1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
22
23 /*
24 * pidlists linger the following amount before being destroyed. The goal
25 * is avoiding frequent destruction in the middle of consecutive read calls
26 * Expiring in the middle is a performance problem not a correctness one.
27 * 1 sec should be enough.
28 */
29 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
30
31 /* Controllers blocked by the commandline in v1 */
32 static u16 cgroup_no_v1_mask;
33
34 /* disable named v1 mounts */
35 static bool cgroup_no_v1_named;
36
37 /*
38 * pidlist destructions need to be flushed on cgroup destruction. Use a
39 * separate workqueue as flush domain.
40 */
41 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
42
43 /*
44 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
45 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
46 */
47 static DEFINE_SPINLOCK(release_agent_path_lock);
48
cgroup1_ssid_disabled(int ssid)49 bool cgroup1_ssid_disabled(int ssid)
50 {
51 return cgroup_no_v1_mask & (1 << ssid);
52 }
53
54 /**
55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
56 * @from: attach to all cgroups of a given task
57 * @tsk: the task to be attached
58 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)59 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
60 {
61 struct cgroup_root *root;
62 int retval = 0;
63
64 mutex_lock(&cgroup_mutex);
65 percpu_down_write(&cgroup_threadgroup_rwsem);
66 for_each_root(root) {
67 struct cgroup *from_cgrp;
68
69 if (root == &cgrp_dfl_root)
70 continue;
71
72 spin_lock_irq(&css_set_lock);
73 from_cgrp = task_cgroup_from_root(from, root);
74 spin_unlock_irq(&css_set_lock);
75
76 retval = cgroup_attach_task(from_cgrp, tsk, false);
77 if (retval)
78 break;
79 }
80 percpu_up_write(&cgroup_threadgroup_rwsem);
81 mutex_unlock(&cgroup_mutex);
82
83 return retval;
84 }
85 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
86
87 /**
88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
89 * @to: cgroup to which the tasks will be moved
90 * @from: cgroup in which the tasks currently reside
91 *
92 * Locking rules between cgroup_post_fork() and the migration path
93 * guarantee that, if a task is forking while being migrated, the new child
94 * is guaranteed to be either visible in the source cgroup after the
95 * parent's migration is complete or put into the target cgroup. No task
96 * can slip out of migration through forking.
97 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)98 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
99 {
100 DEFINE_CGROUP_MGCTX(mgctx);
101 struct cgrp_cset_link *link;
102 struct css_task_iter it;
103 struct task_struct *task;
104 int ret;
105
106 if (cgroup_on_dfl(to))
107 return -EINVAL;
108
109 ret = cgroup_migrate_vet_dst(to);
110 if (ret)
111 return ret;
112
113 mutex_lock(&cgroup_mutex);
114
115 percpu_down_write(&cgroup_threadgroup_rwsem);
116
117 /* all tasks in @from are being moved, all csets are source */
118 spin_lock_irq(&css_set_lock);
119 list_for_each_entry(link, &from->cset_links, cset_link)
120 cgroup_migrate_add_src(link->cset, to, &mgctx);
121 spin_unlock_irq(&css_set_lock);
122
123 ret = cgroup_migrate_prepare_dst(&mgctx);
124 if (ret)
125 goto out_err;
126
127 /*
128 * Migrate tasks one-by-one until @from is empty. This fails iff
129 * ->can_attach() fails.
130 */
131 do {
132 css_task_iter_start(&from->self, 0, &it);
133
134 do {
135 task = css_task_iter_next(&it);
136 } while (task && (task->flags & PF_EXITING));
137
138 if (task)
139 get_task_struct(task);
140 css_task_iter_end(&it);
141
142 if (task) {
143 ret = cgroup_migrate(task, false, &mgctx);
144 if (!ret)
145 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
146 put_task_struct(task);
147 }
148 } while (task && !ret);
149 out_err:
150 cgroup_migrate_finish(&mgctx);
151 percpu_up_write(&cgroup_threadgroup_rwsem);
152 mutex_unlock(&cgroup_mutex);
153 return ret;
154 }
155
156 /*
157 * Stuff for reading the 'tasks'/'procs' files.
158 *
159 * Reading this file can return large amounts of data if a cgroup has
160 * *lots* of attached tasks. So it may need several calls to read(),
161 * but we cannot guarantee that the information we produce is correct
162 * unless we produce it entirely atomically.
163 *
164 */
165
166 /* which pidlist file are we talking about? */
167 enum cgroup_filetype {
168 CGROUP_FILE_PROCS,
169 CGROUP_FILE_TASKS,
170 };
171
172 /*
173 * A pidlist is a list of pids that virtually represents the contents of one
174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
175 * a pair (one each for procs, tasks) for each pid namespace that's relevant
176 * to the cgroup.
