1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/5level-fixup.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11
12 /*
13 * Common bits between hash and Radix page table
14 */
15 #define _PAGE_BIT_SWAP_TYPE 0
16
17 #define _PAGE_NA 0
18 #define _PAGE_RO 0
19 #define _PAGE_USER 0
20
21 #define _PAGE_EXEC 0x00001 /* execute permission */
22 #define _PAGE_WRITE 0x00002 /* write access allowed */
23 #define _PAGE_READ 0x00004 /* read access allowed */
24 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
27 #define _PAGE_SAO 0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY 0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
32 /*
33 * Software bits
34 */
35 #define _RPAGE_SW0 0x2000000000000000UL
36 #define _RPAGE_SW1 0x00800
37 #define _RPAGE_SW2 0x00400
38 #define _RPAGE_SW3 0x00200
39 #define _RPAGE_RSV1 0x1000000000000000UL
40 #define _RPAGE_RSV2 0x0800000000000000UL
41 #define _RPAGE_RSV3 0x0400000000000000UL
42 #define _RPAGE_RSV4 0x0200000000000000UL
43 #define _RPAGE_RSV5 0x00040UL
44
45 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
47 /*
48 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
49 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
50 * differentiate between two use a SW field when invalidating.
51 *
52 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
53 *
54 * This is used only when _PAGE_PRESENT is cleared.
55 */
56 #define _PAGE_INVALID _RPAGE_SW0
57
58 /*
59 * Top and bottom bits of RPN which can be used by hash
60 * translation mode, because we expect them to be zero
61 * otherwise.
62 */
63 #define _RPAGE_RPN0 0x01000
64 #define _RPAGE_RPN1 0x02000
65 #define _RPAGE_RPN44 0x0100000000000000UL
66 #define _RPAGE_RPN43 0x0080000000000000UL
67 #define _RPAGE_RPN42 0x0040000000000000UL
68 #define _RPAGE_RPN41 0x0020000000000000UL
69
70 /* Max physical address bit as per radix table */
71 #define _RPAGE_PA_MAX 57
72
73 /*
74 * Max physical address bit we will use for now.
75 *
76 * This is mostly a hardware limitation and for now Power9 has
77 * a 51 bit limit.
78 *
79 * This is different from the number of physical bit required to address
80 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
81 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
82 * number of sections we can support (SECTIONS_SHIFT).
83 *
84 * This is different from Radix page table limitation above and
85 * should always be less than that. The limit is done such that
86 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
87 * for hash linux page table specific bits.
88 *
89 * In order to be compatible with future hardware generations we keep
90 * some offsets and limit this for now to 53
91 */
92 #define _PAGE_PA_MAX 53
93
94 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
95 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
96 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
97 #define __HAVE_ARCH_PTE_DEVMAP
98
99 /*
100 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
101 * Instead of fixing all of them, add an alternate define which
102 * maps CI pte mapping.
103 */
104 #define _PAGE_NO_CACHE _PAGE_TOLERANT
105 /*
106 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
107 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
108 * and every thing below PAGE_SHIFT;
109 */
110 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
111 /*
112 * set of bits not changed in pmd_modify. Even though we have hash specific bits
113 * in here, on radix we expect them to be zero.
114 */
115 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
116 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
117 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
118 /*
119 * user access blocked by key
120 */
121 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
122 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
123 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
124 _PAGE_RW | _PAGE_EXEC)
125 /*
126 * No page size encoding in the linux PTE
127 */
128 #define _PAGE_PSIZE 0
129 /*
130 * _PAGE_CHG_MASK masks of bits that are to be preserved across
131 * pgprot changes
132 */
133 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
134 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
135 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
136
137 #define H_PTE_PKEY (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
138 H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
139 /*
140 * Mask of bits returned by pte_pgprot()
141 */
142 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
143 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
144 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
145 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
146 /*
147 * We define 2 sets of base prot bits, one for basic pages (ie,
148 * cacheable kernel and user pages) and one for non cacheable
149 * pages. We always set _PAGE_COHERENT when SMP is enabled or
150 * the processor might need it for DMA coherency.
