1 /*
2  * Intel Running Average Power Limit (RAPL) Driver
3  * Copyright (c) 2013, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.
16  *
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list.h>
23 #include <linux/types.h>
24 #include <linux/device.h>
25 #include <linux/slab.h>
26 #include <linux/log2.h>
27 #include <linux/bitmap.h>
28 #include <linux/delay.h>
29 #include <linux/sysfs.h>
30 #include <linux/cpu.h>
31 #include <linux/powercap.h>
32 #include <linux/suspend.h>
33 #include <asm/iosf_mbi.h>
34 
35 #include <asm/processor.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/intel-family.h>
38 
39 /* Local defines */
40 #define MSR_PLATFORM_POWER_LIMIT	0x0000065C
41 
42 /* bitmasks for RAPL MSRs, used by primitive access functions */
43 #define ENERGY_STATUS_MASK      0xffffffff
44 
45 #define POWER_LIMIT1_MASK       0x7FFF
46 #define POWER_LIMIT1_ENABLE     BIT(15)
47 #define POWER_LIMIT1_CLAMP      BIT(16)
48 
49 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
50 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
51 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
52 #define POWER_PACKAGE_LOCK      BIT_ULL(63)
53 #define POWER_PP_LOCK           BIT(31)
54 
55 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
56 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
57 
58 #define POWER_UNIT_OFFSET	0
59 #define POWER_UNIT_MASK		0x0F
60 
61 #define ENERGY_UNIT_OFFSET	0x08
62 #define ENERGY_UNIT_MASK	0x1F00
63 
64 #define TIME_UNIT_OFFSET	0x10
65 #define TIME_UNIT_MASK		0xF0000
66 
67 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
68 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
69 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
70 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
71 
72 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
73 #define PP_POLICY_MASK         0x1F
74 
75 /* Non HW constants */
76 #define RAPL_PRIMITIVE_DERIVED       BIT(1) /* not from raw data */
77 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
78 
79 #define TIME_WINDOW_MAX_MSEC 40000
80 #define TIME_WINDOW_MIN_MSEC 250
81 #define ENERGY_UNIT_SCALE    1000 /* scale from driver unit to powercap unit */
82 enum unit_type {
83 	ARBITRARY_UNIT, /* no translation */
84 	POWER_UNIT,
85 	ENERGY_UNIT,
86 	TIME_UNIT,
87 };
88 
89 enum rapl_domain_type {
90 	RAPL_DOMAIN_PACKAGE, /* entire package/socket */
91 	RAPL_DOMAIN_PP0, /* core power plane */
92 	RAPL_DOMAIN_PP1, /* graphics uncore */
93 	RAPL_DOMAIN_DRAM,/* DRAM control_type */
94 	RAPL_DOMAIN_PLATFORM, /* PSys control_type */
95 	RAPL_DOMAIN_MAX,
96 };
97 
98 enum rapl_domain_msr_id {
99 	RAPL_DOMAIN_MSR_LIMIT,
100 	RAPL_DOMAIN_MSR_STATUS,
101 	RAPL_DOMAIN_MSR_PERF,
102 	RAPL_DOMAIN_MSR_POLICY,
103 	RAPL_DOMAIN_MSR_INFO,
104 	RAPL_DOMAIN_MSR_MAX,
105 };
106 
107 /* per domain data, some are optional */
108 enum rapl_primitives {
109 	ENERGY_COUNTER,
110 	POWER_LIMIT1,
111 	POWER_LIMIT2,
112 	FW_LOCK,
113 
114 	PL1_ENABLE,  /* power limit 1, aka long term */
115 	PL1_CLAMP,   /* allow frequency to go below OS request */
116 	PL2_ENABLE,  /* power limit 2, aka short term, instantaneous */
117 	PL2_CLAMP,
118 
119 	TIME_WINDOW1, /* long term */
120 	TIME_WINDOW2, /* short term */
121 	THERMAL_SPEC_POWER,
122 	MAX_POWER,
123 
124 	MIN_POWER,
125 	MAX_TIME_WINDOW,
126 	THROTTLED_TIME,
127 	PRIORITY_LEVEL,
128 
129 	/* below are not raw primitive data */
130 	AVERAGE_POWER,
131 	NR_RAPL_PRIMITIVES,
132 };
133 
134 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
135 
136 /* Can be expanded to include events, etc.*/
137 struct rapl_domain_data {
138 	u64 primitives[NR_RAPL_PRIMITIVES];
139 	unsigned long timestamp;
140 };
141 
142 struct msrl_action {
143 	u32 msr_no;
144 	u64 clear_mask;
145 	u64 set_mask;
146 	int err;
147 };
148 
149 #define	DOMAIN_STATE_INACTIVE           BIT(0)
150 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
151 #define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
152 
153 #define NR_POWER_LIMITS (2)
154 struct rapl_power_limit {
155 	struct powercap_zone_constraint *constraint;
156 	int prim_id; /* primitive ID used to enable */
157 	struct rapl_domain *domain;
158 	const char *name;
159 	u64 last_power_limit;
160 };
161 
162 static const char pl1_name[] = "long_term";
163 static const char pl2_name[] = "short_term";
164 
165 struct rapl_package;
166 struct rapl_domain {
167 	const char *name;
168 	enum rapl_domain_type id;
169 	int msrs[RAPL_DOMAIN_MSR_MAX];
170 	struct powercap_zone power_zone;
171 	struct rapl_domain_data rdd;
172 	struct rapl_power_limit rpl[NR_POWER_LIMITS];
173 	u64 attr_map; /* track capabilities */
174 	unsigned int state;
175 	unsigned int domain_energy_unit;
176 	struct rapl_package *rp;
177 };
178 #define power_zone_to_rapl_domain(_zone) \
179 	container_of(_zone, struct rapl_domain, power_zone)
180 
181 
182 /* Each physical package contains multiple domains, these are the common
183  * data across RAPL domains within a package.
184  */
185 struct rapl_package {
186 	unsigned int id; /* physical package/socket id */
187 	unsigned int nr_domains;
188 	unsigned long domain_map; /* bit map of active domains */
189 	unsigned int power_unit;
190 	unsigned int energy_unit;
191 	unsigned int time_unit;
192 	struct rapl_domain *domains; /* array of domains, sized at runtime */
193 	struct powercap_zone *power_zone; /* keep track of parent zone */
194 	unsigned long power_limit_irq; /* keep track of package power limit
195 					* notify interrupt enable status.
196 					*/
197 	struct list_head plist;
198 	int lead_cpu; /* one active cpu per package for access */
199 	/* Track active cpus */
200 	struct cpumask cpumask;
201 };
202 
203 struct rapl_defaults {
204 	u8 floor_freq_reg_addr;
205 	int (*check_unit)(struct rapl_package *rp, int cpu);
206 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
207 	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
208 				bool to_raw);
209 	unsigned int dram_domain_energy_unit;
210 };
211 static struct rapl_defaults *rapl_defaults;
212 
213 /* Sideband MBI registers */
214 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
215 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
216 
217 #define PACKAGE_PLN_INT_SAVED   BIT(0)
218 #define MAX_PRIM_NAME (32)
219 
220 /* per domain data. used to describe individual knobs such that access function
221  * can be consolidated into one instead of many inline functions.