177 */
178 struct cgroup_pidlist {
179 /*
180 * used to find which pidlist is wanted. doesn't change as long as
181 * this particular list stays in the list.
182 */
183 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
184 /* array of xids */
185 pid_t *list;
186 /* how many elements the above list has */
187 int length;
188 /* each of these stored in a list by its cgroup */
189 struct list_head links;
190 /* pointer to the cgroup we belong to, for list removal purposes */
191 struct cgroup *owner;
192 /* for delayed destruction */
193 struct delayed_work destroy_dwork;
194 };
195
196 /*
197 * Used to destroy all pidlists lingering waiting for destroy timer. None
198 * should be left afterwards.
199 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)200 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
201 {
202 struct cgroup_pidlist *l, *tmp_l;
203
204 mutex_lock(&cgrp->pidlist_mutex);
205 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
206 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
207 mutex_unlock(&cgrp->pidlist_mutex);
208
209 flush_workqueue(cgroup_pidlist_destroy_wq);
210 BUG_ON(!list_empty(&cgrp->pidlists));
211 }
212
cgroup_pidlist_destroy_work_fn(struct work_struct * work)213 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
214 {
215 struct delayed_work *dwork = to_delayed_work(work);
216 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
217 destroy_dwork);
218 struct cgroup_pidlist *tofree = NULL;
219
220 mutex_lock(&l->owner->pidlist_mutex);
221
222 /*
223 * Destroy iff we didn't get queued again. The state won't change
224 * as destroy_dwork can only be queued while locked.
225 */
226 if (!delayed_work_pending(dwork)) {
227 list_del(&l->links);
228 kvfree(l->list);
229 put_pid_ns(l->key.ns);
230 tofree = l;
231 }
232
233 mutex_unlock(&l->owner->pidlist_mutex);
234 kfree(tofree);
235 }
236
237 /*
238 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
239 * Returns the number of unique elements.
240 */
pidlist_uniq(pid_t * list,int length)241 static int pidlist_uniq(pid_t *list, int length)
242 {
243 int src, dest = 1;
244
245 /*
246 * we presume the 0th element is unique, so i starts at 1. trivial
247 * edge cases first; no work needs to be done for either
248 */
249 if (length == 0 || length == 1)
250 return length;
251 /* src and dest walk down the list; dest counts unique elements */
252 for (src = 1; src < length; src++) {
253 /* find next unique element */
254 while (list[src] == list[src-1]) {
255 src++;
256 if (src == length)
257 goto after;
258 }
259 /* dest always points to where the next unique element goes */
260 list[dest] = list[src];
261 dest++;
262 }
263 after:
264 return dest;
265 }
266
267 /*
268 * The two pid files - task and cgroup.procs - guaranteed that the result
269 * is sorted, which forced this whole pidlist fiasco. As pid order is
270 * different per namespace, each namespace needs differently sorted list,
271 * making it impossible to use, for example, single rbtree of member tasks
272 * sorted by task pointer. As pidlists can be fairly large, allocating one
273 * per open file is dangerous, so cgroup had to implement shared pool of
274 * pidlists keyed by cgroup and namespace.
275 */
cmppid(const void * a,const void * b)276 static int cmppid(const void *a, const void *b)
277 {
278 return *(pid_t *)a - *(pid_t *)b;
279 }
280
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)281 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
282 enum cgroup_filetype type)
283 {
284 struct cgroup_pidlist *l;
285 /* don't need task_nsproxy() if we're looking at ourself */
286 struct pid_namespace *ns = task_active_pid_ns(current);
287
288 lockdep_assert_held(&cgrp->pidlist_mutex);
289
290 list_for_each_entry(l, &cgrp->pidlists, links)
291 if (l->key.type == type && l->key.ns == ns)
292 return l;
293 return NULL;
294 }
295
296 /*
297 * find the appropriate pidlist for our purpose (given procs vs tasks)
298 * returns with the lock on that pidlist already held, and takes care
299 * of the use count, or returns NULL with no locks held if we're out of
300 * memory.
301 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)302 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
303 enum cgroup_filetype type)
304 {
305 struct cgroup_pidlist *l;
306
307 lockdep_assert_held(&cgrp->pidlist_mutex);
308
309 l = cgroup_pidlist_find(cgrp, type);
310 if (l)
311 return l;
312
313 /* entry not found; create a new one */
314 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
315 if (!l)
316 return l;
317
318 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
319 l->key.type = type;
320 /* don't need task_nsproxy() if we're looking at ourself */
321 l->key.ns = get_pid_ns(task_active_pid_ns(current));
322 l->owner = cgrp;
323 list_add(&l->links, &cgrp->pidlists);
324 return l;
325 }
326
327 /*
328 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
329 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)330 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
331 struct cgroup_pidlist **lp)
332 {
333 pid_t *array;
334 int length;
335 int pid, n = 0; /* used for populating the array */
336 struct css_task_iter it;
337 struct task_struct *tsk;
338 struct cgroup_pidlist *l;
339
340 lockdep_assert_held(&cgrp->pidlist_mutex);
341
342 /*
343 * If cgroup gets more users after we read count, we won't have
344 * enough space - tough. This race is indistinguishable to the
345 * caller from the case that the additional cgroup users didn't
346 * show up until sometime later on.
