1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/memblock.h>
29 #include <linux/mmzone.h>
30 #include <linux/gfp.h>
31 
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/iommu.h>
38 #include <asm/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42 #include <asm/dma.h>
43 #include <asm/starfire.h>
44 #include <asm/tlb.h>
45 #include <asm/spitfire.h>
46 #include <asm/sections.h>
47 #include <asm/tsb.h>
48 #include <asm/hypervisor.h>
49 #include <asm/prom.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52 #include <asm/setup.h>
53 #include <asm/irq.h>
54 
55 #include "init_64.h"
56 
57 unsigned long kern_linear_pte_xor[4] __read_mostly;
58 static unsigned long page_cache4v_flag;
59 
60 /* A bitmap, two bits for every 256MB of physical memory.  These two
61  * bits determine what page size we use for kernel linear
62  * translations.  They form an index into kern_linear_pte_xor[].  The
63  * value in the indexed slot is XOR'd with the TLB miss virtual
64  * address to form the resulting TTE.  The mapping is:
65  *
66  *	0	==>	4MB
67  *	1	==>	256MB
68  *	2	==>	2GB
69  *	3	==>	16GB
70  *
71  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
72  * support 2GB pages, and hopefully future cpus will support the 16GB
73  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
74  * if these larger page sizes are not supported by the cpu.
75  *
76  * It would be nice to determine this from the machine description
77  * 'cpu' properties, but we need to have this table setup before the
78  * MDESC is initialized.
79  */
80 
81 #ifndef CONFIG_DEBUG_PAGEALLOC
82 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
83  * Space is allocated for this right after the trap table in
84  * arch/sparc64/kernel/head.S
85  */
86 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
87 #endif
88 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
89 
90 static unsigned long cpu_pgsz_mask;
91 
92 #define MAX_BANKS	1024
93 
94 static struct linux_prom64_registers pavail[MAX_BANKS];
95 static int pavail_ents;
96 
97 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
98 
cmp_p64(const void * a,const void * b)99 static int cmp_p64(const void *a, const void *b)
100 {
101 	const struct linux_prom64_registers *x = a, *y = b;
102 
103 	if (x->phys_addr > y->phys_addr)
104 		return 1;
105 	if (x->phys_addr < y->phys_addr)
106 		return -1;
107 	return 0;
108 }
109 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)110 static void __init read_obp_memory(const char *property,
111 				   struct linux_prom64_registers *regs,
112 				   int *num_ents)
113 {
114 	phandle node = prom_finddevice("/memory");
115 	int prop_size = prom_getproplen(node, property);
116 	int ents, ret, i;
117 
118 	ents = prop_size / sizeof(struct linux_prom64_registers);
119 	if (ents > MAX_BANKS) {
120 		prom_printf("The machine has more %s property entries than "
121 			    "this kernel can support (%d).\n",
122 			    property, MAX_BANKS);
123 		prom_halt();
124 	}
125 
126 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
127 	if (ret == -1) {
128 		prom_printf("Couldn't get %s property from /memory.\n",
129 				property);
130 		prom_halt();
131 	}
132 
133 	/* Sanitize what we got from the firmware, by page aligning
134 	 * everything.
135 	 */
136 	for (i = 0; i < ents; i++) {
137 		unsigned long base, size;
138 
139 		base = regs[i].phys_addr;
140 		size = regs[i].reg_size;
141 
142 		size &= PAGE_MASK;
143 		if (base & ~PAGE_MASK) {
144 			unsigned long new_base = PAGE_ALIGN(base);
145 
146 			size -= new_base - base;
147 			if ((long) size < 0L)
148 				size = 0UL;
149 			base = new_base;
150 		}
151 		if (size == 0UL) {
152 			/* If it is empty, simply get rid of it.
153 			 * This simplifies the logic of the other
154 			 * functions that process these arrays.
155 			 */
156 			memmove(&regs[i], &regs[i + 1],
157 				(ents - i - 1) * sizeof(regs[0]));
158 			i--;
159 			ents--;
160 			continue;
161 		}
162 		regs[i].phys_addr = base;
163 		regs[i].reg_size = size;
164 	}
165 
166 	*num_ents = ents;
167 
168 	sort(regs, ents, sizeof(struct linux_prom64_registers),
169 	     cmp_p64, NULL);
170 }
171 
172 /* Kernel physical address base and size in bytes.  */
173 unsigned long kern_base __read_mostly;
174 unsigned long kern_size __read_mostly;
175 
176 /* Initial ramdisk setup */
177 extern unsigned long sparc_ramdisk_image64;
178 extern unsigned int sparc_ramdisk_image;
179 extern unsigned int sparc_ramdisk_size;
180 
181 struct page *mem_map_zero __read_mostly;
182 EXPORT_SYMBOL(mem_map_zero);
183 
184 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185 
186 unsigned long sparc64_kern_pri_context __read_mostly;
187 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
188 unsigned long sparc64_kern_sec_context __read_mostly;
189 
190 int num_kernel_image_mappings;
191 
192 #ifdef CONFIG_DEBUG_DCFLUSH
193 atomic_t dcpage_flushes = ATOMIC_INIT(0);
194 #ifdef CONFIG_SMP
195 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
196 #endif
197 #endif
198 
flush_dcache_page_impl(struct page * page)199 inline void flush_dcache_page_impl(struct page *page)
200 {
201 	BUG_ON(tlb_type == hypervisor);
202 #ifdef CONFIG_DEBUG_DCFLUSH
203 	atomic_inc(&dcpage_flushes);
204 #endif
205 
206 #ifdef DCACHE_ALIASING_POSSIBLE
207 	__flush_dcache_page(page_address(page),
208 			    ((tlb_type == spitfire) &&
209 			     page_mapping_file(page) != NULL));
210 #else
211 	if (page_mapping_file(page) != NULL &&
212 	    tlb_type == spitfire)
213 		__flush_icache_page(__pa(page_address(page)));
214 #endif
215 }
216 
217 #define PG_dcache_dirty		PG_arch_1
218 #define PG_dcache_cpu_shift	32UL
219 #define PG_dcache_cpu_mask	\
220 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 
222 #define dcache_dirty_cpu(page) \
223 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 
set_dcache_dirty(struct page * page,int this_cpu)225 static inline void set_dcache_dirty(struct page *page, int this_cpu)
226 {
227 	unsigned long mask = this_cpu;
228 	unsigned long non_cpu_bits;
229 
230 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
231 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232 
233 	__asm__ __volatile__("1:\n\t"
234 			     "ldx	[%2], %%g7\n\t"
235 			     "and	%%g7, %1, %%g1\n\t"
236 			     "or	%%g1, %0, %%g1\n\t"
237 			     "casx	[%2], %%g7, %%g1\n\t"
238 			     "cmp	%%g7, %%g1\n\t"
239 			     "bne,pn	%%xcc, 1b\n\t"
240 			     " nop"
241 			     : /* no outputs */
242 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
243 			     : "g1", "g7");
244 }
245 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)246 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
247 {
248 	unsigned long mask = (1UL << PG_dcache_dirty);
249 
250 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
251 			     "1:\n\t"
252 			     "ldx	[%2], %%g7\n\t"
253 			     "srlx	%%g7, %4, %%g1\n\t"
254 			     "and	%%g1, %3, %%g1\n\t"
255 			     "cmp	%%g1, %0\n\t"
256 			     "bne,pn	%%icc, 2f\n\t"
257 			     " andn	%%g7, %1, %%g1\n\t"
258 			     "casx	[%2], %%g7, %%g1\n\t"
259 			     "cmp	%%g7, %%g1\n\t"
260 			     "bne,pn	%%xcc, 1b\n\t"
261 			     " nop\n"
262 			     "2:"
263 			     : /* no outputs */
264 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
265 			       "i" (PG_dcache_cpu_mask),
266 			       "i" (PG_dcache_cpu_shift)
267 			     : "g1", "g7");
268 }
269 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)270 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271 {
272 	unsigned long tsb_addr = (unsigned long) ent;
273 
274 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
275 		tsb_addr = __pa(tsb_addr);
276 
277 	__tsb_insert(tsb_addr, tag, pte);
278 }
279 
280 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
281 
flush_dcache(unsigned long pfn)282 static void flush_dcache(unsigned long pfn)
283 {
284 	struct page *page;
285 
286 	page = pfn_to_page(pfn);
287 	if (page) {
288 		unsigned long pg_flags;
289 
290 		pg_flags = page->flags;
291 		if (pg_flags & (1UL << PG_dcache_dirty)) {
292 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
293 				   PG_dcache_cpu_mask);
294 			int this_cpu = get_cpu();
295 
296 			/* This is just to optimize away some function calls
297 			 * in the SMP case.
298 			 */
299 			if (cpu == this_cpu)
300 				flush_dcache_page_impl(page);
301 			else
302 				smp_flush_dcache_page_impl(page, cpu);
303 
304 			clear_dcache_dirty_cpu(page, cpu);
305 
306 			put_cpu();
307 		}
308 	}
309 }
310 
311 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)312 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
313 				    unsigned long tsb_hash_shift, unsigned long address,
314 				    unsigned long tte)
315 {
316 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
317 	unsigned long tag;
318 
319 	if (unlikely(!tsb))
320 		return;
321 
322 	tsb += ((address >> tsb_hash_shift) &
323 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
324 	tag = (address >> 22UL);
325 	tsb_insert(tsb, tag, tte);
326 }
327 
328 #ifdef CONFIG_HUGETLB_PAGE
add_huge_page_size(unsigned long size)329 static void __init add_huge_page_size(unsigned long size)
330 {
331 	unsigned int order;
332 
333 	if (size_to_hstate(size))
334 		return;
335 
336 	order = ilog2(size) - PAGE_SHIFT;
337 	hugetlb_add_hstate(order);
338 }
339 
hugetlbpage_init(void)340 static int __init hugetlbpage_init(void)
341 {
342 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
345 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
346 
347 	return 0;
348 }
349 
350 arch_initcall(hugetlbpage_init);
351 
pud_huge_patch(void)352 static void __init pud_huge_patch(void)
353 {
354 	struct pud_huge_patch_entry *p;
355 	unsigned long addr;
356 
357 	p = &__pud_huge_patch;
358 	addr = p->addr;
359 	*(unsigned int *)addr = p->insn;
360 
361 	__asm__ __volatile__("flush %0" : : "r" (addr));
362 }
363 
setup_hugepagesz(char * string)364 static int __init setup_hugepagesz(char *string)
365 {
366 	unsigned long long hugepage_size;
367 	unsigned int hugepage_shift;
368 	unsigned short hv_pgsz_idx;
369 	unsigned int hv_pgsz_mask;
370 	int rc = 0;
371 
372 	hugepage_size = memparse(string, &string);
373 	hugepage_shift = ilog2(hugepage_size);
374 
375 	switch (hugepage_shift) {
376 	case HPAGE_16GB_SHIFT:
377 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
378 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
379 		pud_huge_patch();
380 		break;
381 	case HPAGE_2GB_SHIFT:
382 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
383 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
384 		break;
385 	case HPAGE_256MB_SHIFT:
386 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
387 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
388 		break;
389 	case HPAGE_SHIFT:
390 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
391 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
392 		break;
393 	case HPAGE_64K_SHIFT:
394 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
395 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
396 		break;
397 	default:
398 		hv_pgsz_mask = 0;
399 	}
400 
401 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
402 		hugetlb_bad_size();
403 		pr_err("hugepagesz=%llu not supported by MMU.\n",
404 			hugepage_size);
405 		goto out;
406 	}
407 
408 	add_huge_page_size(hugepage_size);
409 	rc = 1;
410 
411 out:
412 	return rc;
413 }
414 __setup("hugepagesz=", setup_hugepagesz);
415 #endif	/* CONFIG_HUGETLB_PAGE */
416 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)417 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
418 {
419 	struct mm_struct *mm;
420 	unsigned long flags;
421 	bool is_huge_tsb;
422 	pte_t pte = *ptep;
423 
424 	if (tlb_type != hypervisor) {
425 		unsigned long pfn = pte_pfn(pte);
426 
427 		if (pfn_valid(pfn))
428 			flush_dcache(pfn);
429 	}
430 
431 	mm = vma->vm_mm;
432 
433 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
434 	if (!pte_accessible(mm, pte))
435 		return;
436 
437 	spin_lock_irqsave(&mm->context.lock, flags);
438 
439 	is_huge_tsb = false;
440 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
441 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
442 		unsigned long hugepage_size = PAGE_SIZE;
443 
444 		if (is_vm_hugetlb_page(vma))
445 			hugepage_size = huge_page_size(hstate_vma(vma));
446 
447 		if (hugepage_size >= PUD_SIZE) {
448 			unsigned long mask = 0x1ffc00000UL;
449 
450 			/* Transfer bits [32:22] from address to resolve
451 			 * at 4M granularity.
