1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  pti.c - PTI driver for cJTAG data extration
4  *
5  *  Copyright (C) Intel 2010
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  * The PTI (Parallel Trace Interface) driver directs trace data routed from
10  * various parts in the system out through the Intel Penwell PTI port and
11  * out of the mobile device for analysis with a debugging tool
12  * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
13  * compact JTAG, standard.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/interrupt.h>
19 #include <linux/console.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/tty.h>
23 #include <linux/tty_driver.h>
24 #include <linux/pci.h>
25 #include <linux/mutex.h>
26 #include <linux/miscdevice.h>
27 #include <linux/intel-pti.h>
28 #include <linux/slab.h>
29 #include <linux/uaccess.h>
30 
31 #define DRIVERNAME		"pti"
32 #define PCINAME			"pciPTI"
33 #define TTYNAME			"ttyPTI"
34 #define CHARNAME		"pti"
35 #define PTITTY_MINOR_START	0
36 #define PTITTY_MINOR_NUM	2
37 #define MAX_APP_IDS		16   /* 128 channel ids / u8 bit size */
38 #define MAX_OS_IDS		16   /* 128 channel ids / u8 bit size */
39 #define MAX_MODEM_IDS		16   /* 128 channel ids / u8 bit size */
40 #define MODEM_BASE_ID		71   /* modem master ID address    */
41 #define CONTROL_ID		72   /* control master ID address  */
42 #define CONSOLE_ID		73   /* console master ID address  */
43 #define OS_BASE_ID		74   /* base OS master ID address  */
44 #define APP_BASE_ID		80   /* base App master ID address */
45 #define CONTROL_FRAME_LEN	32   /* PTI control frame maximum size */
46 #define USER_COPY_SIZE		8192 /* 8Kb buffer for user space copy */
47 #define APERTURE_14		0x3800000 /* offset to first OS write addr */
48 #define APERTURE_LEN		0x400000  /* address length */
49 
50 struct pti_tty {
51 	struct pti_masterchannel *mc;
52 };
53 
54 struct pti_dev {
55 	struct tty_port port[PTITTY_MINOR_NUM];
56 	unsigned long pti_addr;
57 	unsigned long aperture_base;
58 	void __iomem *pti_ioaddr;
59 	u8 ia_app[MAX_APP_IDS];
60 	u8 ia_os[MAX_OS_IDS];
61 	u8 ia_modem[MAX_MODEM_IDS];
62 };
63 
64 /*
65  * This protects access to ia_app, ia_os, and ia_modem,
66  * which keeps track of channels allocated in
67  * an aperture write id.
68  */
69 static DEFINE_MUTEX(alloclock);
70 
71 static const struct pci_device_id pci_ids[] = {
72 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
73 		{0}
74 };
75 
76 static struct tty_driver *pti_tty_driver;
77 static struct pti_dev *drv_data;
78 
79 static unsigned int pti_console_channel;
80 static unsigned int pti_control_channel;
81 
82 /**
83  *  pti_write_to_aperture()- The private write function to PTI HW.
84  *
85  *  @mc: The 'aperture'. It's part of a write address that holds
86  *       a master and channel ID.
87  *  @buf: Data being written to the HW that will ultimately be seen
88  *        in a debugging tool (Fido, Lauterbach).
89  *  @len: Size of buffer.
90  *
91  *  Since each aperture is specified by a unique
92  *  master/channel ID, no two processes will be writing
93  *  to the same aperture at the same time so no lock is required. The
94  *  PTI-Output agent will send these out in the order that they arrived, and
95  *  thus, it will intermix these messages. The debug tool can then later
96  *  regroup the appropriate message segments together reconstituting each
97  *  message.
98  */
pti_write_to_aperture(struct pti_masterchannel * mc,u8 * buf,int len)99 static void pti_write_to_aperture(struct pti_masterchannel *mc,
100 				  u8 *buf,
101 				  int len)
102 {
103 	int dwordcnt;
104 	int final;
105 	int i;
106 	u32 ptiword;
107 	u32 __iomem *aperture;
108 	u8 *p = buf;
109 
110 	/*
111 	 * calculate the aperture offset from the base using the master and
112 	 * channel id's.
