1 /*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree and other debugging details
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #include "sched.h"
13
14 static DEFINE_SPINLOCK(sched_debug_lock);
15
16 /*
17 * This allows printing both to /proc/sched_debug and
18 * to the console
19 */
20 #define SEQ_printf(m, x...) \
21 do { \
22 if (m) \
23 seq_printf(m, x); \
24 else \
25 pr_cont(x); \
26 } while (0)
27
28 /*
29 * Ease the printing of nsec fields:
30 */
nsec_high(unsigned long long nsec)31 static long long nsec_high(unsigned long long nsec)
32 {
33 if ((long long)nsec < 0) {
34 nsec = -nsec;
35 do_div(nsec, 1000000);
36 return -nsec;
37 }
38 do_div(nsec, 1000000);
39
40 return nsec;
41 }
42
nsec_low(unsigned long long nsec)43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45 if ((long long)nsec < 0)
46 nsec = -nsec;
47
48 return do_div(nsec, 1000000);
49 }
50
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53 #define SCHED_FEAT(name, enabled) \
54 #name ,
55
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59
60 #undef SCHED_FEAT
61
sched_feat_show(struct seq_file * m,void * v)62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64 int i;
65
66 for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 if (!(sysctl_sched_features & (1UL << i)))
68 seq_puts(m, "NO_");
69 seq_printf(m, "%s ", sched_feat_names[i]);
70 }
71 seq_puts(m, "\n");
72
73 return 0;
74 }
75
76 #ifdef HAVE_JUMP_LABEL
77
78 #define jump_label_key__true STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81 #define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
83
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87
88 #undef SCHED_FEAT
89
sched_feat_disable(int i)90 static void sched_feat_disable(int i)
91 {
92 static_key_disable_cpuslocked(&sched_feat_keys[i]);
93 }
94
sched_feat_enable(int i)95 static void sched_feat_enable(int i)
96 {
97 static_key_enable_cpuslocked(&sched_feat_keys[i]);
98 }
99 #else
sched_feat_disable(int i)100 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)101 static void sched_feat_enable(int i) { };
102 #endif /* HAVE_JUMP_LABEL */
103
sched_feat_set(char * cmp)104 static int sched_feat_set(char *cmp)
105 {
106 int i;
107 int neg = 0;
108
109 if (strncmp(cmp, "NO_", 3) == 0) {
110 neg = 1;
111 cmp += 3;
112 }
113
114 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115 if (i < 0)
116 return i;
117
118 if (neg) {
119 sysctl_sched_features &= ~(1UL << i);
120 sched_feat_disable(i);
121 } else {
122 sysctl_sched_features |= (1UL << i);
123 sched_feat_enable(i);
124 }
125
126 return 0;
127 }
128
129 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)130 sched_feat_write(struct file *filp, const char __user *ubuf,
131 size_t cnt, loff_t *ppos)
132 {
133 char buf[64];
134 char *cmp;
135 int ret;
136 struct inode *inode;
137
138 if (cnt > 63)
139 cnt = 63;
140
141 if (copy_from_user(&buf, ubuf, cnt))
142 return -EFAULT;
143
144 buf[cnt] = 0;
145 cmp = strstrip(buf);
146
147 /* Ensure the static_key remains in a consistent state */
148 inode = file_inode(filp);
149 cpus_read_lock();
150 inode_lock(inode);
151 ret = sched_feat_set(cmp);
152 inode_unlock(inode);
153 cpus_read_unlock();
154 if (ret < 0)
155 return ret;
156
157 *ppos += cnt;
158
159 return cnt;
160 }
161
sched_feat_open(struct inode * inode,struct file * filp)162 static int sched_feat_open(struct inode *inode, struct file *filp)
163 {
164 return single_open(filp, sched_feat_show, NULL);
165 }
166
167 static const struct file_operations sched_feat_fops = {
168 .open = sched_feat_open,
169 .write = sched_feat_write,
170 .read = seq_read,
171 .llseek = seq_lseek,
172 .release = single_release,
173 };
174
175 __read_mostly bool sched_debug_enabled;
176
sched_init_debug(void)177 static __init int sched_init_debug(void)
178 {
179 debugfs_create_file("sched_features", 0644, NULL, NULL,
180 &sched_feat_fops);
181
182 debugfs_create_bool("sched_debug", 0644, NULL,