222  */
223 struct rapl_primitive_info {
224 	const char *name;
225 	u64 mask;
226 	int shift;
227 	enum rapl_domain_msr_id id;
228 	enum unit_type unit;
229 	u32 flag;
230 };
231 
232 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
233 		.name = #p,			\
234 		.mask = m,			\
235 		.shift = s,			\
236 		.id = i,			\
237 		.unit = u,			\
238 		.flag = f			\
239 	}
240 
241 static void rapl_init_domains(struct rapl_package *rp);
242 static int rapl_read_data_raw(struct rapl_domain *rd,
243 			enum rapl_primitives prim,
244 			bool xlate, u64 *data);
245 static int rapl_write_data_raw(struct rapl_domain *rd,
246 			enum rapl_primitives prim,
247 			unsigned long long value);
248 static u64 rapl_unit_xlate(struct rapl_domain *rd,
249 			enum unit_type type, u64 value,
250 			int to_raw);
251 static void package_power_limit_irq_save(struct rapl_package *rp);
252 
253 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
254 
255 static const char * const rapl_domain_names[] = {
256 	"package",
257 	"core",
258 	"uncore",
259 	"dram",
260 	"psys",
261 };
262 
263 static struct powercap_control_type *control_type; /* PowerCap Controller */
264 static struct rapl_domain *platform_rapl_domain; /* Platform (PSys) domain */
265 
266 /* caller to ensure CPU hotplug lock is held */
find_package_by_id(int id)267 static struct rapl_package *find_package_by_id(int id)
268 {
269 	struct rapl_package *rp;
270 
271 	list_for_each_entry(rp, &rapl_packages, plist) {
272 		if (rp->id == id)
273 			return rp;
274 	}
275 
276 	return NULL;
277 }
278 
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)279 static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
280 {
281 	struct rapl_domain *rd;
282 	u64 energy_now;
283 
284 	/* prevent CPU hotplug, make sure the RAPL domain does not go
285 	 * away while reading the counter.
286 	 */
287 	get_online_cpus();
288 	rd = power_zone_to_rapl_domain(power_zone);
289 
290 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
291 		*energy_raw = energy_now;
292 		put_online_cpus();
293 
294 		return 0;
295 	}
296 	put_online_cpus();
297 
298 	return -EIO;
299 }
300 
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)301 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
302 {
303 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
304 
305 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
306 	return 0;
307 }
308 
release_zone(struct powercap_zone * power_zone)309 static int release_zone(struct powercap_zone *power_zone)
310 {
311 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
312 	struct rapl_package *rp = rd->rp;
313 
314 	/* package zone is the last zone of a package, we can free
315 	 * memory here since all children has been unregistered.
316 	 */
317 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
318 		kfree(rd);
319 		rp->domains = NULL;
320 	}
321 
322 	return 0;
323 
324 }
325 
find_nr_power_limit(struct rapl_domain * rd)326 static int find_nr_power_limit(struct rapl_domain *rd)
327 {
328 	int i, nr_pl = 0;
329 
330 	for (i = 0; i < NR_POWER_LIMITS; i++) {
331 		if (rd->rpl[i].name)
332 			nr_pl++;
333 	}
334 
335 	return nr_pl;
336 }
337 
set_domain_enable(struct powercap_zone * power_zone,bool mode)338 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
339 {
340 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
341 
342 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
343 		return -EACCES;
344 
345 	get_online_cpus();
346 	rapl_write_data_raw(rd, PL1_ENABLE, mode);
347 	if (rapl_defaults->set_floor_freq)
348 		rapl_defaults->set_floor_freq(rd, mode);
349 	put_online_cpus();
350 
351 	return 0;
352 }
353 
get_domain_enable(struct powercap_zone * power_zone,bool * mode)354 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
355 {
356 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
357 	u64 val;
358 
359 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
360 		*mode = false;
361 		return 0;
362 	}
363 	get_online_cpus();
364 	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
365 		put_online_cpus();
366 		return -EIO;
367 	}
368 	*mode = val;
369 	put_online_cpus();
370 
371 	return 0;
372 }
373 
374 /* per RAPL domain ops, in the order of rapl_domain_type */
375 static const struct powercap_zone_ops zone_ops[] = {
376 	/* RAPL_DOMAIN_PACKAGE */
377 	{
378 		.get_energy_uj = get_energy_counter,
379 		.get_max_energy_range_uj = get_max_energy_counter,
380 		.release = release_zone,
381 		.set_enable = set_domain_enable,
382 		.get_enable = get_domain_enable,
383 	},
384 	/* RAPL_DOMAIN_PP0 */
385 	{
386 		.get_energy_uj = get_energy_counter,
387 		.get_max_energy_range_uj = get_max_energy_counter,
388 		.release = release_zone,
389 		.set_enable = set_domain_enable,
390 		.get_enable = get_domain_enable,
391 	},
392 	/* RAPL_DOMAIN_PP1 */
393 	{
394 		.get_energy_uj = get_energy_counter,
395 		.get_max_energy_range_uj = get_max_energy_counter,
396 		.release = release_zone,
397 		.set_enable = set_domain_enable,
398 		.get_enable = get_domain_enable,
399 	},
400 	/* RAPL_DOMAIN_DRAM */
401 	{
402 		.get_energy_uj = get_energy_counter,
403 		.get_max_energy_range_uj = get_max_energy_counter,
404 		.release = release_zone,
405 		.set_enable = set_domain_enable,
406 		.get_enable = get_domain_enable,
407 	},
408 	/* RAPL_DOMAIN_PLATFORM */
409 	{
410 		.get_energy_uj = get_energy_counter,
411 		.get_max_energy_range_uj = get_max_energy_counter,
412 		.release = release_zone,
413 		.set_enable = set_domain_enable,
414 		.get_enable = get_domain_enable,
415 	},
416 };
417 
418 
419 /*
420  * Constraint index used by powercap can be different than power limit (PL)
421  * index in that some  PLs maybe missing due to non-existant MSRs. So we
422  * need to convert here by finding the valid PLs only (name populated).