113 	 */
114 	aperture = drv_data->pti_ioaddr + (mc->master << 15)
115 		+ (mc->channel << 8);
116 
117 	dwordcnt = len >> 2;
118 	final = len - (dwordcnt << 2);	    /* final = trailing bytes    */
119 	if (final == 0 && dwordcnt != 0) {  /* always need a final dword */
120 		final += 4;
121 		dwordcnt--;
122 	}
123 
124 	for (i = 0; i < dwordcnt; i++) {
125 		ptiword = be32_to_cpu(*(u32 *)p);
126 		p += 4;
127 		iowrite32(ptiword, aperture);
128 	}
129 
130 	aperture += PTI_LASTDWORD_DTS;	/* adding DTS signals that is EOM */
131 
132 	ptiword = 0;
133 	for (i = 0; i < final; i++)
134 		ptiword |= *p++ << (24-(8*i));
135 
136 	iowrite32(ptiword, aperture);
137 	return;
138 }
139 
140 /**
141  *  pti_control_frame_built_and_sent()- control frame build and send function.
142  *
143  *  @mc:          The master / channel structure on which the function
144  *                built a control frame.
145  *  @thread_name: The thread name associated with the master / channel or
146  *                'NULL' if using the 'current' global variable.
147  *
148  *  To be able to post process the PTI contents on host side, a control frame
149  *  is added before sending any PTI content. So the host side knows on
150  *  each PTI frame the name of the thread using a dedicated master / channel.
151  *  The thread name is retrieved from 'current' global variable if 'thread_name'
152  *  is 'NULL', else it is retrieved from 'thread_name' parameter.
153  *  This function builds this frame and sends it to a master ID CONTROL_ID.
154  *  The overhead is only 32 bytes since the driver only writes to HW
155  *  in 32 byte chunks.
156  */
pti_control_frame_built_and_sent(struct pti_masterchannel * mc,const char * thread_name)157 static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
158 					     const char *thread_name)
159 {
160 	/*
161 	 * Since we access the comm member in current's task_struct, we only
162 	 * need to be as large as what 'comm' in that structure is.
163 	 */
164 	char comm[TASK_COMM_LEN];
165 	struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
166 					      .channel = 0};
167 	const char *thread_name_p;
168 	const char *control_format = "%3d %3d %s";
169 	u8 control_frame[CONTROL_FRAME_LEN];
170 
171 	if (!thread_name) {
172 		if (!in_interrupt())
173 			get_task_comm(comm, current);
174 		else
175 			strncpy(comm, "Interrupt", TASK_COMM_LEN);
176 
177 		/* Absolutely ensure our buffer is zero terminated. */
178 		comm[TASK_COMM_LEN-1] = 0;
179 		thread_name_p = comm;
180 	} else {
181 		thread_name_p = thread_name;
182 	}
183 
184 	mccontrol.channel = pti_control_channel;
185 	pti_control_channel = (pti_control_channel + 1) & 0x7f;
186 
187 	snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
188 		mc->channel, thread_name_p);
189 	pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
190 }
191 
192 /**
193  *  pti_write_full_frame_to_aperture()- high level function to
194  *					write to PTI.
195  *
196  *  @mc:  The 'aperture'. It's part of a write address that holds
197  *        a master and channel ID.
198  *  @buf: Data being written to the HW that will ultimately be seen
199  *        in a debugging tool (Fido, Lauterbach).
200  *  @len: Size of buffer.
201  *
202  *  All threads sending data (either console, user space application, ...)
203  *  are calling the high level function to write to PTI meaning that it is
204  *  possible to add a control frame before sending the content.
205  */
pti_write_full_frame_to_aperture(struct pti_masterchannel * mc,const unsigned char * buf,int len)206 static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
207 						const unsigned char *buf,
208 						int len)
209 {
210 	pti_control_frame_built_and_sent(mc, NULL);
211 	pti_write_to_aperture(mc, (u8 *)buf, len);
212 }
213 
214 /**
215  * get_id()- Allocate a master and channel ID.
216  *
217  * @id_array:    an array of bits representing what channel
218  *               id's are allocated for writing.
219  * @max_ids:     The max amount of available write IDs to use.
220  * @base_id:     The starting SW channel ID, based on the Intel
221  *               PTI arch.
222  * @thread_name: The thread name associated with the master / channel or
223  *               'NULL' if using the 'current' global variable.
