1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 
47 #include <asm/tlb.h>
48 #include "internal.h"
49 #include "slab.h"
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/oom.h>
53 
54 int sysctl_panic_on_oom;
55 int sysctl_oom_kill_allocating_task;
56 int sysctl_oom_dump_tasks = 1;
57 
58 /*
59  * Serializes oom killer invocations (out_of_memory()) from all contexts to
60  * prevent from over eager oom killing (e.g. when the oom killer is invoked
61  * from different domains).
62  *
63  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64  * and mark_oom_victim
65  */
66 DEFINE_MUTEX(oom_lock);
67 /* Serializes oom_score_adj and oom_score_adj_min updates */
68 DEFINE_MUTEX(oom_adj_mutex);
69 
is_memcg_oom(struct oom_control * oc)70 static inline bool is_memcg_oom(struct oom_control *oc)
71 {
72 	return oc->memcg != NULL;
73 }
74 
75 #ifdef CONFIG_NUMA
76 /**
77  * oom_cpuset_eligible() - check task eligiblity for kill
78  * @start: task struct of which task to consider
79  * @oc: pointer to struct oom_control
80  *
81  * Task eligibility is determined by whether or not a candidate task, @tsk,
82  * shares the same mempolicy nodes as current if it is bound by such a policy
83  * and whether or not it has the same set of allowed cpuset nodes.
84  *
85  * This function is assuming oom-killer context and 'current' has triggered
86  * the oom-killer.
87  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)88 static bool oom_cpuset_eligible(struct task_struct *start,
89 				struct oom_control *oc)
90 {
91 	struct task_struct *tsk;
92 	bool ret = false;
93 	const nodemask_t *mask = oc->nodemask;
94 
95 	if (is_memcg_oom(oc))
96 		return true;
97 
98 	rcu_read_lock();
99 	for_each_thread(start, tsk) {
100 		if (mask) {
101 			/*
102 			 * If this is a mempolicy constrained oom, tsk's
103 			 * cpuset is irrelevant.  Only return true if its
104 			 * mempolicy intersects current, otherwise it may be
105 			 * needlessly killed.
106 			 */
107 			ret = mempolicy_nodemask_intersects(tsk, mask);
108 		} else {
109 			/*
110 			 * This is not a mempolicy constrained oom, so only
111 			 * check the mems of tsk's cpuset.
112 			 */
113 			ret = cpuset_mems_allowed_intersects(current, tsk);
114 		}
115 		if (ret)
116 			break;
117 	}
118 	rcu_read_unlock();
119 
120 	return ret;
121 }
122 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
124 {
125 	return true;
126 }
127 #endif /* CONFIG_NUMA */
128 
129 /*
130  * The process p may have detached its own ->mm while exiting or through
131  * kthread_use_mm(), but one or more of its subthreads may still have a valid
132  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
133  * task_lock() held.
134  */
find_lock_task_mm(struct task_struct * p)135 struct task_struct *find_lock_task_mm(struct task_struct *p)
136 {
137 	struct task_struct *t;
138 
139 	rcu_read_lock();
140 
141 	for_each_thread(p, t) {
142 		task_lock(t);
143 		if (likely(t->mm))
144 			goto found;
145 		task_unlock(t);
146 	}
147 	t = NULL;
148 found:
149 	rcu_read_unlock();
150 
151 	return t;
152 }
153 
154 /*
155  * order == -1 means the oom kill is required by sysrq, otherwise only
156  * for display purposes.
157  */
is_sysrq_oom(struct oom_control * oc)158 static inline bool is_sysrq_oom(struct oom_control *oc)
159 {
160 	return oc->order == -1;
161 }
162 
163 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)164 static bool oom_unkillable_task(struct task_struct *p)
165 {
166 	if (is_global_init(p))
167 		return true;
168 	if (p->flags & PF_KTHREAD)
169 		return true;
170 	return false;
171 }
172 
173 /*
174  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175  * than all user memory (LRU pages)
176  */
is_dump_unreclaim_slabs(void)177 static bool is_dump_unreclaim_slabs(void)
178 {
179 	unsigned long nr_lru;
180 
181 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 		 global_node_page_state(NR_INACTIVE_ANON) +
183 		 global_node_page_state(NR_ACTIVE_FILE) +
184 		 global_node_page_state(NR_INACTIVE_FILE) +
185 		 global_node_page_state(NR_ISOLATED_ANON) +
186 		 global_node_page_state(NR_ISOLATED_FILE) +
187 		 global_node_page_state(NR_UNEVICTABLE);
188 
189 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190 }
191 
192 /**
193  * oom_badness - heuristic function to determine which candidate task to kill
194  * @p: task struct of which task we should calculate
195  * @totalpages: total present RAM allowed for page allocation
196  *
197  * The heuristic for determining which task to kill is made to be as simple and
198  * predictable as possible.  The goal is to return the highest value for the
199  * task consuming the most memory to avoid subsequent oom failures.
