1 /*
2  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/mm_types.h>
12 #include <linux/memblock.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 
20 #include "mmu_decl.h"
21 #include <trace/events/thp.h>
22 
23 unsigned long __pmd_frag_nr;
24 EXPORT_SYMBOL(__pmd_frag_nr);
25 unsigned long __pmd_frag_size_shift;
26 EXPORT_SYMBOL(__pmd_frag_size_shift);
27 
28 int (*register_process_table)(unsigned long base, unsigned long page_size,
29 			      unsigned long tbl_size);
30 
31 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
32 /*
33  * This is called when relaxing access to a hugepage. It's also called in the page
34  * fault path when we don't hit any of the major fault cases, ie, a minor
35  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
36  * handled those two for us, we additionally deal with missing execute
37  * permission here on some processors
38  */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)39 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
40 			  pmd_t *pmdp, pmd_t entry, int dirty)
41 {
42 	int changed;
43 #ifdef CONFIG_DEBUG_VM
44 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
45 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
46 #endif
47 	changed = !pmd_same(*(pmdp), entry);
48 	if (changed) {
49 		/*
50 		 * We can use MMU_PAGE_2M here, because only radix
51 		 * path look at the psize.
52 		 */
53 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
54 					pmd_pte(entry), address, MMU_PAGE_2M);
55 	}
56 	return changed;
57 }
58 
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)59 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
60 			      unsigned long address, pmd_t *pmdp)
61 {
62 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
63 }
64 /*
65  * set a new huge pmd. We should not be called for updating
66  * an existing pmd entry. That should go via pmd_hugepage_update.
67  */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)68 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
69 		pmd_t *pmdp, pmd_t pmd)
70 {
71 #ifdef CONFIG_DEBUG_VM
72 	WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
73 	assert_spin_locked(pmd_lockptr(mm, pmdp));
74 	WARN_ON(!(pmd_trans_huge(pmd) || pmd_devmap(pmd)));
75 #endif
76 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
77 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
78 }
79 
do_nothing(void * unused)80 static void do_nothing(void *unused)
81 {
82 
83 }
84 /*
85  * Serialize against find_current_mm_pte which does lock-less
86  * lookup in page tables with local interrupts disabled. For huge pages
87  * it casts pmd_t to pte_t. Since format of pte_t is different from
88  * pmd_t we want to prevent transit from pmd pointing to page table
89  * to pmd pointing to huge page (and back) while interrupts are disabled.
90  * We clear pmd to possibly replace it with page table pointer in
91  * different code paths. So make sure we wait for the parallel
92  * find_current_mm_pte to finish.
93  */
serialize_against_pte_lookup(struct mm_struct * mm)94 void serialize_against_pte_lookup(struct mm_struct *mm)
95 {
96 	smp_mb();
97 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
98 }
99 
100 /*
101  * We use this to invalidate a pmdp entry before switching from a
102  * hugepte to regular pmd entry.
103  */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)104 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
105 		     pmd_t *pmdp)
106 {
107 	unsigned long old_pmd;
108 
109 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
110 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
111 	/*
112 	 * This ensures that generic code that rely on IRQ disabling
113 	 * to prevent a parallel THP split work as expected.
114 	 */
115 	serialize_against_pte_lookup(vma->vm_mm);
116 	return __pmd(old_pmd);
117 }
118 
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)119 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
120 {
121 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
122 }
123 
pfn_pmd(unsigned long pfn,pgprot_t pgprot)124 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
125 {
126 	unsigned long pmdv;
127 
128 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
129 	return pmd_set_protbits(__pmd(pmdv), pgprot);
130 }
131 
mk_pmd(struct page * page,pgprot_t pgprot)132 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
133 {
134 	return pfn_pmd(page_to_pfn(page), pgprot);
135 }
136 
pmd_modify(pmd_t pmd,pgprot_t newprot)137 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
138 {
139 	unsigned long pmdv;
140 
141 	pmdv = pmd_val(pmd);
142 	pmdv &= _HPAGE_CHG_MASK;
143 	return pmd_set_protbits(__pmd(pmdv), newprot);
144 }
145 
146 /*
147  * This is called at the end of handling a user page fault, when the
148  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
149  * We use it to preload an HPTE into the hash table corresponding to
150  * the updated linux HUGE PMD entry.
