1 /*
2  * arch/arm/probes/decode.h
3  *
4  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5  *
6  * Some contents moved here from arch/arm/include/asm/kprobes.h which is
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #ifndef _ARM_KERNEL_PROBES_H
20 #define  _ARM_KERNEL_PROBES_H
21 
22 #include <linux/types.h>
23 #include <linux/stddef.h>
24 #include <asm/probes.h>
25 #include <asm/kprobes.h>
26 
27 void __init arm_probes_decode_init(void);
28 
29 extern probes_check_cc * const probes_condition_checks[16];
30 
31 #if __LINUX_ARM_ARCH__ >= 7
32 
33 /* str_pc_offset is architecturally defined from ARMv7 onwards */
34 #define str_pc_offset 8
35 #define find_str_pc_offset()
36 
37 #else /* __LINUX_ARM_ARCH__ < 7 */
38 
39 /* We need a run-time check to determine str_pc_offset */
40 extern int str_pc_offset;
41 void __init find_str_pc_offset(void);
42 
43 #endif
44 
45 
46 /*
47  * Update ITSTATE after normal execution of an IT block instruction.
48  *
49  * The 8 IT state bits are split into two parts in CPSR:
50  *	ITSTATE<1:0> are in CPSR<26:25>
51  *	ITSTATE<7:2> are in CPSR<15:10>
52  */
it_advance(unsigned long cpsr)53 static inline unsigned long it_advance(unsigned long cpsr)
54 	{
55 	if ((cpsr & 0x06000400) == 0) {
56 		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
57 		cpsr &= ~PSR_IT_MASK;
58 	} else {
59 		/* We need to shift left ITSTATE<4:0> */
60 		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
61 		unsigned long it = cpsr & mask;
62 		it <<= 1;
63 		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
64 		it &= mask;
65 		cpsr &= ~mask;
66 		cpsr |= it;
67 	}
68 	return cpsr;
69 }
70 
bx_write_pc(long pcv,struct pt_regs * regs)71 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
72 {
73 	long cpsr = regs->ARM_cpsr;
74 	if (pcv & 0x1) {
75 		cpsr |= PSR_T_BIT;
76 		pcv &= ~0x1;
77 	} else {
78 		cpsr &= ~PSR_T_BIT;
79 		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
80 	}
81 	regs->ARM_cpsr = cpsr;
82 	regs->ARM_pc = pcv;
83 }
84 
85 
86 #if __LINUX_ARM_ARCH__ >= 6
87 
88 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
89 #define load_write_pc_interworks true
90 #define test_load_write_pc_interworking()
91 
92 #else /* __LINUX_ARM_ARCH__ < 6 */
93 
94 /* We need run-time testing to determine if load_write_pc() should interwork. */
95 extern bool load_write_pc_interworks;
96 void __init test_load_write_pc_interworking(void);
97 
98 #endif
99 
load_write_pc(long pcv,struct pt_regs * regs)100 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
101 {
102 	if (load_write_pc_interworks)
103 		bx_write_pc(pcv, regs);
104 	else
105 		regs->ARM_pc = pcv;
106 }
107 
108 
109 #if __LINUX_ARM_ARCH__ >= 7
110 
111 #define alu_write_pc_interworks true
112 #define test_alu_write_pc_interworking()
113 
114 #elif __LINUX_ARM_ARCH__ <= 5
115 
116 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
117 #define alu_write_pc_interworks false
118 #define test_alu_write_pc_interworking()
119 
120 #else /* __LINUX_ARM_ARCH__ == 6 */
121 
122 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
123 extern bool alu_write_pc_interworks;
124 void __init test_alu_write_pc_interworking(void);
125 
126 #endif /* __LINUX_ARM_ARCH__ == 6 */
127 
alu_write_pc(long pcv,struct pt_regs * regs)128 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
129 {
130 	if (alu_write_pc_interworks)
131 		bx_write_pc(pcv, regs);
132 	else
133 		regs->ARM_pc = pcv;
134 }
135 
136 
137 /*
138  * Test if load/store instructions writeback the address register.
139  * if P (bit 24) == 0 or W (bit 21) == 1
140  */
141 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
142 
143 /*
144  * The following definitions and macros are used to build instruction
145  * decoding tables for use by probes_decode_insn.
146  *
147  * These tables are a concatenation of entries each of which consist of one of
148  * the decode_* structs. All of the fields in every type of decode structure
149  * are of the union type decode_item, therefore the entire decode table can be
150  * viewed as an array of these and declared like:
151  *
152  *	static const union decode_item table_name[] = {};
153  *
154  * In order to construct each entry in the table, macros are used to
155  * initialise a number of sequential decode_item values in a layout which
156  * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
157  * decode_simulate by initialising four decode_item objects like this...