151 */
152 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
153 #define _PAGE_BASE (_PAGE_BASE_NC)
154
155 /* Permission masks used to generate the __P and __S table,
156 *
157 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
158 *
159 * Write permissions imply read permissions for now (we could make write-only
160 * pages on BookE but we don't bother for now). Execute permission control is
161 * possible on platforms that define _PAGE_EXEC
162 *
163 * Note due to the way vm flags are laid out, the bits are XWR
164 */
165 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
166 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
167 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
168 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
169 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
170 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
171 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
172
173 #define __P000 PAGE_NONE
174 #define __P001 PAGE_READONLY
175 #define __P010 PAGE_COPY
176 #define __P011 PAGE_COPY
177 #define __P100 PAGE_READONLY_X
178 #define __P101 PAGE_READONLY_X
179 #define __P110 PAGE_COPY_X
180 #define __P111 PAGE_COPY_X
181
182 #define __S000 PAGE_NONE
183 #define __S001 PAGE_READONLY
184 #define __S010 PAGE_SHARED
185 #define __S011 PAGE_SHARED
186 #define __S100 PAGE_READONLY_X
187 #define __S101 PAGE_READONLY_X
188 #define __S110 PAGE_SHARED_X
189 #define __S111 PAGE_SHARED_X
190
191 /* Permission masks used for kernel mappings */
192 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
193 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
194 _PAGE_TOLERANT)
195 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
196 _PAGE_NON_IDEMPOTENT)
197 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
198 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
199 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
200
201 /*
202 * Protection used for kernel text. We want the debuggers to be able to
203 * set breakpoints anywhere, so don't write protect the kernel text
204 * on platforms where such control is possible.
205 */
206 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
207 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
208 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
209 #else
210 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
211 #endif
212
213 /* Make modules code happy. We don't set RO yet */
214 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
215 #define PAGE_AGP (PAGE_KERNEL_NC)
216
217 #ifndef __ASSEMBLY__
218 /*
219 * page table defines
220 */
221 extern unsigned long __pte_index_size;
222 extern unsigned long __pmd_index_size;
223 extern unsigned long __pud_index_size;
224 extern unsigned long __pgd_index_size;
225 extern unsigned long __pud_cache_index;
226 #define PTE_INDEX_SIZE __pte_index_size
227 #define PMD_INDEX_SIZE __pmd_index_size
228 #define PUD_INDEX_SIZE __pud_index_size
229 #define PGD_INDEX_SIZE __pgd_index_size
230 /* pmd table use page table fragments */
231 #define PMD_CACHE_INDEX 0
232 #define PUD_CACHE_INDEX __pud_cache_index
233 /*
234 * Because of use of pte fragments and THP, size of page table
235 * are not always derived out of index size above.
236 */
237 extern unsigned long __pte_table_size;
238 extern unsigned long __pmd_table_size;
239 extern unsigned long __pud_table_size;
240 extern unsigned long __pgd_table_size;
241 #define PTE_TABLE_SIZE __pte_table_size
242 #define PMD_TABLE_SIZE __pmd_table_size
243 #define PUD_TABLE_SIZE __pud_table_size
244 #define PGD_TABLE_SIZE __pgd_table_size
245
246 extern unsigned long __pmd_val_bits;
247 extern unsigned long __pud_val_bits;
248 extern unsigned long __pgd_val_bits;
249 #define PMD_VAL_BITS __pmd_val_bits
250 #define PUD_VAL_BITS __pud_val_bits
251 #define PGD_VAL_BITS __pgd_val_bits
252
253 extern unsigned long __pte_frag_nr;
254 #define PTE_FRAG_NR __pte_frag_nr
255 extern unsigned long __pte_frag_size_shift;
256 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
257 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
258
259 extern unsigned long __pmd_frag_nr;
260 #define PMD_FRAG_NR __pmd_frag_nr
261 extern unsigned long __pmd_frag_size_shift;
262 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
263 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
264
265 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
266 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
267 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
268 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
269
270 /* PMD_SHIFT determines what a second-level page table entry can map */
271 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
272 #define PMD_SIZE (1UL << PMD_SHIFT)
273 #define PMD_MASK (~(PMD_SIZE-1))
274
275 /* PUD_SHIFT determines what a third-level page table entry can map */
276 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
277 #define PUD_SIZE (1UL << PUD_SHIFT)
278 #define PUD_MASK (~(PUD_SIZE-1))
279
280 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