224  *
225  * Returns:
226  *	pti_masterchannel struct with master, channel ID address
227  *	0 for error
228  *
229  * Each bit in the arrays ia_app and ia_os correspond to a master and
230  * channel id. The bit is one if the id is taken and 0 if free. For
231  * every master there are 128 channel id's.
232  */
get_id(u8 * id_array,int max_ids,int base_id,const char * thread_name)233 static struct pti_masterchannel *get_id(u8 *id_array,
234 					int max_ids,
235 					int base_id,
236 					const char *thread_name)
237 {
238 	struct pti_masterchannel *mc;
239 	int i, j, mask;
240 
241 	mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
242 	if (mc == NULL)
243 		return NULL;
244 
245 	/* look for a byte with a free bit */
246 	for (i = 0; i < max_ids; i++)
247 		if (id_array[i] != 0xff)
248 			break;
249 	if (i == max_ids) {
250 		kfree(mc);
251 		return NULL;
252 	}
253 	/* find the bit in the 128 possible channel opportunities */
254 	mask = 0x80;
255 	for (j = 0; j < 8; j++) {
256 		if ((id_array[i] & mask) == 0)
257 			break;
258 		mask >>= 1;
259 	}
260 
261 	/* grab it */
262 	id_array[i] |= mask;
263 	mc->master  = base_id;
264 	mc->channel = ((i & 0xf)<<3) + j;
265 	/* write new master Id / channel Id allocation to channel control */
266 	pti_control_frame_built_and_sent(mc, thread_name);
267 	return mc;
268 }
269 
270 /*
271  * The following three functions:
272  * pti_request_mastercahannel(), mipi_release_masterchannel()
273  * and pti_writedata() are an API for other kernel drivers to
274  * access PTI.
275  */
276 
277 /**
278  * pti_request_masterchannel()- Kernel API function used to allocate
279  *				a master, channel ID address
280  *				to write to PTI HW.
281  *
282  * @type:        0- request Application  master, channel aperture ID
283  *                  write address.
284  *               1- request OS master, channel aperture ID write
285  *                  address.
286  *               2- request Modem master, channel aperture ID
287  *                  write address.
288  *               Other values, error.
289  * @thread_name: The thread name associated with the master / channel or
290  *               'NULL' if using the 'current' global variable.
291  *
292  * Returns:
293  *	pti_masterchannel struct
294  *	0 for error
295  */
pti_request_masterchannel(u8 type,const char * thread_name)296 struct pti_masterchannel *pti_request_masterchannel(u8 type,
297 						    const char *thread_name)
298 {
299 	struct pti_masterchannel *mc;
300 
301 	mutex_lock(&alloclock);
302 
303 	switch (type) {
304 
305 	case 0:
306 		mc = get_id(drv_data->ia_app, MAX_APP_IDS,
307 			    APP_BASE_ID, thread_name);
308 		break;
309 
310 	case 1:
311 		mc = get_id(drv_data->ia_os, MAX_OS_IDS,
312 			    OS_BASE_ID, thread_name);
313 		break;
314 
315 	case 2:
316 		mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
317 			    MODEM_BASE_ID, thread_name);
318 		break;
319 	default:
320 		mc = NULL;
321 	}
322 
323 	mutex_unlock(&alloclock);
324 	return mc;
325 }
326 EXPORT_SYMBOL_GPL(pti_request_masterchannel);
327 
328 /**
329  * pti_release_masterchannel()- Kernel API function used to release
330  *				a master, channel ID address
331  *				used to write to PTI HW.
332  *
333  * @mc: master, channel apeture ID address to be released.  This
334  *      will de-allocate the structure via kfree().
335  */
pti_release_masterchannel(struct pti_masterchannel * mc)336 void pti_release_masterchannel(struct pti_masterchannel *mc)
337 {
338 	u8 master, channel, i;
339 
340 	mutex_lock(&alloclock);
341 
342 	if (mc) {
343 		master = mc->master;
344 		channel = mc->channel;
345 
346 		if (master == APP_BASE_ID) {
347 			i = channel >> 3;
348 			drv_data->ia_app[i] &=  ~(0x80>>(channel & 0x7));
349 		} else if (master == OS_BASE_ID) {
350 			i = channel >> 3;
351 			drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
352 		} else {
353 			i = channel >> 3;
354 			drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
355 		}
356 
357 		kfree(mc);
358 	}
359 
360 	mutex_unlock(&alloclock);
361 }
362 EXPORT_SYMBOL_GPL(pti_release_masterchannel);
363 
364 /**
365  * pti_writedata()- Kernel API function used to write trace
366  *                  debugging data to PTI HW.
