1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Debug helper to dump the current kernel pagetables of the system
4  * so that we can see what the various memory ranges are set to.
5  *
6  * (C) Copyright 2008 Intel Corporation
7  *
8  * Author: Arjan van de Ven <arjan@linux.intel.com>
9  */
10 
11 #include <linux/debugfs.h>
12 #include <linux/kasan.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/highmem.h>
18 #include <linux/pci.h>
19 
20 #include <asm/e820/types.h>
21 #include <asm/pgtable.h>
22 
23 /*
24  * The dumper groups pagetable entries of the same type into one, and for
25  * that it needs to keep some state when walking, and flush this state
26  * when a "break" in the continuity is found.
27  */
28 struct pg_state {
29 	int level;
30 	pgprot_t current_prot;
31 	pgprotval_t effective_prot;
32 	unsigned long start_address;
33 	unsigned long current_address;
34 	const struct addr_marker *marker;
35 	unsigned long lines;
36 	bool to_dmesg;
37 	bool check_wx;
38 	unsigned long wx_pages;
39 };
40 
41 struct addr_marker {
42 	unsigned long start_address;
43 	const char *name;
44 	unsigned long max_lines;
45 };
46 
47 /* Address space markers hints */
48 
49 #ifdef CONFIG_X86_64
50 
51 enum address_markers_idx {
52 	USER_SPACE_NR = 0,
53 	KERNEL_SPACE_NR,
54 #ifdef CONFIG_MODIFY_LDT_SYSCALL
55 	LDT_NR,
56 #endif
57 	LOW_KERNEL_NR,
58 	VMALLOC_START_NR,
59 	VMEMMAP_START_NR,
60 #ifdef CONFIG_KASAN
61 	KASAN_SHADOW_START_NR,
62 	KASAN_SHADOW_END_NR,
63 #endif
64 	CPU_ENTRY_AREA_NR,
65 #ifdef CONFIG_X86_ESPFIX64
66 	ESPFIX_START_NR,
67 #endif
68 #ifdef CONFIG_EFI
69 	EFI_END_NR,
70 #endif
71 	HIGH_KERNEL_NR,
72 	MODULES_VADDR_NR,
73 	MODULES_END_NR,
74 	FIXADDR_START_NR,
75 	END_OF_SPACE_NR,
76 };
77 
78 static struct addr_marker address_markers[] = {
79 	[USER_SPACE_NR]		= { 0,			"User Space" },
80 	[KERNEL_SPACE_NR]	= { (1UL << 63),	"Kernel Space" },
81 	[LOW_KERNEL_NR]		= { 0UL,		"Low Kernel Mapping" },
82 	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
83 	[VMEMMAP_START_NR]	= { 0UL,		"Vmemmap" },
84 #ifdef CONFIG_KASAN
85 	/*
86 	 * These fields get initialized with the (dynamic)
87 	 * KASAN_SHADOW_{START,END} values in pt_dump_init().