347 */
348 length = cgroup_task_count(cgrp);
349 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
350 if (!array)
351 return -ENOMEM;
352 /* now, populate the array */
353 css_task_iter_start(&cgrp->self, 0, &it);
354 while ((tsk = css_task_iter_next(&it))) {
355 if (unlikely(n == length))
356 break;
357 /* get tgid or pid for procs or tasks file respectively */
358 if (type == CGROUP_FILE_PROCS)
359 pid = task_tgid_vnr(tsk);
360 else
361 pid = task_pid_vnr(tsk);
362 if (pid > 0) /* make sure to only use valid results */
363 array[n++] = pid;
364 }
365 css_task_iter_end(&it);
366 length = n;
367 /* now sort & (if procs) strip out duplicates */
368 sort(array, length, sizeof(pid_t), cmppid, NULL);
369 if (type == CGROUP_FILE_PROCS)
370 length = pidlist_uniq(array, length);
371
372 l = cgroup_pidlist_find_create(cgrp, type);
373 if (!l) {
374 kvfree(array);
375 return -ENOMEM;
376 }
377
378 /* store array, freeing old if necessary */
379 kvfree(l->list);
380 l->list = array;
381 l->length = length;
382 *lp = l;
383 return 0;
384 }
385
386 /*
387 * seq_file methods for the tasks/procs files. The seq_file position is the
388 * next pid to display; the seq_file iterator is a pointer to the pid
389 * in the cgroup->l->list array.
390 */
391
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)392 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
393 {
394 /*
395 * Initially we receive a position value that corresponds to
396 * one more than the last pid shown (or 0 on the first call or
397 * after a seek to the start). Use a binary-search to find the
398 * next pid to display, if any
399 */
400 struct kernfs_open_file *of = s->private;
401 struct cgroup *cgrp = seq_css(s)->cgroup;
402 struct cgroup_pidlist *l;
403 enum cgroup_filetype type = seq_cft(s)->private;
404 int index = 0, pid = *pos;
405 int *iter, ret;
406
407 mutex_lock(&cgrp->pidlist_mutex);
408
409 /*
410 * !NULL @of->priv indicates that this isn't the first start()
411 * after open. If the matching pidlist is around, we can use that.
412 * Look for it. Note that @of->priv can't be used directly. It
413 * could already have been destroyed.
414 */
415 if (of->priv)
416 of->priv = cgroup_pidlist_find(cgrp, type);
417
418 /*
419 * Either this is the first start() after open or the matching
420 * pidlist has been destroyed inbetween. Create a new one.
421 */
422 if (!of->priv) {
423 ret = pidlist_array_load(cgrp, type,
424 (struct cgroup_pidlist **)&of->priv);
425 if (ret)
426 return ERR_PTR(ret);
427 }
428 l = of->priv;
429
430 if (pid) {
431 int end = l->length;
432
433 while (index < end) {
434 int mid = (index + end) / 2;
435 if (l->list[mid] == pid) {
436 index = mid;
437 break;
438 } else if (l->list[mid] <= pid)
439 index = mid + 1;
440 else
441 end = mid;
442 }
443 }
444 /* If we're off the end of the array, we're done */
445 if (index >= l->length)
446 return NULL;
447 /* Update the abstract position to be the actual pid that we found */
448 iter = l->list + index;
449 *pos = *iter;
450 return iter;
451 }
452
cgroup_pidlist_stop(struct seq_file * s,void * v)453 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
454 {
455 struct kernfs_open_file *of = s->private;
456 struct cgroup_pidlist *l = of->priv;
457
458 if (l)
459 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
460 CGROUP_PIDLIST_DESTROY_DELAY);
461 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
462 }
463
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)464 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
465 {
466 struct kernfs_open_file *of = s->private;
467 struct cgroup_pidlist *l = of->priv;
468 pid_t *p = v;
469 pid_t *end = l->list + l->length;
470 /*
471 * Advance to the next pid in the array. If this goes off the
472 * end, we're done
473 */
474 p++;
475 if (p >= end) {
476 return NULL;
477 } else {
478 *pos = *p;
479 return p;
480 }
481 }
482
cgroup_pidlist_show(struct seq_file * s,void * v)483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 seq_printf(s, "%d\n", *(int *)v);
486
487 return 0;
488 }
489
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off,
492 bool threadgroup)
493 {
494 struct cgroup *cgrp;
495 struct task_struct *task;
496 const struct cred *cred, *tcred;
497 ssize_t ret;
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
503 task = cgroup_procs_write_start(buf, threadgroup);
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
509 * Even if we're attaching all tasks in the thread group, we only
510 * need to check permissions on one of them.