367  *
368  * @mc:    Master, channel aperture ID address to write to.
369  *         Null value will return with no write occurring.
370  * @buf:   Trace debuging data to write to the PTI HW.
371  *         Null value will return with no write occurring.
372  * @count: Size of buf. Value of 0 or a negative number will
373  *         return with no write occuring.
374  */
pti_writedata(struct pti_masterchannel * mc,u8 * buf,int count)375 void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
376 {
377 	/*
378 	 * since this function is exported, this is treated like an
379 	 * API function, thus, all parameters should
380 	 * be checked for validity.
381 	 */
382 	if ((mc != NULL) && (buf != NULL) && (count > 0))
383 		pti_write_to_aperture(mc, buf, count);
384 	return;
385 }
386 EXPORT_SYMBOL_GPL(pti_writedata);
387 
388 /*
389  * for the tty_driver_*() basic function descriptions, see tty_driver.h.
390  * Specific header comments made for PTI-related specifics.
391  */
392 
393 /**
394  * pti_tty_driver_open()- Open an Application master, channel aperture
395  * ID to the PTI device via tty device.
396  *
397  * @tty: tty interface.
398  * @filp: filp interface pased to tty_port_open() call.
399  *
400  * Returns:
401  *	int, 0 for success
402  *	otherwise, fail value
403  *
404  * The main purpose of using the tty device interface is for
405  * each tty port to have a unique PTI write aperture.  In an
406  * example use case, ttyPTI0 gets syslogd and an APP aperture
407  * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
408  * modem messages into PTI.  Modem trace data does not have to
409  * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
410  * master IDs.  These messages go through the PTI HW and out of
411  * the handheld platform and to the Fido/Lauterbach device.
412  */
pti_tty_driver_open(struct tty_struct * tty,struct file * filp)413 static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
414 {
415 	/*
416 	 * we actually want to allocate a new channel per open, per
417 	 * system arch.  HW gives more than plenty channels for a single
418 	 * system task to have its own channel to write trace data. This
419 	 * also removes a locking requirement for the actual write
420 	 * procedure.
421 	 */
422 	return tty_port_open(tty->port, tty, filp);
423 }
424 
425 /**
426  * pti_tty_driver_close()- close tty device and release Application
427  * master, channel aperture ID to the PTI device via tty device.
428  *
429  * @tty: tty interface.
430  * @filp: filp interface pased to tty_port_close() call.
431  *
432  * The main purpose of using the tty device interface is to route
433  * syslog daemon messages to the PTI HW and out of the handheld platform
434  * and to the Fido/Lauterbach device.
435  */
pti_tty_driver_close(struct tty_struct * tty,struct file * filp)436 static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
437 {
438 	tty_port_close(tty->port, tty, filp);
439 }
440 
441 /**
442  * pti_tty_install()- Used to set up specific master-channels
443  *		      to tty ports for organizational purposes when
444  *		      tracing viewed from debuging tools.
445  *
446  * @driver: tty driver information.
447  * @tty: tty struct containing pti information.
448  *
449  * Returns:
450  *	0 for success
451  *	otherwise, error
452  */
pti_tty_install(struct tty_driver * driver,struct tty_struct * tty)453 static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
454 {
455 	int idx = tty->index;
456 	struct pti_tty *pti_tty_data;
457 	int ret = tty_standard_install(driver, tty);
458 
459 	if (ret == 0) {
460 		pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
461 		if (pti_tty_data == NULL)
462 			return -ENOMEM;
463 
464 		if (idx == PTITTY_MINOR_START)
465 			pti_tty_data->mc = pti_request_masterchannel(0, NULL);
466 		else
467 			pti_tty_data->mc = pti_request_masterchannel(2, NULL);
468 
469 		if (pti_tty_data->mc == NULL) {
470 			kfree(pti_tty_data);
471 			return -ENXIO;
472 		}
473 		tty->driver_data = pti_tty_data;
474 	}
475 
476 	return ret;
477 }
478 
479 /**
480  * pti_tty_cleanup()- Used to de-allocate master-channel resources
481  *		      tied to tty's of this driver.