452 			 */
453 			pte_val(pte) &= ~mask;
454 			pte_val(pte) |= (address & mask);
455 		} else if (hugepage_size >= PMD_SIZE) {
456 			/* We are fabricating 8MB pages using 4MB
457 			 * real hw pages.
458 			 */
459 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
460 		}
461 
462 		if (hugepage_size >= PMD_SIZE) {
463 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
464 				REAL_HPAGE_SHIFT, address, pte_val(pte));
465 			is_huge_tsb = true;
466 		}
467 	}
468 #endif
469 	if (!is_huge_tsb)
470 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
471 					address, pte_val(pte));
472 
473 	spin_unlock_irqrestore(&mm->context.lock, flags);
474 }
475 
flush_dcache_page(struct page * page)476 void flush_dcache_page(struct page *page)
477 {
478 	struct address_space *mapping;
479 	int this_cpu;
480 
481 	if (tlb_type == hypervisor)
482 		return;
483 
484 	/* Do not bother with the expensive D-cache flush if it
485 	 * is merely the zero page.  The 'bigcore' testcase in GDB
486 	 * causes this case to run millions of times.
487 	 */
488 	if (page == ZERO_PAGE(0))
489 		return;
490 
491 	this_cpu = get_cpu();
492 
493 	mapping = page_mapping_file(page);
494 	if (mapping && !mapping_mapped(mapping)) {
495 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
496 		if (dirty) {
497 			int dirty_cpu = dcache_dirty_cpu(page);
498 
499 			if (dirty_cpu == this_cpu)
500 				goto out;
501 			smp_flush_dcache_page_impl(page, dirty_cpu);
502 		}
503 		set_dcache_dirty(page, this_cpu);
504 	} else {
505 		/* We could delay the flush for the !page_mapping
506 		 * case too.  But that case is for exec env/arg
507 		 * pages and those are %99 certainly going to get
508 		 * faulted into the tlb (and thus flushed) anyways.
509 		 */
510 		flush_dcache_page_impl(page);
511 	}
512 
513 out:
514 	put_cpu();
515 }
516 EXPORT_SYMBOL(flush_dcache_page);
517 
flush_icache_range(unsigned long start,unsigned long end)518 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
519 {
520 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
521 	if (tlb_type == spitfire) {
522 		unsigned long kaddr;
523 
524 		/* This code only runs on Spitfire cpus so this is
525 		 * why we can assume _PAGE_PADDR_4U.
526 		 */
527 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
528 			unsigned long paddr, mask = _PAGE_PADDR_4U;
529 
530 			if (kaddr >= PAGE_OFFSET)
531 				paddr = kaddr & mask;
532 			else {
533 				pgd_t *pgdp = pgd_offset_k(kaddr);
534 				pud_t *pudp = pud_offset(pgdp, kaddr);
535 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
536 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
537 
538 				paddr = pte_val(*ptep) & mask;
539 			}
540 			__flush_icache_page(paddr);
541 		}
542 	}
543 }
544 EXPORT_SYMBOL(flush_icache_range);
545 
mmu_info(struct seq_file * m)546 void mmu_info(struct seq_file *m)
547 {
548 	static const char *pgsz_strings[] = {
549 		"8K", "64K", "512K", "4MB", "32MB",
550 		"256MB", "2GB", "16GB",
551 	};
552 	int i, printed;
553 
554 	if (tlb_type == cheetah)
555 		seq_printf(m, "MMU Type\t: Cheetah\n");
556 	else if (tlb_type == cheetah_plus)
557 		seq_printf(m, "MMU Type\t: Cheetah+\n");
558 	else if (tlb_type == spitfire)
559 		seq_printf(m, "MMU Type\t: Spitfire\n");
560 	else if (tlb_type == hypervisor)
561 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
562 	else
563 		seq_printf(m, "MMU Type\t: ???\n");
564 
565 	seq_printf(m, "MMU PGSZs\t: ");
566 	printed = 0;
567 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
568 		if (cpu_pgsz_mask & (1UL << i)) {
569 			seq_printf(m, "%s%s",
570 				   printed ? "," : "", pgsz_strings[i]);
571 			printed++;
572 		}
573 	}
574 	seq_putc(m, '\n');
575 
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 	seq_printf(m, "DCPageFlushes\t: %d\n",
578 		   atomic_read(&dcpage_flushes));
579 #ifdef CONFIG_SMP
580 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
581 		   atomic_read(&dcpage_flushes_xcall));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
584 }
585 
586 struct linux_prom_translation prom_trans[512] __read_mostly;
587 unsigned int prom_trans_ents __read_mostly;
588 
589 unsigned long kern_locked_tte_data;
590 
591 /* The obp translations are saved based on 8k pagesize, since obp can
592  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593  * HI_OBP_ADDRESS range are handled in ktlb.S.
594  */
in_obp_range(unsigned long vaddr)595 static inline int in_obp_range(unsigned long vaddr)
596 {
597 	return (vaddr >= LOW_OBP_ADDRESS &&
598 		vaddr < HI_OBP_ADDRESS);
599 }
600 
cmp_ptrans(const void * a,const void * b)601 static int cmp_ptrans(const void *a, const void *b)
602 {
603 	const struct linux_prom_translation *x = a, *y = b;
604 
605 	if (x->virt > y->virt)
606 		return 1;
607 	if (x->virt < y->virt)
608 		return -1;
609 	return 0;
610 }
611 
612 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)613 static void __init read_obp_translations(void)
614 {
615 	int n, node, ents, first, last, i;
616 
617 	node = prom_finddevice("/virtual-memory");
618 	n = prom_getproplen(node, "translations");
619 	if (unlikely(n == 0 || n == -1)) {
620 		prom_printf("prom_mappings: Couldn't get size.\n");
621 		prom_halt();
622 	}
623 	if (unlikely(n > sizeof(prom_trans))) {
624 		prom_printf("prom_mappings: Size %d is too big.\n", n);
625 		prom_halt();
626 	}
627 
628 	if ((n = prom_getproperty(node, "translations",
629 				  (char *)&prom_trans[0],
630 				  sizeof(prom_trans))) == -1) {
631 		prom_printf("prom_mappings: Couldn't get property.\n");
632 		prom_halt();
633 	}
634 
635 	n = n / sizeof(struct linux_prom_translation);
636 
637 	ents = n;
638 
639 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
640 	     cmp_ptrans, NULL);
641 
642 	/* Now kick out all the non-OBP entries.  */
643 	for (i = 0; i < ents; i++) {
644 		if (in_obp_range(prom_trans[i].virt))
645 			break;
646 	}
647 	first = i;
648 	for (; i < ents; i++) {
649 		if (!in_obp_range(prom_trans[i].virt))
650 			break;
651 	}
652 	last = i;
653 
654 	for (i = 0; i < (last - first); i++) {
655 		struct linux_prom_translation *src = &prom_trans[i + first];
656 		struct linux_prom_translation *dest = &prom_trans[i];
657 
658 		*dest = *src;
659 	}
660 	for (; i < ents; i++) {
661 		struct linux_prom_translation *dest = &prom_trans[i];
662 		dest->virt = dest->size = dest->data = 0x0UL;
663 	}
664 
665 	prom_trans_ents = last - first;
666 
667 	if (tlb_type == spitfire) {
668 		/* Clear diag TTE bits. */
669 		for (i = 0; i < prom_trans_ents; i++)
670 			prom_trans[i].data &= ~0x0003fe0000000000UL;
671 	}
672 
673 	/* Force execute bit on.  */
674 	for (i = 0; i < prom_trans_ents; i++)
675 		prom_trans[i].data |= (tlb_type == hypervisor ?
676 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
677 }
678 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)679 static void __init hypervisor_tlb_lock(unsigned long vaddr,
680 				       unsigned long pte,
681 				       unsigned long mmu)
682 {
683 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
684 
685 	if (ret != 0) {
686 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
688 		prom_halt();
689 	}
690 }
691 
692 static unsigned long kern_large_tte(unsigned long paddr);
693 
remap_kernel(void)694 static void __init remap_kernel(void)
695 {
696 	unsigned long phys_page, tte_vaddr, tte_data;
697 	int i, tlb_ent = sparc64_highest_locked_tlbent();
698 
699 	tte_vaddr = (unsigned long) KERNBASE;
700 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
701 	tte_data = kern_large_tte(phys_page);
702 
703 	kern_locked_tte_data = tte_data;
704 
705 	/* Now lock us into the TLBs via Hypervisor or OBP. */
706 	if (tlb_type == hypervisor) {
707 		for (i = 0; i < num_kernel_image_mappings; i++) {
708 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
709 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
710 			tte_vaddr += 0x400000;
711 			tte_data += 0x400000;
712 		}
713 	} else {
714 		for (i = 0; i < num_kernel_image_mappings; i++) {
715 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
717 			tte_vaddr += 0x400000;
718 			tte_data += 0x400000;
719 		}
720 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
721 	}
722 	if (tlb_type == cheetah_plus) {
723 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
724 					    CTX_CHEETAH_PLUS_NUC);
725 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
726 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
727 	}
728 }
729 
730 
inherit_prom_mappings(void)731 static void __init inherit_prom_mappings(void)
732 {
733 	/* Now fixup OBP's idea about where we really are mapped. */
734 	printk("Remapping the kernel... ");
735 	remap_kernel();
736 	printk("done.\n");
737 }
738 
prom_world(int enter)739 void prom_world(int enter)
740 {
741 	if (!enter)
742 		set_fs(get_fs());
743 
744 	__asm__ __volatile__("flushw");
745 }
746 
__flush_dcache_range(unsigned long start,unsigned long end)747 void __flush_dcache_range(unsigned long start, unsigned long end)
748 {
749 	unsigned long va;
750 
751 	if (tlb_type == spitfire) {
752 		int n = 0;
753 
754 		for (va = start; va < end; va += 32) {
755 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
756 			if (++n >= 512)
757 				break;
758 		}
759 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
760 		start = __pa(start);
761 		end = __pa(end);
762 		for (va = start; va < end; va += 32)
763 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
764 					     "membar #Sync"
765 					     : /* no outputs */
766 					     : "r" (va),
767 					       "i" (ASI_DCACHE_INVALIDATE));
768 	}
769 }
770 EXPORT_SYMBOL(__flush_dcache_range);
771 
772 /* get_new_mmu_context() uses "cache + 1".  */
773 DEFINE_SPINLOCK(ctx_alloc_lock);
774 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
775 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
778 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
779 
mmu_context_wrap(void)780 static void mmu_context_wrap(void)
781 {
782 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
783 	unsigned long new_ver, new_ctx, old_ctx;
784 	struct mm_struct *mm;
785 	int cpu;
786 
787 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
788 
789 	/* Reserve kernel context */
790 	set_bit(0, mmu_context_bmap);
791 
792 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
793 	if (unlikely(new_ver == 0))
794 		new_ver = CTX_FIRST_VERSION;
795 	tlb_context_cache = new_ver;
796 
797 	/*
798 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 	 * are going to go through get_new_mmu_context() path.
800 	 */
801 	mb();
802 
803 	/*
804 	 * Updated versions to current on those CPUs that had valid secondary
805 	 * contexts
806 	 */
807 	for_each_online_cpu(cpu) {
808 		/*
809 		 * If a new mm is stored after we took this mm from the array,
810 		 * it will go into get_new_mmu_context() path, because we
811 		 * already bumped the version in tlb_context_cache.
812 		 */
813 		mm = per_cpu(per_cpu_secondary_mm, cpu);
814 
815 		if (unlikely(!mm || mm == &init_mm))
816 			continue;
817 
818 		old_ctx = mm->context.sparc64_ctx_val;
819 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
820 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
821 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
822 			mm->context.sparc64_ctx_val = new_ctx;
823 		}
824 	}
825 }
826 
827 /* Caller does TLB context flushing on local CPU if necessary.