183 &sched_debug_enabled);
184
185 return 0;
186 }
187 late_initcall(sched_init_debug);
188
189 #ifdef CONFIG_SMP
190
191 #ifdef CONFIG_SYSCTL
192
193 static struct ctl_table sd_ctl_dir[] = {
194 {
195 .procname = "sched_domain",
196 .mode = 0555,
197 },
198 {}
199 };
200
201 static struct ctl_table sd_ctl_root[] = {
202 {
203 .procname = "kernel",
204 .mode = 0555,
205 .child = sd_ctl_dir,
206 },
207 {}
208 };
209
sd_alloc_ctl_entry(int n)210 static struct ctl_table *sd_alloc_ctl_entry(int n)
211 {
212 struct ctl_table *entry =
213 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
214
215 return entry;
216 }
217
sd_free_ctl_entry(struct ctl_table ** tablep)218 static void sd_free_ctl_entry(struct ctl_table **tablep)
219 {
220 struct ctl_table *entry;
221
222 /*
223 * In the intermediate directories, both the child directory and
224 * procname are dynamically allocated and could fail but the mode
225 * will always be set. In the lowest directory the names are
226 * static strings and all have proc handlers.
227 */
228 for (entry = *tablep; entry->mode; entry++) {
229 if (entry->child)
230 sd_free_ctl_entry(&entry->child);
231 if (entry->proc_handler == NULL)
232 kfree(entry->procname);
233 }
234
235 kfree(*tablep);
236 *tablep = NULL;
237 }
238
239 static int min_load_idx = 0;
240 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
241
242 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)243 set_table_entry(struct ctl_table *entry,
244 const char *procname, void *data, int maxlen,
245 umode_t mode, proc_handler *proc_handler,
246 bool load_idx)
247 {
248 entry->procname = procname;
249 entry->data = data;
250 entry->maxlen = maxlen;
251 entry->mode = mode;
252 entry->proc_handler = proc_handler;
253
254 if (load_idx) {
255 entry->extra1 = &min_load_idx;
256 entry->extra2 = &max_load_idx;
257 }
258 }
259
260 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)261 sd_alloc_ctl_domain_table(struct sched_domain *sd)
262 {
263 struct ctl_table *table = sd_alloc_ctl_entry(14);
264
265 if (table == NULL)
266 return NULL;
267
268 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
269 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
270 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
271 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
272 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
273 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
274 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
275 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false);
276 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false);
277 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false);
278 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false);
279 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
280 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false);
281 /* &table[13] is terminator */
282
283 return table;
284 }
285
sd_alloc_ctl_cpu_table(int cpu)286 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
287 {
288 struct ctl_table *entry, *table;
289 struct sched_domain *sd;
290 int domain_num = 0, i;
291 char buf[32];
292
293 for_each_domain(cpu, sd)
294 domain_num++;
295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
296 if (table == NULL)
297 return NULL;
298
299 i = 0;
300 for_each_domain(cpu, sd) {
301 snprintf(buf, 32, "domain%d", i);
302 entry->procname = kstrdup(buf, GFP_KERNEL);
303 entry->mode = 0555;
304 entry->child = sd_alloc_ctl_domain_table(sd);
305 entry++;
306 i++;
307 }
308 return table;
309 }
310
311 static cpumask_var_t sd_sysctl_cpus;
312 static struct ctl_table_header *sd_sysctl_header;
313
register_sched_domain_sysctl(void)314 void register_sched_domain_sysctl(void)
315 {
316 static struct ctl_table *cpu_entries;
317 static struct ctl_table **cpu_idx;
318 char buf[32];
319 int i;
320
321 if (!cpu_entries) {
