1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/kernel.h>
4 #include <linux/irqflags.h>
5 #include <linux/string.h>
6 #include <linux/errno.h>
7 #include <linux/bug.h>
8 #include "printk_ringbuffer.h"
9
10 /**
11 * DOC: printk_ringbuffer overview
12 *
13 * Data Structure
14 * --------------
15 * The printk_ringbuffer is made up of 3 internal ringbuffers:
16 *
17 * desc_ring
18 * A ring of descriptors and their meta data (such as sequence number,
19 * timestamp, loglevel, etc.) as well as internal state information about
20 * the record and logical positions specifying where in the other
21 * ringbuffer the text strings are located.
22 *
23 * text_data_ring
24 * A ring of data blocks. A data block consists of an unsigned long
25 * integer (ID) that maps to a desc_ring index followed by the text
26 * string of the record.
27 *
28 * The internal state information of a descriptor is the key element to allow
29 * readers and writers to locklessly synchronize access to the data.
30 *
31 * Implementation
32 * --------------
33 *
34 * Descriptor Ring
35 * ~~~~~~~~~~~~~~~
36 * The descriptor ring is an array of descriptors. A descriptor contains
37 * essential meta data to track the data of a printk record using
38 * blk_lpos structs pointing to associated text data blocks (see
39 * "Data Rings" below). Each descriptor is assigned an ID that maps
40 * directly to index values of the descriptor array and has a state. The ID
41 * and the state are bitwise combined into a single descriptor field named
42 * @state_var, allowing ID and state to be synchronously and atomically
43 * updated.
44 *
45 * Descriptors have four states:
46 *
47 * reserved
48 * A writer is modifying the record.
49 *
50 * committed
51 * The record and all its data are written. A writer can reopen the
52 * descriptor (transitioning it back to reserved), but in the committed
53 * state the data is consistent.
54 *
55 * finalized
56 * The record and all its data are complete and available for reading. A
57 * writer cannot reopen the descriptor.
58 *
59 * reusable
60 * The record exists, but its text and/or meta data may no longer be
61 * available.
62 *
63 * Querying the @state_var of a record requires providing the ID of the
64 * descriptor to query. This can yield a possible fifth (pseudo) state:
65 *
66 * miss
67 * The descriptor being queried has an unexpected ID.
68 *
69 * The descriptor ring has a @tail_id that contains the ID of the oldest
70 * descriptor and @head_id that contains the ID of the newest descriptor.
71 *
72 * When a new descriptor should be created (and the ring is full), the tail
73 * descriptor is invalidated by first transitioning to the reusable state and
74 * then invalidating all tail data blocks up to and including the data blocks
75 * associated with the tail descriptor (for the text ring). Then
76 * @tail_id is advanced, followed by advancing @head_id. And finally the
77 * @state_var of the new descriptor is initialized to the new ID and reserved
78 * state.
79 *
80 * The @tail_id can only be advanced if the new @tail_id would be in the
81 * committed or reusable queried state. This makes it possible that a valid
82 * sequence number of the tail is always available.
83 *
84 * Descriptor Finalization
85 * ~~~~~~~~~~~~~~~~~~~~~~~
86 * When a writer calls the commit function prb_commit(), record data is
87 * fully stored and is consistent within the ringbuffer. However, a writer can
88 * reopen that record, claiming exclusive access (as with prb_reserve()), and
89 * modify that record. When finished, the writer must again commit the record.
90 *
91 * In order for a record to be made available to readers (and also become
92 * recyclable for writers), it must be finalized. A finalized record cannot be
93 * reopened and can never become "unfinalized". Record finalization can occur
94 * in three different scenarios:
95 *
96 * 1) A writer can simultaneously commit and finalize its record by calling
97 * prb_final_commit() instead of prb_commit().
98 *
99 * 2) When a new record is reserved and the previous record has been
100 * committed via prb_commit(), that previous record is automatically
101 * finalized.
102 *
103 * 3) When a record is committed via prb_commit() and a newer record
104 * already exists, the record being committed is automatically finalized.
105 *
106 * Data Ring
107 * ~~~~~~~~~
108 * The text data ring is a byte array composed of data blocks. Data blocks are
109 * referenced by blk_lpos structs that point to the logical position of the
110 * beginning of a data block and the beginning of the next adjacent data
111 * block. Logical positions are mapped directly to index values of the byte
112 * array ringbuffer.
113 *
114 * Each data block consists of an ID followed by the writer data. The ID is
115 * the identifier of a descriptor that is associated with the data block. A
116 * given data block is considered valid if all of the following conditions
117 * are met:
118 *
119 * 1) The descriptor associated with the data block is in the committed
120 * or finalized queried state.
121 *
122 * 2) The blk_lpos struct within the descriptor associated with the data
123 * block references back to the same data block.
124 *
125 * 3) The data block is within the head/tail logical position range.
126 *
127 * If the writer data of a data block would extend beyond the end of the
128 * byte array, only the ID of the data block is stored at the logical
129 * position and the full data block (ID and writer data) is stored at the
130 * beginning of the byte array. The referencing blk_lpos will point to the
131 * ID before the wrap and the next data block will be at the logical
132 * position adjacent the full data block after the wrap.
133 *
134 * Data rings have a @tail_lpos that points to the beginning of the oldest
135 * data block and a @head_lpos that points to the logical position of the
136 * next (not yet existing) data block.
137 *
138 * When a new data block should be created (and the ring is full), tail data
139 * blocks will first be invalidated by putting their associated descriptors
140 * into the reusable state and then pushing the @tail_lpos forward beyond
141 * them. Then the @head_lpos is pushed forward and is associated with a new
142 * descriptor. If a data block is not valid, the @tail_lpos cannot be
143 * advanced beyond it.
144 *
145 * Info Array
146 * ~~~~~~~~~~
147 * The general meta data of printk records are stored in printk_info structs,
148 * stored in an array with the same number of elements as the descriptor ring.
149 * Each info corresponds to the descriptor of the same index in the
150 * descriptor ring. Info validity is confirmed by evaluating the corresponding
151 * descriptor before and after loading the info.
152 *
153 * Usage
154 * -----
155 * Here are some simple examples demonstrating writers and readers. For the
156 * examples a global ringbuffer (test_rb) is available (which is not the
157 * actual ringbuffer used by printk)::
158 *
159 * DEFINE_PRINTKRB(test_rb, 15, 5);
160 *
161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162 * 1 MiB (2 ^ (15 + 5)) for text data.
163 *
164 * Sample writer code::
165 *
166 * const char *textstr = "message text";
167 * struct prb_reserved_entry e;
168 * struct printk_record r;
169 *
170 * // specify how much to allocate
171 * prb_rec_init_wr(&r, strlen(textstr) + 1);
172 *
173 * if (prb_reserve(&e, &test_rb, &r)) {
174 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175 *
176 * r.info->text_len = strlen(textstr);
177 * r.info->ts_nsec = local_clock();
178 * r.info->caller_id = printk_caller_id();
179 *
180 * // commit and finalize the record
181 * prb_final_commit(&e);
182 * }
183 *
184 * Note that additional writer functions are available to extend a record
185 * after it has been committed but not yet finalized. This can be done as
186 * long as no new records have been reserved and the caller is the same.