423  */
contraint_to_pl(struct rapl_domain * rd,int cid)424 static int contraint_to_pl(struct rapl_domain *rd, int cid)
425 {
426 	int i, j;
427 
428 	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
429 		if ((rd->rpl[i].name) && j++ == cid) {
430 			pr_debug("%s: index %d\n", __func__, i);
431 			return i;
432 		}
433 	}
434 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
435 
436 	return -EINVAL;
437 }
438 
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)439 static int set_power_limit(struct powercap_zone *power_zone, int cid,
440 			u64 power_limit)
441 {
442 	struct rapl_domain *rd;
443 	struct rapl_package *rp;
444 	int ret = 0;
445 	int id;
446 
447 	get_online_cpus();
448 	rd = power_zone_to_rapl_domain(power_zone);
449 	id = contraint_to_pl(rd, cid);
450 	if (id < 0) {
451 		ret = id;
452 		goto set_exit;
453 	}
454 
455 	rp = rd->rp;
456 
457 	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
458 		dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
459 			rd->name);
460 		ret = -EACCES;
461 		goto set_exit;
462 	}
463 
464 	switch (rd->rpl[id].prim_id) {
465 	case PL1_ENABLE:
466 		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
467 		break;
468 	case PL2_ENABLE:
469 		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
470 		break;
471 	default:
472 		ret = -EINVAL;
473 	}
474 	if (!ret)
475 		package_power_limit_irq_save(rp);
476 set_exit:
477 	put_online_cpus();
478 	return ret;
479 }
480 
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)481 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
482 					u64 *data)
483 {
484 	struct rapl_domain *rd;
485 	u64 val;
486 	int prim;
487 	int ret = 0;
488 	int id;
489 
490 	get_online_cpus();
491 	rd = power_zone_to_rapl_domain(power_zone);
492 	id = contraint_to_pl(rd, cid);
493 	if (id < 0) {
494 		ret = id;
495 		goto get_exit;
496 	}
497 
498 	switch (rd->rpl[id].prim_id) {
499 	case PL1_ENABLE:
500 		prim = POWER_LIMIT1;
501 		break;
502 	case PL2_ENABLE:
503 		prim = POWER_LIMIT2;
504 		break;
505 	default:
506 		put_online_cpus();
507 		return -EINVAL;
508 	}
509 	if (rapl_read_data_raw(rd, prim, true, &val))
510 		ret = -EIO;
511 	else
512 		*data = val;
513 
514 get_exit:
515 	put_online_cpus();
516 
517 	return ret;
518 }
519 
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)520 static int set_time_window(struct powercap_zone *power_zone, int cid,
521 								u64 window)
522 {
523 	struct rapl_domain *rd;
524 	int ret = 0;
525 	int id;
526 
527 	get_online_cpus();
528 	rd = power_zone_to_rapl_domain(power_zone);
529 	id = contraint_to_pl(rd, cid);
530 	if (id < 0) {
531 		ret = id;
532 		goto set_time_exit;
533 	}
534 
535 	switch (rd->rpl[id].prim_id) {
536 	case PL1_ENABLE:
537 		rapl_write_data_raw(rd, TIME_WINDOW1, window);
538 		break;
539 	case PL2_ENABLE:
540 		rapl_write_data_raw(rd, TIME_WINDOW2, window);
541 		break;
542 	default:
543 		ret = -EINVAL;
544 	}
545 
546 set_time_exit:
547 	put_online_cpus();
548 	return ret;
549 }
550 
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)551 static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data)
552 {
553 	struct rapl_domain *rd;
554 	u64 val;
555 	int ret = 0;
556 	int id;
557 
558 	get_online_cpus();
559 	rd = power_zone_to_rapl_domain(power_zone);
560 	id = contraint_to_pl(rd, cid);
561 	if (id < 0) {
562 		ret = id;
563 		goto get_time_exit;
564 	}
565 
566 	switch (rd->rpl[id].prim_id) {
567 	case PL1_ENABLE:
568 		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
569 		break;
570 	case PL2_ENABLE:
571 		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
572 		break;
573 	default:
574 		put_online_cpus();
575 		return -EINVAL;
576 	}
577 	if (!ret)
578 		*data = val;
579 
580 get_time_exit:
581 	put_online_cpus();
582 
583 	return ret;
584 }
585 
get_constraint_name(struct powercap_zone * power_zone,int cid)586 static const char *get_constraint_name(struct powercap_zone *power_zone, int cid)
587 {
588 	struct rapl_domain *rd;
589 	int id;
590 
591 	rd = power_zone_to_rapl_domain(power_zone);
592 	id = contraint_to_pl(rd, cid);
593 	if (id >= 0)
594 		return rd->rpl[id].name;
595 
596 	return NULL;
597 }
598 
599 
get_max_power(struct powercap_zone * power_zone,int id,u64 * data)600 static int get_max_power(struct powercap_zone *power_zone, int id,
601 					u64 *data)
602 {
603 	struct rapl_domain *rd;
604 	u64 val;
605 	int prim;
606 	int ret = 0;
607 
608 	get_online_cpus();
609 	rd = power_zone_to_rapl_domain(power_zone);
610 	switch (rd->rpl[id].prim_id) {
611 	case PL1_ENABLE:
612 		prim = THERMAL_SPEC_POWER;
613 		break;
614 	case PL2_ENABLE:
615 		prim = MAX_POWER;
616 		break;
617 	default:
618 		put_online_cpus();
619 		return -EINVAL;
620 	}
621 	if (rapl_read_data_raw(rd, prim, true, &val))
622 		ret = -EIO;
623 	else
624 		*data = val;
625 
626 	put_online_cpus();
627 
628 	return ret;
629 }
630 
631 static const struct powercap_zone_constraint_ops constraint_ops = {
632 	.set_power_limit_uw = set_power_limit,
633 	.get_power_limit_uw = get_current_power_limit,
634 	.set_time_window_us = set_time_window,
635 	.get_time_window_us = get_time_window,
636 	.get_max_power_uw = get_max_power,
637 	.get_name = get_constraint_name,
638 };
639 
640 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)641 static void rapl_init_domains(struct rapl_package *rp)
642 {
643 	int i;
644 	struct rapl_domain *rd = rp->domains;
645 
646 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
647 		unsigned int mask = rp->domain_map & (1 << i);
648 		switch (mask) {
649 		case BIT(RAPL_DOMAIN_PACKAGE):
650 			rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
651 			rd->id = RAPL_DOMAIN_PACKAGE;
652 			rd->msrs[0] = MSR_PKG_POWER_LIMIT;
653 			rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
654 			rd->msrs[2] = MSR_PKG_PERF_STATUS;
655 			rd->msrs[3] = 0;
656 			rd->msrs[4] = MSR_PKG_POWER_INFO;
657 			rd->rpl[0].prim_id = PL1_ENABLE;
658 			rd->rpl[0].name = pl1_name;
659 			rd->rpl[1].prim_id = PL2_ENABLE;
660 			rd->rpl[1].name = pl2_name;
661 			break;
662 		case BIT(RAPL_DOMAIN_PP0):
663 			rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
664 			rd->id = RAPL_DOMAIN_PP0;
665 			rd->msrs[0] = MSR_PP0_POWER_LIMIT;
666 			rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
667 			rd->msrs[2] = 0;
668 			rd->msrs[3] = MSR_PP0_POLICY;
669 			rd->msrs[4] = 0;
670 			rd->rpl[0].prim_id = PL1_ENABLE;
671 			rd->rpl[0].name = pl1_name;
672 			break;
673 		case BIT(RAPL_DOMAIN_PP1):
674 			rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
675 			rd->id = RAPL_DOMAIN_PP1;
676 			rd->msrs[0] = MSR_PP1_POWER_LIMIT;
677 			rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
678 			rd->msrs[2] = 0;
679 			rd->msrs[3] = MSR_PP1_POLICY;
680 			rd->msrs[4] = 0;
681 			rd->rpl[0].prim_id = PL1_ENABLE;
682 			rd->rpl[0].name = pl1_name;
683 			break;
684 		case BIT(RAPL_DOMAIN_DRAM):
685 			rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
686 			rd->id = RAPL_DOMAIN_DRAM;
687 			rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
688 			rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
689 			rd->msrs[2] = MSR_DRAM_PERF_STATUS;