322 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
323 if (!cpu_entries)
324 return;
325
326 WARN_ON(sd_ctl_dir[0].child);
327 sd_ctl_dir[0].child = cpu_entries;
328 }
329
330 if (!cpu_idx) {
331 struct ctl_table *e = cpu_entries;
332
333 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
334 if (!cpu_idx)
335 return;
336
337 /* deal with sparse possible map */
338 for_each_possible_cpu(i) {
339 cpu_idx[i] = e;
340 e++;
341 }
342 }
343
344 if (!cpumask_available(sd_sysctl_cpus)) {
345 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
346 return;
347
348 /* init to possible to not have holes in @cpu_entries */
349 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
350 }
351
352 for_each_cpu(i, sd_sysctl_cpus) {
353 struct ctl_table *e = cpu_idx[i];
354
355 if (e->child)
356 sd_free_ctl_entry(&e->child);
357
358 if (!e->procname) {
359 snprintf(buf, 32, "cpu%d", i);
360 e->procname = kstrdup(buf, GFP_KERNEL);
361 }
362 e->mode = 0555;
363 e->child = sd_alloc_ctl_cpu_table(i);
364
365 __cpumask_clear_cpu(i, sd_sysctl_cpus);
366 }
367
368 WARN_ON(sd_sysctl_header);
369 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
370 }
371
dirty_sched_domain_sysctl(int cpu)372 void dirty_sched_domain_sysctl(int cpu)
373 {
374 if (cpumask_available(sd_sysctl_cpus))
375 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
376 }
377
378 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)379 void unregister_sched_domain_sysctl(void)
380 {
381 unregister_sysctl_table(sd_sysctl_header);
382 sd_sysctl_header = NULL;
383 }
384 #endif /* CONFIG_SYSCTL */
385 #endif /* CONFIG_SMP */
386
387 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)388 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
389 {
390 struct sched_entity *se = tg->se[cpu];
391
392 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
393 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
394 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
395 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
396
397 if (!se)
398 return;
399
400 PN(se->exec_start);
401 PN(se->vruntime);
402 PN(se->sum_exec_runtime);
403
404 if (schedstat_enabled()) {
405 PN_SCHEDSTAT(se->statistics.wait_start);
406 PN_SCHEDSTAT(se->statistics.sleep_start);
407 PN_SCHEDSTAT(se->statistics.block_start);
408 PN_SCHEDSTAT(se->statistics.sleep_max);
409 PN_SCHEDSTAT(se->statistics.block_max);
410 PN_SCHEDSTAT(se->statistics.exec_max);
411 PN_SCHEDSTAT(se->statistics.slice_max);
412 PN_SCHEDSTAT(se->statistics.wait_max);
413 PN_SCHEDSTAT(se->statistics.wait_sum);
414 P_SCHEDSTAT(se->statistics.wait_count);
415 }
416
417 P(se->load.weight);
418 P(se->runnable_weight);
419 #ifdef CONFIG_SMP
420 P(se->avg.load_avg);
421 P(se->avg.util_avg);
422 P(se->avg.runnable_load_avg);
423 #endif
424
425 #undef PN_SCHEDSTAT
426 #undef PN
427 #undef P_SCHEDSTAT
428 #undef P
429 }
430 #endif
431
432 #ifdef CONFIG_CGROUP_SCHED
433 static char group_path[PATH_MAX];
434
task_group_path(struct task_group * tg)435 static char *task_group_path(struct task_group *tg)
436 {
437 if (autogroup_path(tg, group_path, PATH_MAX))
438 return group_path;
439
440 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
441
442 return group_path;
443 }
444 #endif
445
446 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)447 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
448 {
449 if (rq->curr == p)
450 SEQ_printf(m, ">R");
451 else
452 SEQ_printf(m, " %c", task_state_to_char(p));
453
454 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
455 p->comm, task_pid_nr(p),
456 SPLIT_NS(p->se.vruntime),
457 (long long)(p->nvcsw + p->nivcsw),
458 p->prio);
459
460 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
461 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
462 SPLIT_NS(p->se.sum_exec_runtime),
463 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
464
465 #ifdef CONFIG_NUMA_BALANCING
466 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