200  */
oom_badness(struct task_struct * p,unsigned long totalpages)201 long oom_badness(struct task_struct *p, unsigned long totalpages)
202 {
203 	long points;
204 	long adj;
205 
206 	if (oom_unkillable_task(p))
207 		return LONG_MIN;
208 
209 	p = find_lock_task_mm(p);
210 	if (!p)
211 		return LONG_MIN;
212 
213 	/*
214 	 * Do not even consider tasks which are explicitly marked oom
215 	 * unkillable or have been already oom reaped or the are in
216 	 * the middle of vfork
217 	 */
218 	adj = (long)p->signal->oom_score_adj;
219 	if (adj == OOM_SCORE_ADJ_MIN ||
220 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 			in_vfork(p)) {
222 		task_unlock(p);
223 		return LONG_MIN;
224 	}
225 
226 	/*
227 	 * The baseline for the badness score is the proportion of RAM that each
228 	 * task's rss, pagetable and swap space use.
229 	 */
230 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 	task_unlock(p);
233 
234 	/* Normalize to oom_score_adj units */
235 	adj *= totalpages / 1000;
236 	points += adj;
237 
238 	return points;
239 }
240 
241 static const char * const oom_constraint_text[] = {
242 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246 };
247 
248 /*
249  * Determine the type of allocation constraint.
250  */
constrained_alloc(struct oom_control * oc)251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
252 {
253 	struct zone *zone;
254 	struct zoneref *z;
255 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 	bool cpuset_limited = false;
257 	int nid;
258 
259 	if (is_memcg_oom(oc)) {
260 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 		return CONSTRAINT_MEMCG;
262 	}
263 
264 	/* Default to all available memory */
265 	oc->totalpages = totalram_pages() + total_swap_pages;
266 
267 	if (!IS_ENABLED(CONFIG_NUMA))
268 		return CONSTRAINT_NONE;
269 
270 	if (!oc->zonelist)
271 		return CONSTRAINT_NONE;
272 	/*
273 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 	 * to kill current.We have to random task kill in this case.
275 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 	 */
277 	if (oc->gfp_mask & __GFP_THISNODE)
278 		return CONSTRAINT_NONE;
279 
280 	/*
281 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
283 	 * is enforced in get_page_from_freelist().
284 	 */
285 	if (oc->nodemask &&
286 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 		oc->totalpages = total_swap_pages;
288 		for_each_node_mask(nid, *oc->nodemask)
289 			oc->totalpages += node_present_pages(nid);
290 		return CONSTRAINT_MEMORY_POLICY;
291 	}
292 
293 	/* Check this allocation failure is caused by cpuset's wall function */
294 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 			highest_zoneidx, oc->nodemask)
296 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 			cpuset_limited = true;
298 
299 	if (cpuset_limited) {
300 		oc->totalpages = total_swap_pages;
301 		for_each_node_mask(nid, cpuset_current_mems_allowed)
302 			oc->totalpages += node_present_pages(nid);
303 		return CONSTRAINT_CPUSET;
304 	}
305 	return CONSTRAINT_NONE;
306 }
307 
oom_evaluate_task(struct task_struct * task,void * arg)308 static int oom_evaluate_task(struct task_struct *task, void *arg)
309 {
310 	struct oom_control *oc = arg;
311 	long points;
312 
313 	if (oom_unkillable_task(task))
314 		goto next;
315 
316 	/* p may not have freeable memory in nodemask */
317 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 		goto next;
319 
320 	/*
321 	 * This task already has access to memory reserves and is being killed.
322 	 * Don't allow any other task to have access to the reserves unless
323 	 * the task has MMF_OOM_SKIP because chances that it would release
324 	 * any memory is quite low.