187 *
188 * Sample writer code (record extending)::
189 *
190 * // alternate rest of previous example
191 *
192 * r.info->text_len = strlen(textstr);
193 * r.info->ts_nsec = local_clock();
194 * r.info->caller_id = printk_caller_id();
195 *
196 * // commit the record (but do not finalize yet)
197 * prb_commit(&e);
198 * }
199 *
200 * ...
201 *
202 * // specify additional 5 bytes text space to extend
203 * prb_rec_init_wr(&r, 5);
204 *
205 * // try to extend, but only if it does not exceed 32 bytes
206 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
207 * snprintf(&r.text_buf[r.info->text_len],
208 * r.text_buf_size - r.info->text_len, "hello");
209 *
210 * r.info->text_len += 5;
211 *
212 * // commit and finalize the record
213 * prb_final_commit(&e);
214 * }
215 *
216 * Sample reader code::
217 *
218 * struct printk_info info;
219 * struct printk_record r;
220 * char text_buf[32];
221 * u64 seq;
222 *
223 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224 *
225 * prb_for_each_record(0, &test_rb, &seq, &r) {
226 * if (info.seq != seq)
227 * pr_warn("lost %llu records\n", info.seq - seq);
228 *
229 * if (info.text_len > r.text_buf_size) {
230 * pr_warn("record %llu text truncated\n", info.seq);
231 * text_buf[r.text_buf_size - 1] = 0;
232 * }
233 *
234 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235 * &text_buf[0]);
236 * }
237 *
238 * Note that additional less convenient reader functions are available to
239 * allow complex record access.
240 *
241 * ABA Issues
242 * ~~~~~~~~~~
243 * To help avoid ABA issues, descriptors are referenced by IDs (array index
244 * values combined with tagged bits counting array wraps) and data blocks are
245 * referenced by logical positions (array index values combined with tagged
246 * bits counting array wraps). However, on 32-bit systems the number of
247 * tagged bits is relatively small such that an ABA incident is (at least
248 * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249 * printk messages were to occur in NMI context on a 32-bit system, the
250 * interrupted context would not be able to recognize that the 32-bit integer
251 * completely wrapped and thus represents a different data block than the one
252 * the interrupted context expects.
253 *
254 * To help combat this possibility, additional state checking is performed
255 * (such as using cmpxchg() even though set() would suffice). These extra
256 * checks are commented as such and will hopefully catch any ABA issue that
257 * a 32-bit system might experience.
258 *
259 * Memory Barriers
260 * ~~~~~~~~~~~~~~~
261 * Multiple memory barriers are used. To simplify proving correctness and
262 * generating litmus tests, lines of code related to memory barriers
263 * (loads, stores, and the associated memory barriers) are labeled::
264 *
265 * LMM(function:letter)
266 *
267 * Comments reference the labels using only the "function:letter" part.
268 *
269 * The memory barrier pairs and their ordering are:
270 *
271 * desc_reserve:D / desc_reserve:B
272 * push descriptor tail (id), then push descriptor head (id)
273 *
274 * desc_reserve:D / data_push_tail:B
275 * push data tail (lpos), then set new descriptor reserved (state)
276 *
277 * desc_reserve:D / desc_push_tail:C
278 * push descriptor tail (id), then set new descriptor reserved (state)
279 *
280 * desc_reserve:D / prb_first_seq:C
281 * push descriptor tail (id), then set new descriptor reserved (state)
282 *
283 * desc_reserve:F / desc_read:D
284 * set new descriptor id and reserved (state), then allow writer changes
285 *
286 * data_alloc:A (or data_realloc:A) / desc_read:D
287 * set old descriptor reusable (state), then modify new data block area
288 *
289 * data_alloc:A (or data_realloc:A) / data_push_tail:B
290 * push data tail (lpos), then modify new data block area
291 *
292 * _prb_commit:B / desc_read:B
293 * store writer changes, then set new descriptor committed (state)
294 *
295 * desc_reopen_last:A / _prb_commit:B
296 * set descriptor reserved (state), then read descriptor data
297 *
298 * _prb_commit:B / desc_reserve:D
299 * set new descriptor committed (state), then check descriptor head (id)
300 *
301 * data_push_tail:D / data_push_tail:A
302 * set descriptor reusable (state), then push data tail (lpos)
303 *
304 * desc_push_tail:B / desc_reserve:D
305 * set descriptor reusable (state), then push descriptor tail (id)
306 */
307
308 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
309 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
310
311 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
313
314 /* Determine the data array index from a logical position. */
315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
316
317 /* Determine the desc array index from an ID or sequence number. */
318 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
319
320 /* Determine how many times the data array has wrapped. */
321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
322
323 /* Determine if a logical position refers to a data-less block. */
324 #define LPOS_DATALESS(lpos) ((lpos) & 1UL)
325 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
326 LPOS_DATALESS((blk)->next))
327
328 /* Get the logical position at index 0 of the current wrap. */
329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 ((lpos) & ~DATA_SIZE_MASK(data_ring))
331
332 /* Get the ID for the same index of the previous wrap as the given ID. */
333 #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 DESC_ID((id) - DESCS_COUNT(desc_ring))
335
336 /*
337 * A data block: mapped directly to the beginning of the data block area
338 * specified as a logical position within the data ring.
339 *
340 * @id: the ID of the associated descriptor
341 * @data: the writer data
342 *
343 * Note that the size of a data block is only known by its associated
344 * descriptor.
345 */
346 struct prb_data_block {
347 unsigned long id;
348 char data[];
349 };
350
351 /*
352 * Return the descriptor associated with @n. @n can be either a
353 * descriptor ID or a sequence number.
354 */
to_desc(struct prb_desc_ring * desc_ring,u64 n)355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 {
357 return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 }
359
360 /*
361 * Return the printk_info associated with @n. @n can be either a
362 * descriptor ID or a sequence number.
363 */
to_info(struct prb_desc_ring * desc_ring,u64 n)364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 {
366 return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 }
368
to_block(struct prb_data_ring * data_ring,unsigned long begin_lpos)369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 unsigned long begin_lpos)
371 {
372 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 }
374
375 /*
376 * Increase the data size to account for data block meta data plus any
377 * padding so that the adjacent data block is aligned on the ID size.
378 */
to_blk_size(unsigned int size)379 static unsigned int to_blk_size(unsigned int size)
380 {
381 struct prb_data_block *db = NULL;
382
383 size += sizeof(*db);
384 size = ALIGN(size, sizeof(db->id));
385 return size;
386 }
387
388 /*
389 * Sanity checker for reserve size. The ringbuffer code assumes that a data
390 * block does not exceed the maximum possible size that could fit within the
391 * ringbuffer. This function provides that basic size check so that the
392 * assumption is safe.
