = ptrace_write_user(child, addr, data);
768 break;
769
770 case PTRACE_GETREGS:
771 ret = copy_regset_to_user(child,
772 &user_arm_view, REGSET_GPR,
773 0, sizeof(struct pt_regs),
774 datap);
775 break;
776
777 case PTRACE_SETREGS:
778 ret = copy_regset_from_user(child,
779 &user_arm_view, REGSET_GPR,
780 0, sizeof(struct pt_regs),
781 datap);
782 break;
783
784 case PTRACE_GETFPREGS:
785 ret = copy_regset_to_user(child,
786 &user_arm_view, REGSET_FPR,
787 0, sizeof(union fp_state),
788 datap);
789 break;
790
791 case PTRACE_SETFPREGS:
792 ret = copy_regset_from_user(child,
793 &user_arm_view, REGSET_FPR,
794 0, sizeof(union fp_state),
795 datap);
796 break;
797
798 #ifdef CONFIG_IWMMXT
799 case PTRACE_GETWMMXREGS:
800 ret = ptrace_getwmmxregs(child, datap);
801 break;
802
803 case PTRACE_SETWMMXREGS:
804 ret = ptrace_setwmmxregs(child, datap);
805 break;
806 #endif
807
808 case PTRACE_GET_THREAD_AREA:
809 ret = put_user(task_thread_info(child)->tp_value[0],
810 datap);
811 break;
812
813 case PTRACE_SET_SYSCALL:
814 task_thread_info(child)->syscall = data;
815 ret = 0;
816 break;
817
818 #ifdef CONFIG_CRUNCH
819 case PTRACE_GETCRUNCHREGS:
820 ret = ptrace_getcrunchregs(child, datap);
821 break;
822
823 case PTRACE_SETCRUNCHREGS:
824 ret = ptrace_setcrunchregs(child, datap);
825 break;
826 #endif
827
828 #ifdef CONFIG_VFP
829 case PTRACE_GETVFPREGS:
830 ret = copy_regset_to_user(child,
831 &user_arm_view, REGSET_VFP,
832 0, ARM_VFPREGS_SIZE,
833 datap);
834 break;
835
836 case PTRACE_SETVFPREGS:
837 ret = copy_regset_from_user(child,
838 &user_arm_view, REGSET_VFP,
839 0, ARM_VFPREGS_SIZE,
840 datap);
841 break;
842 #endif
843
844 #ifdef CONFIG_HAVE_HW_BREAKPOINT
845 case PTRACE_GETHBPREGS:
846 ret = ptrace_gethbpregs(child, addr,
847 (unsigned long __user *)data);
848 break;
849 case PTRACE_SETHBPREGS:
850 ret = ptrace_sethbpregs(child, addr,
851 (unsigned long __user *)data);
852 break;
853 #endif
854
855 default:
856 ret = ptrace_request(child, request, addr, data);
857 break;
858 }
859
860 return ret;
861 }
862
863 enum ptrace_syscall_dir {
864 PTRACE_SYSCALL_ENTER = 0,
865 PTRACE_SYSCALL_EXIT,
866 };
867
tracehook_report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)868 static void tracehook_report_syscall(struct pt_regs *regs,
869 enum ptrace_syscall_dir dir)
870 {
871 unsigned long ip;
872
873 /*
874 * IP is used to denote syscall entry/exit:
875 * IP = 0 -> entry, =1 -> exit
876 */
877 ip = regs->ARM_ip;
878 regs->ARM_ip = dir;
879
880 if (dir == PTRACE_SYSCALL_EXIT)
881 tracehook_report_syscall_exit(regs, 0);
882 else if (tracehook_report_syscall_entry(regs))
883 current_thread_info()->syscall = -1;
884
885 regs->ARM_ip = ip;
886 }
887
syscall_trace_enter(struct pt_regs * regs,int scno)888 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
889 {
890 current_thread_info()->syscall = scno;
891
892 if (test_thread_flag(TIF_SYSCALL_TRACE))
893 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
894
895 /* Do seccomp after ptrace; syscall may have changed. */
896 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
897 if (secure_computing() == -1)
898 return -1;
899 #else
900 /* XXX: remove this once OABI gets fixed */
901 secure_computing_strict(current_thread_info()->syscall);
902 #endif
903
904 /* Tracer or seccomp may have changed syscall. */
905 scno = current_thread_info()->syscall;
906
907 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
908 trace_sys_enter(regs, scno);
909
910 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
911 regs->ARM_r3);
912
913 return scno;
914 }
915
syscall_trace_exit(struct pt_regs * regs)916 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
917 {
918 /*
919 * Audit the syscall before anything else, as a debugger may
920 * come in and change the current registers.
921 */
922 audit_syscall_exit(regs);
923
924 /*
925 * Note that we haven't updated the ->syscall field for the
926 * current thread. This isn't a problem because it will have
927 * been set on syscall entry and there hasn't been an opportunity
928 * for a PTRACE_SET_SYSCALL since then.
929 */
930 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
931 trace_sys_exit(regs, regs_return_value(regs));
932
933 if (test_thread_flag(TIF_SYSCALL_TRACE))
934 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
935 }
936