281 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
282 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
283 #define PGDIR_MASK (~(PGDIR_SIZE-1))
284
285 /* Bits to mask out from a PMD to get to the PTE page */
286 #define PMD_MASKED_BITS 0xc0000000000000ffUL
287 /* Bits to mask out from a PUD to get to the PMD page */
288 #define PUD_MASKED_BITS 0xc0000000000000ffUL
289 /* Bits to mask out from a PGD to get to the PUD page */
290 #define PGD_MASKED_BITS 0xc0000000000000ffUL
291
292 /*
293 * Used as an indicator for rcu callback functions
294 */
295 enum pgtable_index {
296 PTE_INDEX = 0,
297 PMD_INDEX,
298 PUD_INDEX,
299 PGD_INDEX,
300 /*
301 * Below are used with 4k page size and hugetlb
302 */
303 HTLB_16M_INDEX,
304 HTLB_16G_INDEX,
305 };
306
307 extern unsigned long __vmalloc_start;
308 extern unsigned long __vmalloc_end;
309 #define VMALLOC_START __vmalloc_start
310 #define VMALLOC_END __vmalloc_end
311
312 extern unsigned long __kernel_virt_start;
313 extern unsigned long __kernel_virt_size;
314 extern unsigned long __kernel_io_start;
315 #define KERN_VIRT_START __kernel_virt_start
316 #define KERN_VIRT_SIZE __kernel_virt_size
317 #define KERN_IO_START __kernel_io_start
318 extern struct page *vmemmap;
319 extern unsigned long ioremap_bot;
320 extern unsigned long pci_io_base;
321 #endif /* __ASSEMBLY__ */
322
323 #include <asm/book3s/64/hash.h>
324 #include <asm/book3s/64/radix.h>
325
326 #ifdef CONFIG_PPC_64K_PAGES
327 #include <asm/book3s/64/pgtable-64k.h>
328 #else
329 #include <asm/book3s/64/pgtable-4k.h>
330 #endif
331
332 #include <asm/barrier.h>
333 /*
334 * The second half of the kernel virtual space is used for IO mappings,
335 * it's itself carved into the PIO region (ISA and PHB IO space) and
336 * the ioremap space
337 *
338 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
339 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
340 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
341 */
342 #define FULL_IO_SIZE 0x80000000ul
343 #define ISA_IO_BASE (KERN_IO_START)
344 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
345 #define PHB_IO_BASE (ISA_IO_END)
346 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
347 #define IOREMAP_BASE (PHB_IO_END)
348 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
349
350 /* Advertise special mapping type for AGP */
351 #define HAVE_PAGE_AGP
352
353 #ifndef __ASSEMBLY__
354
355 /*
356 * This is the default implementation of various PTE accessors, it's
357 * used in all cases except Book3S with 64K pages where we have a
358 * concept of sub-pages
359 */
360 #ifndef __real_pte
361
362 #define __real_pte(e, p, o) ((real_pte_t){(e)})
363 #define __rpte_to_pte(r) ((r).pte)
364 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
365
366 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
367 do { \
368 index = 0; \
369 shift = mmu_psize_defs[psize].shift; \
370
371 #define pte_iterate_hashed_end() } while(0)
372
373 /*
374 * We expect this to be called only for user addresses or kernel virtual
375 * addresses other than the linear mapping.
376 */
377 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
378
379 #endif /* __real_pte */
380
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)381 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
382 pte_t *ptep, unsigned long clr,
383 unsigned long set, int huge)
384 {
385 if (radix_enabled())
386 return radix__pte_update(mm, addr, ptep, clr, set, huge);
387 return hash__pte_update(mm, addr, ptep, clr, set, huge);
388 }
389 /*
390 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
391 * We currently remove entries from the hashtable regardless of whether
392 * the entry was young or dirty.
393 *
394 * We should be more intelligent about this but for the moment we override
395 * these functions and force a tlb flush unconditionally
396 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
397 * function for both hash and radix.
398 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)399 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
400 unsigned long addr, pte_t *ptep)
401 {
402 unsigned long old;
403
404 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
405 return 0;
406 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
407 return (old & _PAGE_ACCESSED) != 0;
408 }
409
410 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
411 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
412 ({ \
413 int __r; \
414 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
415 __r; \
416 })
417
__pte_write(pte_t pte)418 static inline int __pte_write(pte_t pte)
419 {
420 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
421 }
422
423 #ifdef CONFIG_NUMA_BALANCING
424 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)425 static inline bool pte_savedwrite(pte_t pte)
426 {
427 /*
428 * Saved write ptes are prot none ptes that doesn't have
429 * privileged bit sit. We mark prot none as one which has
430 * present and pviliged bit set and RWX cleared. To mark
431 * protnone which used to have _PAGE_WRITE set we clear
432 * the privileged bit.