828  * The caller also ensures that CTX_VALID(mm->context) is false.
829  *
830  * We must be careful about boundary cases so that we never
831  * let the user have CTX 0 (nucleus) or we ever use a CTX
832  * version of zero (and thus NO_CONTEXT would not be caught
833  * by version mis-match tests in mmu_context.h).
834  *
835  * Always invoked with interrupts disabled.
836  */
get_new_mmu_context(struct mm_struct * mm)837 void get_new_mmu_context(struct mm_struct *mm)
838 {
839 	unsigned long ctx, new_ctx;
840 	unsigned long orig_pgsz_bits;
841 
842 	spin_lock(&ctx_alloc_lock);
843 retry:
844 	/* wrap might have happened, test again if our context became valid */
845 	if (unlikely(CTX_VALID(mm->context)))
846 		goto out;
847 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
848 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
849 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
850 	if (new_ctx >= (1 << CTX_NR_BITS)) {
851 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
852 		if (new_ctx >= ctx) {
853 			mmu_context_wrap();
854 			goto retry;
855 		}
856 	}
857 	if (mm->context.sparc64_ctx_val)
858 		cpumask_clear(mm_cpumask(mm));
859 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
860 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
861 	tlb_context_cache = new_ctx;
862 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
863 out:
864 	spin_unlock(&ctx_alloc_lock);
865 }
866 
867 static int numa_enabled = 1;
868 static int numa_debug;
869 
early_numa(char * p)870 static int __init early_numa(char *p)
871 {
872 	if (!p)
873 		return 0;
874 
875 	if (strstr(p, "off"))
876 		numa_enabled = 0;
877 
878 	if (strstr(p, "debug"))
879 		numa_debug = 1;
880 
881 	return 0;
882 }
883 early_param("numa", early_numa);
884 
885 #define numadbg(f, a...) \
886 do {	if (numa_debug) \
887 		printk(KERN_INFO f, ## a); \
888 } while (0)
889 
find_ramdisk(unsigned long phys_base)890 static void __init find_ramdisk(unsigned long phys_base)
891 {
892 #ifdef CONFIG_BLK_DEV_INITRD
893 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
894 		unsigned long ramdisk_image;
895 
896 		/* Older versions of the bootloader only supported a
897 		 * 32-bit physical address for the ramdisk image
898 		 * location, stored at sparc_ramdisk_image.  Newer
899 		 * SILO versions set sparc_ramdisk_image to zero and
900 		 * provide a full 64-bit physical address at
901 		 * sparc_ramdisk_image64.
902 		 */
903 		ramdisk_image = sparc_ramdisk_image;
904 		if (!ramdisk_image)
905 			ramdisk_image = sparc_ramdisk_image64;
906 
907 		/* Another bootloader quirk.  The bootloader normalizes
908 		 * the physical address to KERNBASE, so we have to
909 		 * factor that back out and add in the lowest valid
910 		 * physical page address to get the true physical address.
911 		 */
912 		ramdisk_image -= KERNBASE;
913 		ramdisk_image += phys_base;
914 
915 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 			ramdisk_image, sparc_ramdisk_size);
917 
918 		initrd_start = ramdisk_image;
919 		initrd_end = ramdisk_image + sparc_ramdisk_size;
920 
921 		memblock_reserve(initrd_start, sparc_ramdisk_size);
922 
923 		initrd_start += PAGE_OFFSET;
924 		initrd_end += PAGE_OFFSET;
925 	}
926 #endif
927 }
928 
929 struct node_mem_mask {
930 	unsigned long mask;
931 	unsigned long match;
932 };
933 static struct node_mem_mask node_masks[MAX_NUMNODES];
934 static int num_node_masks;
935 
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
937 
938 struct mdesc_mlgroup {
939 	u64	node;
940 	u64	latency;
941 	u64	match;
942 	u64	mask;
943 };
944 
945 static struct mdesc_mlgroup *mlgroups;
946 static int num_mlgroups;
947 
948 int numa_cpu_lookup_table[NR_CPUS];
949 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
950 
951 struct mdesc_mblock {
952 	u64	base;
953 	u64	size;
954 	u64	offset; /* RA-to-PA */
955 };
956 static struct mdesc_mblock *mblocks;
957 static int num_mblocks;
958 
addr_to_mblock(unsigned long addr)959 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
960 {
961 	struct mdesc_mblock *m = NULL;
962 	int i;
963 
964 	for (i = 0; i < num_mblocks; i++) {
965 		m = &mblocks[i];
966 
967 		if (addr >= m->base &&
968 		    addr < (m->base + m->size)) {
969 			break;
970 		}
971 	}
972 
973 	return m;
974 }
975 
memblock_nid_range_sun4u(u64 start,u64 end,int * nid)976 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
977 {
978 	int prev_nid, new_nid;
979 
980 	prev_nid = -1;
981 	for ( ; start < end; start += PAGE_SIZE) {
982 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
983 			struct node_mem_mask *p = &node_masks[new_nid];
984 
985 			if ((start & p->mask) == p->match) {
986 				if (prev_nid == -1)
987 					prev_nid = new_nid;
988 				break;
989 			}
990 		}
991 
992 		if (new_nid == num_node_masks) {
993 			prev_nid = 0;
994 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
995 				  start);
996 			break;
997 		}
998 
999 		if (prev_nid != new_nid)
1000 			break;
1001 	}
1002 	*nid = prev_nid;
1003 
1004 	return start > end ? end : start;
1005 }
1006 
memblock_nid_range(u64 start,u64 end,int * nid)1007 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1008 {
1009 	u64 ret_end, pa_start, m_mask, m_match, m_end;
1010 	struct mdesc_mblock *mblock;
1011 	int _nid, i;
1012 
1013 	if (tlb_type != hypervisor)
1014 		return memblock_nid_range_sun4u(start, end, nid);
1015 
1016 	mblock = addr_to_mblock(start);
1017 	if (!mblock) {
1018 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019 			  start);
1020 
1021 		_nid = 0;
1022 		ret_end = end;
1023 		goto done;
1024 	}
1025 
1026 	pa_start = start + mblock->offset;
1027 	m_match = 0;
1028 	m_mask = 0;
1029 
1030 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1031 		struct node_mem_mask *const m = &node_masks[_nid];
1032 
1033 		if ((pa_start & m->mask) == m->match) {
1034 			m_match = m->match;
1035 			m_mask = m->mask;
1036 			break;
1037 		}
1038 	}
1039 
1040 	if (num_node_masks == _nid) {
1041 		/* We could not find NUMA group, so default to 0, but lets
1042 		 * search for latency group, so we could calculate the correct
1043 		 * end address that we return
1044 		 */
1045 		_nid = 0;
1046 
1047 		for (i = 0; i < num_mlgroups; i++) {
1048 			struct mdesc_mlgroup *const m = &mlgroups[i];
1049 
1050 			if ((pa_start & m->mask) == m->match) {
1051 				m_match = m->match;
1052 				m_mask = m->mask;
1053 				break;
1054 			}
1055 		}
1056 
1057 		if (i == num_mlgroups) {
1058 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059 				  start);
1060 
1061 			ret_end = end;
1062 			goto done;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * Each latency group has match and mask, and each memory block has an
1068 	 * offset.  An address belongs to a latency group if its address matches
1069 	 * the following formula: ((addr + offset) & mask) == match
1070 	 * It is, however, slow to check every single page if it matches a
1071 	 * particular latency group. As optimization we calculate end value by
1072 	 * using bit arithmetics.
1073 	 */
1074 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076 	ret_end = m_end > end ? end : m_end;
1077 
1078 done:
1079 	*nid = _nid;
1080 	return ret_end;
1081 }
1082 #endif
1083 
1084 /* This must be invoked after performing all of the necessary
1085  * memblock_set_node() calls for 'nid'.  We need to be able to get
1086  * correct data from get_pfn_range_for_nid().
1087  */
allocate_node_data(int nid)1088 static void __init allocate_node_data(int nid)
1089 {
1090 	struct pglist_data *p;
1091 	unsigned long start_pfn, end_pfn;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 	unsigned long paddr;
1094 
1095 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1096 	if (!paddr) {
1097 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 		prom_halt();
1099 	}
1100 	NODE_DATA(nid) = __va(paddr);
1101 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1102 
1103 	NODE_DATA(nid)->node_id = nid;
1104 #endif
1105 
1106 	p = NODE_DATA(nid);
1107 
1108 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1109 	p->node_start_pfn = start_pfn;
1110 	p->node_spanned_pages = end_pfn - start_pfn;
1111 }
1112 
init_node_masks_nonnuma(void)1113 static void init_node_masks_nonnuma(void)
1114 {
1115 #ifdef CONFIG_NEED_MULTIPLE_NODES
1116 	int i;
1117 #endif
1118 
1119 	numadbg("Initializing tables for non-numa.\n");
1120 
1121 	node_masks[0].mask = 0;
1122 	node_masks[0].match = 0;
1123 	num_node_masks = 1;
1124 
1125 #ifdef CONFIG_NEED_MULTIPLE_NODES
1126 	for (i = 0; i < NR_CPUS; i++)
1127 		numa_cpu_lookup_table[i] = 0;
1128 
1129 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1130 #endif
1131 }
1132 
1133 #ifdef CONFIG_NEED_MULTIPLE_NODES
1134 struct pglist_data *node_data[MAX_NUMNODES];
1135 
1136 EXPORT_SYMBOL(numa_cpu_lookup_table);
1137 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1138 EXPORT_SYMBOL(node_data);
1139 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)1140 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1141 				   u32 cfg_handle)
1142 {
1143 	u64 arc;
1144 
1145 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1146 		u64 target = mdesc_arc_target(md, arc);
1147 		const u64 *val;
1148 
1149 		val = mdesc_get_property(md, target,
1150 					 "cfg-handle", NULL);
1151 		if (val && *val == cfg_handle)
1152 			return 0;
1153 	}
1154 	return -ENODEV;
1155 }
1156 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)1157 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1158 				    u32 cfg_handle)
1159 {
1160 	u64 arc, candidate, best_latency = ~(u64)0;
1161 
1162 	candidate = MDESC_NODE_NULL;
1163 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1164 		u64 target = mdesc_arc_target(md, arc);
1165 		const char *name = mdesc_node_name(md, target);
1166 		const u64 *val;
1167 
1168 		if (strcmp(name, "pio-latency-group"))
1169 			continue;
1170 
1171 		val = mdesc_get_property(md, target, "latency", NULL);
1172 		if (!val)
1173 			continue;
1174 
1175 		if (*val < best_latency) {
1176 			candidate = target;
1177 			best_latency = *val;
1178 		}
1179 	}
1180 
1181 	if (candidate == MDESC_NODE_NULL)
1182 		return -ENODEV;
1183 
1184 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185 }
1186 
of_node_to_nid(struct device_node * dp)1187 int of_node_to_nid(struct device_node *dp)
1188 {
1189 	const struct linux_prom64_registers *regs;
1190 	struct mdesc_handle *md;
1191 	u32 cfg_handle;
1192 	int count, nid;
1193 	u64 grp;
1194 
1195 	/* This is the right thing to do on currently supported
1196 	 * SUN4U NUMA platforms as well, as the PCI controller does
1197 	 * not sit behind any particular memory controller.