482  *
483  * @tty: tty struct containing pti information.
484  */
pti_tty_cleanup(struct tty_struct * tty)485 static void pti_tty_cleanup(struct tty_struct *tty)
486 {
487 	struct pti_tty *pti_tty_data = tty->driver_data;
488 	if (pti_tty_data == NULL)
489 		return;
490 	pti_release_masterchannel(pti_tty_data->mc);
491 	kfree(pti_tty_data);
492 	tty->driver_data = NULL;
493 }
494 
495 /**
496  * pti_tty_driver_write()-  Write trace debugging data through the char
497  * interface to the PTI HW.  Part of the misc device implementation.
498  *
499  * @tty: tty struct containing pti information.
500  * @buf: trace data to be written.
501  * @len:  # of byte to write.
502  *
503  * Returns:
504  *	int, # of bytes written
505  *	otherwise, error
506  */
pti_tty_driver_write(struct tty_struct * tty,const unsigned char * buf,int len)507 static int pti_tty_driver_write(struct tty_struct *tty,
508 	const unsigned char *buf, int len)
509 {
510 	struct pti_tty *pti_tty_data = tty->driver_data;
511 	if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
512 		pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
513 		return len;
514 	}
515 	/*
516 	 * we can't write to the pti hardware if the private driver_data
517 	 * and the mc address is not there.
518 	 */
519 	else
520 		return -EFAULT;
521 }
522 
523 /**
524  * pti_tty_write_room()- Always returns 2048.
525  *
526  * @tty: contains tty info of the pti driver.
527  */
pti_tty_write_room(struct tty_struct * tty)528 static int pti_tty_write_room(struct tty_struct *tty)
529 {
530 	return 2048;
531 }
532 
533 /**
534  * pti_char_open()- Open an Application master, channel aperture
535  * ID to the PTI device. Part of the misc device implementation.
536  *
537  * @inode: not used.
538  * @filp:  Output- will have a masterchannel struct set containing
539  *                 the allocated application PTI aperture write address.
540  *
541  * Returns:
542  *	int, 0 for success
543  *	otherwise, a fail value
544  */
pti_char_open(struct inode * inode,struct file * filp)545 static int pti_char_open(struct inode *inode, struct file *filp)
546 {
547 	struct pti_masterchannel *mc;
548 
549 	/*
550 	 * We really do want to fail immediately if
551 	 * pti_request_masterchannel() fails,
552 	 * before assigning the value to filp->private_data.
553 	 * Slightly easier to debug if this driver needs debugging.
554 	 */
555 	mc = pti_request_masterchannel(0, NULL);
556 	if (mc == NULL)
557 		return -ENOMEM;
558 	filp->private_data = mc;
559 	return 0;
560 }
561 
562 /**
563  * pti_char_release()-  Close a char channel to the PTI device. Part
564  * of the misc device implementation.
565  *
566  * @inode: Not used in this implementaiton.
567  * @filp:  Contains private_data that contains the master, channel
568  *         ID to be released by the PTI device.
569  *
570  * Returns:
571  *	always 0
572  */
pti_char_release(struct inode * inode,struct file * filp)573 static int pti_char_release(struct inode *inode, struct file *filp)
574 {
575 	pti_release_masterchannel(filp->private_data);
576 	filp->private_data = NULL;
577 	return 0;
578 }
579 
580 /**
581  * pti_char_write()-  Write trace debugging data through the char
582  * interface to the PTI HW.  Part of the misc device implementation.
583  *
584  * @filp:  Contains private data which is used to obtain
585  *         master, channel write ID.
586  * @data:  trace data to be written.
587  * @len:   # of byte to write.
588  * @ppose: Not used in this function implementation.
589  *
590  * Returns:
591  *	int, # of bytes written
592  *	otherwise, error value
593  *
594  * Notes: From side discussions with Alan Cox and experimenting
595  * with PTI debug HW like Nokia's Fido box and Lauterbach
596  * devices, 8192 byte write buffer used by USER_COPY_SIZE was
597  * deemed an appropriate size for this type of usage with
598  * debugging HW.