88 	 */
89 	[KASAN_SHADOW_START_NR]	= { 0UL,		"KASAN shadow" },
90 	[KASAN_SHADOW_END_NR]	= { 0UL,		"KASAN shadow end" },
91 #endif
92 #ifdef CONFIG_MODIFY_LDT_SYSCALL
93 	[LDT_NR]		= { 0UL,		"LDT remap" },
94 #endif
95 	[CPU_ENTRY_AREA_NR]	= { CPU_ENTRY_AREA_BASE,"CPU entry Area" },
96 #ifdef CONFIG_X86_ESPFIX64
97 	[ESPFIX_START_NR]	= { ESPFIX_BASE_ADDR,	"ESPfix Area", 16 },
98 #endif
99 #ifdef CONFIG_EFI
100 	[EFI_END_NR]		= { EFI_VA_END,		"EFI Runtime Services" },
101 #endif
102 	[HIGH_KERNEL_NR]	= { __START_KERNEL_map,	"High Kernel Mapping" },
103 	[MODULES_VADDR_NR]	= { MODULES_VADDR,	"Modules" },
104 	[MODULES_END_NR]	= { MODULES_END,	"End Modules" },
105 	[FIXADDR_START_NR]	= { FIXADDR_START,	"Fixmap Area" },
106 	[END_OF_SPACE_NR]	= { -1,			NULL }
107 };
108 
109 #define INIT_PGD	((pgd_t *) &init_top_pgt)
110 
111 #else /* CONFIG_X86_64 */
112 
113 enum address_markers_idx {
114 	USER_SPACE_NR = 0,
115 	KERNEL_SPACE_NR,
116 	VMALLOC_START_NR,
117 	VMALLOC_END_NR,
118 #ifdef CONFIG_HIGHMEM
119 	PKMAP_BASE_NR,
120 #endif
121 #ifdef CONFIG_MODIFY_LDT_SYSCALL
122 	LDT_NR,
123 #endif
124 	CPU_ENTRY_AREA_NR,
125 	FIXADDR_START_NR,
126 	END_OF_SPACE_NR,
127 };
128 
129 static struct addr_marker address_markers[] = {
130 	[USER_SPACE_NR]		= { 0,			"User Space" },
131 	[KERNEL_SPACE_NR]	= { PAGE_OFFSET,	"Kernel Mapping" },
132 	[VMALLOC_START_NR]	= { 0UL,		"vmalloc() Area" },
133 	[VMALLOC_END_NR]	= { 0UL,		"vmalloc() End" },
134 #ifdef CONFIG_HIGHMEM
135 	[PKMAP_BASE_NR]		= { 0UL,		"Persistent kmap() Area" },
136 #endif
137 #ifdef CONFIG_MODIFY_LDT_SYSCALL
138 	[LDT_NR]		= { 0UL,		"LDT remap" },
139 #endif
140 	[CPU_ENTRY_AREA_NR]	= { 0UL,		"CPU entry area" },
141 	[FIXADDR_START_NR]	= { 0UL,		"Fixmap area" },
142 	[END_OF_SPACE_NR]	= { -1,			NULL }
143 };
144 
145 #define INIT_PGD	(swapper_pg_dir)
146 
147 #endif /* !CONFIG_X86_64 */
148 
149 /* Multipliers for offsets within the PTEs */
150 #define PTE_LEVEL_MULT (PAGE_SIZE)
151 #define PMD_LEVEL_MULT (PTRS_PER_PTE * PTE_LEVEL_MULT)
152 #define PUD_LEVEL_MULT (PTRS_PER_PMD * PMD_LEVEL_MULT)
153 #define P4D_LEVEL_MULT (PTRS_PER_PUD * PUD_LEVEL_MULT)
154 #define PGD_LEVEL_MULT (PTRS_PER_P4D * P4D_LEVEL_MULT)
155 
156 #define pt_dump_seq_printf(m, to_dmesg, fmt, args...)		\
157 ({								\
158 	if (to_dmesg)					\
159 		printk(KERN_INFO fmt, ##args);			\
160 	else							\
161 		if (m)						\
162 			seq_printf(m, fmt, ##args);		\
163 })
164 
165 #define pt_dump_cont_printf(m, to_dmesg, fmt, args...)		\
166 ({								\
167 	if (to_dmesg)					\
168 		printk(KERN_CONT fmt, ##args);			\
169 	else							\
170 		if (m)						\
171 			seq_printf(m, fmt, ##args);		\
172 })
173 
174 /*
175  * Print a readable form of a pgprot_t to the seq_file
176  */
printk_prot(struct seq_file * m,pgprot_t prot,int level,bool dmsg)177 static void printk_prot(struct seq_file *m, pgprot_t prot, int level, bool dmsg)
178 {
179 	pgprotval_t pr = pgprot_val(prot);
180 	static const char * const level_name[] =
181 		{ "cr3", "pgd", "p4d", "pud", "pmd", "pte" };
182 
183 	if (!(pr & _PAGE_PRESENT)) {
184 		/* Not present */