433 */
434 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
435 }
436 #else
437 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)438 static inline bool pte_savedwrite(pte_t pte)
439 {
440 return false;
441 }
442 #endif
443
pte_write(pte_t pte)444 static inline int pte_write(pte_t pte)
445 {
446 return __pte_write(pte) || pte_savedwrite(pte);
447 }
448
pte_read(pte_t pte)449 static inline int pte_read(pte_t pte)
450 {
451 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
452 }
453
454 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)455 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
456 pte_t *ptep)
457 {
458 if (__pte_write(*ptep))
459 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
460 else if (unlikely(pte_savedwrite(*ptep)))
461 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
462 }
463
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)464 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
465 unsigned long addr, pte_t *ptep)
466 {
467 /*
468 * We should not find protnone for hugetlb, but this complete the
469 * interface.
470 */
471 if (__pte_write(*ptep))
472 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
473 else if (unlikely(pte_savedwrite(*ptep)))
474 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
475 }
476
477 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)478 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long addr, pte_t *ptep)
480 {
481 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
482 return __pte(old);
483 }
484
485 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)486 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
487 unsigned long addr,
488 pte_t *ptep, int full)
489 {
490 if (full && radix_enabled()) {
491 /*
492 * We know that this is a full mm pte clear and
493 * hence can be sure there is no parallel set_pte.
494 */
495 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
496 }
497 return ptep_get_and_clear(mm, addr, ptep);
498 }
499
500
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)501 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
502 pte_t * ptep)
503 {
504 pte_update(mm, addr, ptep, ~0UL, 0, 0);
505 }
506
pte_dirty(pte_t pte)507 static inline int pte_dirty(pte_t pte)
508 {
509 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
510 }
511
pte_young(pte_t pte)512 static inline int pte_young(pte_t pte)
513 {
514 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
515 }
516
pte_special(pte_t pte)517 static inline int pte_special(pte_t pte)
518 {
519 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
520 }
521
pte_pgprot(pte_t pte)522 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
523
524 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)525 static inline bool pte_soft_dirty(pte_t pte)
526 {
527 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
528 }
529
pte_mksoft_dirty(pte_t pte)530 static inline pte_t pte_mksoft_dirty(pte_t pte)
531 {
532 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
533 }
534
pte_clear_soft_dirty(pte_t pte)535 static inline pte_t pte_clear_soft_dirty(pte_t pte)
536 {
537 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
538 }
539 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
540
541 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)542 static inline int pte_protnone(pte_t pte)
543 {
544 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
545 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
546 }
547
548 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)549 static inline pte_t pte_mk_savedwrite(pte_t pte)
550 {
551 /*
552 * Used by Autonuma subsystem to preserve the write bit
553 * while marking the pte PROT_NONE. Only allow this
554 * on PROT_NONE pte
555 */
556 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
557 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
558 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
559 }
560
561 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)562 static inline pte_t pte_clear_savedwrite(pte_t pte)
563 {
564 /*
565 * Used by KSM subsystem to make a protnone pte readonly.
566 */
567 VM_BUG_ON(!pte_protnone(pte));
568 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
569 }
570 #else
571 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)572 static inline pte_t pte_clear_savedwrite(pte_t pte)
573 {
574 VM_WARN_ON(1);
575 return __pte(pte_val(pte) & ~_PAGE_WRITE);
576 }
577 #endif /* CONFIG_NUMA_BALANCING */
578
pte_present(pte_t pte)579 static inline int pte_present(pte_t pte)
580 {
581 /*
582 * A pte is considerent present if _PAGE_PRESENT is set.
583 * We also need to consider the pte present which is marked
584 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
585 * if we find _PAGE_PRESENT cleared.
586 */
587 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
588 }
589
590 #ifdef CONFIG_PPC_MEM_KEYS
591 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
592 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)593 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
594 {
595 return true;
596 }
597 #endif /* CONFIG_PPC_MEM_KEYS */
598
599 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)600 static inline bool pte_access_permitted(pte_t pte, bool write)
601 {
602 unsigned long pteval = pte_val(pte);
603 /* Also check for pte_user */
604 unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
605 /*
606 * _PAGE_READ is needed for any access and will be
607 * cleared for PROT_NONE
608 */
609 unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
610
611 if (write)
612 need_pte_bits |= _PAGE_WRITE;
613
614 if ((pteval & need_pte_bits) != need_pte_bits)
615 return false;
616
617 if ((pteval & clear_pte_bits) == clear_pte_bits)
618 return false;
619
620 return arch_pte_access_permitted(pte_val(pte), write, 0);
621 }
622
623 /*
624 * Conversion functions: convert a page and protection to a page entry,
625 * and a page entry and page directory to the page they refer to.