467 #endif
468 #ifdef CONFIG_CGROUP_SCHED
469 SEQ_printf(m, " %s", task_group_path(task_group(p)));
470 #endif
471
472 SEQ_printf(m, "\n");
473 }
474
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)475 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
476 {
477 struct task_struct *g, *p;
478
479 SEQ_printf(m, "\n");
480 SEQ_printf(m, "runnable tasks:\n");
481 SEQ_printf(m, " S task PID tree-key switches prio"
482 " wait-time sum-exec sum-sleep\n");
483 SEQ_printf(m, "-------------------------------------------------------"
484 "----------------------------------------------------\n");
485
486 rcu_read_lock();
487 for_each_process_thread(g, p) {
488 if (task_cpu(p) != rq_cpu)
489 continue;
490
491 print_task(m, rq, p);
492 }
493 rcu_read_unlock();
494 }
495
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)496 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
497 {
498 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
499 spread, rq0_min_vruntime, spread0;
500 struct rq *rq = cpu_rq(cpu);
501 struct sched_entity *last;
502 unsigned long flags;
503
504 #ifdef CONFIG_FAIR_GROUP_SCHED
505 SEQ_printf(m, "\n");
506 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
507 #else
508 SEQ_printf(m, "\n");
509 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
510 #endif
511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
512 SPLIT_NS(cfs_rq->exec_clock));
513
514 raw_spin_lock_irqsave(&rq->lock, flags);
515 if (rb_first_cached(&cfs_rq->tasks_timeline))
516 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
517 last = __pick_last_entity(cfs_rq);
518 if (last)
519 max_vruntime = last->vruntime;
520 min_vruntime = cfs_rq->min_vruntime;
521 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
522 raw_spin_unlock_irqrestore(&rq->lock, flags);
523 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
524 SPLIT_NS(MIN_vruntime));
525 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
526 SPLIT_NS(min_vruntime));
527 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
528 SPLIT_NS(max_vruntime));
529 spread = max_vruntime - MIN_vruntime;
530 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
531 SPLIT_NS(spread));
532 spread0 = min_vruntime - rq0_min_vruntime;
533 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
534 SPLIT_NS(spread0));
535 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
536 cfs_rq->nr_spread_over);
537 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
538 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
539 #ifdef CONFIG_SMP
540 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
541 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
542 cfs_rq->avg.load_avg);
543 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
544 cfs_rq->avg.runnable_load_avg);
545 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
546 cfs_rq->avg.util_avg);
547 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
548 cfs_rq->avg.util_est.enqueued);
549 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
550 cfs_rq->removed.load_avg);
551 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
552 cfs_rq->removed.util_avg);
553 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
554 cfs_rq->removed.runnable_sum);
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
557 cfs_rq->tg_load_avg_contrib);
558 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
559 atomic_long_read(&cfs_rq->tg->load_avg));
560 #endif
561 #endif
562 #ifdef CONFIG_CFS_BANDWIDTH
563 SEQ_printf(m, " .%-30s: %d\n", "throttled",
564 cfs_rq->throttled);
565 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
566 cfs_rq->throttle_count);
567 #endif
568
569 #ifdef CONFIG_FAIR_GROUP_SCHED
570 print_cfs_group_stats(m, cpu, cfs_rq->tg);
571 #endif
572 }
573
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)574 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
575 {
576 #ifdef CONFIG_RT_GROUP_SCHED