1198 	 */
1199 	if (!mlgroups)
1200 		return -1;
1201 
1202 	regs = of_get_property(dp, "reg", NULL);
1203 	if (!regs)
1204 		return -1;
1205 
1206 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1207 
1208 	md = mdesc_grab();
1209 
1210 	count = 0;
1211 	nid = -1;
1212 	mdesc_for_each_node_by_name(md, grp, "group") {
1213 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1214 			nid = count;
1215 			break;
1216 		}
1217 		count++;
1218 	}
1219 
1220 	mdesc_release(md);
1221 
1222 	return nid;
1223 }
1224 
add_node_ranges(void)1225 static void __init add_node_ranges(void)
1226 {
1227 	struct memblock_region *reg;
1228 	unsigned long prev_max;
1229 
1230 memblock_resized:
1231 	prev_max = memblock.memory.max;
1232 
1233 	for_each_memblock(memory, reg) {
1234 		unsigned long size = reg->size;
1235 		unsigned long start, end;
1236 
1237 		start = reg->base;
1238 		end = start + size;
1239 		while (start < end) {
1240 			unsigned long this_end;
1241 			int nid;
1242 
1243 			this_end = memblock_nid_range(start, end, &nid);
1244 
1245 			numadbg("Setting memblock NUMA node nid[%d] "
1246 				"start[%lx] end[%lx]\n",
1247 				nid, start, this_end);
1248 
1249 			memblock_set_node(start, this_end - start,
1250 					  &memblock.memory, nid);
1251 			if (memblock.memory.max != prev_max)
1252 				goto memblock_resized;
1253 			start = this_end;
1254 		}
1255 	}
1256 }
1257 
grab_mlgroups(struct mdesc_handle * md)1258 static int __init grab_mlgroups(struct mdesc_handle *md)
1259 {
1260 	unsigned long paddr;
1261 	int count = 0;
1262 	u64 node;
1263 
1264 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1265 		count++;
1266 	if (!count)
1267 		return -ENOENT;
1268 
1269 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1270 			  SMP_CACHE_BYTES);
1271 	if (!paddr)
1272 		return -ENOMEM;
1273 
1274 	mlgroups = __va(paddr);
1275 	num_mlgroups = count;
1276 
1277 	count = 0;
1278 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1279 		struct mdesc_mlgroup *m = &mlgroups[count++];
1280 		const u64 *val;
1281 
1282 		m->node = node;
1283 
1284 		val = mdesc_get_property(md, node, "latency", NULL);
1285 		m->latency = *val;
1286 		val = mdesc_get_property(md, node, "address-match", NULL);
1287 		m->match = *val;
1288 		val = mdesc_get_property(md, node, "address-mask", NULL);
1289 		m->mask = *val;
1290 
1291 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292 			"match[%llx] mask[%llx]\n",
1293 			count - 1, m->node, m->latency, m->match, m->mask);
1294 	}
1295 
1296 	return 0;
1297 }
1298 
grab_mblocks(struct mdesc_handle * md)1299 static int __init grab_mblocks(struct mdesc_handle *md)
1300 {
1301 	unsigned long paddr;
1302 	int count = 0;
1303 	u64 node;
1304 
1305 	mdesc_for_each_node_by_name(md, node, "mblock")
1306 		count++;
1307 	if (!count)
1308 		return -ENOENT;
1309 
1310 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1311 			  SMP_CACHE_BYTES);
1312 	if (!paddr)
1313 		return -ENOMEM;
1314 
1315 	mblocks = __va(paddr);
1316 	num_mblocks = count;
1317 
1318 	count = 0;
1319 	mdesc_for_each_node_by_name(md, node, "mblock") {
1320 		struct mdesc_mblock *m = &mblocks[count++];
1321 		const u64 *val;
1322 
1323 		val = mdesc_get_property(md, node, "base", NULL);
1324 		m->base = *val;
1325 		val = mdesc_get_property(md, node, "size", NULL);
1326 		m->size = *val;
1327 		val = mdesc_get_property(md, node,
1328 					 "address-congruence-offset", NULL);
1329 
1330 		/* The address-congruence-offset property is optional.
1331 		 * Explicity zero it be identifty this.
1332 		 */
1333 		if (val)
1334 			m->offset = *val;
1335 		else
1336 			m->offset = 0UL;
1337 
1338 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1339 			count - 1, m->base, m->size, m->offset);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1345 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1346 					       u64 grp, cpumask_t *mask)
1347 {
1348 	u64 arc;
1349 
1350 	cpumask_clear(mask);
1351 
1352 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1353 		u64 target = mdesc_arc_target(md, arc);
1354 		const char *name = mdesc_node_name(md, target);
1355 		const u64 *id;
1356 
1357 		if (strcmp(name, "cpu"))
1358 			continue;
1359 		id = mdesc_get_property(md, target, "id", NULL);
1360 		if (*id < nr_cpu_ids)
1361 			cpumask_set_cpu(*id, mask);
1362 	}
1363 }
1364 
find_mlgroup(u64 node)1365 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < num_mlgroups; i++) {
1370 		struct mdesc_mlgroup *m = &mlgroups[i];
1371 		if (m->node == node)
1372 			return m;
1373 	}
1374 	return NULL;
1375 }
1376 
__node_distance(int from,int to)1377 int __node_distance(int from, int to)
1378 {
1379 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1380 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1381 			from, to);
1382 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1383 	}
1384 	return numa_latency[from][to];
1385 }
1386 
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1387 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i < MAX_NUMNODES; i++) {
1392 		struct node_mem_mask *n = &node_masks[i];
1393 
1394 		if ((grp->mask == n->mask) && (grp->match == n->match))
1395 			break;
1396 	}
1397 	return i;
1398 }
1399 
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1400 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1401 						 u64 grp, int index)
1402 {
1403 	u64 arc;
1404 
1405 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1406 		int tnode;
1407 		u64 target = mdesc_arc_target(md, arc);
1408 		struct mdesc_mlgroup *m = find_mlgroup(target);
1409 
1410 		if (!m)
1411 			continue;
1412 		tnode = find_best_numa_node_for_mlgroup(m);
1413 		if (tnode == MAX_NUMNODES)
1414 			continue;
1415 		numa_latency[index][tnode] = m->latency;
1416 	}
1417 }
1418 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1419 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1420 				      int index)
1421 {
1422 	struct mdesc_mlgroup *candidate = NULL;
1423 	u64 arc, best_latency = ~(u64)0;
1424 	struct node_mem_mask *n;
1425 
1426 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1427 		u64 target = mdesc_arc_target(md, arc);
1428 		struct mdesc_mlgroup *m = find_mlgroup(target);
1429 		if (!m)
1430 			continue;
1431 		if (m->latency < best_latency) {
1432 			candidate = m;
1433 			best_latency = m->latency;
1434 		}
1435 	}
1436 	if (!candidate)
1437 		return -ENOENT;
1438 
1439 	if (num_node_masks != index) {
1440 		printk(KERN_ERR "Inconsistent NUMA state, "
1441 		       "index[%d] != num_node_masks[%d]\n",
1442 		       index, num_node_masks);
1443 		return -EINVAL;
1444 	}
1445 
1446 	n = &node_masks[num_node_masks++];
1447 
1448 	n->mask = candidate->mask;
1449 	n->match = candidate->match;
1450 
1451 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1452 		index, n->mask, n->match, candidate->latency);
1453 
1454 	return 0;
1455 }
1456 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1457 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1458 					 int index)
1459 {
1460 	cpumask_t mask;
1461 	int cpu;
1462 
1463 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1464 
1465 	for_each_cpu(cpu, &mask)
1466 		numa_cpu_lookup_table[cpu] = index;
1467 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1468 
1469 	if (numa_debug) {
1470 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1471 		for_each_cpu(cpu, &mask)
1472 			printk("%d ", cpu);
1473 		printk("]\n");
1474 	}
1475 
1476 	return numa_attach_mlgroup(md, grp, index);
1477 }
1478 
numa_parse_mdesc(void)1479 static int __init numa_parse_mdesc(void)
1480 {
1481 	struct mdesc_handle *md = mdesc_grab();
1482 	int i, j, err, count;
1483 	u64 node;
1484 
1485 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1486 	if (node == MDESC_NODE_NULL) {
1487 		mdesc_release(md);
1488 		return -ENOENT;
1489 	}
1490 
1491 	err = grab_mblocks(md);
1492 	if (err < 0)
1493 		goto out;
1494 
1495 	err = grab_mlgroups(md);
1496 	if (err < 0)
1497 		goto out;
1498 
1499 	count = 0;
1500 	mdesc_for_each_node_by_name(md, node, "group") {
1501 		err = numa_parse_mdesc_group(md, node, count);
1502 		if (err < 0)
1503 			break;
1504 		count++;
1505 	}
1506 
1507 	count = 0;
1508 	mdesc_for_each_node_by_name(md, node, "group") {
1509 		find_numa_latencies_for_group(md, node, count);
1510 		count++;
1511 	}
1512 
1513 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1514 	for (i = 0; i < MAX_NUMNODES; i++) {
1515 		u64 self_latency = numa_latency[i][i];
1516 
1517 		for (j = 0; j < MAX_NUMNODES; j++) {
1518 			numa_latency[i][j] =
1519 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1520 				self_latency;
1521 		}
1522 	}
1523 
1524 	add_node_ranges();
1525 
1526 	for (i = 0; i < num_node_masks; i++) {
1527 		allocate_node_data(i);
1528 		node_set_online(i);
1529 	}
1530 
1531 	err = 0;
1532 out:
1533 	mdesc_release(md);
1534 	return err;
1535 }
1536 
numa_parse_jbus(void)1537 static int __init numa_parse_jbus(void)
1538 {
1539 	unsigned long cpu, index;
1540 
1541 	/* NUMA node id is encoded in bits 36 and higher, and there is
1542 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1543 	 */
1544 	index = 0;
1545 	for_each_present_cpu(cpu) {
1546 		numa_cpu_lookup_table[cpu] = index;
1547 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1548 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1549 		node_masks[index].match = cpu << 36UL;
1550 
1551 		index++;
1552 	}
1553 	num_node_masks = index;
1554 
1555 	add_node_ranges();
1556 
1557 	for (index = 0; index < num_node_masks; index++) {
1558 		allocate_node_data(index);
1559 		node_set_online(index);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
numa_parse_sun4u(void)1565 static int __init numa_parse_sun4u(void)
1566 {
1567 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1568 		unsigned long ver;
1569 
1570 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1571 		if ((ver >> 32UL) == __JALAPENO_ID ||
1572 		    (ver >> 32UL) == __SERRANO_ID)
1573 			return numa_parse_jbus();
1574 	}
1575 	return -1;
1576 }
1577 
bootmem_init_numa(void)1578 static int __init bootmem_init_numa(void)
1579 {
1580 	int i, j;
1581 	int err = -1;
1582 
1583 	numadbg("bootmem_init_numa()\n");
1584 
1585 	/* Some sane defaults for numa latency values */
1586 	for (i = 0; i < MAX_NUMNODES; i++) {
1587 		for (j = 0; j < MAX_NUMNODES; j++)
1588 			numa_latency[i][j] = (i == j) ?