158  *
159  *	{.bits = _type},
160  *	{.bits = _mask},
161  *	{.bits = _value},
162  *	{.action = _handler},
163  *
164  * Initialising a specified member of the union means that the compiler
165  * will produce a warning if the argument is of an incorrect type.
166  *
167  * Below is a list of each of the macros used to initialise entries and a
168  * description of the action performed when that entry is matched to an
169  * instruction. A match is found when (instruction & mask) == value.
170  *
171  * DECODE_TABLE(mask, value, table)
172  *	Instruction decoding jumps to parsing the new sub-table 'table'.
173  *
174  * DECODE_CUSTOM(mask, value, decoder)
175  *	The value of 'decoder' is used as an index into the array of
176  *	action functions, and the retrieved decoder function is invoked
177  *	to complete decoding of the instruction.
178  *
179  * DECODE_SIMULATE(mask, value, handler)
180  *	The probes instruction handler is set to the value found by
181  *	indexing into the action array using the value of 'handler'. This
182  *	will be used to simulate the instruction when the probe is hit.
183  *	Decoding returns with INSN_GOOD_NO_SLOT.
184  *
185  * DECODE_EMULATE(mask, value, handler)
186  *	The probes instruction handler is set to the value found by
187  *	indexing into the action array using the value of 'handler'. This
188  *	will be used to emulate the instruction when the probe is hit. The
189  *	modified instruction (see below) is placed in the probes instruction
190  *	slot so it may be called by the emulation code. Decoding returns
191  *	with INSN_GOOD.
192  *
193  * DECODE_REJECT(mask, value)
194  *	Instruction decoding fails with INSN_REJECTED
195  *
196  * DECODE_OR(mask, value)
197  *	This allows the mask/value test of multiple table entries to be
198  *	logically ORed. Once an 'or' entry is matched the decoding action to
199  *	be performed is that of the next entry which isn't an 'or'. E.g.
200  *
201  *		DECODE_OR	(mask1, value1)
202  *		DECODE_OR	(mask2, value2)
203  *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
204  *
205  *	This means that if any of the three mask/value pairs match the
206  *	instruction being decoded, then 'simulation_handler' will be used
207  *	for it.
208  *
209  * Both the SIMULATE and EMULATE macros have a second form which take an
210  * additional 'regs' argument.
211  *
212  *	DECODE_SIMULATEX(mask, value, handler, regs)
213  *	DECODE_EMULATEX	(mask, value, handler, regs)
214  *
215  * These are used to specify what kind of CPU register is encoded in each of the
216  * least significant 5 nibbles of the instruction being decoded. The regs value
217  * is specified using the REGS macro, this takes any of the REG_TYPE_* values
218  * from enum decode_reg_type as arguments; only the '*' part of the name is
219  * given. E.g.
220  *
221  *	REGS(0, ANY, NOPC, 0, ANY)
222  *
223  * This indicates an instruction is encoded like:
224  *
225  *	bits 19..16	ignore
226  *	bits 15..12	any register allowed here
227  *	bits 11.. 8	any register except PC allowed here
228  *	bits  7.. 4	ignore
229  *	bits  3.. 0	any register allowed here
230  *
231  * This register specification is checked after a decode table entry is found to
232  * match an instruction (through the mask/value test). Any invalid register then
233  * found in the instruction will cause decoding to fail with INSN_REJECTED. In
234  * the above example this would happen if bits 11..8 of the instruction were
235  * 1111, indicating R15 or PC.
236  *
237  * As well as checking for legal combinations of registers, this data is also
238  * used to modify the registers encoded in the instructions so that an
239  * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
240  *
241  * Here is a real example which matches ARM instructions of the form
242  * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
243  *
244  *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
245  *						 REGS(ANY, ANY, NOPC, 0, ANY)),
246  *						      ^    ^    ^        ^
247  *						      Rn   Rd   Rs       Rm
248  *
249  * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
250  * Rs == R15
251  *
252  * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
253  * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
254  * the kprobes instruction slot. This can then be called later by the handler
255  * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
256  * the indicated slot in the action array), in order to simulate the instruction.