185 		pt_dump_cont_printf(m, dmsg, "                              ");
186 	} else {
187 		if (pr & _PAGE_USER)
188 			pt_dump_cont_printf(m, dmsg, "USR ");
189 		else
190 			pt_dump_cont_printf(m, dmsg, "    ");
191 		if (pr & _PAGE_RW)
192 			pt_dump_cont_printf(m, dmsg, "RW ");
193 		else
194 			pt_dump_cont_printf(m, dmsg, "ro ");
195 		if (pr & _PAGE_PWT)
196 			pt_dump_cont_printf(m, dmsg, "PWT ");
197 		else
198 			pt_dump_cont_printf(m, dmsg, "    ");
199 		if (pr & _PAGE_PCD)
200 			pt_dump_cont_printf(m, dmsg, "PCD ");
201 		else
202 			pt_dump_cont_printf(m, dmsg, "    ");
203 
204 		/* Bit 7 has a different meaning on level 3 vs 4 */
205 		if (level <= 4 && pr & _PAGE_PSE)
206 			pt_dump_cont_printf(m, dmsg, "PSE ");
207 		else
208 			pt_dump_cont_printf(m, dmsg, "    ");
209 		if ((level == 5 && pr & _PAGE_PAT) ||
210 		    ((level == 4 || level == 3) && pr & _PAGE_PAT_LARGE))
211 			pt_dump_cont_printf(m, dmsg, "PAT ");
212 		else
213 			pt_dump_cont_printf(m, dmsg, "    ");
214 		if (pr & _PAGE_GLOBAL)
215 			pt_dump_cont_printf(m, dmsg, "GLB ");
216 		else
217 			pt_dump_cont_printf(m, dmsg, "    ");
218 		if (pr & _PAGE_NX)
219 			pt_dump_cont_printf(m, dmsg, "NX ");
220 		else
221 			pt_dump_cont_printf(m, dmsg, "x  ");
222 	}
223 	pt_dump_cont_printf(m, dmsg, "%s\n", level_name[level]);
224 }
225 
226 /*
227  * On 64 bits, sign-extend the 48 bit address to 64 bit
228  */
normalize_addr(unsigned long u)229 static unsigned long normalize_addr(unsigned long u)
230 {
231 	int shift;
232 	if (!IS_ENABLED(CONFIG_X86_64))
233 		return u;
234 
235 	shift = 64 - (__VIRTUAL_MASK_SHIFT + 1);
236 	return (signed long)(u << shift) >> shift;
237 }
238 
note_wx(struct pg_state * st)239 static void note_wx(struct pg_state *st)
240 {
241 	unsigned long npages;
242 
243 	npages = (st->current_address - st->start_address) / PAGE_SIZE;
244 
245 #ifdef CONFIG_PCI_BIOS
246 	/*
247 	 * If PCI BIOS is enabled, the PCI BIOS area is forced to WX.
248 	 * Inform about it, but avoid the warning.
249 	 */
250 	if (pcibios_enabled && st->start_address >= PAGE_OFFSET + BIOS_BEGIN &&
251 	    st->current_address <= PAGE_OFFSET + BIOS_END) {
252 		pr_warn_once("x86/mm: PCI BIOS W+X mapping %lu pages\n", npages);
253 		return;
254 	}
255 #endif
256 	/* Account the WX pages */
257 	st->wx_pages += npages;
258 	WARN_ONCE(__supported_pte_mask & _PAGE_NX,
259 		  "x86/mm: Found insecure W+X mapping at address %pS\n",
260 		  (void *)st->start_address);
261 }
262 
263 /*
264  * This function gets called on a break in a continuous series
265  * of PTE entries; the next one is different so we need to
266  * print what we collected so far.
267  */
note_page(struct seq_file * m,struct pg_state * st,pgprot_t new_prot,pgprotval_t new_eff,int level)268 static void note_page(struct seq_file *m, struct pg_state *st,
269 		      pgprot_t new_prot, pgprotval_t new_eff, int level)
270 {
271 	pgprotval_t prot, cur, eff;
272 	static const char units[] = "BKMGTPE";
273 
274 	/*
275 	 * If we have a "break" in the series, we need to flush the state that
276 	 * we have now. "break" is either changing perms, levels or
277 	 * address space marker.