325 	 */
326 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 			goto next;
329 		goto abort;
330 	}
331 
332 	/*
333 	 * If task is allocating a lot of memory and has been marked to be
334 	 * killed first if it triggers an oom, then select it.
335 	 */
336 	if (oom_task_origin(task)) {
337 		points = LONG_MAX;
338 		goto select;
339 	}
340 
341 	points = oom_badness(task, oc->totalpages);
342 	if (points == LONG_MIN || points < oc->chosen_points)
343 		goto next;
344 
345 select:
346 	if (oc->chosen)
347 		put_task_struct(oc->chosen);
348 	get_task_struct(task);
349 	oc->chosen = task;
350 	oc->chosen_points = points;
351 next:
352 	return 0;
353 abort:
354 	if (oc->chosen)
355 		put_task_struct(oc->chosen);
356 	oc->chosen = (void *)-1UL;
357 	return 1;
358 }
359 
360 /*
361  * Simple selection loop. We choose the process with the highest number of
362  * 'points'. In case scan was aborted, oc->chosen is set to -1.
363  */
select_bad_process(struct oom_control * oc)364 static void select_bad_process(struct oom_control *oc)
365 {
366 	oc->chosen_points = LONG_MIN;
367 
368 	if (is_memcg_oom(oc))
369 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 	else {
371 		struct task_struct *p;
372 
373 		rcu_read_lock();
374 		for_each_process(p)
375 			if (oom_evaluate_task(p, oc))
376 				break;
377 		rcu_read_unlock();
378 	}
379 }
380 
dump_task(struct task_struct * p,void * arg)381 static int dump_task(struct task_struct *p, void *arg)
382 {
383 	struct oom_control *oc = arg;
384 	struct task_struct *task;
385 
386 	if (oom_unkillable_task(p))
387 		return 0;
388 
389 	/* p may not have freeable memory in nodemask */
390 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 		return 0;
392 
393 	task = find_lock_task_mm(p);
394 	if (!task) {
395 		/*
396 		 * This is a kthread or all of p's threads have already
397 		 * detached their mm's.  There's no need to report
398 		 * them; they can't be oom killed anyway.
399 		 */
400 		return 0;
401 	}
402 
403 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
404 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 		mm_pgtables_bytes(task->mm),
407 		get_mm_counter(task->mm, MM_SWAPENTS),
408 		task->signal->oom_score_adj, task->comm);
409 	task_unlock(task);
410 
411 	return 0;
412 }
413 
414 /**
415  * dump_tasks - dump current memory state of all system tasks
416  * @oc: pointer to struct oom_control
417  *
418  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
419  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420  * are not shown.
421  * State information includes task's pid, uid, tgid, vm size, rss,
422  * pgtables_bytes, swapents, oom_score_adj value, and name.
423  */
dump_tasks(struct oom_control * oc)424 static void dump_tasks(struct oom_control *oc)
425 {
426 	pr_info("Tasks state (memory values in pages):\n");
427 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
428 
429 	if (is_memcg_oom(oc))
430 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 	else {
432 		struct task_struct *p;
433 
434 		rcu_read_lock();
435 		for_each_process(p)
436 			dump_task(p, oc);
437 		rcu_read_unlock();
438 	}
439 }
440 
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)441 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
442 {
443 	/* one line summary of the oom killer context. */
444 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 			oom_constraint_text[oc->constraint],
446 			nodemask_pr_args(oc->nodemask));
447 	cpuset_print_current_mems_allowed();
448 	mem_cgroup_print_oom_context(oc->memcg, victim);
449 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 		from_kuid(&init_user_ns, task_uid(victim)));
451 }
452 
dump_header(struct oom_control * oc,struct task_struct * p)453 static void dump_header(struct oom_control *oc, struct task_struct *p)
454 {
455 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 			current->signal->oom_score_adj);
458 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 		pr_warn("COMPACTION is disabled!!!\n");
460 
461 	dump_stack();
462 	if (is_memcg_oom(oc))
463 		mem_cgroup_print_oom_meminfo(oc->memcg);
464 	else {
465 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
466 		if (is_dump_unreclaim_slabs())
467 			dump_unreclaimable_slab();
468 	}
469 	if (sysctl_oom_dump_tasks)
470 		dump_tasks(oc);
471 	if (p)
472 		dump_oom_summary(oc, p);
473 }
474 
475 /*
476  * Number of OOM victims in flight
477  */
478 static atomic_t oom_victims = ATOMIC_INIT(0);
479 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
480 
481 static bool oom_killer_disabled __read_mostly;
482 
483 #define K(x) ((x) << (PAGE_SHIFT-10))
484 
485 /*
486  * task->mm can be NULL if the task is the exited group leader.  So to
487  * determine whether the task is using a particular mm, we examine all the
488  * task's threads: if one of those is using this mm then this task was also
489  * using it.