690 			rd->msrs[3] = 0;
691 			rd->msrs[4] = MSR_DRAM_POWER_INFO;
692 			rd->rpl[0].prim_id = PL1_ENABLE;
693 			rd->rpl[0].name = pl1_name;
694 			rd->domain_energy_unit =
695 				rapl_defaults->dram_domain_energy_unit;
696 			if (rd->domain_energy_unit)
697 				pr_info("DRAM domain energy unit %dpj\n",
698 					rd->domain_energy_unit);
699 			break;
700 		}
701 		if (mask) {
702 			rd->rp = rp;
703 			rd++;
704 		}
705 	}
706 }
707 
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)708 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
709 			u64 value, int to_raw)
710 {
711 	u64 units = 1;
712 	struct rapl_package *rp = rd->rp;
713 	u64 scale = 1;
714 
715 	switch (type) {
716 	case POWER_UNIT:
717 		units = rp->power_unit;
718 		break;
719 	case ENERGY_UNIT:
720 		scale = ENERGY_UNIT_SCALE;
721 		/* per domain unit takes precedence */
722 		if (rd->domain_energy_unit)
723 			units = rd->domain_energy_unit;
724 		else
725 			units = rp->energy_unit;
726 		break;
727 	case TIME_UNIT:
728 		return rapl_defaults->compute_time_window(rp, value, to_raw);
729 	case ARBITRARY_UNIT:
730 	default:
731 		return value;
732 	};
733 
734 	if (to_raw)
735 		return div64_u64(value, units) * scale;
736 
737 	value *= units;
738 
739 	return div64_u64(value, scale);
740 }
741 
742 /* in the order of enum rapl_primitives */
743 static struct rapl_primitive_info rpi[] = {
744 	/* name, mask, shift, msr index, unit divisor */
745 	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
746 				RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
747 	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
748 				RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
749 	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
750 				RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
751 	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
752 				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
753 	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
754 				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
755 	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
756 				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
757 	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
758 				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
759 	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
760 				RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
761 	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
762 				RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
763 	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
764 				RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
765 	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
766 				0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
767 	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
768 				RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
769 	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
770 				RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
771 	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
772 				RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
773 	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
774 				RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
775 	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
776 				RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
777 	/* non-hardware */
778 	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
779 				RAPL_PRIMITIVE_DERIVED),
780 	{NULL, 0, 0, 0},
781 };
782 
783 /* Read primitive data based on its related struct rapl_primitive_info.
784  * if xlate flag is set, return translated data based on data units, i.e.
785  * time, energy, and power.
786  * RAPL MSRs are non-architectual and are laid out not consistently across
787  * domains. Here we use primitive info to allow writing consolidated access
788  * functions.
789  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
790  * is pre-assigned based on RAPL unit MSRs read at init time.
791  * 63-------------------------- 31--------------------------- 0
792  * |                           xxxxx (mask)                   |
793  * |                                |<- shift ----------------|
794  * 63-------------------------- 31--------------------------- 0
795  */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)796 static int rapl_read_data_raw(struct rapl_domain *rd,
797 			enum rapl_primitives prim,
798 			bool xlate, u64 *data)
799 {
800 	u64 value, final;
801 	u32 msr;
802 	struct rapl_primitive_info *rp = &rpi[prim];
803 	int cpu;
804 
805 	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
806 		return -EINVAL;
807 
808 	msr = rd->msrs[rp->id];
809 	if (!msr)
810 		return -EINVAL;
811 
812 	cpu = rd->rp->lead_cpu;
813 
814 	/* special-case package domain, which uses a different bit*/
815 	if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
816 		rp->mask = POWER_PACKAGE_LOCK;
817 		rp->shift = 63;
818 	}
819 	/* non-hardware data are collected by the polling thread */
820 	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
821 		*data = rd->rdd.primitives[prim];
822 		return 0;
823 	}
824 
825 	if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
826 		pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
827 		return -EIO;
828 	}
829 
830 	final = value & rp->mask;
831 	final = final >> rp->shift;
832 	if (xlate)
833 		*data = rapl_unit_xlate(rd, rp->unit, final, 0);
834 	else
835 		*data = final;
836 
837 	return 0;
838 }
839 
840 
msrl_update_safe(u32 msr_no,u64 clear_mask,u64 set_mask)841 static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
842 {
843 	int err;
844 	u64 val;
845 
846 	err = rdmsrl_safe(msr_no, &val);
847 	if (err)
848 		goto out;
849 
850 	val &= ~clear_mask;
851 	val |= set_mask;
852 
853 	err = wrmsrl_safe(msr_no, val);
854 
855 out:
856 	return err;
857 }
858 
msrl_update_func(void * info)859 static void msrl_update_func(void *info)
860 {
861 	struct msrl_action *ma = info;
862 
863 	ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
864 }
865 
866 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)867 static int rapl_write_data_raw(struct rapl_domain *rd,
868 			enum rapl_primitives prim,
869 			unsigned long long value)
870 {
871 	struct rapl_primitive_info *rp = &rpi[prim];
872 	int cpu;
873 	u64 bits;
874 	struct msrl_action ma;
875 	int ret;
876 
877 	cpu = rd->rp->lead_cpu;
878 	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
879 	bits <<= rp->shift;
880 	bits &= rp->mask;
881 
882 	memset(&ma, 0, sizeof(ma));
883 
884 	ma.msr_no = rd->msrs[rp->id];
885 	ma.clear_mask = rp->mask;
886 	ma.set_mask = bits;
887 
888 	ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
889 	if (ret)
890 		WARN_ON_ONCE(ret);
891 	else
892 		ret = ma.err;
893 
894 	return ret;
895 }
896 
897 /*
898  * Raw RAPL data stored in MSRs are in certain scales. We need to
899  * convert them into standard units based on the units reported in
900  * the RAPL unit MSRs. This is specific to CPUs as the method to
901  * calculate units differ on different CPUs.
902  * We convert the units to below format based on CPUs.
903  * i.e.