1589 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1590 	}
1591 
1592 	if (numa_enabled) {
1593 		if (tlb_type == hypervisor)
1594 			err = numa_parse_mdesc();
1595 		else
1596 			err = numa_parse_sun4u();
1597 	}
1598 	return err;
1599 }
1600 
1601 #else
1602 
bootmem_init_numa(void)1603 static int bootmem_init_numa(void)
1604 {
1605 	return -1;
1606 }
1607 
1608 #endif
1609 
bootmem_init_nonnuma(void)1610 static void __init bootmem_init_nonnuma(void)
1611 {
1612 	unsigned long top_of_ram = memblock_end_of_DRAM();
1613 	unsigned long total_ram = memblock_phys_mem_size();
1614 
1615 	numadbg("bootmem_init_nonnuma()\n");
1616 
1617 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1618 	       top_of_ram, total_ram);
1619 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1620 	       (top_of_ram - total_ram) >> 20);
1621 
1622 	init_node_masks_nonnuma();
1623 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1624 	allocate_node_data(0);
1625 	node_set_online(0);
1626 }
1627 
bootmem_init(unsigned long phys_base)1628 static unsigned long __init bootmem_init(unsigned long phys_base)
1629 {
1630 	unsigned long end_pfn;
1631 
1632 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1633 	max_pfn = max_low_pfn = end_pfn;
1634 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1635 
1636 	if (bootmem_init_numa() < 0)
1637 		bootmem_init_nonnuma();
1638 
1639 	/* Dump memblock with node info. */
1640 	memblock_dump_all();
1641 
1642 	/* XXX cpu notifier XXX */
1643 
1644 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1645 	sparse_init();
1646 
1647 	return end_pfn;
1648 }
1649 
1650 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1651 static int pall_ents __initdata;
1652 
1653 static unsigned long max_phys_bits = 40;
1654 
kern_addr_valid(unsigned long addr)1655 bool kern_addr_valid(unsigned long addr)
1656 {
1657 	pgd_t *pgd;
1658 	pud_t *pud;
1659 	pmd_t *pmd;
1660 	pte_t *pte;
1661 
1662 	if ((long)addr < 0L) {
1663 		unsigned long pa = __pa(addr);
1664 
1665 		if ((pa >> max_phys_bits) != 0UL)
1666 			return false;
1667 
1668 		return pfn_valid(pa >> PAGE_SHIFT);
1669 	}
1670 
1671 	if (addr >= (unsigned long) KERNBASE &&
1672 	    addr < (unsigned long)&_end)
1673 		return true;
1674 
1675 	pgd = pgd_offset_k(addr);
1676 	if (pgd_none(*pgd))
1677 		return 0;
1678 
1679 	pud = pud_offset(pgd, addr);
1680 	if (pud_none(*pud))
1681 		return 0;
1682 
1683 	if (pud_large(*pud))
1684 		return pfn_valid(pud_pfn(*pud));
1685 
1686 	pmd = pmd_offset(pud, addr);
1687 	if (pmd_none(*pmd))
1688 		return 0;
1689 
1690 	if (pmd_large(*pmd))
1691 		return pfn_valid(pmd_pfn(*pmd));
1692 
1693 	pte = pte_offset_kernel(pmd, addr);
1694 	if (pte_none(*pte))
1695 		return 0;
1696 
1697 	return pfn_valid(pte_pfn(*pte));
1698 }
1699 EXPORT_SYMBOL(kern_addr_valid);
1700 
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1701 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1702 					      unsigned long vend,
1703 					      pud_t *pud)
1704 {
1705 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1706 	u64 pte_val = vstart;
1707 
1708 	/* Each PUD is 8GB */
1709 	if ((vstart & mask16gb) ||
1710 	    (vend - vstart <= mask16gb)) {
1711 		pte_val ^= kern_linear_pte_xor[2];
1712 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1713 
1714 		return vstart + PUD_SIZE;
1715 	}
1716 
1717 	pte_val ^= kern_linear_pte_xor[3];
1718 	pte_val |= _PAGE_PUD_HUGE;
1719 
1720 	vend = vstart + mask16gb + 1UL;
1721 	while (vstart < vend) {
1722 		pud_val(*pud) = pte_val;
1723 
1724 		pte_val += PUD_SIZE;
1725 		vstart += PUD_SIZE;
1726 		pud++;
1727 	}
1728 	return vstart;
1729 }
1730 
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1731 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1732 				   bool guard)
1733 {
1734 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1735 		return true;
1736 
1737 	return false;
1738 }
1739 
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1740 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1741 					      unsigned long vend,
1742 					      pmd_t *pmd)
1743 {
1744 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1745 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1746 	u64 pte_val = vstart;
1747 
1748 	/* Each PMD is 8MB */
1749 	if ((vstart & mask256mb) ||
1750 	    (vend - vstart <= mask256mb)) {
1751 		pte_val ^= kern_linear_pte_xor[0];
1752 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1753 
1754 		return vstart + PMD_SIZE;
1755 	}
1756 
1757 	if ((vstart & mask2gb) ||
1758 	    (vend - vstart <= mask2gb)) {
1759 		pte_val ^= kern_linear_pte_xor[1];
1760 		pte_val |= _PAGE_PMD_HUGE;
1761 		vend = vstart + mask256mb + 1UL;
1762 	} else {
1763 		pte_val ^= kern_linear_pte_xor[2];
1764 		pte_val |= _PAGE_PMD_HUGE;
1765 		vend = vstart + mask2gb + 1UL;
1766 	}
1767 
1768 	while (vstart < vend) {
1769 		pmd_val(*pmd) = pte_val;
1770 
1771 		pte_val += PMD_SIZE;
1772 		vstart += PMD_SIZE;
1773 		pmd++;
1774 	}
1775 
1776 	return vstart;
1777 }
1778 
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1779 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1780 				   bool guard)
1781 {
1782 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1783 		return true;
1784 
1785 	return false;
1786 }
1787 
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1788 static unsigned long __ref kernel_map_range(unsigned long pstart,
1789 					    unsigned long pend, pgprot_t prot,
1790 					    bool use_huge)
1791 {
1792 	unsigned long vstart = PAGE_OFFSET + pstart;
1793 	unsigned long vend = PAGE_OFFSET + pend;
1794 	unsigned long alloc_bytes = 0UL;
1795 
1796 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1797 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1798 			    vstart, vend);
1799 		prom_halt();
1800 	}
1801 
1802 	while (vstart < vend) {
1803 		unsigned long this_end, paddr = __pa(vstart);
1804 		pgd_t *pgd = pgd_offset_k(vstart);
1805 		pud_t *pud;
1806 		pmd_t *pmd;
1807 		pte_t *pte;
1808 
1809 		if (pgd_none(*pgd)) {
1810 			pud_t *new;
1811 
1812 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1813 			alloc_bytes += PAGE_SIZE;
1814 			pgd_populate(&init_mm, pgd, new);
1815 		}
1816 		pud = pud_offset(pgd, vstart);
1817 		if (pud_none(*pud)) {
1818 			pmd_t *new;
1819 
1820 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1821 				vstart = kernel_map_hugepud(vstart, vend, pud);
1822 				continue;
1823 			}
1824 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1825 			alloc_bytes += PAGE_SIZE;
1826 			pud_populate(&init_mm, pud, new);
1827 		}
1828 
1829 		pmd = pmd_offset(pud, vstart);
1830 		if (pmd_none(*pmd)) {
1831 			pte_t *new;
1832 
1833 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1834 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1835 				continue;
1836 			}
1837 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1838 			alloc_bytes += PAGE_SIZE;
1839 			pmd_populate_kernel(&init_mm, pmd, new);
1840 		}
1841 
1842 		pte = pte_offset_kernel(pmd, vstart);
1843 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1844 		if (this_end > vend)
1845 			this_end = vend;
1846 
1847 		while (vstart < this_end) {
1848 			pte_val(*pte) = (paddr | pgprot_val(prot));
1849 
1850 			vstart += PAGE_SIZE;
1851 			paddr += PAGE_SIZE;
1852 			pte++;
1853 		}
1854 	}
1855 
1856 	return alloc_bytes;
1857 }
1858 
flush_all_kernel_tsbs(void)1859 static void __init flush_all_kernel_tsbs(void)
1860 {
1861 	int i;
1862 
1863 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1864 		struct tsb *ent = &swapper_tsb[i];
1865 
1866 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1867 	}
1868 #ifndef CONFIG_DEBUG_PAGEALLOC
1869 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1870 		struct tsb *ent = &swapper_4m_tsb[i];
1871 
1872 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1873 	}
1874 #endif
1875 }
1876 
1877 extern unsigned int kvmap_linear_patch[1];
1878 
kernel_physical_mapping_init(void)1879 static void __init kernel_physical_mapping_init(void)
1880 {
1881 	unsigned long i, mem_alloced = 0UL;
1882 	bool use_huge = true;
1883 
1884 #ifdef CONFIG_DEBUG_PAGEALLOC
1885 	use_huge = false;
1886 #endif
1887 	for (i = 0; i < pall_ents; i++) {
1888 		unsigned long phys_start, phys_end;
1889 
1890 		phys_start = pall[i].phys_addr;
1891 		phys_end = phys_start + pall[i].reg_size;
1892 
1893 		mem_alloced += kernel_map_range(phys_start, phys_end,
1894 						PAGE_KERNEL, use_huge);
1895 	}
1896 
1897 	printk("Allocated %ld bytes for kernel page tables.\n",
1898 	       mem_alloced);
1899 
1900 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1901 	flushi(&kvmap_linear_patch[0]);
1902 
1903 	flush_all_kernel_tsbs();
1904 
1905 	__flush_tlb_all();
1906 }
1907 
1908 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1909 void __kernel_map_pages(struct page *page, int numpages, int enable)
1910 {
1911 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1912 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1913 
1914 	kernel_map_range(phys_start, phys_end,
1915 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1916 
1917 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1918 			       PAGE_OFFSET + phys_end);
1919 
1920 	/* we should perform an IPI and flush all tlbs,
1921 	 * but that can deadlock->flush only current cpu.
1922 	 */
1923 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1924 				 PAGE_OFFSET + phys_end);
1925 }
1926 #endif
1927 
find_ecache_flush_span(unsigned long size)1928 unsigned long __init find_ecache_flush_span(unsigned long size)
1929 {
1930 	int i;
1931 
1932 	for (i = 0; i < pavail_ents; i++) {
1933 		if (pavail[i].reg_size >= size)
1934 			return pavail[i].phys_addr;
1935 	}
1936 
1937 	return ~0UL;
1938 }
1939 
1940 unsigned long PAGE_OFFSET;
1941 EXPORT_SYMBOL(PAGE_OFFSET);
1942 
1943 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1944 EXPORT_SYMBOL(VMALLOC_END);
1945 
1946 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1947 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1948 
setup_page_offset(void)1949 static void __init setup_page_offset(void)
1950 {
1951 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1952 		/* Cheetah/Panther support a full 64-bit virtual
1953 		 * address, so we can use all that our page tables
1954 		 * support.
1955 		 */
1956 		sparc64_va_hole_top =    0xfff0000000000000UL;
1957 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1958 
1959 		max_phys_bits = 42;
1960 	} else if (tlb_type == hypervisor) {
1961 		switch (sun4v_chip_type) {
1962 		case SUN4V_CHIP_NIAGARA1:
1963 		case SUN4V_CHIP_NIAGARA2:
1964 			/* T1 and T2 support 48-bit virtual addresses.  */
1965 			sparc64_va_hole_top =    0xffff800000000000UL;
1966 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1967 
1968 			max_phys_bits = 39;
1969 			break;
1970 		case SUN4V_CHIP_NIAGARA3:
1971 			/* T3 supports 48-bit virtual addresses.  */
1972 			sparc64_va_hole_top =    0xffff800000000000UL;
1973 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1974 
1975 			max_phys_bits = 43;
1976 			break;
1977 		case SUN4V_CHIP_NIAGARA4:
1978 		case SUN4V_CHIP_NIAGARA5:
1979 		case SUN4V_CHIP_SPARC64X:
1980 		case SUN4V_CHIP_SPARC_M6:
1981 			/* T4 and later support 52-bit virtual addresses.  */
1982 			sparc64_va_hole_top =    0xfff8000000000000UL;
1983 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1984 			max_phys_bits = 47;
1985 			break;
1986 		case SUN4V_CHIP_SPARC_M7:
1987 		case SUN4V_CHIP_SPARC_SN:
1988 			/* M7 and later support 52-bit virtual addresses.  */
1989 			sparc64_va_hole_top =    0xfff8000000000000UL;
1990 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1991 			max_phys_bits = 49;
1992 			break;
1993 		case SUN4V_CHIP_SPARC_M8:
1994 		default:
1995 			/* M8 and later support 54-bit virtual addresses.
1996 			 * However, restricting M8 and above VA bits to 53
1997 			 * as 4-level page table cannot support more than
1998 			 * 53 VA bits.