511 */
512 cred = current_cred();
513 tcred = get_task_cred(task);
514 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
515 !uid_eq(cred->euid, tcred->uid) &&
516 !uid_eq(cred->euid, tcred->suid))
517 ret = -EACCES;
518 put_cred(tcred);
519 if (ret)
520 goto out_finish;
521
522 ret = cgroup_attach_task(cgrp, task, threadgroup);
523
524 out_finish:
525 cgroup_procs_write_finish(task);
526 out_unlock:
527 cgroup_kn_unlock(of->kn);
528
529 return ret ?: nbytes;
530 }
531
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)532 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
533 char *buf, size_t nbytes, loff_t off)
534 {
535 return __cgroup1_procs_write(of, buf, nbytes, off, true);
536 }
537
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)538 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
539 char *buf, size_t nbytes, loff_t off)
540 {
541 return __cgroup1_procs_write(of, buf, nbytes, off, false);
542 }
543
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)544 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
545 char *buf, size_t nbytes, loff_t off)
546 {
547 struct cgroup *cgrp;
548
549 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
550
551 cgrp = cgroup_kn_lock_live(of->kn, false);
552 if (!cgrp)
553 return -ENODEV;
554 spin_lock(&release_agent_path_lock);
555 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
556 sizeof(cgrp->root->release_agent_path));
557 spin_unlock(&release_agent_path_lock);
558 cgroup_kn_unlock(of->kn);
559 return nbytes;
560 }
561
cgroup_release_agent_show(struct seq_file * seq,void * v)562 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
563 {
564 struct cgroup *cgrp = seq_css(seq)->cgroup;
565
566 spin_lock(&release_agent_path_lock);
567 seq_puts(seq, cgrp->root->release_agent_path);
568 spin_unlock(&release_agent_path_lock);
569 seq_putc(seq, '\n');
570 return 0;
571 }
572
cgroup_sane_behavior_show(struct seq_file * seq,void * v)573 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
574 {
575 seq_puts(seq, "0\n");
576 return 0;
577 }
578
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)579 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
580 struct cftype *cft)
581 {
582 return notify_on_release(css->cgroup);
583 }
584
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)585 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
586 struct cftype *cft, u64 val)
587 {
588 if (val)
589 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
590 else
591 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
592 return 0;
593 }
594
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)595 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
596 struct cftype *cft)
597 {
598 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
599 }
600
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)601 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
602 struct cftype *cft, u64 val)
603 {
604 if (val)
605 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
606 else
607 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
608 return 0;
609 }
610
611 /* cgroup core interface files for the legacy hierarchies */
612 struct cftype cgroup1_base_files[] = {
613 {
614 .name = "cgroup.procs",
615 .seq_start = cgroup_pidlist_start,
616 .seq_next = cgroup_pidlist_next,
617 .seq_stop = cgroup_pidlist_stop,
618 .seq_show = cgroup_pidlist_show,
619 .private = CGROUP_FILE_PROCS,
620 .write = cgroup1_procs_write,
621 },
622 {
623 .name = "cgroup.clone_children",
624 .read_u64 = cgroup_clone_children_read,
625 .write_u64 = cgroup_clone_children_write,
626 },
627 {
628 .name = "cgroup.sane_behavior",
629 .flags = CFTYPE_ONLY_ON_ROOT,
630 .seq_show = cgroup_sane_behavior_show,
631 },
632 {
633 .name = "tasks",
634 .seq_start = cgroup_pidlist_start,
635 .seq_next = cgroup_pidlist_next,
636 .seq_stop = cgroup_pidlist_stop,
637 .seq_show = cgroup_pidlist_show,
638 .private = CGROUP_FILE_TASKS,
639 .write = cgroup1_tasks_write,
640 },
641 {
642 .name = "notify_on_release",
643 .read_u64 = cgroup_read_notify_on_release,
644 .write_u64 = cgroup_write_notify_on_release,
645 },
646 {
647 .name = "release_agent",
648 .flags = CFTYPE_ONLY_ON_ROOT,
649 .seq_show = cgroup_release_agent_show,
650 .write = cgroup_release_agent_write,
651 .max_write_len = PATH_MAX - 1,
652 },
653 { } /* terminate */
654 };
655
656 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)657 int proc_cgroupstats_show(struct seq_file *m, void *v)
658 {
659 struct cgroup_subsys *ss;
660 int i;
661
662 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
663 /*
664 * ideally we don't want subsystems moving around while we do this.
665 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
666 * subsys/hierarchy state.