393 */
data_check_size(struct prb_data_ring * data_ring,unsigned int size)394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 {
396 struct prb_data_block *db = NULL;
397
398 if (size == 0)
399 return true;
400
401 /*
402 * Ensure the alignment padded size could possibly fit in the data
403 * array. The largest possible data block must still leave room for
404 * at least the ID of the next block.
405 */
406 size = to_blk_size(size);
407 if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 return false;
409
410 return true;
411 }
412
413 /* Query the state of a descriptor. */
get_desc_state(unsigned long id,unsigned long state_val)414 static enum desc_state get_desc_state(unsigned long id,
415 unsigned long state_val)
416 {
417 if (id != DESC_ID(state_val))
418 return desc_miss;
419
420 return DESC_STATE(state_val);
421 }
422
423 /*
424 * Get a copy of a specified descriptor and return its queried state. If the
425 * descriptor is in an inconsistent state (miss or reserved), the caller can
426 * only expect the descriptor's @state_var field to be valid.
427 *
428 * The sequence number and caller_id can be optionally retrieved. Like all
429 * non-state_var data, they are only valid if the descriptor is in a
430 * consistent state.
431 */
desc_read(struct prb_desc_ring * desc_ring,unsigned long id,struct prb_desc * desc_out,u64 * seq_out,u32 * caller_id_out)432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 unsigned long id, struct prb_desc *desc_out,
434 u64 *seq_out, u32 *caller_id_out)
435 {
436 struct printk_info *info = to_info(desc_ring, id);
437 struct prb_desc *desc = to_desc(desc_ring, id);
438 atomic_long_t *state_var = &desc->state_var;
439 enum desc_state d_state;
440 unsigned long state_val;
441
442 /* Check the descriptor state. */
443 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 d_state = get_desc_state(id, state_val);
445 if (d_state == desc_miss || d_state == desc_reserved) {
446 /*
447 * The descriptor is in an inconsistent state. Set at least
448 * @state_var so that the caller can see the details of
449 * the inconsistent state.
450 */
451 goto out;
452 }
453
454 /*
455 * Guarantee the state is loaded before copying the descriptor
456 * content. This avoids copying obsolete descriptor content that might
457 * not apply to the descriptor state. This pairs with _prb_commit:B.
458 *
459 * Memory barrier involvement:
460 *
461 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 * from _prb_commit:A.
463 *
464 * Relies on:
465 *
466 * WMB from _prb_commit:A to _prb_commit:B
467 * matching
468 * RMB from desc_read:A to desc_read:C
469 */
470 smp_rmb(); /* LMM(desc_read:B) */
471
472 /*
473 * Copy the descriptor data. The data is not valid until the
474 * state has been re-checked. A memcpy() for all of @desc
475 * cannot be used because of the atomic_t @state_var field.
476 */
477 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
478 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
479 if (seq_out)
480 *seq_out = info->seq; /* also part of desc_read:C */
481 if (caller_id_out)
482 *caller_id_out = info->caller_id; /* also part of desc_read:C */
483
484 /*
485 * 1. Guarantee the descriptor content is loaded before re-checking
486 * the state. This avoids reading an obsolete descriptor state
487 * that may not apply to the copied content. This pairs with
488 * desc_reserve:F.
489 *
490 * Memory barrier involvement:
491 *
492 * If desc_read:C reads from desc_reserve:G, then desc_read:E
493 * reads from desc_reserve:F.
494 *
495 * Relies on:
496 *
497 * WMB from desc_reserve:F to desc_reserve:G
498 * matching
499 * RMB from desc_read:C to desc_read:E
500 *
501 * 2. Guarantee the record data is loaded before re-checking the
502 * state. This avoids reading an obsolete descriptor state that may
503 * not apply to the copied data. This pairs with data_alloc:A and
504 * data_realloc:A.
505 *
506 * Memory barrier involvement:
507 *
508 * If copy_data:A reads from data_alloc:B, then desc_read:E
509 * reads from desc_make_reusable:A.
510 *
511 * Relies on:
512 *
513 * MB from desc_make_reusable:A to data_alloc:B
514 * matching
515 * RMB from desc_read:C to desc_read:E
516 *
517 * Note: desc_make_reusable:A and data_alloc:B can be different
518 * CPUs. However, the data_alloc:B CPU (which performs the
519 * full memory barrier) must have previously seen
520 * desc_make_reusable:A.
521 */
522 smp_rmb(); /* LMM(desc_read:D) */
523
524 /*
525 * The data has been copied. Return the current descriptor state,
526 * which may have changed since the load above.
527 */
528 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
529 d_state = get_desc_state(id, state_val);
530 out:
531 atomic_long_set(&desc_out->state_var, state_val);
532 return d_state;
533 }
534
535 /*
536 * Take a specified descriptor out of the finalized state by attempting
537 * the transition from finalized to reusable. Either this context or some
538 * other context will have been successful.
539 */
desc_make_reusable(struct prb_desc_ring * desc_ring,unsigned long id)540 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
541 unsigned long id)
542 {
543 unsigned long val_finalized = DESC_SV(id, desc_finalized);
544 unsigned long val_reusable = DESC_SV(id, desc_reusable);
545 struct prb_desc *desc = to_desc(desc_ring, id);
546 atomic_long_t *state_var = &desc->state_var;
547
548 atomic_long_cmpxchg_relaxed(state_var, val_finalized,
549 val_reusable); /* LMM(desc_make_reusable:A) */
550 }
551
552 /*
553 * Given the text data ring, put the associated descriptor of each
554 * data block from @lpos_begin until @lpos_end into the reusable state.
555 *
556 * If there is any problem making the associated descriptor reusable, either
557 * the descriptor has not yet been finalized or another writer context has
558 * already pushed the tail lpos past the problematic data block. Regardless,
559 * on error the caller can re-load the tail lpos to determine the situation.
560 */
data_make_reusable(struct printk_ringbuffer * rb,unsigned long lpos_begin,unsigned long lpos_end,unsigned long * lpos_out)561 static bool data_make_reusable(struct printk_ringbuffer *rb,
562 unsigned long lpos_begin,
563 unsigned long lpos_end,
564 unsigned long *lpos_out)
565 {
566
567 struct prb_data_ring *data_ring = &rb->text_data_ring;
568 struct prb_desc_ring *desc_ring = &rb->desc_ring;
569 struct prb_data_block *blk;
570 enum desc_state d_state;
571 struct prb_desc desc;
572 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
573 unsigned long id;
574
575 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
576 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
577 blk = to_block(data_ring, lpos_begin);
578
579 /*
580 * Load the block ID from the data block. This is a data race
581 * against a writer that may have newly reserved this data
582 * area. If the loaded value matches a valid descriptor ID,
583 * the blk_lpos of that descriptor will be checked to make
584 * sure it points back to this data block. If the check fails,
585 * the data area has been recycled by another writer.