278 	 */
279 	prot = pgprot_val(new_prot);
280 	cur = pgprot_val(st->current_prot);
281 	eff = st->effective_prot;
282 
283 	if (!st->level) {
284 		/* First entry */
285 		st->current_prot = new_prot;
286 		st->effective_prot = new_eff;
287 		st->level = level;
288 		st->marker = address_markers;
289 		st->lines = 0;
290 		pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
291 				   st->marker->name);
292 	} else if (prot != cur || new_eff != eff || level != st->level ||
293 		   st->current_address >= st->marker[1].start_address) {
294 		const char *unit = units;
295 		unsigned long delta;
296 		int width = sizeof(unsigned long) * 2;
297 
298 		if (st->check_wx && (eff & _PAGE_RW) && !(eff & _PAGE_NX))
299 			note_wx(st);
300 
301 		/*
302 		 * Now print the actual finished series
303 		 */
304 		if (!st->marker->max_lines ||
305 		    st->lines < st->marker->max_lines) {
306 			pt_dump_seq_printf(m, st->to_dmesg,
307 					   "0x%0*lx-0x%0*lx   ",
308 					   width, st->start_address,
309 					   width, st->current_address);
310 
311 			delta = st->current_address - st->start_address;
312 			while (!(delta & 1023) && unit[1]) {
313 				delta >>= 10;
314 				unit++;
315 			}
316 			pt_dump_cont_printf(m, st->to_dmesg, "%9lu%c ",
317 					    delta, *unit);
318 			printk_prot(m, st->current_prot, st->level,
319 				    st->to_dmesg);
320 		}
321 		st->lines++;
322 
323 		/*
324 		 * We print markers for special areas of address space,
325 		 * such as the start of vmalloc space etc.
326 		 * This helps in the interpretation.
327 		 */
328 		if (st->current_address >= st->marker[1].start_address) {
329 			if (st->marker->max_lines &&
330 			    st->lines > st->marker->max_lines) {
331 				unsigned long nskip =
332 					st->lines - st->marker->max_lines;
333 				pt_dump_seq_printf(m, st->to_dmesg,
334 						   "... %lu entr%s skipped ... \n",
335 						   nskip,
336 						   nskip == 1 ? "y" : "ies");
337 			}
338 			st->marker++;
339 			st->lines = 0;
340 			pt_dump_seq_printf(m, st->to_dmesg, "---[ %s ]---\n",
341 					   st->marker->name);
342 		}
343 
344 		st->start_address = st->current_address;
345 		st->current_prot = new_prot;
346 		st->effective_prot = new_eff;
347 		st->level = level;
348 	}
349 }
350 
effective_prot(pgprotval_t prot1,pgprotval_t prot2)351 static inline pgprotval_t effective_prot(pgprotval_t prot1, pgprotval_t prot2)
352 {
353 	return (prot1 & prot2 & (_PAGE_USER | _PAGE_RW)) |
354 	       ((prot1 | prot2) & _PAGE_NX);
355 }
356 
walk_pte_level(struct seq_file * m,struct pg_state * st,pmd_t addr,pgprotval_t eff_in,unsigned long P)357 static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr,
358 			   pgprotval_t eff_in, unsigned long P)
359 {
360 	int i;
361 	pte_t *pte;
362 	pgprotval_t prot, eff;
363 
364 	for (i = 0; i < PTRS_PER_PTE; i++) {
365 		st->current_address = normalize_addr(P + i * PTE_LEVEL_MULT);
366 		pte = pte_offset_map(&addr, st->current_address);
367 		prot = pte_flags(*pte);
368 		eff = effective_prot(eff_in, prot);
369 		note_page(m, st, __pgprot(prot), eff, 5);
370 		pte_unmap(pte);
371 	}
372 }
373 #ifdef CONFIG_KASAN
374 
375 /*
376  * This is an optimization for KASAN=y case. Since all kasan page tables
377  * eventually point to the kasan_early_shadow_page we could call note_page()
378  * right away without walking through lower level page tables. This saves
379  * us dozens of seconds (minutes for 5-level config) while checking for
380  * W+X mapping or reading kernel_page_tables debugfs file.