667 */
668 mutex_lock(&cgroup_mutex);
669
670 for_each_subsys(ss, i)
671 seq_printf(m, "%s\t%d\t%d\t%d\n",
672 ss->legacy_name, ss->root->hierarchy_id,
673 atomic_read(&ss->root->nr_cgrps),
674 cgroup_ssid_enabled(i));
675
676 mutex_unlock(&cgroup_mutex);
677 return 0;
678 }
679
680 /**
681 * cgroupstats_build - build and fill cgroupstats
682 * @stats: cgroupstats to fill information into
683 * @dentry: A dentry entry belonging to the cgroup for which stats have
684 * been requested.
685 *
686 * Build and fill cgroupstats so that taskstats can export it to user
687 * space.
688 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)689 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
690 {
691 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
692 struct cgroup *cgrp;
693 struct css_task_iter it;
694 struct task_struct *tsk;
695
696 /* it should be kernfs_node belonging to cgroupfs and is a directory */
697 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
698 kernfs_type(kn) != KERNFS_DIR)
699 return -EINVAL;
700
701 mutex_lock(&cgroup_mutex);
702
703 /*
704 * We aren't being called from kernfs and there's no guarantee on
705 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
706 * @kn->priv is RCU safe. Let's do the RCU dancing.
707 */
708 rcu_read_lock();
709 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
710 if (!cgrp || cgroup_is_dead(cgrp)) {
711 rcu_read_unlock();
712 mutex_unlock(&cgroup_mutex);
713 return -ENOENT;
714 }
715 rcu_read_unlock();
716
717 css_task_iter_start(&cgrp->self, 0, &it);
718 while ((tsk = css_task_iter_next(&it))) {
719 switch (tsk->state) {
720 case TASK_RUNNING:
721 stats->nr_running++;
722 break;
723 case TASK_INTERRUPTIBLE:
724 stats->nr_sleeping++;
725 break;
726 case TASK_UNINTERRUPTIBLE:
727 stats->nr_uninterruptible++;
728 break;
729 case TASK_STOPPED:
730 stats->nr_stopped++;
731 break;
732 default:
733 if (delayacct_is_task_waiting_on_io(tsk))
734 stats->nr_io_wait++;
735 break;
736 }
737 }
738 css_task_iter_end(&it);
739
740 mutex_unlock(&cgroup_mutex);
741 return 0;
742 }
743
cgroup1_check_for_release(struct cgroup * cgrp)744 void cgroup1_check_for_release(struct cgroup *cgrp)
745 {
746 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
747 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
748 schedule_work(&cgrp->release_agent_work);
749 }
750
751 /*
752 * Notify userspace when a cgroup is released, by running the
753 * configured release agent with the name of the cgroup (path
754 * relative to the root of cgroup file system) as the argument.
755 *
756 * Most likely, this user command will try to rmdir this cgroup.
757 *
758 * This races with the possibility that some other task will be
759 * attached to this cgroup before it is removed, or that some other
760 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
761 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
762 * unused, and this cgroup will be reprieved from its death sentence,
763 * to continue to serve a useful existence. Next time it's released,
764 * we will get notified again, if it still has 'notify_on_release' set.
765 *
766 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
767 * means only wait until the task is successfully execve()'d. The
768 * separate release agent task is forked by call_usermodehelper(),
769 * then control in this thread returns here, without waiting for the
770 * release agent task. We don't bother to wait because the caller of
771 * this routine has no use for the exit status of the release agent
772 * task, so no sense holding our caller up for that.
773 */
cgroup1_release_agent(struct work_struct * work)774 void cgroup1_release_agent(struct work_struct *work)
775 {
776 struct cgroup *cgrp =
777 container_of(work, struct cgroup, release_agent_work);
778 char *pathbuf = NULL, *agentbuf = NULL;
779 char *argv[3], *envp[3];
780 int ret;
781
782 mutex_lock(&cgroup_mutex);
783
784 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
785 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
786 if (!pathbuf || !agentbuf)
787 goto out;
788
789 spin_lock_irq(&css_set_lock);
790 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
791 spin_unlock_irq(&css_set_lock);
792 if (ret < 0 || ret >= PATH_MAX)
793 goto out;
794
795 argv[0] = agentbuf;
796 argv[1] = pathbuf;
797 argv[2] = NULL;
798
799 /* minimal command environment */
800 envp[0] = "HOME=/";
801 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
802 envp[2] = NULL;
803
804 mutex_unlock(&cgroup_mutex);
805 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
806 goto out_free;
807 out:
808 mutex_unlock(&cgroup_mutex);
809 out_free:
810 kfree(agentbuf);
811 kfree(pathbuf);
812 }
813
814 /*
815 * cgroup_rename - Only allow simple rename of directories in place.