586 */
587 id = blk->id; /* LMM(data_make_reusable:A) */
588
589 d_state = desc_read(desc_ring, id, &desc,
590 NULL, NULL); /* LMM(data_make_reusable:B) */
591
592 switch (d_state) {
593 case desc_miss:
594 case desc_reserved:
595 case desc_committed:
596 return false;
597 case desc_finalized:
598 /*
599 * This data block is invalid if the descriptor
600 * does not point back to it.
601 */
602 if (blk_lpos->begin != lpos_begin)
603 return false;
604 desc_make_reusable(desc_ring, id);
605 break;
606 case desc_reusable:
607 /*
608 * This data block is invalid if the descriptor
609 * does not point back to it.
610 */
611 if (blk_lpos->begin != lpos_begin)
612 return false;
613 break;
614 }
615
616 /* Advance @lpos_begin to the next data block. */
617 lpos_begin = blk_lpos->next;
618 }
619
620 *lpos_out = lpos_begin;
621 return true;
622 }
623
624 /*
625 * Advance the data ring tail to at least @lpos. This function puts
626 * descriptors into the reusable state if the tail is pushed beyond
627 * their associated data block.
628 */
data_push_tail(struct printk_ringbuffer * rb,unsigned long lpos)629 static bool data_push_tail(struct printk_ringbuffer *rb, unsigned long lpos)
630 {
631 struct prb_data_ring *data_ring = &rb->text_data_ring;
632 unsigned long tail_lpos_new;
633 unsigned long tail_lpos;
634 unsigned long next_lpos;
635
636 /* If @lpos is from a data-less block, there is nothing to do. */
637 if (LPOS_DATALESS(lpos))
638 return true;
639
640 /*
641 * Any descriptor states that have transitioned to reusable due to the
642 * data tail being pushed to this loaded value will be visible to this
643 * CPU. This pairs with data_push_tail:D.
644 *
645 * Memory barrier involvement:
646 *
647 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
648 * see desc_make_reusable:A.
649 *
650 * Relies on:
651 *
652 * MB from desc_make_reusable:A to data_push_tail:D
653 * matches
654 * READFROM from data_push_tail:D to data_push_tail:A
655 * thus
656 * READFROM from desc_make_reusable:A to this CPU
657 */
658 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
659
660 /*
661 * Loop until the tail lpos is at or beyond @lpos. This condition
662 * may already be satisfied, resulting in no full memory barrier
663 * from data_push_tail:D being performed. However, since this CPU
664 * sees the new tail lpos, any descriptor states that transitioned to
665 * the reusable state must already be visible.
666 */
667 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
668 /*
669 * Make all descriptors reusable that are associated with
670 * data blocks before @lpos.
671 */
672 if (!data_make_reusable(rb, tail_lpos, lpos, &next_lpos)) {
673 /*
674 * 1. Guarantee the block ID loaded in
675 * data_make_reusable() is performed before
676 * reloading the tail lpos. The failed
677 * data_make_reusable() may be due to a newly
678 * recycled data area causing the tail lpos to
679 * have been previously pushed. This pairs with
680 * data_alloc:A and data_realloc:A.
681 *
682 * Memory barrier involvement:
683 *
684 * If data_make_reusable:A reads from data_alloc:B,
685 * then data_push_tail:C reads from
686 * data_push_tail:D.
687 *
688 * Relies on:
689 *
690 * MB from data_push_tail:D to data_alloc:B
691 * matching
692 * RMB from data_make_reusable:A to
693 * data_push_tail:C
694 *
695 * Note: data_push_tail:D and data_alloc:B can be
696 * different CPUs. However, the data_alloc:B
697 * CPU (which performs the full memory
698 * barrier) must have previously seen
699 * data_push_tail:D.
700 *
701 * 2. Guarantee the descriptor state loaded in
702 * data_make_reusable() is performed before
703 * reloading the tail lpos. The failed
704 * data_make_reusable() may be due to a newly
705 * recycled descriptor causing the tail lpos to
706 * have been previously pushed. This pairs with
707 * desc_reserve:D.
708 *
709 * Memory barrier involvement:
710 *
711 * If data_make_reusable:B reads from
712 * desc_reserve:F, then data_push_tail:C reads
713 * from data_push_tail:D.
714 *
715 * Relies on:
716 *
717 * MB from data_push_tail:D to desc_reserve:F
718 * matching
719 * RMB from data_make_reusable:B to
720 * data_push_tail:C
721 *
722 * Note: data_push_tail:D and desc_reserve:F can
723 * be different CPUs. However, the
724 * desc_reserve:F CPU (which performs the
725 * full memory barrier) must have previously
726 * seen data_push_tail:D.
727 */
728 smp_rmb(); /* LMM(data_push_tail:B) */
729
730 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
731 ); /* LMM(data_push_tail:C) */
732 if (tail_lpos_new == tail_lpos)
733 return false;
734
735 /* Another CPU pushed the tail. Try again. */
736 tail_lpos = tail_lpos_new;
737 continue;
738 }
739
740 /*
741 * Guarantee any descriptor states that have transitioned to
742 * reusable are stored before pushing the tail lpos. A full
743 * memory barrier is needed since other CPUs may have made
744 * the descriptor states reusable. This pairs with
745 * data_push_tail:A.
746 */
747 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
748 next_lpos)) { /* LMM(data_push_tail:D) */
749 break;
750 }
751 }
752
753 return true;
754 }
755
756 /*
757 * Advance the desc ring tail. This function advances the tail by one
758 * descriptor, thus invalidating the oldest descriptor. Before advancing
759 * the tail, the tail descriptor is made reusable and all data blocks up to
760 * and including the descriptor's data block are invalidated (i.e. the data
761 * ring tail is pushed past the data block of the descriptor being made
762 * reusable).
763 */
desc_push_tail(struct printk_ringbuffer * rb,unsigned long tail_id)764 static bool desc_push_tail(struct printk_ringbuffer *rb,
765 unsigned long tail_id)
766 {
767 struct prb_desc_ring *desc_ring = &rb->desc_ring;
768 enum desc_state d_state;
769 struct prb_desc desc;
770
771 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
772
773 switch (d_state) {
774 case desc_miss:
775 /*
776 * If the ID is exactly 1 wrap behind the expected, it is
777 * in the process of being reserved by another writer and
778 * must be considered reserved.
779 */
780 if (DESC_ID(atomic_long_read(&desc.state_var)) ==
781 DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
782 return false;
783 }
784
785 /*
786 * The ID has changed. Another writer must have pushed the
787 * tail and recycled the descriptor already. Success is
788 * returned because the caller is only interested in the
789 * specified tail being pushed, which it was.