1999 			 */
2000 			sparc64_va_hole_top =    0xfff0000000000000UL;
2001 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2002 			max_phys_bits = 51;
2003 			break;
2004 		}
2005 	}
2006 
2007 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2008 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2009 			    max_phys_bits);
2010 		prom_halt();
2011 	}
2012 
2013 	PAGE_OFFSET = sparc64_va_hole_top;
2014 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2015 		       (sparc64_va_hole_bottom >> 2));
2016 
2017 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2018 		PAGE_OFFSET, max_phys_bits);
2019 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2020 		VMALLOC_START, VMALLOC_END);
2021 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2022 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2023 }
2024 
tsb_phys_patch(void)2025 static void __init tsb_phys_patch(void)
2026 {
2027 	struct tsb_ldquad_phys_patch_entry *pquad;
2028 	struct tsb_phys_patch_entry *p;
2029 
2030 	pquad = &__tsb_ldquad_phys_patch;
2031 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2032 		unsigned long addr = pquad->addr;
2033 
2034 		if (tlb_type == hypervisor)
2035 			*(unsigned int *) addr = pquad->sun4v_insn;
2036 		else
2037 			*(unsigned int *) addr = pquad->sun4u_insn;
2038 		wmb();
2039 		__asm__ __volatile__("flush	%0"
2040 				     : /* no outputs */
2041 				     : "r" (addr));
2042 
2043 		pquad++;
2044 	}
2045 
2046 	p = &__tsb_phys_patch;
2047 	while (p < &__tsb_phys_patch_end) {
2048 		unsigned long addr = p->addr;
2049 
2050 		*(unsigned int *) addr = p->insn;
2051 		wmb();
2052 		__asm__ __volatile__("flush	%0"
2053 				     : /* no outputs */
2054 				     : "r" (addr));
2055 
2056 		p++;
2057 	}
2058 }
2059 
2060 /* Don't mark as init, we give this to the Hypervisor.  */
2061 #ifndef CONFIG_DEBUG_PAGEALLOC
2062 #define NUM_KTSB_DESCR	2
2063 #else
2064 #define NUM_KTSB_DESCR	1
2065 #endif
2066 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2067 
2068 /* The swapper TSBs are loaded with a base sequence of:
2069  *
2070  *	sethi	%uhi(SYMBOL), REG1
2071  *	sethi	%hi(SYMBOL), REG2
2072  *	or	REG1, %ulo(SYMBOL), REG1
2073  *	or	REG2, %lo(SYMBOL), REG2
2074  *	sllx	REG1, 32, REG1
2075  *	or	REG1, REG2, REG1
2076  *
2077  * When we use physical addressing for the TSB accesses, we patch the
2078  * first four instructions in the above sequence.
2079  */
2080 
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)2081 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2082 {
2083 	unsigned long high_bits, low_bits;
2084 
2085 	high_bits = (pa >> 32) & 0xffffffff;
2086 	low_bits = (pa >> 0) & 0xffffffff;
2087 
2088 	while (start < end) {
2089 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2090 
2091 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2092 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2093 
2094 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2095 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2096 
2097 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2098 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2099 
2100 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2101 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2102 
2103 		start++;
2104 	}
2105 }
2106 
ktsb_phys_patch(void)2107 static void ktsb_phys_patch(void)
2108 {
2109 	extern unsigned int __swapper_tsb_phys_patch;
2110 	extern unsigned int __swapper_tsb_phys_patch_end;
2111 	unsigned long ktsb_pa;
2112 
2113 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2114 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2115 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2116 #ifndef CONFIG_DEBUG_PAGEALLOC
2117 	{
2118 	extern unsigned int __swapper_4m_tsb_phys_patch;
2119 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2120 	ktsb_pa = (kern_base +
2121 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2122 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2123 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2124 	}
2125 #endif
2126 }
2127 
sun4v_ktsb_init(void)2128 static void __init sun4v_ktsb_init(void)
2129 {
2130 	unsigned long ktsb_pa;
2131 
2132 	/* First KTSB for PAGE_SIZE mappings.  */
2133 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2134 
2135 	switch (PAGE_SIZE) {
2136 	case 8 * 1024:
2137 	default:
2138 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2139 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2140 		break;
2141 
2142 	case 64 * 1024:
2143 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2144 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2145 		break;
2146 
2147 	case 512 * 1024:
2148 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2149 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2150 		break;
2151 
2152 	case 4 * 1024 * 1024:
2153 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2154 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2155 		break;
2156 	}
2157 
2158 	ktsb_descr[0].assoc = 1;
2159 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2160 	ktsb_descr[0].ctx_idx = 0;
2161 	ktsb_descr[0].tsb_base = ktsb_pa;
2162 	ktsb_descr[0].resv = 0;
2163 
2164 #ifndef CONFIG_DEBUG_PAGEALLOC
2165 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2166 	ktsb_pa = (kern_base +
2167 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2168 
2169 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2170 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2171 				    HV_PGSZ_MASK_256MB |
2172 				    HV_PGSZ_MASK_2GB |
2173 				    HV_PGSZ_MASK_16GB) &
2174 				   cpu_pgsz_mask);
2175 	ktsb_descr[1].assoc = 1;
2176 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2177 	ktsb_descr[1].ctx_idx = 0;
2178 	ktsb_descr[1].tsb_base = ktsb_pa;
2179 	ktsb_descr[1].resv = 0;
2180 #endif
2181 }
2182 
sun4v_ktsb_register(void)2183 void sun4v_ktsb_register(void)
2184 {
2185 	unsigned long pa, ret;
2186 
2187 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2188 
2189 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2190 	if (ret != 0) {
2191 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2192 			    "errors with %lx\n", pa, ret);
2193 		prom_halt();
2194 	}
2195 }
2196 
sun4u_linear_pte_xor_finalize(void)2197 static void __init sun4u_linear_pte_xor_finalize(void)
2198 {
2199 #ifndef CONFIG_DEBUG_PAGEALLOC
2200 	/* This is where we would add Panther support for
2201 	 * 32MB and 256MB pages.
2202 	 */
2203 #endif
2204 }
2205 
sun4v_linear_pte_xor_finalize(void)2206 static void __init sun4v_linear_pte_xor_finalize(void)
2207 {
2208 	unsigned long pagecv_flag;
2209 
2210 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2211 	 * enables MCD error. Do not set bit 9 on M7 processor.
2212 	 */
2213 	switch (sun4v_chip_type) {
2214 	case SUN4V_CHIP_SPARC_M7:
2215 	case SUN4V_CHIP_SPARC_M8:
2216 	case SUN4V_CHIP_SPARC_SN:
2217 		pagecv_flag = 0x00;
2218 		break;
2219 	default:
2220 		pagecv_flag = _PAGE_CV_4V;
2221 		break;
2222 	}
2223 #ifndef CONFIG_DEBUG_PAGEALLOC
2224 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2225 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2226 			PAGE_OFFSET;
2227 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2228 					   _PAGE_P_4V | _PAGE_W_4V);
2229 	} else {
2230 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2231 	}
2232 
2233 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2234 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2235 			PAGE_OFFSET;
2236 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2237 					   _PAGE_P_4V | _PAGE_W_4V);
2238 	} else {
2239 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2240 	}
2241 
2242 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2243 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2244 			PAGE_OFFSET;
2245 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2246 					   _PAGE_P_4V | _PAGE_W_4V);
2247 	} else {
2248 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2249 	}
2250 #endif
2251 }
2252 
2253 /* paging_init() sets up the page tables */
2254 
2255 static unsigned long last_valid_pfn;
2256 
2257 static void sun4u_pgprot_init(void);
2258 static void sun4v_pgprot_init(void);
2259 
available_memory(void)2260 static phys_addr_t __init available_memory(void)
2261 {
2262 	phys_addr_t available = 0ULL;
2263 	phys_addr_t pa_start, pa_end;
2264 	u64 i;
2265 
2266 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2267 				&pa_end, NULL)
2268 		available = available + (pa_end  - pa_start);
2269 
2270 	return available;
2271 }
2272 
2273 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2274 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2275 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2276 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2277 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2278 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2279 
2280 /* We need to exclude reserved regions. This exclusion will include
2281  * vmlinux and initrd. To be more precise the initrd size could be used to
2282  * compute a new lower limit because it is freed later during initialization.
2283  */
reduce_memory(phys_addr_t limit_ram)2284 static void __init reduce_memory(phys_addr_t limit_ram)
2285 {
2286 	phys_addr_t avail_ram = available_memory();
2287 	phys_addr_t pa_start, pa_end;
2288 	u64 i;
2289 
2290 	if (limit_ram >= avail_ram)
2291 		return;
2292 
2293 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2294 				&pa_end, NULL) {
2295 		phys_addr_t region_size = pa_end - pa_start;
2296 		phys_addr_t clip_start = pa_start;
2297 
2298 		avail_ram = avail_ram - region_size;
2299 		/* Are we consuming too much? */
2300 		if (avail_ram < limit_ram) {
2301 			phys_addr_t give_back = limit_ram - avail_ram;
2302 
2303 			region_size = region_size - give_back;
2304 			clip_start = clip_start + give_back;
2305 		}
2306 
2307 		memblock_remove(clip_start, region_size);
2308 
2309 		if (avail_ram <= limit_ram)
2310 			break;
2311 		i = 0UL;
2312 	}
2313 }
2314 
paging_init(void)2315 void __init paging_init(void)
2316 {
2317 	unsigned long end_pfn, shift, phys_base;
2318 	unsigned long real_end, i;
2319 
2320 	setup_page_offset();
2321 
2322 	/* These build time checkes make sure that the dcache_dirty_cpu()
2323 	 * page->flags usage will work.
2324 	 *
2325 	 * When a page gets marked as dcache-dirty, we store the
2326 	 * cpu number starting at bit 32 in the page->flags.  Also,
2327 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2328 	 * in 13-bit signed-immediate instruction fields.
2329 	 */
2330 
2331 	/*
2332 	 * Page flags must not reach into upper 32 bits that are used
2333 	 * for the cpu number
2334 	 */
2335 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2336 
2337 	/*
2338 	 * The bit fields placed in the high range must not reach below
2339 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2340 	 * at the 32 bit boundary.
2341 	 */
2342 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2343 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2344 
2345 	BUILD_BUG_ON(NR_CPUS > 4096);
2346 
2347 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2348 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2349 
2350 	/* Invalidate both kernel TSBs.  */
2351 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2352 #ifndef CONFIG_DEBUG_PAGEALLOC
2353 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2354 #endif
2355 
2356 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2357 	 * bit on M7 processor. This is a conflicting usage of the same
2358 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2359 	 * Detection error on all pages and this will lead to problems
2360 	 * later. Kernel does not run with MCD enabled and hence rest
2361 	 * of the required steps to fully configure memory corruption
2362 	 * detection are not taken. We need to ensure TTE.mcde is not
2363 	 * set on M7 processor. Compute the value of cacheability
2364 	 * flag for use later taking this into consideration.
2365 	 */
2366 	switch (sun4v_chip_type) {
2367 	case SUN4V_CHIP_SPARC_M7:
2368 	case SUN4V_CHIP_SPARC_M8:
2369 	case SUN4V_CHIP_SPARC_SN:
2370 		page_cache4v_flag = _PAGE_CP_4V;
2371 		break;
2372 	default:
2373 		page_cache4v_flag = _PAGE_CACHE_4V;
2374 		break;
2375 	}
2376 
2377 	if (tlb_type == hypervisor)
2378 		sun4v_pgprot_init();
2379 	else
2380 		sun4u_pgprot_init();
2381 
2382 	if (tlb_type == cheetah_plus ||
2383 	    tlb_type == hypervisor) {
2384 		tsb_phys_patch();
2385 		ktsb_phys_patch();
2386 	}
2387 
2388 	if (tlb_type == hypervisor)
2389 		sun4v_patch_tlb_handlers();
2390 
2391 	/* Find available physical memory...
2392 	 *
2393 	 * Read it twice in order to work around a bug in openfirmware.
2394 	 * The call to grab this table itself can cause openfirmware to
2395 	 * allocate memory, which in turn can take away some space from
2396 	 * the list of available memory.  Reading it twice makes sure
2397 	 * we really do get the final value.
2398 	 */
2399 	read_obp_translations();
2400 	read_obp_memory("reg", &pall[0], &pall_ents);
2401 	read_obp_memory("available", &pavail[0], &pavail_ents);
2402 	read_obp_memory("available", &pavail[0], &pavail_ents);
2403 
2404 	phys_base = 0xffffffffffffffffUL;
2405 	for (i = 0; i < pavail_ents; i++) {
2406 		phys_base = min(phys_base, pavail[i].phys_addr);
2407 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2408 	}
2409 
2410 	memblock_reserve(kern_base, kern_size);
2411 
2412 	find_ramdisk(phys_base);
2413 
2414 	if (cmdline_memory_size)
2415 		reduce_memory(cmdline_memory_size);
2416 
2417 	memblock_allow_resize();
2418 	memblock_dump_all();
2419 
2420 	set_bit(0, mmu_context_bmap);
2421 
2422 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2423 
2424 	real_end = (unsigned long)_end;
2425 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2426 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2427 	       num_kernel_image_mappings);
2428 
2429 	/* Set kernel pgd to upper alias so physical page computations
2430 	 * work.