381  */
kasan_page_table(struct seq_file * m,struct pg_state * st,void * pt)382 static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
383 				void *pt)
384 {
385 	if (__pa(pt) == __pa(kasan_early_shadow_pmd) ||
386 	    (pgtable_l5_enabled() &&
387 			__pa(pt) == __pa(kasan_early_shadow_p4d)) ||
388 	    __pa(pt) == __pa(kasan_early_shadow_pud)) {
389 		pgprotval_t prot = pte_flags(kasan_early_shadow_pte[0]);
390 		note_page(m, st, __pgprot(prot), 0, 5);
391 		return true;
392 	}
393 	return false;
394 }
395 #else
kasan_page_table(struct seq_file * m,struct pg_state * st,void * pt)396 static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
397 				void *pt)
398 {
399 	return false;
400 }
401 #endif
402 
403 #if PTRS_PER_PMD > 1
404 
walk_pmd_level(struct seq_file * m,struct pg_state * st,pud_t addr,pgprotval_t eff_in,unsigned long P)405 static void walk_pmd_level(struct seq_file *m, struct pg_state *st, pud_t addr,
406 			   pgprotval_t eff_in, unsigned long P)
407 {
408 	int i;
409 	pmd_t *start, *pmd_start;
410 	pgprotval_t prot, eff;
411 
412 	pmd_start = start = (pmd_t *)pud_page_vaddr(addr);
413 	for (i = 0; i < PTRS_PER_PMD; i++) {
414 		st->current_address = normalize_addr(P + i * PMD_LEVEL_MULT);
415 		if (!pmd_none(*start)) {
416 			prot = pmd_flags(*start);
417 			eff = effective_prot(eff_in, prot);
418 			if (pmd_large(*start) || !pmd_present(*start)) {
419 				note_page(m, st, __pgprot(prot), eff, 4);
420 			} else if (!kasan_page_table(m, st, pmd_start)) {
421 				walk_pte_level(m, st, *start, eff,
422 					       P + i * PMD_LEVEL_MULT);
423 			}
424 		} else
425 			note_page(m, st, __pgprot(0), 0, 4);
426 		start++;
427 	}
428 }
429 
430 #else
431 #define walk_pmd_level(m,s,a,e,p) walk_pte_level(m,s,__pmd(pud_val(a)),e,p)
432 #define pud_large(a) pmd_large(__pmd(pud_val(a)))
433 #define pud_none(a)  pmd_none(__pmd(pud_val(a)))
434 #endif
435 
436 #if PTRS_PER_PUD > 1
437 
walk_pud_level(struct seq_file * m,struct pg_state * st,p4d_t addr,pgprotval_t eff_in,unsigned long P)438 static void walk_pud_level(struct seq_file *m, struct pg_state *st, p4d_t addr,
439 			   pgprotval_t eff_in, unsigned long P)
440 {
441 	int i;
442 	pud_t *start, *pud_start;
443 	pgprotval_t prot, eff;
444 
445 	pud_start = start = (pud_t *)p4d_page_vaddr(addr);
446 
447 	for (i = 0; i < PTRS_PER_PUD; i++) {
448 		st->current_address = normalize_addr(P + i * PUD_LEVEL_MULT);
449 		if (!pud_none(*start)) {
450 			prot = pud_flags(*start);
451 			eff = effective_prot(eff_in, prot);
452 			if (pud_large(*start) || !pud_present(*start)) {
453 				note_page(m, st, __pgprot(prot), eff, 3);
454 			} else if (!kasan_page_table(m, st, pud_start)) {
455 				walk_pmd_level(m, st, *start, eff,
456 					       P + i * PUD_LEVEL_MULT);
457 			}
458 		} else
459 			note_page(m, st, __pgprot(0), 0, 3);
460 
461 		start++;
462 	}
463 }
464 
465 #else