790 */
791 return true;
792 case desc_reserved:
793 case desc_committed:
794 return false;
795 case desc_finalized:
796 desc_make_reusable(desc_ring, tail_id);
797 break;
798 case desc_reusable:
799 break;
800 }
801
802 /*
803 * Data blocks must be invalidated before their associated
804 * descriptor can be made available for recycling. Invalidating
805 * them later is not possible because there is no way to trust
806 * data blocks once their associated descriptor is gone.
807 */
808
809 if (!data_push_tail(rb, desc.text_blk_lpos.next))
810 return false;
811
812 /*
813 * Check the next descriptor after @tail_id before pushing the tail
814 * to it because the tail must always be in a finalized or reusable
815 * state. The implementation of prb_first_seq() relies on this.
816 *
817 * A successful read implies that the next descriptor is less than or
818 * equal to @head_id so there is no risk of pushing the tail past the
819 * head.
820 */
821 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
822 NULL, NULL); /* LMM(desc_push_tail:A) */
823
824 if (d_state == desc_finalized || d_state == desc_reusable) {
825 /*
826 * Guarantee any descriptor states that have transitioned to
827 * reusable are stored before pushing the tail ID. This allows
828 * verifying the recycled descriptor state. A full memory
829 * barrier is needed since other CPUs may have made the
830 * descriptor states reusable. This pairs with desc_reserve:D.
831 */
832 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
833 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
834 } else {
835 /*
836 * Guarantee the last state load from desc_read() is before
837 * reloading @tail_id in order to see a new tail ID in the
838 * case that the descriptor has been recycled. This pairs
839 * with desc_reserve:D.
840 *
841 * Memory barrier involvement:
842 *
843 * If desc_push_tail:A reads from desc_reserve:F, then
844 * desc_push_tail:D reads from desc_push_tail:B.
845 *
846 * Relies on:
847 *
848 * MB from desc_push_tail:B to desc_reserve:F
849 * matching
850 * RMB from desc_push_tail:A to desc_push_tail:D
851 *
852 * Note: desc_push_tail:B and desc_reserve:F can be different
853 * CPUs. However, the desc_reserve:F CPU (which performs
854 * the full memory barrier) must have previously seen
855 * desc_push_tail:B.
856 */
857 smp_rmb(); /* LMM(desc_push_tail:C) */
858
859 /*
860 * Re-check the tail ID. The descriptor following @tail_id is
861 * not in an allowed tail state. But if the tail has since
862 * been moved by another CPU, then it does not matter.
863 */
864 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
865 return false;
866 }
867
868 return true;
869 }
870
871 /* Reserve a new descriptor, invalidating the oldest if necessary. */
desc_reserve(struct printk_ringbuffer * rb,unsigned long * id_out)872 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
873 {
874 struct prb_desc_ring *desc_ring = &rb->desc_ring;
875 unsigned long prev_state_val;
876 unsigned long id_prev_wrap;
877 struct prb_desc *desc;
878 unsigned long head_id;
879 unsigned long id;
880
881 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
882
883 do {
884 id = DESC_ID(head_id + 1);
885 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
886
887 /*
888 * Guarantee the head ID is read before reading the tail ID.
889 * Since the tail ID is updated before the head ID, this
890 * guarantees that @id_prev_wrap is never ahead of the tail
891 * ID. This pairs with desc_reserve:D.
892 *
893 * Memory barrier involvement:
894 *
895 * If desc_reserve:A reads from desc_reserve:D, then
896 * desc_reserve:C reads from desc_push_tail:B.
897 *
898 * Relies on:
899 *
900 * MB from desc_push_tail:B to desc_reserve:D
901 * matching
902 * RMB from desc_reserve:A to desc_reserve:C
903 *
904 * Note: desc_push_tail:B and desc_reserve:D can be different
905 * CPUs. However, the desc_reserve:D CPU (which performs
906 * the full memory barrier) must have previously seen
907 * desc_push_tail:B.
908 */
909 smp_rmb(); /* LMM(desc_reserve:B) */
910
911 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
912 )) { /* LMM(desc_reserve:C) */
913 /*
914 * Make space for the new descriptor by
915 * advancing the tail.
916 */
917 if (!desc_push_tail(rb, id_prev_wrap))
918 return false;
919 }
920
921 /*
922 * 1. Guarantee the tail ID is read before validating the
923 * recycled descriptor state. A read memory barrier is
924 * sufficient for this. This pairs with desc_push_tail:B.
925 *
926 * Memory barrier involvement:
927 *
928 * If desc_reserve:C reads from desc_push_tail:B, then
929 * desc_reserve:E reads from desc_make_reusable:A.
930 *
931 * Relies on:
932 *
933 * MB from desc_make_reusable:A to desc_push_tail:B
934 * matching
935 * RMB from desc_reserve:C to desc_reserve:E
936 *
937 * Note: desc_make_reusable:A and desc_push_tail:B can be
938 * different CPUs. However, the desc_push_tail:B CPU
939 * (which performs the full memory barrier) must have
940 * previously seen desc_make_reusable:A.
941 *
942 * 2. Guarantee the tail ID is stored before storing the head
943 * ID. This pairs with desc_reserve:B.
944 *
945 * 3. Guarantee any data ring tail changes are stored before
946 * recycling the descriptor. Data ring tail changes can
947 * happen via desc_push_tail()->data_push_tail(). A full
948 * memory barrier is needed since another CPU may have
949 * pushed the data ring tails. This pairs with
950 * data_push_tail:B.
951 *
952 * 4. Guarantee a new tail ID is stored before recycling the
953 * descriptor. A full memory barrier is needed since
954 * another CPU may have pushed the tail ID. This pairs
955 * with desc_push_tail:C and this also pairs with
956 * prb_first_seq:C.
957 *
958 * 5. Guarantee the head ID is stored before trying to
959 * finalize the previous descriptor. This pairs with
960 * _prb_commit:B.
961 */
962 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
963 id)); /* LMM(desc_reserve:D) */
964
965 desc = to_desc(desc_ring, id);
966
967 /*
968 * If the descriptor has been recycled, verify the old state val.
969 * See "ABA Issues" about why this verification is performed.
970 */
971 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
972 if (prev_state_val &&
973 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
974 WARN_ON_ONCE(1);
975 return false;
976 }
977
978 /*
979 * Assign the descriptor a new ID and set its state to reserved.
980 * See "ABA Issues" about why cmpxchg() instead of set() is used.
981 *
982 * Guarantee the new descriptor ID and state is stored before making
983 * any other changes. A write memory barrier is sufficient for this.
984 * This pairs with desc_read:D.