626 *
627 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
628 * long for now.
629 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)630 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
631 {
632 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
633 pgprot_val(pgprot));
634 }
635
pte_pfn(pte_t pte)636 static inline unsigned long pte_pfn(pte_t pte)
637 {
638 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
639 }
640
641 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)642 static inline pte_t pte_wrprotect(pte_t pte)
643 {
644 if (unlikely(pte_savedwrite(pte)))
645 return pte_clear_savedwrite(pte);
646 return __pte(pte_val(pte) & ~_PAGE_WRITE);
647 }
648
pte_mkclean(pte_t pte)649 static inline pte_t pte_mkclean(pte_t pte)
650 {
651 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
652 }
653
pte_mkold(pte_t pte)654 static inline pte_t pte_mkold(pte_t pte)
655 {
656 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
657 }
658
pte_mkwrite(pte_t pte)659 static inline pte_t pte_mkwrite(pte_t pte)
660 {
661 /*
662 * write implies read, hence set both
663 */
664 return __pte(pte_val(pte) | _PAGE_RW);
665 }
666
pte_mkdirty(pte_t pte)667 static inline pte_t pte_mkdirty(pte_t pte)
668 {
669 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
670 }
671
pte_mkyoung(pte_t pte)672 static inline pte_t pte_mkyoung(pte_t pte)
673 {
674 return __pte(pte_val(pte) | _PAGE_ACCESSED);
675 }
676
pte_mkspecial(pte_t pte)677 static inline pte_t pte_mkspecial(pte_t pte)
678 {
679 return __pte(pte_val(pte) | _PAGE_SPECIAL);
680 }
681
pte_mkhuge(pte_t pte)682 static inline pte_t pte_mkhuge(pte_t pte)
683 {
684 return pte;
685 }
686
pte_mkdevmap(pte_t pte)687 static inline pte_t pte_mkdevmap(pte_t pte)
688 {
689 return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
690 }
691
692 /*
693 * This is potentially called with a pmd as the argument, in which case it's not
694 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
695 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
696 * use in page directory entries (ie. non-ptes).
697 */
pte_devmap(pte_t pte)698 static inline int pte_devmap(pte_t pte)
699 {
700 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
701
702 return (pte_raw(pte) & mask) == mask;
703 }
704
pte_modify(pte_t pte,pgprot_t newprot)705 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
706 {
707 /* FIXME!! check whether this need to be a conditional */
708 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
709 }
710
pte_user(pte_t pte)711 static inline bool pte_user(pte_t pte)
712 {
713 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
714 }
715
716 /* Encode and de-code a swap entry */
717 #define MAX_SWAPFILES_CHECK() do { \
718 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
719 /* \
720 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
721 * We filter HPTEFLAGS on set_pte. \
722 */ \
723 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
724 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
725 } while (0)
726 /*
727 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
728 */
729 #define SWP_TYPE_BITS 5
730 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
731 & ((1UL << SWP_TYPE_BITS) - 1))
732 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
733 #define __swp_entry(type, offset) ((swp_entry_t) { \
734 ((type) << _PAGE_BIT_SWAP_TYPE) \
735 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
736 /*
737 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
738 * swap type and offset we get from swap and convert that to pte to find a
739 * matching pte in linux page table.
740 * Clear bits not found in swap entries here.