904  * energy unit: picoJoules  : Represented in picoJoules by default
905  * power unit : microWatts  : Represented in milliWatts by default
906  * time unit  : microseconds: Represented in seconds by default
907  */
rapl_check_unit_core(struct rapl_package * rp,int cpu)908 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
909 {
910 	u64 msr_val;
911 	u32 value;
912 
913 	if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
914 		pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
915 			MSR_RAPL_POWER_UNIT, cpu);
916 		return -ENODEV;
917 	}
918 
919 	value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
920 	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
921 
922 	value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
923 	rp->power_unit = 1000000 / (1 << value);
924 
925 	value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
926 	rp->time_unit = 1000000 / (1 << value);
927 
928 	pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
929 		rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
930 
931 	return 0;
932 }
933 
rapl_check_unit_atom(struct rapl_package * rp,int cpu)934 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
935 {
936 	u64 msr_val;
937 	u32 value;
938 
939 	if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
940 		pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
941 			MSR_RAPL_POWER_UNIT, cpu);
942 		return -ENODEV;
943 	}
944 	value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
945 	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
946 
947 	value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
948 	rp->power_unit = (1 << value) * 1000;
949 
950 	value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
951 	rp->time_unit = 1000000 / (1 << value);
952 
953 	pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
954 		rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
955 
956 	return 0;
957 }
958 
power_limit_irq_save_cpu(void * info)959 static void power_limit_irq_save_cpu(void *info)
960 {
961 	u32 l, h = 0;
962 	struct rapl_package *rp = (struct rapl_package *)info;
963 
964 	/* save the state of PLN irq mask bit before disabling it */
965 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
966 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
967 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
968 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
969 	}
970 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
971 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
972 }
973 
974 
975 /* REVISIT:
976  * When package power limit is set artificially low by RAPL, LVT
977  * thermal interrupt for package power limit should be ignored
978  * since we are not really exceeding the real limit. The intention
979  * is to avoid excessive interrupts while we are trying to save power.
980  * A useful feature might be routing the package_power_limit interrupt
981  * to userspace via eventfd. once we have a usecase, this is simple
982  * to do by adding an atomic notifier.
983  */
984 
package_power_limit_irq_save(struct rapl_package * rp)985 static void package_power_limit_irq_save(struct rapl_package *rp)
986 {
987 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
988 		return;
989 
990 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
991 }
992 
993 /*
994  * Restore per package power limit interrupt enable state. Called from cpu
995  * hotplug code on package removal.
996  */
package_power_limit_irq_restore(struct rapl_package * rp)997 static void package_power_limit_irq_restore(struct rapl_package *rp)
998 {
999 	u32 l, h;
1000 
1001 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1002 		return;
1003 
1004 	/* irq enable state not saved, nothing to restore */
1005 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1006 		return;
1007 
1008 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1009 
1010 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1011 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1012 	else
1013 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1014 
1015 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1016 }
1017 
set_floor_freq_default(struct rapl_domain * rd,bool mode)1018 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1019 {
1020 	int nr_powerlimit = find_nr_power_limit(rd);
1021 
1022 	/* always enable clamp such that p-state can go below OS requested
1023 	 * range. power capping priority over guranteed frequency.
1024 	 */
1025 	rapl_write_data_raw(rd, PL1_CLAMP, mode);
1026 
1027 	/* some domains have pl2 */
1028 	if (nr_powerlimit > 1) {
1029 		rapl_write_data_raw(rd, PL2_ENABLE, mode);
1030 		rapl_write_data_raw(rd, PL2_CLAMP, mode);
1031 	}
1032 }
1033 
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1034 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1035 {
1036 	static u32 power_ctrl_orig_val;
1037 	u32 mdata;
1038 
1039 	if (!rapl_defaults->floor_freq_reg_addr) {
1040 		pr_err("Invalid floor frequency config register\n");
1041 		return;
1042 	}
1043 
1044 	if (!power_ctrl_orig_val)
1045 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1046 			      rapl_defaults->floor_freq_reg_addr,
1047 			      &power_ctrl_orig_val);
1048 	mdata = power_ctrl_orig_val;
1049 	if (enable) {
1050 		mdata &= ~(0x7f << 8);
1051 		mdata |= 1 << 8;
1052 	}
1053 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1054 		       rapl_defaults->floor_freq_reg_addr, mdata);
1055 }
1056 
rapl_compute_time_window_core(struct rapl_package * rp,u64 value,bool to_raw)1057 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
1058 					bool to_raw)
1059 {
1060 	u64 f, y; /* fraction and exp. used for time unit */
1061 
1062 	/*
1063 	 * Special processing based on 2^Y*(1+F/4), refer
1064 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1065 	 */
1066 	if (!to_raw) {
1067 		f = (value & 0x60) >> 5;
1068 		y = value & 0x1f;
1069 		value = (1 << y) * (4 + f) * rp->time_unit / 4;
1070 	} else {
1071 		do_div(value, rp->time_unit);
1072 		y = ilog2(value);
1073 		f = div64_u64(4 * (value - (1 << y)), 1 << y);
1074 		value = (y & 0x1f) | ((f & 0x3) << 5);
1075 	}
1076 	return value;
1077 }
1078 
rapl_compute_time_window_atom(struct rapl_package * rp,u64 value,bool to_raw)1079 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1080 					bool to_raw)
1081 {
1082 	/*
1083 	 * Atom time unit encoding is straight forward val * time_unit,
1084 	 * where time_unit is default to 1 sec. Never 0.
1085 	 */
1086 	if (!to_raw)
1087 		return (value) ? value *= rp->time_unit : rp->time_unit;
1088 	else
1089 		value = div64_u64(value, rp->time_unit);
1090 
1091 	return value;
1092 }
1093 
1094 static const struct rapl_defaults rapl_defaults_core = {
1095 	.floor_freq_reg_addr = 0,
1096 	.check_unit = rapl_check_unit_core,