985 */
986 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
987 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
988 WARN_ON_ONCE(1);
989 return false;
990 }
991
992 /* Now data in @desc can be modified: LMM(desc_reserve:G) */
993
994 *id_out = id;
995 return true;
996 }
997
998 /* Determine the end of a data block. */
get_next_lpos(struct prb_data_ring * data_ring,unsigned long lpos,unsigned int size)999 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1000 unsigned long lpos, unsigned int size)
1001 {
1002 unsigned long begin_lpos;
1003 unsigned long next_lpos;
1004
1005 begin_lpos = lpos;
1006 next_lpos = lpos + size;
1007
1008 /* First check if the data block does not wrap. */
1009 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1010 return next_lpos;
1011
1012 /* Wrapping data blocks store their data at the beginning. */
1013 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1014 }
1015
1016 /*
1017 * Allocate a new data block, invalidating the oldest data block(s)
1018 * if necessary. This function also associates the data block with
1019 * a specified descriptor.
1020 */
data_alloc(struct printk_ringbuffer * rb,unsigned int size,struct prb_data_blk_lpos * blk_lpos,unsigned long id)1021 static char *data_alloc(struct printk_ringbuffer *rb, unsigned int size,
1022 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1023 {
1024 struct prb_data_ring *data_ring = &rb->text_data_ring;
1025 struct prb_data_block *blk;
1026 unsigned long begin_lpos;
1027 unsigned long next_lpos;
1028
1029 if (size == 0) {
1030 /* Specify a data-less block. */
1031 blk_lpos->begin = NO_LPOS;
1032 blk_lpos->next = NO_LPOS;
1033 return NULL;
1034 }
1035
1036 size = to_blk_size(size);
1037
1038 begin_lpos = atomic_long_read(&data_ring->head_lpos);
1039
1040 do {
1041 next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1042
1043 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring))) {
1044 /* Failed to allocate, specify a data-less block. */
1045 blk_lpos->begin = FAILED_LPOS;
1046 blk_lpos->next = FAILED_LPOS;
1047 return NULL;
1048 }
1049
1050 /*
1051 * 1. Guarantee any descriptor states that have transitioned
1052 * to reusable are stored before modifying the newly
1053 * allocated data area. A full memory barrier is needed
1054 * since other CPUs may have made the descriptor states
1055 * reusable. See data_push_tail:A about why the reusable
1056 * states are visible. This pairs with desc_read:D.
1057 *
1058 * 2. Guarantee any updated tail lpos is stored before
1059 * modifying the newly allocated data area. Another CPU may
1060 * be in data_make_reusable() and is reading a block ID
1061 * from this area. data_make_reusable() can handle reading
1062 * a garbage block ID value, but then it must be able to
1063 * load a new tail lpos. A full memory barrier is needed
1064 * since other CPUs may have updated the tail lpos. This
1065 * pairs with data_push_tail:B.
1066 */
1067 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1068 next_lpos)); /* LMM(data_alloc:A) */
1069
1070 blk = to_block(data_ring, begin_lpos);
1071 blk->id = id; /* LMM(data_alloc:B) */
1072
1073 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1074 /* Wrapping data blocks store their data at the beginning. */
1075 blk = to_block(data_ring, 0);
1076
1077 /*
1078 * Store the ID on the wrapped block for consistency.
1079 * The printk_ringbuffer does not actually use it.
1080 */
1081 blk->id = id;
1082 }
1083
1084 blk_lpos->begin = begin_lpos;
1085 blk_lpos->next = next_lpos;
1086
1087 return &blk->data[0];
1088 }
1089
1090 /*
1091 * Try to resize an existing data block associated with the descriptor
1092 * specified by @id. If the resized data block should become wrapped, it
1093 * copies the old data to the new data block. If @size yields a data block
1094 * with the same or less size, the data block is left as is.
1095 *
1096 * Fail if this is not the last allocated data block or if there is not
1097 * enough space or it is not possible make enough space.
1098 *
1099 * Return a pointer to the beginning of the entire data buffer or NULL on
1100 * failure.
1101 */
data_realloc(struct printk_ringbuffer * rb,unsigned int size,struct prb_data_blk_lpos * blk_lpos,unsigned long id)1102 static char *data_realloc(struct printk_ringbuffer *rb, unsigned int size,
1103 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1104 {
1105 struct prb_data_ring *data_ring = &rb->text_data_ring;
1106 struct prb_data_block *blk;
1107 unsigned long head_lpos;
1108 unsigned long next_lpos;
1109 bool wrapped;
1110
1111 /* Reallocation only works if @blk_lpos is the newest data block. */
1112 head_lpos = atomic_long_read(&data_ring->head_lpos);
1113 if (head_lpos != blk_lpos->next)
1114 return NULL;
1115
1116 /* Keep track if @blk_lpos was a wrapping data block. */
1117 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1118
1119 size = to_blk_size(size);
1120
1121 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1122
1123 /* If the data block does not increase, there is nothing to do. */
1124 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1125 if (wrapped)
1126 blk = to_block(data_ring, 0);
1127 else
1128 blk = to_block(data_ring, blk_lpos->begin);
1129 return &blk->data[0];
1130 }
1131
1132 if (!data_push_tail(rb, next_lpos - DATA_SIZE(data_ring)))
1133 return NULL;
1134
1135 /* The memory barrier involvement is the same as data_alloc:A. */
1136 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1137 next_lpos)) { /* LMM(data_realloc:A) */
1138 return NULL;
1139 }
1140
1141 blk = to_block(data_ring, blk_lpos->begin);
1142
1143 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1144 struct prb_data_block *old_blk = blk;
1145
1146 /* Wrapping data blocks store their data at the beginning. */
1147 blk = to_block(data_ring, 0);
1148
1149 /*
1150 * Store the ID on the wrapped block for consistency.
1151 * The printk_ringbuffer does not actually use it.
1152 */
1153 blk->id = id;
1154
1155 if (!wrapped) {
1156 /*
1157 * Since the allocated space is now in the newly
1158 * created wrapping data block, copy the content
1159 * from the old data block.
1160 */
1161 memcpy(&blk->data[0], &old_blk->data[0],
1162 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1163 }
1164 }
1165
1166 blk_lpos->next = next_lpos;
1167
1168 return &blk->data[0];
1169 }
1170
1171 /* Return the number of bytes used by a data block. */
space_used(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos)1172 static unsigned int space_used(struct prb_data_ring *data_ring,
1173 struct prb_data_blk_lpos *blk_lpos)
1174 {
1175 /* Data-less blocks take no space. */
1176 if (BLK_DATALESS(blk_lpos))
1177 return 0;
1178
1179 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1180 /* Data block does not wrap. */
1181 return (DATA_INDEX(data_ring, blk_lpos->next) -
1182 DATA_INDEX(data_ring, blk_lpos->begin));
1183 }
1184
1185 /*
1186 * For wrapping data blocks, the trailing (wasted) space is
1187 * also counted.
1188 */
1189 return (DATA_INDEX(data_ring, blk_lpos->next) +
1190 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1191 }
1192
1193 /*
1194 * Given @blk_lpos, return a pointer to the writer data from the data block
1195 * and calculate the size of the data part. A NULL pointer is returned if
1196 * @blk_lpos specifies values that could never be legal.