577 SEQ_printf(m, "\n");
578 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
579 #else
580 SEQ_printf(m, "\n");
581 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
582 #endif
583
584 #define P(x) \
585 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
586 #define PU(x) \
587 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
588 #define PN(x) \
589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
590
591 PU(rt_nr_running);
592 #ifdef CONFIG_SMP
593 PU(rt_nr_migratory);
594 #endif
595 P(rt_throttled);
596 PN(rt_time);
597 PN(rt_runtime);
598
599 #undef PN
600 #undef PU
601 #undef P
602 }
603
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)604 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
605 {
606 struct dl_bw *dl_bw;
607
608 SEQ_printf(m, "\n");
609 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
610
611 #define PU(x) \
612 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
613
614 PU(dl_nr_running);
615 #ifdef CONFIG_SMP
616 PU(dl_nr_migratory);
617 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
618 #else
619 dl_bw = &dl_rq->dl_bw;
620 #endif
621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
622 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
623
624 #undef PU
625 }
626
print_cpu(struct seq_file * m,int cpu)627 static void print_cpu(struct seq_file *m, int cpu)
628 {
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
632 #ifdef CONFIG_X86
633 {
634 unsigned int freq = cpu_khz ? : 1;
635
636 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
637 cpu, freq / 1000, (freq % 1000));
638 }
639 #else
640 SEQ_printf(m, "cpu#%d\n", cpu);
641 #endif
642
643 #define P(x) \
644 do { \
645 if (sizeof(rq->x) == 4) \
646 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
647 else \
648 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
649 } while (0)
650
651 #define PN(x) \
652 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
653
654 P(nr_running);
655 SEQ_printf(m, " .%-30s: %lu\n", "load",
656 rq->load.weight);
657 P(nr_switches);
658 P(nr_load_updates);
659 P(nr_uninterruptible);
660 PN(next_balance);
661 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
662 PN(clock);
663 PN(clock_task);
664 P(cpu_load[0]);
665 P(cpu_load[1]);
666 P(cpu_load[2]);
667 P(cpu_load[3]);
668 P(cpu_load[4]);
669 #undef P
670 #undef PN
671
672 #ifdef CONFIG_SMP
673 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
674 P64(avg_idle);
675 P64(max_idle_balance_cost);
676 #undef P64
677 #endif
678
679 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
680 if (schedstat_enabled()) {
681 P(yld_count);
682 P(sched_count);
683 P(sched_goidle);
684 P(ttwu_count);
685 P(ttwu_local);
686 }
687 #undef P
688
689 spin_lock_irqsave(&sched_debug_lock, flags);
690 print_cfs_stats(m, cpu);
691 print_rt_stats(m, cpu);
692 print_dl_stats(m, cpu);
693
694 print_rq(m, rq, cpu);
695 spin_unlock_irqrestore(&sched_debug_lock, flags);
696 SEQ_printf(m, "\n");
697 }
698
699 static const char *sched_tunable_scaling_names[] = {
700 "none",
701 "logaritmic",
702 "linear"
703 };
704
sched_debug_header(struct seq_file * m)705 static void sched_debug_header(struct seq_file *m)
706 {
707 u64 ktime, sched_clk, cpu_clk;
708 unsigned long flags;
709
710 local_irq_save(flags);
711 ktime = ktime_to_ns(ktime_get());
712 sched_clk = sched_clock();
713 cpu_clk = local_clock();
714 local_irq_restore(flags);
715
716 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
717 init_utsname()->release,
718 (int)strcspn(init_utsname()->version, " "),
719 init_utsname()->version);
720
721 #define P(x) \
722 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
723 #define PN(x) \
724 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
725 PN(ktime);
726 PN(sched_clk);
727 PN(cpu_clk);
728 P(jiffies);
729 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
730 P(sched_clock_stable());
731 #endif
732 #undef PN
733 #undef P
734