151  */
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)152 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
153 			  pmd_t *pmd)
154 {
155 	if (radix_enabled())
156 		prefetch((void *)addr);
157 }
158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
159 
160 /* For use by kexec */
mmu_cleanup_all(void)161 void mmu_cleanup_all(void)
162 {
163 	if (radix_enabled())
164 		radix__mmu_cleanup_all();
165 	else if (mmu_hash_ops.hpte_clear_all)
166 		mmu_hash_ops.hpte_clear_all();
167 }
168 
169 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid)170 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
171 {
172 	if (radix_enabled())
173 		return radix__create_section_mapping(start, end, nid);
174 
175 	return hash__create_section_mapping(start, end, nid);
176 }
177 
remove_section_mapping(unsigned long start,unsigned long end)178 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
179 {
180 	if (radix_enabled())
181 		return radix__remove_section_mapping(start, end);
182 
183 	return hash__remove_section_mapping(start, end);
184 }
185 #endif /* CONFIG_MEMORY_HOTPLUG */
186 
mmu_partition_table_init(void)187 void __init mmu_partition_table_init(void)
188 {
189 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
190 	unsigned long ptcr;
191 
192 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
193 	partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
194 						MEMBLOCK_ALLOC_ANYWHERE));
195 
196 	/* Initialize the Partition Table with no entries */
197 	memset((void *)partition_tb, 0, patb_size);
198 
199 	/*
200 	 * update partition table control register,
201 	 * 64 K size.
202 	 */
203 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
204 	mtspr(SPRN_PTCR, ptcr);
205 	powernv_set_nmmu_ptcr(ptcr);
206 }
207 
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1)208 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
209 				   unsigned long dw1)
210 {
211 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
212 
213 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
214 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
215 
216 	/*
217 	 * Global flush of TLBs and partition table caches for this lpid.
218 	 * The type of flush (hash or radix) depends on what the previous
219 	 * use of this partition ID was, not the new use.
220 	 */
221 	asm volatile("ptesync" : : : "memory");
222 	if (old & PATB_HR) {
223 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
224 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
225 		asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
226 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
227 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
228 	} else {
229 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
230 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
231 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
232 	}
233 	/* do we need fixup here ?*/
234 	asm volatile("eieio; tlbsync; ptesync" : : : "memory");
235 }
236 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
237 
get_pmd_from_cache(struct mm_struct * mm)238 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
239 {
240 	void *pmd_frag, *ret;
241 
242 	spin_lock(&mm->page_table_lock);
243 	ret = mm->context.pmd_frag;
244 	if (ret) {
245 		pmd_frag = ret + PMD_FRAG_SIZE;
246 		/*
247 		 * If we have taken up all the fragments mark PTE page NULL
248 		 */
249 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
250 			pmd_frag = NULL;
251 		mm->context.pmd_frag = pmd_frag;
252 	}
253 	spin_unlock(&mm->page_table_lock);
254 	return (pmd_t *)ret;
255 }
256 
__alloc_for_pmdcache(struct mm_struct * mm)257 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
258 {
259 	void *ret = NULL;
260 	struct page *page;
261 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
262 
263 	if (mm == &init_mm)
264 		gfp &= ~__GFP_ACCOUNT;
265 	page = alloc_page(gfp);
266 	if (!page)
267 		return NULL;
268 	if (!pgtable_pmd_page_ctor(page)) {
269 		__free_pages(page, 0);
270 		return NULL;
271 	}
272 
273 	atomic_set(&page->pt_frag_refcount, 1);
274 
275 	ret = page_address(page);
276 	/*
277 	 * if we support only one fragment just return the
278 	 * allocated page.
279 	 */
280 	if (PMD_FRAG_NR == 1)
281 		return ret;
282 
283 	spin_lock(&mm->page_table_lock);
284 	/*
285 	 * If we find pgtable_page set, we return
286 	 * the allocated page with single fragement
287 	 * count.