1197 *
1198 * This function (used by readers) performs strict validation on the lpos
1199 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1200 * triggered if an internal error is detected.
1201 */
get_data(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos,unsigned int * data_size)1202 static const char *get_data(struct prb_data_ring *data_ring,
1203 struct prb_data_blk_lpos *blk_lpos,
1204 unsigned int *data_size)
1205 {
1206 struct prb_data_block *db;
1207
1208 /* Data-less data block description. */
1209 if (BLK_DATALESS(blk_lpos)) {
1210 if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1211 *data_size = 0;
1212 return "";
1213 }
1214 return NULL;
1215 }
1216
1217 /* Regular data block: @begin less than @next and in same wrap. */
1218 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1219 blk_lpos->begin < blk_lpos->next) {
1220 db = to_block(data_ring, blk_lpos->begin);
1221 *data_size = blk_lpos->next - blk_lpos->begin;
1222
1223 /* Wrapping data block: @begin is one wrap behind @next. */
1224 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1225 DATA_WRAPS(data_ring, blk_lpos->next)) {
1226 db = to_block(data_ring, 0);
1227 *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1228
1229 /* Illegal block description. */
1230 } else {
1231 WARN_ON_ONCE(1);
1232 return NULL;
1233 }
1234
1235 /* A valid data block will always be aligned to the ID size. */
1236 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1237 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1238 return NULL;
1239 }
1240
1241 /* A valid data block will always have at least an ID. */
1242 if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1243 return NULL;
1244
1245 /* Subtract block ID space from size to reflect data size. */
1246 *data_size -= sizeof(db->id);
1247
1248 return &db->data[0];
1249 }
1250
1251 /*
1252 * Attempt to transition the newest descriptor from committed back to reserved
1253 * so that the record can be modified by a writer again. This is only possible
1254 * if the descriptor is not yet finalized and the provided @caller_id matches.
1255 */
desc_reopen_last(struct prb_desc_ring * desc_ring,u32 caller_id,unsigned long * id_out)1256 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1257 u32 caller_id, unsigned long *id_out)
1258 {
1259 unsigned long prev_state_val;
1260 enum desc_state d_state;
1261 struct prb_desc desc;
1262 struct prb_desc *d;
1263 unsigned long id;
1264 u32 cid;
1265
1266 id = atomic_long_read(&desc_ring->head_id);
1267
1268 /*
1269 * To reduce unnecessarily reopening, first check if the descriptor
1270 * state and caller ID are correct.
1271 */
1272 d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1273 if (d_state != desc_committed || cid != caller_id)
1274 return NULL;
1275
1276 d = to_desc(desc_ring, id);
1277
1278 prev_state_val = DESC_SV(id, desc_committed);
1279
1280 /*
1281 * Guarantee the reserved state is stored before reading any
1282 * record data. A full memory barrier is needed because @state_var
1283 * modification is followed by reading. This pairs with _prb_commit:B.
1284 *
1285 * Memory barrier involvement:
1286 *
1287 * If desc_reopen_last:A reads from _prb_commit:B, then
1288 * prb_reserve_in_last:A reads from _prb_commit:A.
1289 *
1290 * Relies on:
1291 *
1292 * WMB from _prb_commit:A to _prb_commit:B
1293 * matching
1294 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1295 */
1296 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1297 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1298 return NULL;
1299 }
1300
1301 *id_out = id;
1302 return d;
1303 }
1304
1305 /**
1306 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1307 * used by the newest record.
1308 *
1309 * @e: The entry structure to setup.
1310 * @rb: The ringbuffer to re-reserve and extend data in.
1311 * @r: The record structure to allocate buffers for.
1312 * @caller_id: The caller ID of the caller (reserving writer).
1313 * @max_size: Fail if the extended size would be greater than this.
1314 *
1315 * This is the public function available to writers to re-reserve and extend
1316 * data.
1317 *
1318 * The writer specifies the text size to extend (not the new total size) by
1319 * setting the @text_buf_size field of @r. To ensure proper initialization
1320 * of @r, prb_rec_init_wr() should be used.
1321 *
1322 * This function will fail if @caller_id does not match the caller ID of the
1323 * newest record. In that case the caller must reserve new data using
1324 * prb_reserve().
1325 *
1326 * Context: Any context. Disables local interrupts on success.
1327 * Return: true if text data could be extended, otherwise false.
1328 *
1329 * On success:
1330 *
1331 * - @r->text_buf points to the beginning of the entire text buffer.
1332 *
1333 * - @r->text_buf_size is set to the new total size of the buffer.
1334 *
1335 * - @r->info is not touched so that @r->info->text_len could be used
1336 * to append the text.
1337 *
1338 * - prb_record_text_space() can be used on @e to query the new
1339 * actually used space.
1340 *
1341 * Important: All @r->info fields will already be set with the current values
1342 * for the record. I.e. @r->info->text_len will be less than
1343 * @text_buf_size. Writers can use @r->info->text_len to know
1344 * where concatenation begins and writers should update
1345 * @r->info->text_len after concatenating.
1346 */
prb_reserve_in_last(struct prb_reserved_entry * e,struct printk_ringbuffer * rb,struct printk_record * r,u32 caller_id,unsigned int max_size)1347 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1348 struct printk_record *r, u32 caller_id, unsigned int max_size)
1349 {
1350 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1351 struct printk_info *info;
1352 unsigned int data_size;
1353 struct prb_desc *d;
1354 unsigned long id;
1355
1356 local_irq_save(e->irqflags);
1357
1358 /* Transition the newest descriptor back to the reserved state. */
1359 d = desc_reopen_last(desc_ring, caller_id, &id);
1360 if (!d) {
1361 local_irq_restore(e->irqflags);
1362 goto fail_reopen;
1363 }
1364
1365 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1366
1367 info = to_info(desc_ring, id);
1368
1369 /*
1370 * Set the @e fields here so that prb_commit() can be used if
1371 * anything fails from now on.
1372 */
1373 e->rb = rb;
1374 e->id = id;
1375
1376 /*
1377 * desc_reopen_last() checked the caller_id, but there was no
1378 * exclusive access at that point. The descriptor may have
1379 * changed since then.
1380 */
1381 if (caller_id != info->caller_id)
1382 goto fail;
1383
1384 if (BLK_DATALESS(&d->text_blk_lpos)) {
1385 if (WARN_ON_ONCE(info->text_len != 0)) {
1386 pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1387 info->text_len);
1388 info->text_len = 0;
1389 }
1390
1391 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1392 goto fail;
1393
1394 if (r->text_buf_size > max_size)
1395 goto fail;
1396
1397 r->text_buf = data_alloc(rb, r->text_buf_size,
1398 &d->text_blk_lpos, id);
1399 } else {
1400 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1401 goto fail;
1402
1403 /*
1404 * Increase the buffer size to include the original size. If
1405 * the meta data (@text_len) is not sane, use the full data
1406 * block size.