1097 	.set_floor_freq = set_floor_freq_default,
1098 	.compute_time_window = rapl_compute_time_window_core,
1099 };
1100 
1101 static const struct rapl_defaults rapl_defaults_hsw_server = {
1102 	.check_unit = rapl_check_unit_core,
1103 	.set_floor_freq = set_floor_freq_default,
1104 	.compute_time_window = rapl_compute_time_window_core,
1105 	.dram_domain_energy_unit = 15300,
1106 };
1107 
1108 static const struct rapl_defaults rapl_defaults_byt = {
1109 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1110 	.check_unit = rapl_check_unit_atom,
1111 	.set_floor_freq = set_floor_freq_atom,
1112 	.compute_time_window = rapl_compute_time_window_atom,
1113 };
1114 
1115 static const struct rapl_defaults rapl_defaults_tng = {
1116 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1117 	.check_unit = rapl_check_unit_atom,
1118 	.set_floor_freq = set_floor_freq_atom,
1119 	.compute_time_window = rapl_compute_time_window_atom,
1120 };
1121 
1122 static const struct rapl_defaults rapl_defaults_ann = {
1123 	.floor_freq_reg_addr = 0,
1124 	.check_unit = rapl_check_unit_atom,
1125 	.set_floor_freq = NULL,
1126 	.compute_time_window = rapl_compute_time_window_atom,
1127 };
1128 
1129 static const struct rapl_defaults rapl_defaults_cht = {
1130 	.floor_freq_reg_addr = 0,
1131 	.check_unit = rapl_check_unit_atom,
1132 	.set_floor_freq = NULL,
1133 	.compute_time_window = rapl_compute_time_window_atom,
1134 };
1135 
1136 #define RAPL_CPU(_model, _ops) {			\
1137 		.vendor = X86_VENDOR_INTEL,		\
1138 		.family = 6,				\
1139 		.model = _model,			\
1140 		.driver_data = (kernel_ulong_t)&_ops,	\
1141 		}
1142 
1143 static const struct x86_cpu_id rapl_ids[] __initconst = {
1144 	RAPL_CPU(INTEL_FAM6_SANDYBRIDGE,	rapl_defaults_core),
1145 	RAPL_CPU(INTEL_FAM6_SANDYBRIDGE_X,	rapl_defaults_core),
1146 
1147 	RAPL_CPU(INTEL_FAM6_IVYBRIDGE,		rapl_defaults_core),
1148 	RAPL_CPU(INTEL_FAM6_IVYBRIDGE_X,	rapl_defaults_core),
1149 
1150 	RAPL_CPU(INTEL_FAM6_HASWELL_CORE,	rapl_defaults_core),
1151 	RAPL_CPU(INTEL_FAM6_HASWELL_ULT,	rapl_defaults_core),
1152 	RAPL_CPU(INTEL_FAM6_HASWELL_GT3E,	rapl_defaults_core),
1153 	RAPL_CPU(INTEL_FAM6_HASWELL_X,		rapl_defaults_hsw_server),
1154 
1155 	RAPL_CPU(INTEL_FAM6_BROADWELL_CORE,	rapl_defaults_core),
1156 	RAPL_CPU(INTEL_FAM6_BROADWELL_GT3E,	rapl_defaults_core),
1157 	RAPL_CPU(INTEL_FAM6_BROADWELL_XEON_D,	rapl_defaults_core),
1158 	RAPL_CPU(INTEL_FAM6_BROADWELL_X,	rapl_defaults_hsw_server),
1159 
1160 	RAPL_CPU(INTEL_FAM6_SKYLAKE_DESKTOP,	rapl_defaults_core),
1161 	RAPL_CPU(INTEL_FAM6_SKYLAKE_MOBILE,	rapl_defaults_core),
1162 	RAPL_CPU(INTEL_FAM6_SKYLAKE_X,		rapl_defaults_hsw_server),
1163 	RAPL_CPU(INTEL_FAM6_KABYLAKE_MOBILE,	rapl_defaults_core),
1164 	RAPL_CPU(INTEL_FAM6_KABYLAKE_DESKTOP,	rapl_defaults_core),
1165 	RAPL_CPU(INTEL_FAM6_CANNONLAKE_MOBILE,	rapl_defaults_core),
1166 
1167 	RAPL_CPU(INTEL_FAM6_ATOM_SILVERMONT1,	rapl_defaults_byt),
1168 	RAPL_CPU(INTEL_FAM6_ATOM_AIRMONT,	rapl_defaults_cht),
1169 	RAPL_CPU(INTEL_FAM6_ATOM_MERRIFIELD,	rapl_defaults_tng),
1170 	RAPL_CPU(INTEL_FAM6_ATOM_MOOREFIELD,	rapl_defaults_ann),
1171 	RAPL_CPU(INTEL_FAM6_ATOM_GOLDMONT,	rapl_defaults_core),
1172 	RAPL_CPU(INTEL_FAM6_ATOM_GEMINI_LAKE,	rapl_defaults_core),
1173 	RAPL_CPU(INTEL_FAM6_ATOM_DENVERTON,	rapl_defaults_core),
1174 
1175 	RAPL_CPU(INTEL_FAM6_XEON_PHI_KNL,	rapl_defaults_hsw_server),
1176 	RAPL_CPU(INTEL_FAM6_XEON_PHI_KNM,	rapl_defaults_hsw_server),
1177 	{}
1178 };
1179 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1180 
1181 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1182 static void rapl_update_domain_data(struct rapl_package *rp)
1183 {
1184 	int dmn, prim;
1185 	u64 val;
1186 
1187 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1188 		pr_debug("update package %d domain %s data\n", rp->id,
1189 			 rp->domains[dmn].name);
1190 		/* exclude non-raw primitives */
1191 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1192 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1193 						rpi[prim].unit, &val))
1194 				rp->domains[dmn].rdd.primitives[prim] =	val;
1195 		}
1196 	}
1197 
1198 }
1199 
rapl_unregister_powercap(void)1200 static void rapl_unregister_powercap(void)
1201 {
1202 	if (platform_rapl_domain) {
1203 		powercap_unregister_zone(control_type,
1204 					 &platform_rapl_domain->power_zone);
1205 		kfree(platform_rapl_domain);
1206 	}
1207 	powercap_unregister_control_type(control_type);
1208 }
1209 
rapl_package_register_powercap(struct rapl_package * rp)1210 static int rapl_package_register_powercap(struct rapl_package *rp)
1211 {
1212 	struct rapl_domain *rd;
1213 	char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1214 	struct powercap_zone *power_zone = NULL;
1215 	int nr_pl, ret;
1216 
1217 	/* Update the domain data of the new package */
1218 	rapl_update_domain_data(rp);
1219 
1220 	/* first we register package domain as the parent zone*/
1221 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1222 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1223 			nr_pl = find_nr_power_limit(rd);
1224 			pr_debug("register socket %d package domain %s\n",
1225 				rp->id, rd->name);
1226 			memset(dev_name, 0, sizeof(dev_name));
1227 			snprintf(dev_name, sizeof(dev_name), "%s-%d",
1228 				rd->name, rp->id);
1229 			power_zone = powercap_register_zone(&rd->power_zone,
1230 							control_type,
1231 							dev_name, NULL,
1232 							&zone_ops[rd->id],
1233 							nr_pl,
1234 							&constraint_ops);
1235 			if (IS_ERR(power_zone)) {
1236 				pr_debug("failed to register package, %d\n",
1237 					rp->id);
1238 				return PTR_ERR(power_zone);
1239 			}
1240 			/* track parent zone in per package/socket data */
1241 			rp->power_zone = power_zone;
1242 			/* done, only one package domain per socket */
1243 			break;
1244 		}
1245 	}
1246 	if (!power_zone) {
1247 		pr_err("no package domain found, unknown topology!\n");
1248 		return -ENODEV;
1249 	}
1250 	/* now register domains as children of the socket/package*/
1251 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1252 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1253 			continue;
1254 		/* number of power limits per domain varies */
1255 		nr_pl = find_nr_power_limit(rd);
1256 		power_zone = powercap_register_zone(&rd->power_zone,
1257 						control_type, rd->name,
1258 						rp->power_zone,
1259 						&zone_ops[rd->id], nr_pl,
1260 						&constraint_ops);
1261 
1262 		if (IS_ERR(power_zone)) {
1263 			pr_debug("failed to register power_zone, %d:%s:%s\n",
1264 				rp->id, rd->name, dev_name);
1265 			ret = PTR_ERR(power_zone);
1266 			goto err_cleanup;
1267 		}
1268 	}
1269 	return 0;
1270 
1271 err_cleanup:
1272 	/*
1273 	 * Clean up previously initialized domains within the package if we
1274 	 * failed after the first domain setup.