490  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)491 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492 {
493 	struct task_struct *t;
494 
495 	for_each_thread(p, t) {
496 		struct mm_struct *t_mm = READ_ONCE(t->mm);
497 		if (t_mm)
498 			return t_mm == mm;
499 	}
500 	return false;
501 }
502 
503 #ifdef CONFIG_MMU
504 /*
505  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
506  * victim (if that is possible) to help the OOM killer to move on.
507  */
508 static struct task_struct *oom_reaper_th;
509 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
510 static struct task_struct *oom_reaper_list;
511 static DEFINE_SPINLOCK(oom_reaper_lock);
512 
__oom_reap_task_mm(struct mm_struct * mm)513 bool __oom_reap_task_mm(struct mm_struct *mm)
514 {
515 	struct vm_area_struct *vma;
516 	bool ret = true;
517 
518 	/*
519 	 * Tell all users of get_user/copy_from_user etc... that the content
520 	 * is no longer stable. No barriers really needed because unmapping
521 	 * should imply barriers already and the reader would hit a page fault
522 	 * if it stumbled over a reaped memory.
523 	 */
524 	set_bit(MMF_UNSTABLE, &mm->flags);
525 
526 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
527 		if (!can_madv_lru_vma(vma))
528 			continue;
529 
530 		/*
531 		 * Only anonymous pages have a good chance to be dropped
532 		 * without additional steps which we cannot afford as we
533 		 * are OOM already.
534 		 *
535 		 * We do not even care about fs backed pages because all
536 		 * which are reclaimable have already been reclaimed and
537 		 * we do not want to block exit_mmap by keeping mm ref
538 		 * count elevated without a good reason.
539 		 */
540 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
541 			struct mmu_notifier_range range;
542 			struct mmu_gather tlb;
543 
544 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
545 						vma, mm, vma->vm_start,
546 						vma->vm_end);
547 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
548 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
549 				tlb_finish_mmu(&tlb, range.start, range.end);
550 				ret = false;
551 				continue;
552 			}
553 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
554 			mmu_notifier_invalidate_range_end(&range);
555 			tlb_finish_mmu(&tlb, range.start, range.end);
556 		}
557 	}
558 
559 	return ret;
560 }
561 
562 /*
563  * Reaps the address space of the give task.
564  *
565  * Returns true on success and false if none or part of the address space
566  * has been reclaimed and the caller should retry later.
567  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)568 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
569 {
570 	bool ret = true;
571 
572 	if (!mmap_read_trylock(mm)) {
573 		trace_skip_task_reaping(tsk->pid);
574 		return false;
575 	}
576 
577 	/*
578 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
579 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
580 	 * under mmap_lock for reading because it serializes against the
581 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
582 	 */
583 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
584 		trace_skip_task_reaping(tsk->pid);
585 		goto out_unlock;
586 	}
587 
588 	trace_start_task_reaping(tsk->pid);
589 
590 	/* failed to reap part of the address space. Try again later */
591 	ret = __oom_reap_task_mm(mm);
592 	if (!ret)
593 		goto out_finish;
594 
595 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
596 			task_pid_nr(tsk), tsk->comm,
597 			K(get_mm_counter(mm, MM_ANONPAGES)),
598 			K(get_mm_counter(mm, MM_FILEPAGES)),
599 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
600 out_finish:
601 	trace_finish_task_reaping(tsk->pid);
602 out_unlock:
603 	mmap_read_unlock(mm);
604 
605 	return ret;
606 }
607 
608 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)609 static void oom_reap_task(struct task_struct *tsk)
610 {
611 	int attempts = 0;
612 	struct mm_struct *mm = tsk->signal->oom_mm;
613 
614 	/* Retry the mmap_read_trylock(mm) a few times */
615 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
616 		schedule_timeout_idle(HZ/10);
617 
618 	if (attempts <= MAX_OOM_REAP_RETRIES ||
619 	    test_bit(MMF_OOM_SKIP, &mm->flags))
620 		goto done;
621 
622 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
623 		task_pid_nr(tsk), tsk->comm);
624 	sched_show_task(tsk);
625 	debug_show_all_locks();
626 
627 done:
628 	tsk->oom_reaper_list = NULL;
629 
630 	/*
631 	 * Hide this mm from OOM killer because it has been either reaped or
632 	 * somebody can't call mmap_write_unlock(mm).