816 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)817 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
818 const char *new_name_str)
819 {
820 struct cgroup *cgrp = kn->priv;
821 int ret;
822
823 if (kernfs_type(kn) != KERNFS_DIR)
824 return -ENOTDIR;
825 if (kn->parent != new_parent)
826 return -EIO;
827
828 /*
829 * We're gonna grab cgroup_mutex which nests outside kernfs
830 * active_ref. kernfs_rename() doesn't require active_ref
831 * protection. Break them before grabbing cgroup_mutex.
832 */
833 kernfs_break_active_protection(new_parent);
834 kernfs_break_active_protection(kn);
835
836 mutex_lock(&cgroup_mutex);
837
838 ret = kernfs_rename(kn, new_parent, new_name_str);
839 if (!ret)
840 TRACE_CGROUP_PATH(rename, cgrp);
841
842 mutex_unlock(&cgroup_mutex);
843
844 kernfs_unbreak_active_protection(kn);
845 kernfs_unbreak_active_protection(new_parent);
846 return ret;
847 }
848
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)849 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
850 {
851 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
852 struct cgroup_subsys *ss;
853 int ssid;
854
855 for_each_subsys(ss, ssid)
856 if (root->subsys_mask & (1 << ssid))
857 seq_show_option(seq, ss->legacy_name, NULL);
858 if (root->flags & CGRP_ROOT_NOPREFIX)
859 seq_puts(seq, ",noprefix");
860 if (root->flags & CGRP_ROOT_XATTR)
861 seq_puts(seq, ",xattr");
862 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
863 seq_puts(seq, ",cpuset_v2_mode");
864
865 spin_lock(&release_agent_path_lock);
866 if (strlen(root->release_agent_path))
867 seq_show_option(seq, "release_agent",
868 root->release_agent_path);
869 spin_unlock(&release_agent_path_lock);
870
871 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
872 seq_puts(seq, ",clone_children");
873 if (strlen(root->name))
874 seq_show_option(seq, "name", root->name);
875 return 0;
876 }
877
878 enum cgroup1_param {
879 Opt_all,
880 Opt_clone_children,
881 Opt_cpuset_v2_mode,
882 Opt_name,
883 Opt_none,
884 Opt_noprefix,
885 Opt_release_agent,
886 Opt_xattr,
887 };
888
889 static const struct fs_parameter_spec cgroup1_param_specs[] = {
890 fsparam_flag ("all", Opt_all),
891 fsparam_flag ("clone_children", Opt_clone_children),
892 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
893 fsparam_string("name", Opt_name),
894 fsparam_flag ("none", Opt_none),
895 fsparam_flag ("noprefix", Opt_noprefix),
896 fsparam_string("release_agent", Opt_release_agent),
897 fsparam_flag ("xattr", Opt_xattr),
898 {}
899 };
900
901 const struct fs_parameter_description cgroup1_fs_parameters = {
902 .name = "cgroup1",
903 .specs = cgroup1_param_specs,
904 };
905
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)906 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
907 {
908 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
909 struct cgroup_subsys *ss;
910 struct fs_parse_result result;
911 int opt, i;
912
913 opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
914 if (opt == -ENOPARAM) {
915 if (strcmp(param->key, "source") == 0) {
916 fc->source = param->string;
917 param->string = NULL;
918 return 0;
919 }
920 for_each_subsys(ss, i) {
921 if (strcmp(param->key, ss->legacy_name))
922 continue;
923 ctx->subsys_mask |= (1 << i);
924 return 0;
925 }
926 return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
927 }
928 if (opt < 0)
929 return opt;
930
931 switch (opt) {
932 case Opt_none:
933 /* Explicitly have no subsystems */
934 ctx->none = true;
935 break;
936 case Opt_all:
937 ctx->all_ss = true;
938 break;
939 case Opt_noprefix:
940 ctx->flags |= CGRP_ROOT_NOPREFIX;
941 break;
942 case Opt_clone_children:
943 ctx->cpuset_clone_children = true;
944 break;
945 case Opt_cpuset_v2_mode:
946 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
947 break;
948 case Opt_xattr:
949 ctx->flags |= CGRP_ROOT_XATTR;
950 break;
951 case Opt_release_agent:
952 /* Specifying two release agents is forbidden */
953 if (ctx->release_agent)
954 return cg_invalf(fc, "cgroup1: release_agent respecified");
955 ctx->release_agent = param->string;
956 param->string = NULL;
957 break;
958 case Opt_name:
959 /* blocked by boot param? */
960 if (cgroup_no_v1_named)
961 return -ENOENT;
962 /* Can't specify an empty name */
963 if (!param->size)
964 return cg_invalf(fc, "cgroup1: Empty name");
965 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
966 return cg_invalf(fc, "cgroup1: Name too long");
967 /* Must match [\w.-]+ */
968 for (i = 0; i < param->size; i++) {
969 char c = param->string[i];
970 if (isalnum(c))
971 continue;
972 if ((c == '.') || (c == '-') || (c == '_'))
973 continue;
974 return cg_invalf(fc, "cgroup1: Invalid name");
975 }
976 /* Specifying two names is forbidden */
977 if (ctx->name)
978 return cg_invalf(fc, "cgroup1: name respecified");
979 ctx->name = param->string;
980 param->string = NULL;
981 break;
982 }
983 return 0;
984 }
985
check_cgroupfs_options(struct fs_context * fc)986 static int check_cgroupfs_options(struct fs_context *fc)
987 {
988 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
989 u16 mask = U16_MAX;
990 u16 enabled = 0;
991 struct cgroup_subsys *ss;
992 int i;
993
994 #ifdef CONFIG_CPUSETS
995 mask = ~((u16)1 << cpuset_cgrp_id);
996 #endif
997 for_each_subsys(ss, i)
998 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
999 enabled |= 1 << i;
1000
1001 ctx->subsys_mask &= enabled;
1002
1003 /*
1004 * In absense of 'none', 'name=' or subsystem name options,
1005 * let's default to 'all'.