1275 	 */
1276 	while (--rd >= rp->domains) {
1277 		pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1278 		powercap_unregister_zone(control_type, &rd->power_zone);
1279 	}
1280 
1281 	return ret;
1282 }
1283 
rapl_register_psys(void)1284 static int __init rapl_register_psys(void)
1285 {
1286 	struct rapl_domain *rd;
1287 	struct powercap_zone *power_zone;
1288 	u64 val;
1289 
1290 	if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_ENERGY_STATUS, &val) || !val)
1291 		return -ENODEV;
1292 
1293 	if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_POWER_LIMIT, &val) || !val)
1294 		return -ENODEV;
1295 
1296 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1297 	if (!rd)
1298 		return -ENOMEM;
1299 
1300 	rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1301 	rd->id = RAPL_DOMAIN_PLATFORM;
1302 	rd->msrs[0] = MSR_PLATFORM_POWER_LIMIT;
1303 	rd->msrs[1] = MSR_PLATFORM_ENERGY_STATUS;
1304 	rd->rpl[0].prim_id = PL1_ENABLE;
1305 	rd->rpl[0].name = pl1_name;
1306 	rd->rpl[1].prim_id = PL2_ENABLE;
1307 	rd->rpl[1].name = pl2_name;
1308 	rd->rp = find_package_by_id(0);
1309 
1310 	power_zone = powercap_register_zone(&rd->power_zone, control_type,
1311 					    "psys", NULL,
1312 					    &zone_ops[RAPL_DOMAIN_PLATFORM],
1313 					    2, &constraint_ops);
1314 
1315 	if (IS_ERR(power_zone)) {
1316 		kfree(rd);
1317 		return PTR_ERR(power_zone);
1318 	}
1319 
1320 	platform_rapl_domain = rd;
1321 
1322 	return 0;
1323 }
1324 
rapl_register_powercap(void)1325 static int __init rapl_register_powercap(void)
1326 {
1327 	control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1328 	if (IS_ERR(control_type)) {
1329 		pr_debug("failed to register powercap control_type.\n");
1330 		return PTR_ERR(control_type);
1331 	}
1332 	return 0;
1333 }
1334 
rapl_check_domain(int cpu,int domain)1335 static int rapl_check_domain(int cpu, int domain)
1336 {
1337 	unsigned msr;
1338 	u64 val = 0;
1339 
1340 	switch (domain) {
1341 	case RAPL_DOMAIN_PACKAGE:
1342 		msr = MSR_PKG_ENERGY_STATUS;
1343 		break;
1344 	case RAPL_DOMAIN_PP0:
1345 		msr = MSR_PP0_ENERGY_STATUS;
1346 		break;
1347 	case RAPL_DOMAIN_PP1:
1348 		msr = MSR_PP1_ENERGY_STATUS;
1349 		break;
1350 	case RAPL_DOMAIN_DRAM:
1351 		msr = MSR_DRAM_ENERGY_STATUS;
1352 		break;
1353 	case RAPL_DOMAIN_PLATFORM:
1354 		/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1355 		return -EINVAL;
1356 	default:
1357 		pr_err("invalid domain id %d\n", domain);
1358 		return -EINVAL;
1359 	}
1360 	/* make sure domain counters are available and contains non-zero
1361 	 * values, otherwise skip it.
1362 	 */
1363 	if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1364 		return -ENODEV;
1365 
1366 	return 0;
1367 }
1368 
1369 
1370 /*
1371  * Check if power limits are available. Two cases when they are not available:
1372  * 1. Locked by BIOS, in this case we still provide read-only access so that
1373  *    users can see what limit is set by the BIOS.
1374  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1375  *    exist at all. In this case, we do not show the contraints in powercap.
1376  *
1377  * Called after domains are detected and initialized.
1378  */
rapl_detect_powerlimit(struct rapl_domain * rd)1379 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1380 {
1381 	u64 val64;
1382 	int i;
1383 
1384 	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1385 	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1386 		if (val64) {
1387 			pr_info("RAPL package %d domain %s locked by BIOS\n",
1388 				rd->rp->id, rd->name);
1389 			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1390 		}
1391 	}
1392 	/* check if power limit MSRs exists, otherwise domain is monitoring only */
1393 	for (i = 0; i < NR_POWER_LIMITS; i++) {
1394 		int prim = rd->rpl[i].prim_id;
1395 		if (rapl_read_data_raw(rd, prim, false, &val64))
1396 			rd->rpl[i].name = NULL;
1397 	}
1398 }
1399 
1400 /* Detect active and valid domains for the given CPU, caller must
1401  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1402  */
rapl_detect_domains(struct rapl_package * rp,int cpu)1403 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1404 {
1405 	struct rapl_domain *rd;
1406 	int i;
1407 
1408 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1409 		/* use physical package id to read counters */
1410 		if (!rapl_check_domain(cpu, i)) {
1411 			rp->domain_map |= 1 << i;
1412 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1413 		}
1414 	}
1415 	rp->nr_domains = bitmap_weight(&rp->domain_map,	RAPL_DOMAIN_MAX);
1416 	if (!rp->nr_domains) {
1417 		pr_debug("no valid rapl domains found in package %d\n", rp->id);
1418 		return -ENODEV;
1419 	}
1420 	pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1421 
1422 	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1423 			GFP_KERNEL);
1424 	if (!rp->domains)
1425 		return -ENOMEM;
1426 
1427 	rapl_init_domains(rp);
1428 
1429 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1430 		rapl_detect_powerlimit(rd);
1431 
1432 	return 0;
1433 }
1434 
1435 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package(struct rapl_package * rp)1436 static void rapl_remove_package(struct rapl_package *rp)
1437 {
1438 	struct rapl_domain *rd, *rd_package = NULL;
1439 
1440 	package_power_limit_irq_restore(rp);
1441 
1442 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1443 		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1444 		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1445 		if (find_nr_power_limit(rd) > 1) {
1446 			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1447 			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1448 		}
1449 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1450 			rd_package = rd;
1451 			continue;
1452 		}
1453 		pr_debug("remove package, undo power limit on %d: %s\n",
1454 			 rp->id, rd->name);
1455 		powercap_unregister_zone(control_type, &rd->power_zone);
1456 	}
1457 	/* do parent zone last */
1458 	powercap_unregister_zone(control_type, &rd_package->power_zone);
1459 	list_del(&rp->plist);
1460 	kfree(rp);
1461 }
1462 
1463 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package(int cpu,int pkgid)1464 static struct rapl_package *rapl_add_package(int cpu, int pkgid)
1465 {
1466 	struct rapl_package *rp;
1467 	int ret;
1468 
1469 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1470 	if (!rp)
1471 		return ERR_PTR(-ENOMEM);
1472 
1473 	/* add the new package to the list */
1474 	rp->id = pkgid;
1475 	rp->lead_cpu = cpu;
1476 
1477 	/* check if the package contains valid domains */
1478 	if (rapl_detect_domains(rp, cpu) ||
1479 		rapl_defaults->check_unit(rp, cpu)) {
1480 		ret = -ENODEV;
1481 		goto err_free_package;
1482 	}
1483 	ret = rapl_package_register_powercap(rp);
1484 	if (!ret) {
1485 		INIT_LIST_HEAD(&rp->plist);
1486 		list_add(&rp->plist, &rapl_packages);
1487 		return rp;
1488 	}
1489 
1490 err_free_package:
1491 	kfree(rp->domains);
1492 	kfree(rp);
1493 	return ERR_PTR(ret);
1494 }
1495 
1496 /* Handles CPU hotplug on multi-socket systems.