599  */
pti_char_write(struct file * filp,const char __user * data,size_t len,loff_t * ppose)600 static ssize_t pti_char_write(struct file *filp, const char __user *data,
601 			      size_t len, loff_t *ppose)
602 {
603 	struct pti_masterchannel *mc;
604 	void *kbuf;
605 	const char __user *tmp;
606 	size_t size = USER_COPY_SIZE;
607 	size_t n = 0;
608 
609 	tmp = data;
610 	mc = filp->private_data;
611 
612 	kbuf = kmalloc(size, GFP_KERNEL);
613 	if (kbuf == NULL)  {
614 		pr_err("%s(%d): buf allocation failed\n",
615 			__func__, __LINE__);
616 		return -ENOMEM;
617 	}
618 
619 	do {
620 		if (len - n > USER_COPY_SIZE)
621 			size = USER_COPY_SIZE;
622 		else
623 			size = len - n;
624 
625 		if (copy_from_user(kbuf, tmp, size)) {
626 			kfree(kbuf);
627 			return n ? n : -EFAULT;
628 		}
629 
630 		pti_write_to_aperture(mc, kbuf, size);
631 		n  += size;
632 		tmp += size;
633 
634 	} while (len > n);
635 
636 	kfree(kbuf);
637 	return len;
638 }
639 
640 static const struct tty_operations pti_tty_driver_ops = {
641 	.open		= pti_tty_driver_open,
642 	.close		= pti_tty_driver_close,
643 	.write		= pti_tty_driver_write,
644 	.write_room	= pti_tty_write_room,
645 	.install	= pti_tty_install,
646 	.cleanup	= pti_tty_cleanup
647 };
648 
649 static const struct file_operations pti_char_driver_ops = {
650 	.owner		= THIS_MODULE,
651 	.write		= pti_char_write,
652 	.open		= pti_char_open,
653 	.release	= pti_char_release,
654 };
655 
656 static struct miscdevice pti_char_driver = {
657 	.minor		= MISC_DYNAMIC_MINOR,
658 	.name		= CHARNAME,
659 	.fops		= &pti_char_driver_ops
660 };
661 
662 /**
663  * pti_console_write()-  Write to the console that has been acquired.
664  *
665  * @c:   Not used in this implementaiton.
666  * @buf: Data to be written.
667  * @len: Length of buf.
668  */
pti_console_write(struct console * c,const char * buf,unsigned len)669 static void pti_console_write(struct console *c, const char *buf, unsigned len)
670 {
671 	static struct pti_masterchannel mc = {.master  = CONSOLE_ID,
672 					      .channel = 0};
673 
674 	mc.channel = pti_console_channel;
675 	pti_console_channel = (pti_console_channel + 1) & 0x7f;
676 
677 	pti_write_full_frame_to_aperture(&mc, buf, len);
678 }
679 
680 /**
681  * pti_console_device()-  Return the driver tty structure and set the
682  *			  associated index implementation.
683  *
684  * @c:     Console device of the driver.
685  * @index: index associated with c.
686  *
687  * Returns:
688  *	always value of pti_tty_driver structure when this function
689  *	is called.
690  */
pti_console_device(struct console * c,int * index)691 static struct tty_driver *pti_console_device(struct console *c, int *index)
692 {
693 	*index = c->index;
694 	return pti_tty_driver;
695 }
696 
697 /**
698  * pti_console_setup()-  Initialize console variables used by the driver.
699  *
700  * @c:     Not used.
701  * @opts:  Not used.
702  *
703  * Returns:
704  *	always 0.
705  */
pti_console_setup(struct console * c,char * opts)706 static int pti_console_setup(struct console *c, char *opts)
707 {
708 	pti_console_channel = 0;
709 	pti_control_channel = 0;
710 	return 0;
711 }
712 
713 /*
714  * pti_console struct, used to capture OS printk()'s and shift
715  * out to the PTI device for debugging.  This cannot be
716  * enabled upon boot because of the possibility of eating
717  * any serial console printk's (race condition discovered).
718  * The console should be enabled upon when the tty port is
719  * used for the first time.  Since the primary purpose for
720  * the tty port is to hook up syslog to it, the tty port
721  * will be open for a really long time.