741 */
742 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
743 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
744
745 #ifdef CONFIG_MEM_SOFT_DIRTY
746 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
747 #else
748 #define _PAGE_SWP_SOFT_DIRTY 0UL
749 #endif /* CONFIG_MEM_SOFT_DIRTY */
750
751 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)752 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
753 {
754 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
755 }
756
pte_swp_soft_dirty(pte_t pte)757 static inline bool pte_swp_soft_dirty(pte_t pte)
758 {
759 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
760 }
761
pte_swp_clear_soft_dirty(pte_t pte)762 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
763 {
764 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
765 }
766 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
767
check_pte_access(unsigned long access,unsigned long ptev)768 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
769 {
770 /*
771 * This check for _PAGE_RWX and _PAGE_PRESENT bits
772 */
773 if (access & ~ptev)
774 return false;
775 /*
776 * This check for access to privilege space
777 */
778 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
779 return false;
780
781 return true;
782 }
783 /*
784 * Generic functions with hash/radix callbacks
785 */
786
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)787 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
788 pte_t *ptep, pte_t entry,
789 unsigned long address,
790 int psize)
791 {
792 if (radix_enabled())
793 return radix__ptep_set_access_flags(vma, ptep, entry,
794 address, psize);
795 return hash__ptep_set_access_flags(ptep, entry);
796 }
797
798 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)799 static inline int pte_same(pte_t pte_a, pte_t pte_b)
800 {
801 if (radix_enabled())
802 return radix__pte_same(pte_a, pte_b);
803 return hash__pte_same(pte_a, pte_b);
804 }
805
pte_none(pte_t pte)806 static inline int pte_none(pte_t pte)
807 {
808 if (radix_enabled())
809 return radix__pte_none(pte);
810 return hash__pte_none(pte);
811 }
812
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)813 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
814 pte_t *ptep, pte_t pte, int percpu)
815 {
816 if (radix_enabled())
817 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
818 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
819 }
820
821 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
822
823 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)824 static inline pgprot_t pgprot_noncached(pgprot_t prot)
825 {
826 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
827 _PAGE_NON_IDEMPOTENT);
828 }
829
830 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)831 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
832 {
833 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
834 _PAGE_TOLERANT);
835 }
836
837 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)838 static inline pgprot_t pgprot_cached(pgprot_t prot)
839 {
840 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
841 }
842
843 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)844 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
845 {
846 return pgprot_noncached_wc(prot);
847 }
848 /*
849 * check a pte mapping have cache inhibited property
850 */
pte_ci(pte_t pte)851 static inline bool pte_ci(pte_t pte)
852 {
853 unsigned long pte_v = pte_val(pte);
854
855 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
856 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
857 return true;
858 return false;
859 }
860
pmd_set(pmd_t * pmdp,unsigned long val)861 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
862 {
863 *pmdp = __pmd(val);
864 }
865
pmd_clear(pmd_t * pmdp)866 static inline void pmd_clear(pmd_t *pmdp)
867 {
868 *pmdp = __pmd(0);
869 }
870
pmd_none(pmd_t pmd)871 static inline int pmd_none(pmd_t pmd)
872 {
873 return !pmd_raw(pmd);
874 }
875
pmd_present(pmd_t pmd)876 static inline int pmd_present(pmd_t pmd)
877 {
878
879 return !pmd_none(pmd);
880 }
881
pmd_bad(pmd_t pmd)882 static inline int pmd_bad(pmd_t pmd)
883 {
884 if (radix_enabled())
885 return radix__pmd_bad(pmd);
886 return hash__pmd_bad(pmd);
887 }
888
pud_set(pud_t * pudp,unsigned long val)889 static inline void pud_set(pud_t *pudp, unsigned long val)
890 {
891 *pudp = __pud(val);
892 }
893
pud_clear(pud_t * pudp)894 static inline void pud_clear(pud_t *pudp)
895 {
896 *pudp = __pud(0);
897 }
898
pud_none(pud_t pud)899 static inline int pud_none(pud_t pud)
900 {
901 return !pud_raw(pud);
902 }
903
pud_present(pud_t pud)904 static inline int pud_present(pud_t pud)
905 {
906 return !pud_none(pud);
907 }
908
909 extern struct page *pud_page(pud_t pud);
910 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)911 static inline pte_t pud_pte(pud_t pud)
912 {
913 return __pte_raw(pud_raw(pud));
914 }
915
pte_pud(pte_t pte)916 static inline pud_t pte_pud(pte_t pte)
917 {
918 return __pud_raw(pte_raw(pte));
919 }
920 #define pud_write(pud) pte_write(pud_pte(pud))
921
pud_bad(pud_t pud)922 static inline int pud_bad(pud_t pud)
923 {
924 if (radix_enabled())
925 return radix__pud_bad(pud);
926 return hash__pud_bad(pud);
927 }
928
929 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)930 static inline bool pud_access_permitted(pud_t pud, bool write)
931 {
932 return pte_access_permitted(pud_pte(pud), write);
933 }
934
935 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
pgd_set(pgd_t * pgdp,unsigned long val)936 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
937 {
938 *pgdp = __pgd(val);
939 }
940
pgd_clear(pgd_t * pgdp)941 static inline void pgd_clear(pgd_t *pgdp)
942 {
943 *pgdp = __pgd(0);
944 }
945
pgd_none(pgd_t pgd)946 static inline int pgd_none(pgd_t pgd)
947 {
948 return !pgd_raw(pgd);
949 }
950
pgd_present(pgd_t pgd)951 static inline int pgd_present(pgd_t pgd)
952 {
953 return !pgd_none(pgd);
954 }
955
pgd_pte(pgd_t pgd)956 static inline pte_t pgd_pte(pgd_t pgd)
957 {
958 return __pte_raw(pgd_raw(pgd));
959 }
960
pte_pgd(pte_t pte)961 static inline pgd_t pte_pgd(pte_t pte)
962 {
963 return __pgd_raw(pte_raw(pte));
964 }
965
pgd_bad(pgd_t pgd)966 static inline int pgd_bad(pgd_t pgd)
967 {
968 if (radix_enabled())
969 return radix__pgd_bad(pgd);
970 return hash__pgd_bad(pgd);
971 }
972
973 #define pgd_access_permitted pgd_access_permitted
pgd_access_permitted(pgd_t pgd,bool write)974 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
975 {
976 return pte_access_permitted(pgd_pte(pgd), write);
977 }
978
979 extern struct page *pgd_page(pgd_t pgd);
980
981 /* Pointers in the page table tree are physical addresses */
982 #define __pgtable_ptr_val(ptr) __pa(ptr)
983
984 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
985 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
986 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
987
988 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
989 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
990 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
991 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
992
993 /*
994 * Find an entry in a page-table-directory. We combine the address region
995 * (the high order N bits) and the pgd portion of the address.