2431 	 */
2432 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2433 
2434 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2435 
2436 	inherit_prom_mappings();
2437 
2438 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2439 	setup_tba();
2440 
2441 	__flush_tlb_all();
2442 
2443 	prom_build_devicetree();
2444 	of_populate_present_mask();
2445 #ifndef CONFIG_SMP
2446 	of_fill_in_cpu_data();
2447 #endif
2448 
2449 	if (tlb_type == hypervisor) {
2450 		sun4v_mdesc_init();
2451 		mdesc_populate_present_mask(cpu_all_mask);
2452 #ifndef CONFIG_SMP
2453 		mdesc_fill_in_cpu_data(cpu_all_mask);
2454 #endif
2455 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2456 
2457 		sun4v_linear_pte_xor_finalize();
2458 
2459 		sun4v_ktsb_init();
2460 		sun4v_ktsb_register();
2461 	} else {
2462 		unsigned long impl, ver;
2463 
2464 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2465 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2466 
2467 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2468 		impl = ((ver >> 32) & 0xffff);
2469 		if (impl == PANTHER_IMPL)
2470 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2471 					  HV_PGSZ_MASK_256MB);
2472 
2473 		sun4u_linear_pte_xor_finalize();
2474 	}
2475 
2476 	/* Flush the TLBs and the 4M TSB so that the updated linear
2477 	 * pte XOR settings are realized for all mappings.
2478 	 */
2479 	__flush_tlb_all();
2480 #ifndef CONFIG_DEBUG_PAGEALLOC
2481 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2482 #endif
2483 	__flush_tlb_all();
2484 
2485 	/* Setup bootmem... */
2486 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2487 
2488 	kernel_physical_mapping_init();
2489 
2490 	{
2491 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2492 
2493 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2494 
2495 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2496 
2497 		free_area_init_nodes(max_zone_pfns);
2498 	}
2499 
2500 	printk("Booting Linux...\n");
2501 }
2502 
page_in_phys_avail(unsigned long paddr)2503 int page_in_phys_avail(unsigned long paddr)
2504 {
2505 	int i;
2506 
2507 	paddr &= PAGE_MASK;
2508 
2509 	for (i = 0; i < pavail_ents; i++) {
2510 		unsigned long start, end;
2511 
2512 		start = pavail[i].phys_addr;
2513 		end = start + pavail[i].reg_size;
2514 
2515 		if (paddr >= start && paddr < end)
2516 			return 1;
2517 	}
2518 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2519 		return 1;
2520 #ifdef CONFIG_BLK_DEV_INITRD
2521 	if (paddr >= __pa(initrd_start) &&
2522 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2523 		return 1;
2524 #endif
2525 
2526 	return 0;
2527 }
2528 
register_page_bootmem_info(void)2529 static void __init register_page_bootmem_info(void)
2530 {
2531 #ifdef CONFIG_NEED_MULTIPLE_NODES
2532 	int i;
2533 
2534 	for_each_online_node(i)
2535 		if (NODE_DATA(i)->node_spanned_pages)
2536 			register_page_bootmem_info_node(NODE_DATA(i));
2537 #endif
2538 }
mem_init(void)2539 void __init mem_init(void)
2540 {
2541 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2542 
2543 	free_all_bootmem();
2544 
2545 	/*
2546 	 * Must be done after boot memory is put on freelist, because here we
2547 	 * might set fields in deferred struct pages that have not yet been
2548 	 * initialized, and free_all_bootmem() initializes all the reserved
2549 	 * deferred pages for us.
2550 	 */
2551 	register_page_bootmem_info();
2552 
2553 	/*
2554 	 * Set up the zero page, mark it reserved, so that page count
2555 	 * is not manipulated when freeing the page from user ptes.
2556 	 */
2557 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2558 	if (mem_map_zero == NULL) {
2559 		prom_printf("paging_init: Cannot alloc zero page.\n");
2560 		prom_halt();
2561 	}
2562 	mark_page_reserved(mem_map_zero);
2563 
2564 	mem_init_print_info(NULL);
2565 
2566 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2567 		cheetah_ecache_flush_init();
2568 }
2569 
free_initmem(void)2570 void free_initmem(void)
2571 {
2572 	unsigned long addr, initend;
2573 	int do_free = 1;
2574 
2575 	/* If the physical memory maps were trimmed by kernel command
2576 	 * line options, don't even try freeing this initmem stuff up.
2577 	 * The kernel image could have been in the trimmed out region
2578 	 * and if so the freeing below will free invalid page structs.
2579 	 */
2580 	if (cmdline_memory_size)
2581 		do_free = 0;
2582 
2583 	/*
2584 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2585 	 */
2586 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2587 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2588 	for (; addr < initend; addr += PAGE_SIZE) {
2589 		unsigned long page;
2590 
2591 		page = (addr +
2592 			((unsigned long) __va(kern_base)) -
2593 			((unsigned long) KERNBASE));
2594 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2595 
2596 		if (do_free)
2597 			free_reserved_page(virt_to_page(page));
2598 	}
2599 }
2600 
2601 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2602 void free_initrd_mem(unsigned long start, unsigned long end)
2603 {
2604 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2605 			   "initrd");
2606 }
2607 #endif
2608 
2609 pgprot_t PAGE_KERNEL __read_mostly;
2610 EXPORT_SYMBOL(PAGE_KERNEL);
2611 
2612 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2613 pgprot_t PAGE_COPY __read_mostly;
2614 
2615 pgprot_t PAGE_SHARED __read_mostly;
2616 EXPORT_SYMBOL(PAGE_SHARED);
2617 
2618 unsigned long pg_iobits __read_mostly;
2619 
2620 unsigned long _PAGE_IE __read_mostly;
2621 EXPORT_SYMBOL(_PAGE_IE);
2622 
2623 unsigned long _PAGE_E __read_mostly;
2624 EXPORT_SYMBOL(_PAGE_E);
2625 
2626 unsigned long _PAGE_CACHE __read_mostly;
2627 EXPORT_SYMBOL(_PAGE_CACHE);
2628 
2629 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node,struct vmem_altmap * altmap)2630 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2631 			       int node, struct vmem_altmap *altmap)
2632 {
2633 	unsigned long pte_base;
2634 
2635 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2636 		    _PAGE_CP_4U | _PAGE_CV_4U |
2637 		    _PAGE_P_4U | _PAGE_W_4U);
2638 	if (tlb_type == hypervisor)
2639 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2640 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2641 
2642 	pte_base |= _PAGE_PMD_HUGE;
2643 
2644 	vstart = vstart & PMD_MASK;
2645 	vend = ALIGN(vend, PMD_SIZE);
2646 	for (; vstart < vend; vstart += PMD_SIZE) {
2647 		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2648 		unsigned long pte;
2649 		pud_t *pud;
2650 		pmd_t *pmd;
2651 
2652 		if (!pgd)
2653 			return -ENOMEM;
2654 
2655 		pud = vmemmap_pud_populate(pgd, vstart, node);
2656 		if (!pud)
2657 			return -ENOMEM;
2658 
2659 		pmd = pmd_offset(pud, vstart);
2660 		pte = pmd_val(*pmd);
2661 		if (!(pte & _PAGE_VALID)) {
2662 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2663 
2664 			if (!block)
2665 				return -ENOMEM;
2666 
2667 			pmd_val(*pmd) = pte_base | __pa(block);
2668 		}
2669 	}
2670 
2671 	return 0;
2672 }
2673 
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)2674 void vmemmap_free(unsigned long start, unsigned long end,
2675 		struct vmem_altmap *altmap)
2676 {
2677 }
2678 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2679 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2680 static void prot_init_common(unsigned long page_none,
2681 			     unsigned long page_shared,
2682 			     unsigned long page_copy,
2683 			     unsigned long page_readonly,
2684 			     unsigned long page_exec_bit)
2685 {
2686 	PAGE_COPY = __pgprot(page_copy);
2687 	PAGE_SHARED = __pgprot(page_shared);
2688 
2689 	protection_map[0x0] = __pgprot(page_none);
2690 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2691 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2692 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2693 	protection_map[0x4] = __pgprot(page_readonly);
2694 	protection_map[0x5] = __pgprot(page_readonly);
2695 	protection_map[0x6] = __pgprot(page_copy);
2696 	protection_map[0x7] = __pgprot(page_copy);
2697 	protection_map[0x8] = __pgprot(page_none);
2698 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2699 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2700 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2701 	protection_map[0xc] = __pgprot(page_readonly);
2702 	protection_map[0xd] = __pgprot(page_readonly);
2703 	protection_map[0xe] = __pgprot(page_shared);
2704 	protection_map[0xf] = __pgprot(page_shared);
2705 }
2706 
sun4u_pgprot_init(void)2707 static void __init sun4u_pgprot_init(void)
2708 {
2709 	unsigned long page_none, page_shared, page_copy, page_readonly;
2710 	unsigned long page_exec_bit;
2711 	int i;
2712 
2713 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2714 				_PAGE_CACHE_4U | _PAGE_P_4U |
2715 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2716 				_PAGE_EXEC_4U);
2717 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2718 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2719 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2720 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2721 
2722 	_PAGE_IE = _PAGE_IE_4U;
2723 	_PAGE_E = _PAGE_E_4U;
2724 	_PAGE_CACHE = _PAGE_CACHE_4U;
2725 
2726 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2727 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2728 
2729 #ifdef CONFIG_DEBUG_PAGEALLOC
2730 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2731 #else
2732 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2733 		PAGE_OFFSET;
2734 #endif
2735 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2736 				   _PAGE_P_4U | _PAGE_W_4U);
2737 
2738 	for (i = 1; i < 4; i++)
2739 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2740 
2741 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2742 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2743 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2744 
2745 
2746 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2747 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2748 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2749 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2750 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2751 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2752 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2753 
2754 	page_exec_bit = _PAGE_EXEC_4U;
2755 
2756 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2757 			 page_exec_bit);
2758 }
2759 
sun4v_pgprot_init(void)2760 static void __init sun4v_pgprot_init(void)
2761 {
2762 	unsigned long page_none, page_shared, page_copy, page_readonly;
2763 	unsigned long page_exec_bit;
2764 	int i;
2765 
2766 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2767 				page_cache4v_flag | _PAGE_P_4V |
2768 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2769 				_PAGE_EXEC_4V);
2770 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2771 
2772 	_PAGE_IE = _PAGE_IE_4V;
2773 	_PAGE_E = _PAGE_E_4V;
2774 	_PAGE_CACHE = page_cache4v_flag;
2775 
2776 #ifdef CONFIG_DEBUG_PAGEALLOC
2777 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2778 #else
2779 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2780 		PAGE_OFFSET;
2781 #endif
2782 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2783 				   _PAGE_W_4V);
2784 
2785 	for (i = 1; i < 4; i++)
2786 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2787 
2788 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2789 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2790 
2791 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2792 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2793 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2794 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2795 
2796 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2797 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2798 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2799 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2800 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2801 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2802 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2803 
2804 	page_exec_bit = _PAGE_EXEC_4V;
2805 
2806 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2807 			 page_exec_bit);
2808 }
2809 
pte_sz_bits(unsigned long sz)2810 unsigned long pte_sz_bits(unsigned long sz)
2811 {
2812 	if (tlb_type == hypervisor) {
2813 		switch (sz) {
2814 		case 8 * 1024:
2815 		default:
2816 			return _PAGE_SZ8K_4V;
2817 		case 64 * 1024:
2818 			return _PAGE_SZ64K_4V;
2819 		case 512 * 1024:
2820 			return _PAGE_SZ512K_4V;
2821 		case 4 * 1024 * 1024:
2822 			return _PAGE_SZ4MB_4V;
2823 		}
2824 	} else {
2825 		switch (sz) {
2826 		case 8 * 1024:
2827 		default:
2828 			return _PAGE_SZ8K_4U;
2829 		case 64 * 1024:
2830 			return _PAGE_SZ64K_4U;
2831 		case 512 * 1024:
2832 			return _PAGE_SZ512K_4U;
2833 		case 4 * 1024 * 1024:
2834 			return _PAGE_SZ4MB_4U;
2835 		}
2836 	}
2837 }
2838 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2839 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2840 {
2841 	pte_t pte;
2842 
2843 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2844 	pte_val(pte) |= (((unsigned long)space) << 32);
2845 	pte_val(pte) |= pte_sz_bits(page_size);
2846 
2847 	return pte;
2848 }
2849 
kern_large_tte(unsigned long paddr)2850 static unsigned long kern_large_tte(unsigned long paddr)
2851 {
2852 	unsigned long val;
2853 
2854 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2855 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2856 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2857 	if (tlb_type == hypervisor)
2858 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2859 		       page_cache4v_flag | _PAGE_P_4V |
2860 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2861 
2862 	return val | paddr;
2863 }
2864 
2865 /* If not locked, zap it. */
__flush_tlb_all(void)2866 void __flush_tlb_all(void)
2867 {
2868 	unsigned long pstate;
2869 	int i;
2870 
2871 	__asm__ __volatile__("flushw\n\t"
2872 			     "rdpr	%%pstate, %0\n\t"
2873 			     "wrpr	%0, %1, %%pstate"
2874 			     : "=r" (pstate)
2875 			     : "i" (PSTATE_IE));
2876 	if (tlb_type == hypervisor) {
2877 		sun4v_mmu_demap_all();
2878 	} else if (tlb_type == spitfire) {
2879 		for (i = 0; i < 64; i++) {
2880 			/* Spitfire Errata #32 workaround */
2881 			/* NOTE: Always runs on spitfire, so no
2882 			 *       cheetah+ page size encodings.