257  */
258 
259 enum decode_type {
260 	DECODE_TYPE_END,
261 	DECODE_TYPE_TABLE,
262 	DECODE_TYPE_CUSTOM,
263 	DECODE_TYPE_SIMULATE,
264 	DECODE_TYPE_EMULATE,
265 	DECODE_TYPE_OR,
266 	DECODE_TYPE_REJECT,
267 	NUM_DECODE_TYPES /* Must be last enum */
268 };
269 
270 #define DECODE_TYPE_BITS	4
271 #define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
272 
273 enum decode_reg_type {
274 	REG_TYPE_NONE = 0, /* Not a register, ignore */
275 	REG_TYPE_ANY,	   /* Any register allowed */
276 	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
277 	REG_TYPE_SP,	   /* Register must be SP */
278 	REG_TYPE_PC,	   /* Register must be PC */
279 	REG_TYPE_NOSP,	   /* Register must not be SP */
280 	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
281 	REG_TYPE_NOPC,	   /* Register must not be PC */
282 	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
283 
284 	/* The following types are used when the encoding for PC indicates
285 	 * another instruction form. This distiction only matters for test
286 	 * case coverage checks.
287 	 */
288 	REG_TYPE_NOPCX,	   /* Register must not be PC */
289 	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
290 
291 	/* Alias to allow '0' arg to be used in REGS macro. */
292 	REG_TYPE_0 = REG_TYPE_NONE
293 };
294 
295 #define REGS(r16, r12, r8, r4, r0)	\
296 	(((REG_TYPE_##r16) << 16) +	\
297 	((REG_TYPE_##r12) << 12) +	\
298 	((REG_TYPE_##r8) << 8) +	\
299 	((REG_TYPE_##r4) << 4) +	\
300 	(REG_TYPE_##r0))
301 
302 union decode_item {
303 	u32			bits;
304 	const union decode_item	*table;
305 	int			action;
306 };
307 
308 struct decode_header;
309 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
310 						  struct arch_probes_insn *,
311 						  const struct decode_header *);
312 
313 union decode_action {
314 	probes_insn_handler_t	*handler;
315 	probes_custom_decode_t	*decoder;
316 };
317 
318 typedef enum probes_insn (probes_check_t)(probes_opcode_t,
319 					   struct arch_probes_insn *,
320 					   const struct decode_header *);
321 
322 struct decode_checker {
323 	probes_check_t	*checker;
324 };
325 
326 #define DECODE_END			\
327 	{.bits = DECODE_TYPE_END}
328 
329 
330 struct decode_header {
331 	union decode_item	type_regs;
332 	union decode_item	mask;
333 	union decode_item	value;
334 };
335 
336 #define DECODE_HEADER(_type, _mask, _value, _regs)		\
337 	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
338 	{.bits = (_mask)},					\
339 	{.bits = (_value)}
340 
341 
342 struct decode_table {
343 	struct decode_header	header;
344 	union decode_item	table;
345 };
346 
347 #define DECODE_TABLE(_mask, _value, _table)			\
348 	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
349 	{.table = (_table)}
350 
351 
352 struct decode_custom {
353 	struct decode_header	header;
354 	union decode_item	decoder;
355 };
356 
357 #define DECODE_CUSTOM(_mask, _value, _decoder)			\
358 	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
359 	{.action = (_decoder)}
360 
361 
362 struct decode_simulate {
363 	struct decode_header	header;
364 	union decode_item	handler;
365 };
366 
367 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
368 	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
369 	{.action = (_handler)}
370 
371 #define DECODE_SIMULATE(_mask, _value, _handler)	\
372 	DECODE_SIMULATEX(_mask, _value, _handler, 0)
373 
374 
375 struct decode_emulate {
376 	struct decode_header	header;
377 	union decode_item	handler;
378 };
379 
380 #define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
381 	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
382 	{.action = (_handler)}
383 
384 #define DECODE_EMULATE(_mask, _value, _handler)		\
385 	DECODE_EMULATEX(_mask, _value, _handler, 0)
386 
387 
388 struct decode_or {
389 	struct decode_header	header;
390 };
391 
392 #define DECODE_OR(_mask, _value)				\
393 	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
394 
395 enum probes_insn {
396 	INSN_REJECTED,
397 	INSN_GOOD,
398 	INSN_GOOD_NO_SLOT
399 };
400 
401 struct decode_reject {
402 	struct decode_header	header;
403 };
404 
405 #define DECODE_REJECT(_mask, _value)				\
406 	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
407 
408 probes_insn_handler_t probes_simulate_nop;
409 probes_insn_handler_t probes_emulate_none;
410 
411 int __kprobes
412 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
413 		const union decode_item *table, bool thumb, bool emulate,
414 		const union decode_action *actions,
415 		const struct decode_checker **checkers);
416 
417 #endif
418