996 */
997
998 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
999
1000 #define pud_offset(pgdp, addr) \
1001 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1002 #define pmd_offset(pudp,addr) \
1003 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1004 #define pte_offset_kernel(dir,addr) \
1005 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1006
1007 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
1008 #define pte_unmap(pte) do { } while(0)
1009
1010 /* to find an entry in a kernel page-table-directory */
1011 /* This now only contains the vmalloc pages */
1012 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1013
1014 #define pte_ERROR(e) \
1015 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1016 #define pmd_ERROR(e) \
1017 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1018 #define pud_ERROR(e) \
1019 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1020 #define pgd_ERROR(e) \
1021 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1022
map_kernel_page(unsigned long ea,unsigned long pa,unsigned long flags)1023 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1024 unsigned long flags)
1025 {
1026 if (radix_enabled()) {
1027 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1028 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1029 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1030 #endif
1031 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1032 }
1033 return hash__map_kernel_page(ea, pa, flags);
1034 }
1035
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1036 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1037 unsigned long page_size,
1038 unsigned long phys)
1039 {
1040 if (radix_enabled())
1041 return radix__vmemmap_create_mapping(start, page_size, phys);
1042 return hash__vmemmap_create_mapping(start, page_size, phys);
1043 }
1044
1045 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1046 static inline void vmemmap_remove_mapping(unsigned long start,
1047 unsigned long page_size)
1048 {
1049 if (radix_enabled())
1050 return radix__vmemmap_remove_mapping(start, page_size);
1051 return hash__vmemmap_remove_mapping(start, page_size);
1052 }
1053 #endif
1054
pmd_pte(pmd_t pmd)1055 static inline pte_t pmd_pte(pmd_t pmd)
1056 {
1057 return __pte_raw(pmd_raw(pmd));
1058 }
1059
pte_pmd(pte_t pte)1060 static inline pmd_t pte_pmd(pte_t pte)
1061 {
1062 return __pmd_raw(pte_raw(pte));
1063 }
1064
pmdp_ptep(pmd_t * pmd)1065 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1066 {
1067 return (pte_t *)pmd;
1068 }
1069 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1070 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1071 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1072 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1073 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1074 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1075 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1076 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1077 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1078 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1079 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1080
1081 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1082 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1083 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1084 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1085 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1086
1087 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1088 static inline int pmd_protnone(pmd_t pmd)
1089 {
1090 return pte_protnone(pmd_pte(pmd));
1091 }
1092 #endif /* CONFIG_NUMA_BALANCING */
1093
1094 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1095 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
1096 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1097
1098 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1099 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1100 {
1101 return pte_access_permitted(pmd_pte(pmd), write);
1102 }
1103
1104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1107 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1108 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1109 pmd_t *pmdp, pmd_t pmd);
1110 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1111 pmd_t *pmd);
1112 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1113 static inline int has_transparent_hugepage(void)
1114 {
1115 if (radix_enabled())
1116 return radix__has_transparent_hugepage();
1117 return hash__has_transparent_hugepage();
1118 }
1119 #define has_transparent_hugepage has_transparent_hugepage
1120
1121 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1122 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1123 unsigned long clr, unsigned long set)
1124 {
1125 if (radix_enabled())
1126 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1127 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1128 }
1129
pmd_large(pmd_t pmd)1130 static inline int pmd_large(pmd_t pmd)
1131 {
1132 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1133 }
1134