2883 			 */
2884 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2885 					     "flush	%%g6"
2886 					     : /* No outputs */
2887 					     : "r" (0),
2888 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2889 
2890 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2891 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2892 						     "membar #Sync"
2893 						     : /* no outputs */
2894 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2895 				spitfire_put_dtlb_data(i, 0x0UL);
2896 			}
2897 
2898 			/* Spitfire Errata #32 workaround */
2899 			/* NOTE: Always runs on spitfire, so no
2900 			 *       cheetah+ page size encodings.
2901 			 */
2902 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2903 					     "flush	%%g6"
2904 					     : /* No outputs */
2905 					     : "r" (0),
2906 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2907 
2908 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2909 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2910 						     "membar #Sync"
2911 						     : /* no outputs */
2912 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2913 				spitfire_put_itlb_data(i, 0x0UL);
2914 			}
2915 		}
2916 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2917 		cheetah_flush_dtlb_all();
2918 		cheetah_flush_itlb_all();
2919 	}
2920 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2921 			     : : "r" (pstate));
2922 }
2923 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2924 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2925 			    unsigned long address)
2926 {
2927 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2928 	pte_t *pte = NULL;
2929 
2930 	if (page)
2931 		pte = (pte_t *) page_address(page);
2932 
2933 	return pte;
2934 }
2935 
pte_alloc_one(struct mm_struct * mm,unsigned long address)2936 pgtable_t pte_alloc_one(struct mm_struct *mm,
2937 			unsigned long address)
2938 {
2939 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2940 	if (!page)
2941 		return NULL;
2942 	if (!pgtable_page_ctor(page)) {
2943 		free_unref_page(page);
2944 		return NULL;
2945 	}
2946 	return (pte_t *) page_address(page);
2947 }
2948 
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2949 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2950 {
2951 	free_page((unsigned long)pte);
2952 }
2953 
__pte_free(pgtable_t pte)2954 static void __pte_free(pgtable_t pte)
2955 {
2956 	struct page *page = virt_to_page(pte);
2957 
2958 	pgtable_page_dtor(page);
2959 	__free_page(page);
2960 }
2961 
pte_free(struct mm_struct * mm,pgtable_t pte)2962 void pte_free(struct mm_struct *mm, pgtable_t pte)
2963 {
2964 	__pte_free(pte);
2965 }
2966 
pgtable_free(void * table,bool is_page)2967 void pgtable_free(void *table, bool is_page)
2968 {
2969 	if (is_page)
2970 		__pte_free(table);
2971 	else
2972 		kmem_cache_free(pgtable_cache, table);
2973 }
2974 
2975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2976 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2977 			  pmd_t *pmd)
2978 {
2979 	unsigned long pte, flags;
2980 	struct mm_struct *mm;
2981 	pmd_t entry = *pmd;
2982 
2983 	if (!pmd_large(entry) || !pmd_young(entry))
2984 		return;
2985 
2986 	pte = pmd_val(entry);
2987 
2988 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2989 	if (!(pte & _PAGE_VALID))
2990 		return;
2991 
2992 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2993 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2994 
2995 	mm = vma->vm_mm;
2996 
2997 	spin_lock_irqsave(&mm->context.lock, flags);
2998 
2999 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
3000 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
3001 					addr, pte);
3002 
3003 	spin_unlock_irqrestore(&mm->context.lock, flags);
3004 }
3005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3006 
3007 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)3008 static void context_reload(void *__data)
3009 {
3010 	struct mm_struct *mm = __data;
3011 
3012 	if (mm == current->mm)
3013 		load_secondary_context(mm);
3014 }
3015 
hugetlb_setup(struct pt_regs * regs)3016 void hugetlb_setup(struct pt_regs *regs)
3017 {
3018 	struct mm_struct *mm = current->mm;
3019 	struct tsb_config *tp;
3020 
3021 	if (faulthandler_disabled() || !mm) {
3022 		const struct exception_table_entry *entry;
3023 
3024 		entry = search_exception_tables(regs->tpc);
3025 		if (entry) {
3026 			regs->tpc = entry->fixup;
3027 			regs->tnpc = regs->tpc + 4;
3028 			return;
3029 		}
3030 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3031 		die_if_kernel("HugeTSB in atomic", regs);
3032 	}
3033 
3034 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3035 	if (likely(tp->tsb == NULL))
3036 		tsb_grow(mm, MM_TSB_HUGE, 0);
3037 
3038 	tsb_context_switch(mm);
3039 	smp_tsb_sync(mm);
3040 
3041 	/* On UltraSPARC-III+ and later, configure the second half of
3042 	 * the Data-TLB for huge pages.
3043 	 */
3044 	if (tlb_type == cheetah_plus) {
3045 		bool need_context_reload = false;
3046 		unsigned long ctx;
3047 
3048 		spin_lock_irq(&ctx_alloc_lock);
3049 		ctx = mm->context.sparc64_ctx_val;
3050 		ctx &= ~CTX_PGSZ_MASK;
3051 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3052 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3053 
3054 		if (ctx != mm->context.sparc64_ctx_val) {
3055 			/* When changing the page size fields, we
3056 			 * must perform a context flush so that no
3057 			 * stale entries match.  This flush must
3058 			 * occur with the original context register
3059 			 * settings.
3060 			 */
3061 			do_flush_tlb_mm(mm);
3062 
3063 			/* Reload the context register of all processors
3064 			 * also executing in this address space.
3065 			 */
3066 			mm->context.sparc64_ctx_val = ctx;
3067 			need_context_reload = true;
3068 		}
3069 		spin_unlock_irq(&ctx_alloc_lock);
3070 
3071 		if (need_context_reload)
3072 			on_each_cpu(context_reload, mm, 0);
3073 	}
3074 }
3075 #endif
3076 
3077 static struct resource code_resource = {
3078 	.name	= "Kernel code",
3079 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3080 };
3081 
3082 static struct resource data_resource = {
3083 	.name	= "Kernel data",
3084 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3085 };
3086 
3087 static struct resource bss_resource = {
3088 	.name	= "Kernel bss",
3089 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3090 };
3091 
compute_kern_paddr(void * addr)3092 static inline resource_size_t compute_kern_paddr(void *addr)
3093 {
3094 	return (resource_size_t) (addr - KERNBASE + kern_base);
3095 }
3096 
kernel_lds_init(void)3097 static void __init kernel_lds_init(void)
3098 {
3099 	code_resource.start = compute_kern_paddr(_text);
3100 	code_resource.end   = compute_kern_paddr(_etext - 1);
3101 	data_resource.start = compute_kern_paddr(_etext);
3102 	data_resource.end   = compute_kern_paddr(_edata - 1);
3103 	bss_resource.start  = compute_kern_paddr(__bss_start);
3104 	bss_resource.end    = compute_kern_paddr(_end - 1);
3105 }
3106 
report_memory(void)3107 static int __init report_memory(void)
3108 {
3109 	int i;
3110 	struct resource *res;
3111 
3112 	kernel_lds_init();
3113 
3114 	for (i = 0; i < pavail_ents; i++) {
3115 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3116 
3117 		if (!res) {
3118 			pr_warn("Failed to allocate source.\n");
3119 			break;
3120 		}
3121 
3122 		res->name = "System RAM";
3123 		res->start = pavail[i].phys_addr;
3124 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3125 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3126 
3127 		if (insert_resource(&iomem_resource, res) < 0) {
3128 			pr_warn("Resource insertion failed.\n");
3129 			break;
3130 		}
3131 
3132 		insert_resource(res, &code_resource);
3133 		insert_resource(res, &data_resource);
3134 		insert_resource(res, &bss_resource);
3135 	}
3136 
3137 	return 0;
3138 }
3139 arch_initcall(report_memory);
3140 
3141 #ifdef CONFIG_SMP
3142 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3143 #else
3144 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3145 #endif
3146 
flush_tlb_kernel_range(unsigned long start,unsigned long end)3147 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3148 {
3149 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3150 		if (start < LOW_OBP_ADDRESS) {
3151 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3152 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3153 		}
3154 		if (end > HI_OBP_ADDRESS) {
3155 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3156 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3157 		}
3158 	} else {
3159 		flush_tsb_kernel_range(start, end);
3160 		do_flush_tlb_kernel_range(start, end);
3161 	}
3162 }
3163 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)3164 void copy_user_highpage(struct page *to, struct page *from,
3165 	unsigned long vaddr, struct vm_area_struct *vma)
3166 {
3167 	char *vfrom, *vto;
3168 
3169 	vfrom = kmap_atomic(from);
3170 	vto = kmap_atomic(to);
3171 	copy_user_page(vto, vfrom, vaddr, to);
3172 	kunmap_atomic(vto);
3173 	kunmap_atomic(vfrom);
3174 
3175 	/* If this page has ADI enabled, copy over any ADI tags
3176 	 * as well
3177 	 */
3178 	if (vma->vm_flags & VM_SPARC_ADI) {
3179 		unsigned long pfrom, pto, i, adi_tag;
3180 
3181 		pfrom = page_to_phys(from);
3182 		pto = page_to_phys(to);
3183 
3184 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3185 			asm volatile("ldxa [%1] %2, %0\n\t"
3186 					: "=r" (adi_tag)
3187 					:  "r" (i), "i" (ASI_MCD_REAL));
3188 			asm volatile("stxa %0, [%1] %2\n\t"
3189 					:
3190 					: "r" (adi_tag), "r" (pto),
3191 					  "i" (ASI_MCD_REAL));
3192 			pto += adi_blksize();
3193 		}
3194 		asm volatile("membar #Sync\n\t");
3195 	}
3196 }
3197 EXPORT_SYMBOL(copy_user_highpage);
3198 
copy_highpage(struct page * to,struct page * from)3199 void copy_highpage(struct page *to, struct page *from)
3200 {
3201 	char *vfrom, *vto;
3202 
3203 	vfrom = kmap_atomic(from);
3204 	vto = kmap_atomic(to);
3205 	copy_page(vto, vfrom);
3206 	kunmap_atomic(vto);
3207 	kunmap_atomic(vfrom);
3208 
3209 	/* If this platform is ADI enabled, copy any ADI tags
3210 	 * as well
3211 	 */
3212 	if (adi_capable()) {
3213 		unsigned long pfrom, pto, i, adi_tag;
3214 
3215 		pfrom = page_to_phys(from);
3216 		pto = page_to_phys(to);
3217 
3218 		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3219 			asm volatile("ldxa [%1] %2, %0\n\t"
3220 					: "=r" (adi_tag)
3221 					:  "r" (i), "i" (ASI_MCD_REAL));
3222 			asm volatile("stxa %0, [%1] %2\n\t"
3223 					:
3224 					: "r" (adi_tag), "r" (pto),
3225 					  "i" (ASI_MCD_REAL));
3226 			pto += adi_blksize();
3227 		}
3228 		asm volatile("membar #Sync\n\t");
3229 	}
3230 }
3231 EXPORT_SYMBOL(copy_highpage);
3232