288 	 */
289 	if (likely(!mm->context.pmd_frag)) {
290 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
291 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
292 	}
293 	spin_unlock(&mm->page_table_lock);
294 
295 	return (pmd_t *)ret;
296 }
297 
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)298 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
299 {
300 	pmd_t *pmd;
301 
302 	pmd = get_pmd_from_cache(mm);
303 	if (pmd)
304 		return pmd;
305 
306 	return __alloc_for_pmdcache(mm);
307 }
308 
pmd_fragment_free(unsigned long * pmd)309 void pmd_fragment_free(unsigned long *pmd)
310 {
311 	struct page *page = virt_to_page(pmd);
312 
313 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
314 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
315 		pgtable_pmd_page_dtor(page);
316 		__free_page(page);
317 	}
318 }
319 
get_pte_from_cache(struct mm_struct * mm)320 static pte_t *get_pte_from_cache(struct mm_struct *mm)
321 {
322 	void *pte_frag, *ret;
323 
324 	spin_lock(&mm->page_table_lock);
325 	ret = mm->context.pte_frag;
326 	if (ret) {
327 		pte_frag = ret + PTE_FRAG_SIZE;
328 		/*
329 		 * If we have taken up all the fragments mark PTE page NULL
330 		 */
331 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
332 			pte_frag = NULL;
333 		mm->context.pte_frag = pte_frag;
334 	}
335 	spin_unlock(&mm->page_table_lock);
336 	return (pte_t *)ret;
337 }
338 
__alloc_for_ptecache(struct mm_struct * mm,int kernel)339 static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel)
340 {
341 	void *ret = NULL;
342 	struct page *page;
343 
344 	if (!kernel) {
345 		page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
346 		if (!page)
347 			return NULL;
348 		if (!pgtable_page_ctor(page)) {
349 			__free_page(page);
350 			return NULL;
351 		}
352 	} else {
353 		page = alloc_page(PGALLOC_GFP);
354 		if (!page)
355 			return NULL;
356 	}
357 
358 	atomic_set(&page->pt_frag_refcount, 1);
359 
360 	ret = page_address(page);
361 	/*
362 	 * if we support only one fragment just return the
363 	 * allocated page.
364 	 */
365 	if (PTE_FRAG_NR == 1)
366 		return ret;
367 	spin_lock(&mm->page_table_lock);
368 	/*
369 	 * If we find pgtable_page set, we return
370 	 * the allocated page with single fragement
371 	 * count.
372 	 */
373 	if (likely(!mm->context.pte_frag)) {
374 		atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR);
375 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
376 	}
377 	spin_unlock(&mm->page_table_lock);
378 
379 	return (pte_t *)ret;
380 }
381 
pte_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr,int kernel)382 pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
383 {
384 	pte_t *pte;
385 
386 	pte = get_pte_from_cache(mm);
387 	if (pte)
388 		return pte;
389 
390 	return __alloc_for_ptecache(mm, kernel);
391 }
392 
pte_fragment_free(unsigned long * table,int kernel)393 void pte_fragment_free(unsigned long *table, int kernel)
394 {
395 	struct page *page = virt_to_page(table);
396 
397 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
398 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
399 		if (!kernel)
400 			pgtable_page_dtor(page);
401 		__free_page(page);
402 	}
403 }
404 
pgtable_free(void * table,int index)405 static inline void pgtable_free(void *table, int index)
406 {
407 	switch (index) {
408 	case PTE_INDEX:
409 		pte_fragment_free(table, 0);
410 		break;
411 	case PMD_INDEX:
412 		pmd_fragment_free(table);
413 		break;
414 	case PUD_INDEX:
415 		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
416 		break;
417 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
418 		/* 16M hugepd directory at pud level */
419 	case HTLB_16M_INDEX:
420 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
421 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
422 		break;
423 		/* 16G hugepd directory at the pgd level */
424 	case HTLB_16G_INDEX:
425 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
426 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
427 		break;
428 #endif
429 		/* We don't free pgd table via RCU callback */
430 	default:
431 		BUG();
432 	}
433 }
434 
435 #ifdef CONFIG_SMP
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)436 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
437 {
438 	unsigned long pgf = (unsigned long)table;
439 
440 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
441 	pgf |= index;
442 	tlb_remove_table(tlb, (void *)pgf);
443 }
444 
__tlb_remove_table(void * _table)445 void __tlb_remove_table(void *_table)
446 {
447 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
448 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
449 
450 	return pgtable_free(table, index);
451 }
452 #else
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)453 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
454 {
455 	return pgtable_free(table, index);
456 }
457 #endif
458 
459 #ifdef CONFIG_PROC_FS
460 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
461 
arch_report_meminfo(struct seq_file * m)462 void arch_report_meminfo(struct seq_file *m)
463 {
464 	/*
465 	 * Hash maps the memory with one size mmu_linear_psize.
466 	 * So don't bother to print these on hash
467 	 */
468 	if (!radix_enabled())
469 		return;
470 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
471 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
472 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
473 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
474 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
475 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
476 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
477 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
478 }
479 #endif /* CONFIG_PROC_FS */
480