1006 */
1007 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1008 ctx->all_ss = true;
1009
1010 if (ctx->all_ss) {
1011 /* Mutually exclusive option 'all' + subsystem name */
1012 if (ctx->subsys_mask)
1013 return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1014 /* 'all' => select all the subsystems */
1015 ctx->subsys_mask = enabled;
1016 }
1017
1018 /*
1019 * We either have to specify by name or by subsystems. (So all
1020 * empty hierarchies must have a name).
1021 */
1022 if (!ctx->subsys_mask && !ctx->name)
1023 return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1024
1025 /*
1026 * Option noprefix was introduced just for backward compatibility
1027 * with the old cpuset, so we allow noprefix only if mounting just
1028 * the cpuset subsystem.
1029 */
1030 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1031 return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1032
1033 /* Can't specify "none" and some subsystems */
1034 if (ctx->subsys_mask && ctx->none)
1035 return cg_invalf(fc, "cgroup1: none used incorrectly");
1036
1037 return 0;
1038 }
1039
cgroup1_reconfigure(struct fs_context * fc)1040 int cgroup1_reconfigure(struct fs_context *fc)
1041 {
1042 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1043 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1044 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1045 int ret = 0;
1046 u16 added_mask, removed_mask;
1047
1048 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1049
1050 /* See what subsystems are wanted */
1051 ret = check_cgroupfs_options(fc);
1052 if (ret)
1053 goto out_unlock;
1054
1055 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1056 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1057 task_tgid_nr(current), current->comm);
1058
1059 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1060 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1061
1062 /* Don't allow flags or name to change at remount */
1063 if ((ctx->flags ^ root->flags) ||
1064 (ctx->name && strcmp(ctx->name, root->name))) {
1065 cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1066 ctx->flags, ctx->name ?: "", root->flags, root->name);
1067 ret = -EINVAL;
1068 goto out_unlock;
1069 }
1070
1071 /* remounting is not allowed for populated hierarchies */
1072 if (!list_empty(&root->cgrp.self.children)) {
1073 ret = -EBUSY;
1074 goto out_unlock;
1075 }
1076
1077 ret = rebind_subsystems(root, added_mask);
1078 if (ret)
1079 goto out_unlock;
1080
1081 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1082
1083 if (ctx->release_agent) {
1084 spin_lock(&release_agent_path_lock);
1085 strcpy(root->release_agent_path, ctx->release_agent);
1086 spin_unlock(&release_agent_path_lock);
1087 }
1088
1089 trace_cgroup_remount(root);
1090
1091 out_unlock:
1092 mutex_unlock(&cgroup_mutex);
1093 return ret;
1094 }
1095
1096 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1097 .rename = cgroup1_rename,
1098 .show_options = cgroup1_show_options,
1099 .mkdir = cgroup_mkdir,
1100 .rmdir = cgroup_rmdir,
1101 .show_path = cgroup_show_path,
1102 };
1103
1104 /*
1105 * The guts of cgroup1 mount - find or create cgroup_root to use.
1106 * Called with cgroup_mutex held; returns 0 on success, -E... on
1107 * error and positive - in case when the candidate is busy dying.
1108 * On success it stashes a reference to cgroup_root into given
1109 * cgroup_fs_context; that reference is *NOT* counting towards the
1110 * cgroup_root refcount.