633 	 */
634 	set_bit(MMF_OOM_SKIP, &mm->flags);
635 
636 	/* Drop a reference taken by wake_oom_reaper */
637 	put_task_struct(tsk);
638 }
639 
oom_reaper(void * unused)640 static int oom_reaper(void *unused)
641 {
642 	while (true) {
643 		struct task_struct *tsk = NULL;
644 
645 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
646 		spin_lock(&oom_reaper_lock);
647 		if (oom_reaper_list != NULL) {
648 			tsk = oom_reaper_list;
649 			oom_reaper_list = tsk->oom_reaper_list;
650 		}
651 		spin_unlock(&oom_reaper_lock);
652 
653 		if (tsk)
654 			oom_reap_task(tsk);
655 	}
656 
657 	return 0;
658 }
659 
wake_oom_reaper(struct task_struct * tsk)660 static void wake_oom_reaper(struct task_struct *tsk)
661 {
662 	/* mm is already queued? */
663 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
664 		return;
665 
666 	get_task_struct(tsk);
667 
668 	spin_lock(&oom_reaper_lock);
669 	tsk->oom_reaper_list = oom_reaper_list;
670 	oom_reaper_list = tsk;
671 	spin_unlock(&oom_reaper_lock);
672 	trace_wake_reaper(tsk->pid);
673 	wake_up(&oom_reaper_wait);
674 }
675 
oom_init(void)676 static int __init oom_init(void)
677 {
678 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
679 	return 0;
680 }
subsys_initcall(oom_init)681 subsys_initcall(oom_init)
682 #else
683 static inline void wake_oom_reaper(struct task_struct *tsk)
684 {
685 }
686 #endif /* CONFIG_MMU */
687 
688 /**
689  * mark_oom_victim - mark the given task as OOM victim
690  * @tsk: task to mark
691  *
692  * Has to be called with oom_lock held and never after
693  * oom has been disabled already.
694  *
695  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
696  * under task_lock or operate on the current).
697  */
698 static void mark_oom_victim(struct task_struct *tsk)
699 {
700 	struct mm_struct *mm = tsk->mm;
701 
702 	WARN_ON(oom_killer_disabled);
703 	/* OOM killer might race with memcg OOM */
704 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
705 		return;
706 
707 	/* oom_mm is bound to the signal struct life time. */
708 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
709 		mmgrab(tsk->signal->oom_mm);
710 		set_bit(MMF_OOM_VICTIM, &mm->flags);
711 	}
712 
713 	/*
714 	 * Make sure that the task is woken up from uninterruptible sleep
715 	 * if it is frozen because OOM killer wouldn't be able to free
716 	 * any memory and livelock. freezing_slow_path will tell the freezer
717 	 * that TIF_MEMDIE tasks should be ignored.
718 	 */
719 	__thaw_task(tsk);
720 	atomic_inc(&oom_victims);
721 	trace_mark_victim(tsk->pid);
722 }
723 
724 /**
725  * exit_oom_victim - note the exit of an OOM victim
726  */
exit_oom_victim(void)727 void exit_oom_victim(void)
728 {
729 	clear_thread_flag(TIF_MEMDIE);
730 
731 	if (!atomic_dec_return(&oom_victims))
732 		wake_up_all(&oom_victims_wait);
733 }
734 
735 /**
736  * oom_killer_enable - enable OOM killer
737  */
oom_killer_enable(void)738 void oom_killer_enable(void)
739 {
740 	oom_killer_disabled = false;
741 	pr_info("OOM killer enabled.\n");
742 }
743 
744 /**
745  * oom_killer_disable - disable OOM killer
746  * @timeout: maximum timeout to wait for oom victims in jiffies
747  *
748  * Forces all page allocations to fail rather than trigger OOM killer.