466 #define walk_pud_level(m,s,a,e,p) walk_pmd_level(m,s,__pud(p4d_val(a)),e,p)
467 #define p4d_large(a) pud_large(__pud(p4d_val(a)))
468 #define p4d_none(a)  pud_none(__pud(p4d_val(a)))
469 #endif
470 
walk_p4d_level(struct seq_file * m,struct pg_state * st,pgd_t addr,pgprotval_t eff_in,unsigned long P)471 static void walk_p4d_level(struct seq_file *m, struct pg_state *st, pgd_t addr,
472 			   pgprotval_t eff_in, unsigned long P)
473 {
474 	int i;
475 	p4d_t *start, *p4d_start;
476 	pgprotval_t prot, eff;
477 
478 	if (PTRS_PER_P4D == 1)
479 		return walk_pud_level(m, st, __p4d(pgd_val(addr)), eff_in, P);
480 
481 	p4d_start = start = (p4d_t *)pgd_page_vaddr(addr);
482 
483 	for (i = 0; i < PTRS_PER_P4D; i++) {
484 		st->current_address = normalize_addr(P + i * P4D_LEVEL_MULT);
485 		if (!p4d_none(*start)) {
486 			prot = p4d_flags(*start);
487 			eff = effective_prot(eff_in, prot);
488 			if (p4d_large(*start) || !p4d_present(*start)) {
489 				note_page(m, st, __pgprot(prot), eff, 2);
490 			} else if (!kasan_page_table(m, st, p4d_start)) {
491 				walk_pud_level(m, st, *start, eff,
492 					       P + i * P4D_LEVEL_MULT);
493 			}
494 		} else
495 			note_page(m, st, __pgprot(0), 0, 2);
496 
497 		start++;
498 	}
499 }
500 
501 #define pgd_large(a) (pgtable_l5_enabled() ? pgd_large(a) : p4d_large(__p4d(pgd_val(a))))
502 #define pgd_none(a)  (pgtable_l5_enabled() ? pgd_none(a) : p4d_none(__p4d(pgd_val(a))))
503 
is_hypervisor_range(int idx)504 static inline bool is_hypervisor_range(int idx)
505 {
506 #ifdef CONFIG_X86_64
507 	/*
508 	 * A hole in the beginning of kernel address space reserved
509 	 * for a hypervisor.
510 	 */
511 	return	(idx >= pgd_index(GUARD_HOLE_BASE_ADDR)) &&
512 		(idx <  pgd_index(GUARD_HOLE_END_ADDR));
513 #else
514 	return false;
515 #endif
516 }
517 
ptdump_walk_pgd_level_core(struct seq_file * m,pgd_t * pgd,bool checkwx,bool dmesg)518 static void ptdump_walk_pgd_level_core(struct seq_file *m, pgd_t *pgd,
519 				       bool checkwx, bool dmesg)
520 {
521 	pgd_t *start = INIT_PGD;
522 	pgprotval_t prot, eff;
523 	int i;
524 	struct pg_state st = {};
525 
526 	if (pgd) {
527 		start = pgd;
528 		st.to_dmesg = dmesg;
529 	}
530 
531 	st.check_wx = checkwx;
532 	if (checkwx)
533 		st.wx_pages = 0;
534 
535 	for (i = 0; i < PTRS_PER_PGD; i++) {
536 		st.current_address = normalize_addr(i * PGD_LEVEL_MULT);
537 		if (!pgd_none(*start) && !is_hypervisor_range(i)) {
538 			prot = pgd_flags(*start);
539 #ifdef CONFIG_X86_PAE
540 			eff = _PAGE_USER | _PAGE_RW;
541 #else
542 			eff = prot;
543 #endif
544 			if (pgd_large(*start) || !pgd_present(*start)) {
545 				note_page(m, &st, __pgprot(prot), eff, 1);
546 			} else {
547 				walk_p4d_level(m, &st, *start, eff,
548 					       i * PGD_LEVEL_MULT);
549 			}
550 		} else
551 			note_page(m, &st, __pgprot(0), 0, 1);
552 
553 		cond_resched();
554 		start++;