722  */
723 static struct console pti_console = {
724 	.name		= TTYNAME,
725 	.write		= pti_console_write,
726 	.device		= pti_console_device,
727 	.setup		= pti_console_setup,
728 	.flags		= CON_PRINTBUFFER,
729 	.index		= 0,
730 };
731 
732 /**
733  * pti_port_activate()- Used to start/initialize any items upon
734  * first opening of tty_port().
735  *
736  * @port: The tty port number of the PTI device.
737  * @tty:  The tty struct associated with this device.
738  *
739  * Returns:
740  *	always returns 0
741  *
742  * Notes: The primary purpose of the PTI tty port 0 is to hook
743  * the syslog daemon to it; thus this port will be open for a
744  * very long time.
745  */
pti_port_activate(struct tty_port * port,struct tty_struct * tty)746 static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
747 {
748 	if (port->tty->index == PTITTY_MINOR_START)
749 		console_start(&pti_console);
750 	return 0;
751 }
752 
753 /**
754  * pti_port_shutdown()- Used to stop/shutdown any items upon the
755  * last tty port close.
756  *
757  * @port: The tty port number of the PTI device.
758  *
759  * Notes: The primary purpose of the PTI tty port 0 is to hook
760  * the syslog daemon to it; thus this port will be open for a
761  * very long time.
762  */
pti_port_shutdown(struct tty_port * port)763 static void pti_port_shutdown(struct tty_port *port)
764 {
765 	if (port->tty->index == PTITTY_MINOR_START)
766 		console_stop(&pti_console);
767 }
768 
769 static const struct tty_port_operations tty_port_ops = {
770 	.activate = pti_port_activate,
771 	.shutdown = pti_port_shutdown,
772 };
773 
774 /*
775  * Note the _probe() call sets everything up and ties the char and tty
776  * to successfully detecting the PTI device on the pci bus.
777  */
778 
779 /**
780  * pti_pci_probe()- Used to detect pti on the pci bus and set
781  *		    things up in the driver.
782  *
783  * @pdev: pci_dev struct values for pti.
784  * @ent:  pci_device_id struct for pti driver.
785  *
786  * Returns:
787  *	0 for success
788  *	otherwise, error
789  */
pti_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)790 static int pti_pci_probe(struct pci_dev *pdev,
791 		const struct pci_device_id *ent)
792 {
793 	unsigned int a;
794 	int retval;
795 	int pci_bar = 1;
796 
797 	dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
798 			__func__, __LINE__, pdev->vendor, pdev->device);
799 
800 	retval = misc_register(&pti_char_driver);
801 	if (retval) {
802 		pr_err("%s(%d): CHAR registration failed of pti driver\n",
803 			__func__, __LINE__);
804 		pr_err("%s(%d): Error value returned: %d\n",
805 			__func__, __LINE__, retval);
806 		goto err;
807 	}
808 
809 	retval = pci_enable_device(pdev);
810 	if (retval != 0) {
811 		dev_err(&pdev->dev,
812 			"%s: pci_enable_device() returned error %d\n",
813 			__func__, retval);
814 		goto err_unreg_misc;
815 	}
816 
817 	drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
818 	if (drv_data == NULL) {
819 		retval = -ENOMEM;
820 		dev_err(&pdev->dev,
821 			"%s(%d): kmalloc() returned NULL memory.\n",
822 			__func__, __LINE__);
823 		goto err_disable_pci;
824 	}
825 	drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
826 
827 	retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
828 	if (retval != 0) {
829 		dev_err(&pdev->dev,
830 			"%s(%d): pci_request_region() returned error %d\n",
831 			__func__, __LINE__, retval);
832 		goto err_free_dd;
833 	}
834 	drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
835 	drv_data->pti_ioaddr =
836 		ioremap((u32)drv_data->aperture_base,
837 		APERTURE_LEN);
838 	if (!drv_data->pti_ioaddr) {
839 		retval = -ENOMEM;
840 		goto err_rel_reg;
841 	}
842 
843 	pci_set_drvdata(pdev, drv_data);
844 
845 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
846 		struct tty_port *port = &drv_data->port[a];
847 		tty_port_init(port);
848 		port->ops = &tty_port_ops;
849 
850 		tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
851 	}
852 
853 	register_console(&pti_console);
854 
855 	return 0;
856 err_rel_reg:
857 	pci_release_region(pdev, pci_bar);
858 err_free_dd:
859 	kfree(drv_data);
860 err_disable_pci:
861 	pci_disable_device(pdev);
862 err_unreg_misc:
863 	misc_deregister(&pti_char_driver);
864 err:
865 	return retval;
866 }
867 
868 /**
869  * pti_pci_remove()- Driver exit method to remove PTI from
870  *		   PCI bus.