749  * Will block and wait until all OOM victims are killed or the given
750  * timeout expires.
751  *
752  * The function cannot be called when there are runnable user tasks because
753  * the userspace would see unexpected allocation failures as a result. Any
754  * new usage of this function should be consulted with MM people.
755  *
756  * Returns true if successful and false if the OOM killer cannot be
757  * disabled.
758  */
oom_killer_disable(signed long timeout)759 bool oom_killer_disable(signed long timeout)
760 {
761 	signed long ret;
762 
763 	/*
764 	 * Make sure to not race with an ongoing OOM killer. Check that the
765 	 * current is not killed (possibly due to sharing the victim's memory).
766 	 */
767 	if (mutex_lock_killable(&oom_lock))
768 		return false;
769 	oom_killer_disabled = true;
770 	mutex_unlock(&oom_lock);
771 
772 	ret = wait_event_interruptible_timeout(oom_victims_wait,
773 			!atomic_read(&oom_victims), timeout);
774 	if (ret <= 0) {
775 		oom_killer_enable();
776 		return false;
777 	}
778 	pr_info("OOM killer disabled.\n");
779 
780 	return true;
781 }
782 
__task_will_free_mem(struct task_struct * task)783 static inline bool __task_will_free_mem(struct task_struct *task)
784 {
785 	struct signal_struct *sig = task->signal;
786 
787 	/*
788 	 * A coredumping process may sleep for an extended period in exit_mm(),
789 	 * so the oom killer cannot assume that the process will promptly exit
790 	 * and release memory.
791 	 */
792 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
793 		return false;
794 
795 	if (sig->flags & SIGNAL_GROUP_EXIT)
796 		return true;
797 
798 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
799 		return true;
800 
801 	return false;
802 }
803 
804 /*
805  * Checks whether the given task is dying or exiting and likely to
806  * release its address space. This means that all threads and processes
807  * sharing the same mm have to be killed or exiting.
808  * Caller has to make sure that task->mm is stable (hold task_lock or
809  * it operates on the current).
810  */
task_will_free_mem(struct task_struct * task)811 static bool task_will_free_mem(struct task_struct *task)
812 {
813 	struct mm_struct *mm = task->mm;
814 	struct task_struct *p;
815 	bool ret = true;
816 
817 	/*
818 	 * Skip tasks without mm because it might have passed its exit_mm and
819 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
820 	 * on that for now. We can consider find_lock_task_mm in future.
821 	 */
822 	if (!mm)
823 		return false;
824 
825 	if (!__task_will_free_mem(task))
826 		return false;
827 
828 	/*
829 	 * This task has already been drained by the oom reaper so there are
830 	 * only small chances it will free some more
831 	 */
832 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
833 		return false;
834 
835 	if (atomic_read(&mm->mm_users) <= 1)
836 		return true;
837 
838 	/*
839 	 * Make sure that all tasks which share the mm with the given tasks
840 	 * are dying as well to make sure that a) nobody pins its mm and
841 	 * b) the task is also reapable by the oom reaper.
842 	 */
843 	rcu_read_lock();
844 	for_each_process(p) {
845 		if (!process_shares_mm(p, mm))
846 			continue;
847 		if (same_thread_group(task, p))
848 			continue;
849 		ret = __task_will_free_mem(p);
850 		if (!ret)
851 			break;
852 	}
853 	rcu_read_unlock();
854 
855 	return ret;
856 }
857 
__oom_kill_process(struct task_struct * victim,const char * message)858 static void __oom_kill_process(struct task_struct *victim, const char *message)
859 {
860 	struct task_struct *p;
861 	struct mm_struct *mm;
862 	bool can_oom_reap = true;
863 
864 	p = find_lock_task_mm(victim);
865 	if (!p) {
866 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
867 			message, task_pid_nr(victim), victim->comm);
868 		put_task_struct(victim);
869 		return;
870 	} else if (victim != p) {
871 		get_task_struct(p);
872 		put_task_struct(victim);
873 		victim = p;
874 	}
875 
876 	/* Get a reference to safely compare mm after task_unlock(victim) */
877 	mm = victim->mm;
878 	mmgrab(mm);
879 
880 	/* Raise event before sending signal: task reaper must see this */
881 	count_vm_event(OOM_KILL);
882 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
883 
884 	/*
885 	 * We should send SIGKILL before granting access to memory reserves
886 	 * in order to prevent the OOM victim from depleting the memory
887 	 * reserves from the user space under its control.