pmd_mknotpresent(pmd_t pmd)1135 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1136 {
1137 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1138 }
1139 /*
1140 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1141 * the below will work for radix too
1142 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1143 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1144 unsigned long addr, pmd_t *pmdp)
1145 {
1146 unsigned long old;
1147
1148 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1149 return 0;
1150 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1151 return ((old & _PAGE_ACCESSED) != 0);
1152 }
1153
1154 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1155 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1156 pmd_t *pmdp)
1157 {
1158 if (__pmd_write((*pmdp)))
1159 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1160 else if (unlikely(pmd_savedwrite(*pmdp)))
1161 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1162 }
1163
pmd_trans_huge(pmd_t pmd)1164 static inline int pmd_trans_huge(pmd_t pmd)
1165 {
1166 if (radix_enabled())
1167 return radix__pmd_trans_huge(pmd);
1168 return hash__pmd_trans_huge(pmd);
1169 }
1170
1171 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1172 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1173 {
1174 if (radix_enabled())
1175 return radix__pmd_same(pmd_a, pmd_b);
1176 return hash__pmd_same(pmd_a, pmd_b);
1177 }
1178
pmd_mkhuge(pmd_t pmd)1179 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1180 {
1181 if (radix_enabled())
1182 return radix__pmd_mkhuge(pmd);
1183 return hash__pmd_mkhuge(pmd);
1184 }
1185
1186 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1187 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1188 unsigned long address, pmd_t *pmdp,
1189 pmd_t entry, int dirty);
1190
1191 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1192 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1193 unsigned long address, pmd_t *pmdp);
1194
1195 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1196 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1197 unsigned long addr, pmd_t *pmdp)
1198 {
1199 if (radix_enabled())
1200 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1201 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1202 }
1203
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1204 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1205 unsigned long address, pmd_t *pmdp)
1206 {
1207 if (radix_enabled())
1208 return radix__pmdp_collapse_flush(vma, address, pmdp);
1209 return hash__pmdp_collapse_flush(vma, address, pmdp);
1210 }
1211 #define pmdp_collapse_flush pmdp_collapse_flush
1212
1213 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1214 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1215 pmd_t *pmdp, pgtable_t pgtable)
1216 {
1217 if (radix_enabled())
1218 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1219 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1220 }
1221
1222 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1223 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1224 pmd_t *pmdp)
1225 {
1226 if (radix_enabled())
1227 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1228 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1229 }
1230
1231 #define __HAVE_ARCH_PMDP_INVALIDATE
1232 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1233 pmd_t *pmdp);
1234
1235 #define pmd_move_must_withdraw pmd_move_must_withdraw
1236 struct spinlock;
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)1237 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1238 struct spinlock *old_pmd_ptl,
1239 struct vm_area_struct *vma)
1240 {
1241 if (radix_enabled())
1242 return false;
1243 /*
1244 * Archs like ppc64 use pgtable to store per pmd
1245 * specific information. So when we switch the pmd,
1246 * we should also withdraw and deposit the pgtable
1247 */
1248 return true;
1249 }
1250
1251
1252 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1253 static inline bool arch_needs_pgtable_deposit(void)
1254 {
1255 if (radix_enabled())
1256 return false;
1257 return true;
1258 }
1259 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1260
1261
pmd_mkdevmap(pmd_t pmd)1262 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1263 {
1264 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1265 }
1266
pmd_devmap(pmd_t pmd)1267 static inline int pmd_devmap(pmd_t pmd)
1268 {
1269 return pte_devmap(pmd_pte(pmd));
1270 }
1271
pud_devmap(pud_t pud)1272 static inline int pud_devmap(pud_t pud)
1273 {
1274 return 0;
1275 }
1276
pgd_devmap(pgd_t pgd)1277 static inline int pgd_devmap(pgd_t pgd)
1278 {
1279 return 0;
1280 }
1281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1282
pud_pfn(pud_t pud)1283 static inline const int pud_pfn(pud_t pud)
1284 {
1285 /*
1286 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1287 * check so this should never be used. If it grows another user we
1288 * want to know about it.
1289 */
1290 BUILD_BUG();
1291 return 0;
1292 }
1293
1294 #endif /* __ASSEMBLY__ */
1295 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1296