871  * @pdev: variable containing pci info of PTI.
872  */
pti_pci_remove(struct pci_dev * pdev)873 static void pti_pci_remove(struct pci_dev *pdev)
874 {
875 	struct pti_dev *drv_data = pci_get_drvdata(pdev);
876 	unsigned int a;
877 
878 	unregister_console(&pti_console);
879 
880 	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
881 		tty_unregister_device(pti_tty_driver, a);
882 		tty_port_destroy(&drv_data->port[a]);
883 	}
884 
885 	iounmap(drv_data->pti_ioaddr);
886 	kfree(drv_data);
887 	pci_release_region(pdev, 1);
888 	pci_disable_device(pdev);
889 
890 	misc_deregister(&pti_char_driver);
891 }
892 
893 static struct pci_driver pti_pci_driver = {
894 	.name		= PCINAME,
895 	.id_table	= pci_ids,
896 	.probe		= pti_pci_probe,
897 	.remove		= pti_pci_remove,
898 };
899 
900 /**
901  * pti_init()- Overall entry/init call to the pti driver.
902  *             It starts the registration process with the kernel.
903  *
904  * Returns:
905  *	int __init, 0 for success
906  *	otherwise value is an error
907  *
908  */
pti_init(void)909 static int __init pti_init(void)
910 {
911 	int retval;
912 
913 	/* First register module as tty device */
914 
915 	pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
916 	if (pti_tty_driver == NULL) {
917 		pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
918 			__func__, __LINE__);
919 		return -ENOMEM;
920 	}
921 
922 	pti_tty_driver->driver_name		= DRIVERNAME;
923 	pti_tty_driver->name			= TTYNAME;
924 	pti_tty_driver->major			= 0;
925 	pti_tty_driver->minor_start		= PTITTY_MINOR_START;
926 	pti_tty_driver->type			= TTY_DRIVER_TYPE_SYSTEM;
927 	pti_tty_driver->subtype			= SYSTEM_TYPE_SYSCONS;
928 	pti_tty_driver->flags			= TTY_DRIVER_REAL_RAW |
929 						  TTY_DRIVER_DYNAMIC_DEV;
930 	pti_tty_driver->init_termios		= tty_std_termios;
931 
932 	tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
933 
934 	retval = tty_register_driver(pti_tty_driver);
935 	if (retval) {
936 		pr_err("%s(%d): TTY registration failed of pti driver\n",
937 			__func__, __LINE__);
938 		pr_err("%s(%d): Error value returned: %d\n",
939 			__func__, __LINE__, retval);
940 
941 		goto put_tty;
942 	}
943 
944 	retval = pci_register_driver(&pti_pci_driver);
945 	if (retval) {
946 		pr_err("%s(%d): PCI registration failed of pti driver\n",
947 			__func__, __LINE__);
948 		pr_err("%s(%d): Error value returned: %d\n",
949 			__func__, __LINE__, retval);
950 		goto unreg_tty;
951 	}
952 
953 	return 0;
954 unreg_tty:
955 	tty_unregister_driver(pti_tty_driver);
956 put_tty:
957 	put_tty_driver(pti_tty_driver);
958 	pti_tty_driver = NULL;
959 	return retval;
960 }
961 
962 /**
963  * pti_exit()- Unregisters this module as a tty and pci driver.
964  */
pti_exit(void)965 static void __exit pti_exit(void)
966 {
967 	tty_unregister_driver(pti_tty_driver);
968 	pci_unregister_driver(&pti_pci_driver);
969 	put_tty_driver(pti_tty_driver);
970 }
971 
972 module_init(pti_init);
973 module_exit(pti_exit);
974 
975 MODULE_LICENSE("GPL");
976 MODULE_AUTHOR("Ken Mills, Jay Freyensee");
977 MODULE_DESCRIPTION("PTI Driver");
978 
979