888 	 */
889 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
890 	mark_oom_victim(victim);
891 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
892 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
893 		K(get_mm_counter(mm, MM_ANONPAGES)),
894 		K(get_mm_counter(mm, MM_FILEPAGES)),
895 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
896 		from_kuid(&init_user_ns, task_uid(victim)),
897 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
898 	task_unlock(victim);
899 
900 	/*
901 	 * Kill all user processes sharing victim->mm in other thread groups, if
902 	 * any.  They don't get access to memory reserves, though, to avoid
903 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
904 	 * oom killed thread cannot exit because it requires the semaphore and
905 	 * its contended by another thread trying to allocate memory itself.
906 	 * That thread will now get access to memory reserves since it has a
907 	 * pending fatal signal.
908 	 */
909 	rcu_read_lock();
910 	for_each_process(p) {
911 		if (!process_shares_mm(p, mm))
912 			continue;
913 		if (same_thread_group(p, victim))
914 			continue;
915 		if (is_global_init(p)) {
916 			can_oom_reap = false;
917 			set_bit(MMF_OOM_SKIP, &mm->flags);
918 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
919 					task_pid_nr(victim), victim->comm,
920 					task_pid_nr(p), p->comm);
921 			continue;
922 		}
923 		/*
924 		 * No kthead_use_mm() user needs to read from the userspace so
925 		 * we are ok to reap it.
926 		 */
927 		if (unlikely(p->flags & PF_KTHREAD))
928 			continue;
929 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
930 	}
931 	rcu_read_unlock();
932 
933 	if (can_oom_reap)
934 		wake_oom_reaper(victim);
935 
936 	mmdrop(mm);
937 	put_task_struct(victim);
938 }
939 #undef K
940 
941 /*
942  * Kill provided task unless it's secured by setting
943  * oom_score_adj to OOM_SCORE_ADJ_MIN.
944  */
oom_kill_memcg_member(struct task_struct * task,void * message)945 static int oom_kill_memcg_member(struct task_struct *task, void *message)
946 {
947 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
948 	    !is_global_init(task)) {
949 		get_task_struct(task);
950 		__oom_kill_process(task, message);
951 	}
952 	return 0;
953 }
954 
oom_kill_process(struct oom_control * oc,const char * message)955 static void oom_kill_process(struct oom_control *oc, const char *message)
956 {
957 	struct task_struct *victim = oc->chosen;
958 	struct mem_cgroup *oom_group;
959 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
960 					      DEFAULT_RATELIMIT_BURST);
961 
962 	/*
963 	 * If the task is already exiting, don't alarm the sysadmin or kill
964 	 * its children or threads, just give it access to memory reserves
965 	 * so it can die quickly
966 	 */
967 	task_lock(victim);
968 	if (task_will_free_mem(victim)) {
969 		mark_oom_victim(victim);
970 		wake_oom_reaper(victim);
971 		task_unlock(victim);
972 		put_task_struct(victim);
973 		return;
974 	}
975 	task_unlock(victim);
976 
977 	if (__ratelimit(&oom_rs))
978 		dump_header(oc, victim);
979 
980 	/*
981 	 * Do we need to kill the entire memory cgroup?
982 	 * Or even one of the ancestor memory cgroups?
983 	 * Check this out before killing the victim task.
984 	 */
985 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
986 
987 	__oom_kill_process(victim, message);
988 
989 	/*
990 	 * If necessary, kill all tasks in the selected memory cgroup.
991 	 */
992 	if (oom_group) {
993 		mem_cgroup_print_oom_group(oom_group);
994 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
995 				      (void*)message);
996 		mem_cgroup_put(oom_group);
997 	}
998 }
999 
1000 /*
1001  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1002  */
check_panic_on_oom(struct oom_control * oc)1003 static void check_panic_on_oom(struct oom_control *oc)
1004 {
1005 	if (likely(!sysctl_panic_on_oom))
1006 		return;
1007 	if (sysctl_panic_on_oom != 2) {
1008 		/*
1009 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1010 		 * does not panic for cpuset, mempolicy, or memcg allocation
1011 		 * failures.