555 	}
556 
557 	/* Flush out the last page */
558 	st.current_address = normalize_addr(PTRS_PER_PGD*PGD_LEVEL_MULT);
559 	note_page(m, &st, __pgprot(0), 0, 0);
560 	if (!checkwx)
561 		return;
562 	if (st.wx_pages)
563 		pr_info("x86/mm: Checked W+X mappings: FAILED, %lu W+X pages found.\n",
564 			st.wx_pages);
565 	else
566 		pr_info("x86/mm: Checked W+X mappings: passed, no W+X pages found.\n");
567 }
568 
ptdump_walk_pgd_level(struct seq_file * m,pgd_t * pgd)569 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd)
570 {
571 	ptdump_walk_pgd_level_core(m, pgd, false, true);
572 }
573 
ptdump_walk_pgd_level_debugfs(struct seq_file * m,pgd_t * pgd,bool user)574 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user)
575 {
576 #ifdef CONFIG_PAGE_TABLE_ISOLATION
577 	if (user && boot_cpu_has(X86_FEATURE_PTI))
578 		pgd = kernel_to_user_pgdp(pgd);
579 #endif
580 	ptdump_walk_pgd_level_core(m, pgd, false, false);
581 }
582 EXPORT_SYMBOL_GPL(ptdump_walk_pgd_level_debugfs);
583 
ptdump_walk_user_pgd_level_checkwx(void)584 void ptdump_walk_user_pgd_level_checkwx(void)
585 {
586 #ifdef CONFIG_PAGE_TABLE_ISOLATION
587 	pgd_t *pgd = INIT_PGD;
588 
589 	if (!(__supported_pte_mask & _PAGE_NX) ||
590 	    !boot_cpu_has(X86_FEATURE_PTI))
591 		return;
592 
593 	pr_info("x86/mm: Checking user space page tables\n");
594 	pgd = kernel_to_user_pgdp(pgd);
595 	ptdump_walk_pgd_level_core(NULL, pgd, true, false);
596 #endif
597 }
598 
ptdump_walk_pgd_level_checkwx(void)599 void ptdump_walk_pgd_level_checkwx(void)
600 {
601 	ptdump_walk_pgd_level_core(NULL, NULL, true, false);
602 }
603 
pt_dump_init(void)604 static int __init pt_dump_init(void)
605 {
606 	/*
607 	 * Various markers are not compile-time constants, so assign them
608 	 * here.
609 	 */
610 #ifdef CONFIG_X86_64
611 	address_markers[LOW_KERNEL_NR].start_address = PAGE_OFFSET;
612 	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
613 	address_markers[VMEMMAP_START_NR].start_address = VMEMMAP_START;
614 #ifdef CONFIG_MODIFY_LDT_SYSCALL
615 	address_markers[LDT_NR].start_address = LDT_BASE_ADDR;
616 #endif
617 #ifdef CONFIG_KASAN
618 	address_markers[KASAN_SHADOW_START_NR].start_address = KASAN_SHADOW_START;
619 	address_markers[KASAN_SHADOW_END_NR].start_address = KASAN_SHADOW_END;
620 #endif
621 #endif
622 #ifdef CONFIG_X86_32
623 	address_markers[VMALLOC_START_NR].start_address = VMALLOC_START;
624 	address_markers[VMALLOC_END_NR].start_address = VMALLOC_END;
625 # ifdef CONFIG_HIGHMEM
626 	address_markers[PKMAP_BASE_NR].start_address = PKMAP_BASE;
627 # endif
628 	address_markers[FIXADDR_START_NR].start_address = FIXADDR_START;
629 	address_markers[CPU_ENTRY_AREA_NR].start_address = CPU_ENTRY_AREA_BASE;
630 # ifdef CONFIG_MODIFY_LDT_SYSCALL
631 	address_markers[LDT_NR].start_address = LDT_BASE_ADDR;
632 # endif
633 #endif
634 	return 0;
635 }
636 __initcall(pt_dump_init);
637