1497  * If a CPU goes online as the first CPU of the physical package
1498  * we add the RAPL package to the system. Similarly, when the last
1499  * CPU of the package is removed, we remove the RAPL package and its
1500  * associated domains. Cooling devices are handled accordingly at
1501  * per-domain level.
1502  */
rapl_cpu_online(unsigned int cpu)1503 static int rapl_cpu_online(unsigned int cpu)
1504 {
1505 	int pkgid = topology_physical_package_id(cpu);
1506 	struct rapl_package *rp;
1507 
1508 	rp = find_package_by_id(pkgid);
1509 	if (!rp) {
1510 		rp = rapl_add_package(cpu, pkgid);
1511 		if (IS_ERR(rp))
1512 			return PTR_ERR(rp);
1513 	}
1514 	cpumask_set_cpu(cpu, &rp->cpumask);
1515 	return 0;
1516 }
1517 
rapl_cpu_down_prep(unsigned int cpu)1518 static int rapl_cpu_down_prep(unsigned int cpu)
1519 {
1520 	int pkgid = topology_physical_package_id(cpu);
1521 	struct rapl_package *rp;
1522 	int lead_cpu;
1523 
1524 	rp = find_package_by_id(pkgid);
1525 	if (!rp)
1526 		return 0;
1527 
1528 	cpumask_clear_cpu(cpu, &rp->cpumask);
1529 	lead_cpu = cpumask_first(&rp->cpumask);
1530 	if (lead_cpu >= nr_cpu_ids)
1531 		rapl_remove_package(rp);
1532 	else if (rp->lead_cpu == cpu)
1533 		rp->lead_cpu = lead_cpu;
1534 	return 0;
1535 }
1536 
1537 static enum cpuhp_state pcap_rapl_online;
1538 
power_limit_state_save(void)1539 static void power_limit_state_save(void)
1540 {
1541 	struct rapl_package *rp;
1542 	struct rapl_domain *rd;
1543 	int nr_pl, ret, i;
1544 
1545 	get_online_cpus();
1546 	list_for_each_entry(rp, &rapl_packages, plist) {
1547 		if (!rp->power_zone)
1548 			continue;
1549 		rd = power_zone_to_rapl_domain(rp->power_zone);
1550 		nr_pl = find_nr_power_limit(rd);
1551 		for (i = 0; i < nr_pl; i++) {
1552 			switch (rd->rpl[i].prim_id) {
1553 			case PL1_ENABLE:
1554 				ret = rapl_read_data_raw(rd,
1555 						POWER_LIMIT1,
1556 						true,
1557 						&rd->rpl[i].last_power_limit);
1558 				if (ret)
1559 					rd->rpl[i].last_power_limit = 0;
1560 				break;
1561 			case PL2_ENABLE:
1562 				ret = rapl_read_data_raw(rd,
1563 						POWER_LIMIT2,
1564 						true,
1565 						&rd->rpl[i].last_power_limit);
1566 				if (ret)
1567 					rd->rpl[i].last_power_limit = 0;
1568 				break;
1569 			}
1570 		}
1571 	}
1572 	put_online_cpus();
1573 }
1574 
power_limit_state_restore(void)1575 static void power_limit_state_restore(void)
1576 {
1577 	struct rapl_package *rp;
1578 	struct rapl_domain *rd;
1579 	int nr_pl, i;
1580 
1581 	get_online_cpus();
1582 	list_for_each_entry(rp, &rapl_packages, plist) {
1583 		if (!rp->power_zone)
1584 			continue;
1585 		rd = power_zone_to_rapl_domain(rp->power_zone);
1586 		nr_pl = find_nr_power_limit(rd);
1587 		for (i = 0; i < nr_pl; i++) {
1588 			switch (rd->rpl[i].prim_id) {
1589 			case PL1_ENABLE:
1590 				if (rd->rpl[i].last_power_limit)
1591 					rapl_write_data_raw(rd,
1592 						POWER_LIMIT1,
1593 						rd->rpl[i].last_power_limit);
1594 				break;
1595 			case PL2_ENABLE:
1596 				if (rd->rpl[i].last_power_limit)
1597 					rapl_write_data_raw(rd,
1598 						POWER_LIMIT2,
1599 						rd->rpl[i].last_power_limit);
1600 				break;
1601 			}
1602 		}
1603 	}
1604 	put_online_cpus();
1605 }
1606 
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)1607 static int rapl_pm_callback(struct notifier_block *nb,
1608 	unsigned long mode, void *_unused)
1609 {
1610 	switch (mode) {
1611 	case PM_SUSPEND_PREPARE:
1612 		power_limit_state_save();
1613 		break;
1614 	case PM_POST_SUSPEND:
1615 		power_limit_state_restore();
1616 		break;
1617 	}
1618 	return NOTIFY_OK;
1619 }
1620 
1621 static struct notifier_block rapl_pm_notifier = {
1622 	.notifier_call = rapl_pm_callback,
1623 };
1624 
rapl_init(void)1625 static int __init rapl_init(void)
1626 {
1627 	const struct x86_cpu_id *id;
1628 	int ret;
1629 
1630 	id = x86_match_cpu(rapl_ids);
1631 	if (!id) {
1632 		pr_err("driver does not support CPU family %d model %d\n",
1633 			boot_cpu_data.x86, boot_cpu_data.x86_model);
1634 
1635 		return -ENODEV;
1636 	}
1637 
1638 	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1639 
1640 	ret = rapl_register_powercap();
1641 	if (ret)
1642 		return ret;
1643 
1644 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powercap/rapl:online",
1645 				rapl_cpu_online, rapl_cpu_down_prep);
1646 	if (ret < 0)
1647 		goto err_unreg;
1648 	pcap_rapl_online = ret;
1649 
1650 	/* Don't bail out if PSys is not supported */
1651 	rapl_register_psys();
1652 
1653 	ret = register_pm_notifier(&rapl_pm_notifier);
1654 	if (ret)
1655 		goto err_unreg_all;
1656 
1657 	return 0;
1658 
1659 err_unreg_all:
1660 	cpuhp_remove_state(pcap_rapl_online);
1661 
1662 err_unreg:
1663 	rapl_unregister_powercap();
1664 	return ret;
1665 }
1666 
rapl_exit(void)1667 static void __exit rapl_exit(void)
1668 {
1669 	unregister_pm_notifier(&rapl_pm_notifier);
1670 	cpuhp_remove_state(pcap_rapl_online);
1671 	rapl_unregister_powercap();
1672 }
1673 
1674 module_init(rapl_init);
1675 module_exit(rapl_exit);
1676 
1677 MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1678 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1679 MODULE_LICENSE("GPL v2");
1680