735 SEQ_printf(m, "\n");
736 SEQ_printf(m, "sysctl_sched\n");
737
738 #define P(x) \
739 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
740 #define PN(x) \
741 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
742 PN(sysctl_sched_latency);
743 PN(sysctl_sched_min_granularity);
744 PN(sysctl_sched_wakeup_granularity);
745 P(sysctl_sched_child_runs_first);
746 P(sysctl_sched_features);
747 #undef PN
748 #undef P
749
750 SEQ_printf(m, " .%-40s: %d (%s)\n",
751 "sysctl_sched_tunable_scaling",
752 sysctl_sched_tunable_scaling,
753 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
754 SEQ_printf(m, "\n");
755 }
756
sched_debug_show(struct seq_file * m,void * v)757 static int sched_debug_show(struct seq_file *m, void *v)
758 {
759 int cpu = (unsigned long)(v - 2);
760
761 if (cpu != -1)
762 print_cpu(m, cpu);
763 else
764 sched_debug_header(m);
765
766 return 0;
767 }
768
sysrq_sched_debug_show(void)769 void sysrq_sched_debug_show(void)
770 {
771 int cpu;
772
773 sched_debug_header(NULL);
774 for_each_online_cpu(cpu)
775 print_cpu(NULL, cpu);
776
777 }
778
779 /*
780 * This itererator needs some explanation.
781 * It returns 1 for the header position.
782 * This means 2 is CPU 0.
783 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
784 * to use cpumask_* to iterate over the CPUs.
785 */
sched_debug_start(struct seq_file * file,loff_t * offset)786 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
787 {
788 unsigned long n = *offset;
789
790 if (n == 0)
791 return (void *) 1;
792
793 n--;
794
795 if (n > 0)
796 n = cpumask_next(n - 1, cpu_online_mask);
797 else
798 n = cpumask_first(cpu_online_mask);
799
800 *offset = n + 1;
801
802 if (n < nr_cpu_ids)
803 return (void *)(unsigned long)(n + 2);
804
805 return NULL;
806 }
807
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)808 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
809 {
810 (*offset)++;
811 return sched_debug_start(file, offset);
812 }
813
sched_debug_stop(struct seq_file * file,void * data)814 static void sched_debug_stop(struct seq_file *file, void *data)
815 {
816 }
817
818 static const struct seq_operations sched_debug_sops = {
819 .start = sched_debug_start,
820 .next = sched_debug_next,
821 .stop = sched_debug_stop,
822 .show = sched_debug_show,
823 };
824
init_sched_debug_procfs(void)825 static int __init init_sched_debug_procfs(void)
826 {
827 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
828 return -ENOMEM;
829 return 0;
830 }
831
832 __initcall(init_sched_debug_procfs);
833
834 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
835 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
836 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
837 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
838
839
840 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)841 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
842 unsigned long tpf, unsigned long gsf, unsigned long gpf)
843 {
844 SEQ_printf(m, "numa_faults node=%d ", node);
845 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
846 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
847 }
848 #endif
849
850
sched_show_numa(struct task_struct * p,struct seq_file * m)851 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
852 {
853 #ifdef CONFIG_NUMA_BALANCING
854 struct mempolicy *pol;
855
856 if (p->mm)
857 P(mm->numa_scan_seq);
858
859 task_lock(p);
860 pol = p->mempolicy;
861 if (pol && !(pol->flags & MPOL_F_MORON))
862 pol = NULL;
863 mpol_get(pol);
864 task_unlock(p);
865
866 P(numa_pages_migrated);
867 P(numa_preferred_nid);
868 P(total_numa_faults);
869 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
870 task_node(p), task_numa_group_id(p));
871 show_numa_stats(p, m);
872 mpol_put(pol);
873 #endif
874 }
875
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)876 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
877 struct seq_file *m)
878 {
879 unsigned long nr_switches;