1111 */
cgroup1_root_to_use(struct fs_context * fc)1112 static int cgroup1_root_to_use(struct fs_context *fc)
1113 {
1114 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1115 struct cgroup_root *root;
1116 struct cgroup_subsys *ss;
1117 int i, ret;
1118
1119 /* First find the desired set of subsystems */
1120 ret = check_cgroupfs_options(fc);
1121 if (ret)
1122 return ret;
1123
1124 /*
1125 * Destruction of cgroup root is asynchronous, so subsystems may
1126 * still be dying after the previous unmount. Let's drain the
1127 * dying subsystems. We just need to ensure that the ones
1128 * unmounted previously finish dying and don't care about new ones
1129 * starting. Testing ref liveliness is good enough.
1130 */
1131 for_each_subsys(ss, i) {
1132 if (!(ctx->subsys_mask & (1 << i)) ||
1133 ss->root == &cgrp_dfl_root)
1134 continue;
1135
1136 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1137 return 1; /* restart */
1138 cgroup_put(&ss->root->cgrp);
1139 }
1140
1141 for_each_root(root) {
1142 bool name_match = false;
1143
1144 if (root == &cgrp_dfl_root)
1145 continue;
1146
1147 /*
1148 * If we asked for a name then it must match. Also, if
1149 * name matches but sybsys_mask doesn't, we should fail.
1150 * Remember whether name matched.
1151 */
1152 if (ctx->name) {
1153 if (strcmp(ctx->name, root->name))
1154 continue;
1155 name_match = true;
1156 }
1157
1158 /*
1159 * If we asked for subsystems (or explicitly for no
1160 * subsystems) then they must match.
1161 */
1162 if ((ctx->subsys_mask || ctx->none) &&
1163 (ctx->subsys_mask != root->subsys_mask)) {
1164 if (!name_match)
1165 continue;
1166 return -EBUSY;
1167 }
1168
1169 if (root->flags ^ ctx->flags)
1170 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1171
1172 ctx->root = root;
1173 return 0;
1174 }
1175
1176 /*
1177 * No such thing, create a new one. name= matching without subsys
1178 * specification is allowed for already existing hierarchies but we
1179 * can't create new one without subsys specification.
1180 */
1181 if (!ctx->subsys_mask && !ctx->none)
1182 return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1183
1184 /* Hierarchies may only be created in the initial cgroup namespace. */
1185 if (ctx->ns != &init_cgroup_ns)
1186 return -EPERM;
1187
1188 root = kzalloc(sizeof(*root), GFP_KERNEL);
1189 if (!root)
1190 return -ENOMEM;
1191
1192 ctx->root = root;
1193 init_cgroup_root(ctx);
1194
1195 ret = cgroup_setup_root(root, ctx->subsys_mask);
1196 if (ret)
1197 cgroup_free_root(root);
1198 return ret;
1199 }
1200
cgroup1_get_tree(struct fs_context * fc)1201 int cgroup1_get_tree(struct fs_context *fc)
1202 {
1203 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1204 int ret;
1205
1206 /* Check if the caller has permission to mount. */
1207 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1208 return -EPERM;
1209
1210 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1211
1212 ret = cgroup1_root_to_use(fc);
1213 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1214 ret = 1; /* restart */
1215
1216 mutex_unlock(&cgroup_mutex);
1217
1218 if (!ret)
1219 ret = cgroup_do_get_tree(fc);
1220
1221 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1222 struct super_block *sb = fc->root->d_sb;
1223 dput(fc->root);
1224 deactivate_locked_super(sb);
1225 ret = 1;
1226 }
1227
1228 if (unlikely(ret > 0)) {
1229 msleep(10);
1230 return restart_syscall();
1231 }
1232 return ret;
1233 }
1234
cgroup1_wq_init(void)1235 static int __init cgroup1_wq_init(void)
1236 {
1237 /*
1238 * Used to destroy pidlists and separate to serve as flush domain.
1239 * Cap @max_active to 1 too.
1240 */
1241 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242 0, 1);
1243 BUG_ON(!cgroup_pidlist_destroy_wq);
1244 return 0;
1245 }
1246 core_initcall(cgroup1_wq_init);
1247
cgroup_no_v1(char * str)1248 static int __init cgroup_no_v1(char *str)
1249 {
1250 struct cgroup_subsys *ss;
1251 char *token;
1252 int i;
1253
1254 while ((token = strsep(&str, ",")) != NULL) {
1255 if (!*token)
1256 continue;
1257
1258 if (!strcmp(token, "all")) {
1259 cgroup_no_v1_mask = U16_MAX;
1260 continue;
1261 }
1262
1263 if (!strcmp(token, "named")) {
1264 cgroup_no_v1_named = true;
1265 continue;
1266 }
1267
1268 for_each_subsys(ss, i) {
1269 if (strcmp(token, ss->name) &&
1270 strcmp(token, ss->legacy_name))
1271 continue;
1272
1273 cgroup_no_v1_mask |= 1 << i;
1274 }
1275 }
1276 return 1;
1277 }
1278 __setup("cgroup_no_v1=", cgroup_no_v1);
1279