1012 		 */
1013 		if (oc->constraint != CONSTRAINT_NONE)
1014 			return;
1015 	}
1016 	/* Do not panic for oom kills triggered by sysrq */
1017 	if (is_sysrq_oom(oc))
1018 		return;
1019 	dump_header(oc, NULL);
1020 	panic("Out of memory: %s panic_on_oom is enabled\n",
1021 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1022 }
1023 
1024 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1025 
register_oom_notifier(struct notifier_block * nb)1026 int register_oom_notifier(struct notifier_block *nb)
1027 {
1028 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1029 }
1030 EXPORT_SYMBOL_GPL(register_oom_notifier);
1031 
unregister_oom_notifier(struct notifier_block * nb)1032 int unregister_oom_notifier(struct notifier_block *nb)
1033 {
1034 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1035 }
1036 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1037 
1038 /**
1039  * out_of_memory - kill the "best" process when we run out of memory
1040  * @oc: pointer to struct oom_control
1041  *
1042  * If we run out of memory, we have the choice between either
1043  * killing a random task (bad), letting the system crash (worse)
1044  * OR try to be smart about which process to kill. Note that we
1045  * don't have to be perfect here, we just have to be good.
1046  */
out_of_memory(struct oom_control * oc)1047 bool out_of_memory(struct oom_control *oc)
1048 {
1049 	unsigned long freed = 0;
1050 
1051 	if (oom_killer_disabled)
1052 		return false;
1053 
1054 	if (!is_memcg_oom(oc)) {
1055 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1056 		if (freed > 0)
1057 			/* Got some memory back in the last second. */
1058 			return true;
1059 	}
1060 
1061 	/*
1062 	 * If current has a pending SIGKILL or is exiting, then automatically
1063 	 * select it.  The goal is to allow it to allocate so that it may
1064 	 * quickly exit and free its memory.
1065 	 */
1066 	if (task_will_free_mem(current)) {
1067 		mark_oom_victim(current);
1068 		wake_oom_reaper(current);
1069 		return true;
1070 	}
1071 
1072 	/*
1073 	 * The OOM killer does not compensate for IO-less reclaim.
1074 	 * pagefault_out_of_memory lost its gfp context so we have to
1075 	 * make sure exclude 0 mask - all other users should have at least
1076 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1077 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1078 	 */
1079 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1080 		return true;
1081 
1082 	/*
1083 	 * Check if there were limitations on the allocation (only relevant for
1084 	 * NUMA and memcg) that may require different handling.
1085 	 */
1086 	oc->constraint = constrained_alloc(oc);
1087 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1088 		oc->nodemask = NULL;
1089 	check_panic_on_oom(oc);
1090 
1091 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1092 	    current->mm && !oom_unkillable_task(current) &&
1093 	    oom_cpuset_eligible(current, oc) &&
1094 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1095 		get_task_struct(current);
1096 		oc->chosen = current;
1097 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1098 		return true;
1099 	}
1100 
1101 	select_bad_process(oc);
1102 	/* Found nothing?!?! */
1103 	if (!oc->chosen) {
1104 		dump_header(oc, NULL);
1105 		pr_warn("Out of memory and no killable processes...\n");
1106 		/*
1107 		 * If we got here due to an actual allocation at the
1108 		 * system level, we cannot survive this and will enter
1109 		 * an endless loop in the allocator. Bail out now.
1110 		 */
1111 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1112 			panic("System is deadlocked on memory\n");
1113 	}
1114 	if (oc->chosen && oc->chosen != (void *)-1UL)
1115 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1116 				 "Memory cgroup out of memory");
1117 	return !!oc->chosen;
1118 }
1119 
1120 /*
1121  * The pagefault handler calls here because it is out of memory, so kill a
1122  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1123  * killing is already in progress so do nothing.
1124  */
pagefault_out_of_memory(void)1125 void pagefault_out_of_memory(void)
1126 {
1127 	struct oom_control oc = {
1128 		.zonelist = NULL,
1129 		.nodemask = NULL,
1130 		.memcg = NULL,
1131 		.gfp_mask = 0,
1132 		.order = 0,
1133 	};
1134 
1135 	if (mem_cgroup_oom_synchronize(true))
1136 		return;
1137 
1138 	if (!mutex_trylock(&oom_lock))
1139 		return;
1140 	out_of_memory(&oc);
1141 	mutex_unlock(&oom_lock);
1142 }
1143