880
881 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
882 get_nr_threads(p));
883 SEQ_printf(m,
884 "---------------------------------------------------------"
885 "----------\n");
886 #define __P(F) \
887 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
888 #define P(F) \
889 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
890 #define P_SCHEDSTAT(F) \
891 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
892 #define __PN(F) \
893 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
894 #define PN(F) \
895 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
896 #define PN_SCHEDSTAT(F) \
897 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
898
899 PN(se.exec_start);
900 PN(se.vruntime);
901 PN(se.sum_exec_runtime);
902
903 nr_switches = p->nvcsw + p->nivcsw;
904
905 P(se.nr_migrations);
906
907 if (schedstat_enabled()) {
908 u64 avg_atom, avg_per_cpu;
909
910 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
911 PN_SCHEDSTAT(se.statistics.wait_start);
912 PN_SCHEDSTAT(se.statistics.sleep_start);
913 PN_SCHEDSTAT(se.statistics.block_start);
914 PN_SCHEDSTAT(se.statistics.sleep_max);
915 PN_SCHEDSTAT(se.statistics.block_max);
916 PN_SCHEDSTAT(se.statistics.exec_max);
917 PN_SCHEDSTAT(se.statistics.slice_max);
918 PN_SCHEDSTAT(se.statistics.wait_max);
919 PN_SCHEDSTAT(se.statistics.wait_sum);
920 P_SCHEDSTAT(se.statistics.wait_count);
921 PN_SCHEDSTAT(se.statistics.iowait_sum);
922 P_SCHEDSTAT(se.statistics.iowait_count);
923 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
924 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
925 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
926 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
927 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
928 P_SCHEDSTAT(se.statistics.nr_wakeups);
929 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
930 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
931 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
932 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
933 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
934 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
935 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
936 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
937
938 avg_atom = p->se.sum_exec_runtime;
939 if (nr_switches)
940 avg_atom = div64_ul(avg_atom, nr_switches);
941 else
942 avg_atom = -1LL;
943
944 avg_per_cpu = p->se.sum_exec_runtime;
945 if (p->se.nr_migrations) {
946 avg_per_cpu = div64_u64(avg_per_cpu,
947 p->se.nr_migrations);
948 } else {
949 avg_per_cpu = -1LL;
950 }
951
952 __PN(avg_atom);
953 __PN(avg_per_cpu);
954 }
955
956 __P(nr_switches);
957 SEQ_printf(m, "%-45s:%21Ld\n",
958 "nr_voluntary_switches", (long long)p->nvcsw);
959 SEQ_printf(m, "%-45s:%21Ld\n",
960 "nr_involuntary_switches", (long long)p->nivcsw);
961
962 P(se.load.weight);
963 P(se.runnable_weight);
964 #ifdef CONFIG_SMP
965 P(se.avg.load_sum);
966 P(se.avg.runnable_load_sum);
967 P(se.avg.util_sum);
968 P(se.avg.load_avg);
969 P(se.avg.runnable_load_avg);
970 P(se.avg.util_avg);
971 P(se.avg.last_update_time);
972 P(se.avg.util_est.ewma);
973 P(se.avg.util_est.enqueued);
974 #endif
975 P(policy);
976 P(prio);
977 if (p->policy == SCHED_DEADLINE) {
978 P(dl.runtime);
979 P(dl.deadline);
980 }
981 #undef PN_SCHEDSTAT
982 #undef PN
983 #undef __PN
984 #undef P_SCHEDSTAT
985 #undef P
986 #undef __P
987
988 {
989 unsigned int this_cpu = raw_smp_processor_id();
990 u64 t0, t1;
991
992 t0 = cpu_clock(this_cpu);
993 t1 = cpu_clock(this_cpu);
994 SEQ_printf(m, "%-45s:%21Ld\n",
995 "clock-delta", (long long)(t1-t0));
996 }
997
998 sched_show_numa(p, m);
999 }
1000
proc_sched_set_task(struct task_struct * p)1001 void proc_sched_set_task(struct task_struct *p)
1002 {
1003 #ifdef CONFIG_SCHEDSTATS
1004 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1005 #endif
1006 }
1007