1407 */
1408 if (WARN_ON_ONCE(info->text_len > data_size)) {
1409 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1410 info->text_len, data_size);
1411 info->text_len = data_size;
1412 }
1413 r->text_buf_size += info->text_len;
1414
1415 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1416 goto fail;
1417
1418 if (r->text_buf_size > max_size)
1419 goto fail;
1420
1421 r->text_buf = data_realloc(rb, r->text_buf_size,
1422 &d->text_blk_lpos, id);
1423 }
1424 if (r->text_buf_size && !r->text_buf)
1425 goto fail;
1426
1427 r->info = info;
1428
1429 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1430
1431 return true;
1432 fail:
1433 prb_commit(e);
1434 /* prb_commit() re-enabled interrupts. */
1435 fail_reopen:
1436 /* Make it clear to the caller that the re-reserve failed. */
1437 memset(r, 0, sizeof(*r));
1438 return false;
1439 }
1440
1441 /*
1442 * Attempt to finalize a specified descriptor. If this fails, the descriptor
1443 * is either already final or it will finalize itself when the writer commits.
1444 */
desc_make_final(struct prb_desc_ring * desc_ring,unsigned long id)1445 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1446 {
1447 unsigned long prev_state_val = DESC_SV(id, desc_committed);
1448 struct prb_desc *d = to_desc(desc_ring, id);
1449
1450 atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1451 DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1452 }
1453
1454 /**
1455 * prb_reserve() - Reserve space in the ringbuffer.
1456 *
1457 * @e: The entry structure to setup.
1458 * @rb: The ringbuffer to reserve data in.
1459 * @r: The record structure to allocate buffers for.
1460 *
1461 * This is the public function available to writers to reserve data.
1462 *
1463 * The writer specifies the text size to reserve by setting the
1464 * @text_buf_size field of @r. To ensure proper initialization of @r,
1465 * prb_rec_init_wr() should be used.
1466 *
1467 * Context: Any context. Disables local interrupts on success.
1468 * Return: true if at least text data could be allocated, otherwise false.
1469 *
1470 * On success, the fields @info and @text_buf of @r will be set by this
1471 * function and should be filled in by the writer before committing. Also
1472 * on success, prb_record_text_space() can be used on @e to query the actual
1473 * space used for the text data block.
1474 *
1475 * Important: @info->text_len needs to be set correctly by the writer in
1476 * order for data to be readable and/or extended. Its value
1477 * is initialized to 0.
1478 */
prb_reserve(struct prb_reserved_entry * e,struct printk_ringbuffer * rb,struct printk_record * r)1479 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1480 struct printk_record *r)
1481 {
1482 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1483 struct printk_info *info;
1484 struct prb_desc *d;
1485 unsigned long id;
1486 u64 seq;
1487
1488 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1489 goto fail;
1490
1491 /*
1492 * Descriptors in the reserved state act as blockers to all further
1493 * reservations once the desc_ring has fully wrapped. Disable
1494 * interrupts during the reserve/commit window in order to minimize
1495 * the likelihood of this happening.
1496 */
1497 local_irq_save(e->irqflags);
1498
1499 if (!desc_reserve(rb, &id)) {
1500 /* Descriptor reservation failures are tracked. */
1501 atomic_long_inc(&rb->fail);
1502 local_irq_restore(e->irqflags);
1503 goto fail;
1504 }
1505
1506 d = to_desc(desc_ring, id);
1507 info = to_info(desc_ring, id);
1508
1509 /*
1510 * All @info fields (except @seq) are cleared and must be filled in
1511 * by the writer. Save @seq before clearing because it is used to
1512 * determine the new sequence number.
1513 */
1514 seq = info->seq;
1515 memset(info, 0, sizeof(*info));
1516
1517 /*
1518 * Set the @e fields here so that prb_commit() can be used if
1519 * text data allocation fails.
1520 */
1521 e->rb = rb;
1522 e->id = id;
1523
1524 /*
1525 * Initialize the sequence number if it has "never been set".
1526 * Otherwise just increment it by a full wrap.
1527 *
1528 * @seq is considered "never been set" if it has a value of 0,
1529 * _except_ for @infos[0], which was specially setup by the ringbuffer
1530 * initializer and therefore is always considered as set.
1531 *
1532 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1533 * details about how the initializer bootstraps the descriptors.
1534 */
1535 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1536 info->seq = DESC_INDEX(desc_ring, id);
1537 else
1538 info->seq = seq + DESCS_COUNT(desc_ring);
1539
1540 /*
1541 * New data is about to be reserved. Once that happens, previous
1542 * descriptors are no longer able to be extended. Finalize the
1543 * previous descriptor now so that it can be made available to
1544 * readers. (For seq==0 there is no previous descriptor.)
1545 */
1546 if (info->seq > 0)
1547 desc_make_final(desc_ring, DESC_ID(id - 1));
1548
1549 r->text_buf = data_alloc(rb, r->text_buf_size, &d->text_blk_lpos, id);
1550 /* If text data allocation fails, a data-less record is committed. */
1551 if (r->text_buf_size && !r->text_buf) {
1552 prb_commit(e);
1553 /* prb_commit() re-enabled interrupts. */
1554 goto fail;
1555 }
1556
1557 r->info = info;
1558
1559 /* Record full text space used by record. */
1560 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1561
1562 return true;
1563 fail:
1564 /* Make it clear to the caller that the reserve failed. */
1565 memset(r, 0, sizeof(*r));
1566 return false;
1567 }
1568
1569 /* Commit the data (possibly finalizing it) and restore interrupts. */
_prb_commit(struct prb_reserved_entry * e,unsigned long state_val)1570 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1571 {
1572 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1573 struct prb_desc *d = to_desc(desc_ring, e->id);
1574 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1575
1576 /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1577
1578 /*
1579 * Set the descriptor as committed. See "ABA Issues" about why
1580 * cmpxchg() instead of set() is used.
1581 *
1582 * 1 Guarantee all record data is stored before the descriptor state
1583 * is stored as committed. A write memory barrier is sufficient
1584 * for this. This pairs with desc_read:B and desc_reopen_last:A.
1585 *
1586 * 2. Guarantee the descriptor state is stored as committed before
1587 * re-checking the head ID in order to possibly finalize this
1588 * descriptor. This pairs with desc_reserve:D.
1589 *
1590 * Memory barrier involvement:
1591 *
1592 * If prb_commit:A reads from desc_reserve:D, then
1593 * desc_make_final:A reads from _prb_commit:B.
1594 *
1595 * Relies on:
1596 *
1597 * MB _prb_commit:B to prb_commit:A
1598 * matching
1599 * MB desc_reserve:D to desc_make_final:A
1600 */
1601 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1602 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1603 WARN_ON_ONCE(1);
1604 }
1605
1606 /* Restore interrupts, the reserve/commit window is finished. */
1607 local_irq_restore(e->irqflags);
1608 }
1609
1610 /**
1611 * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1612 *
1613 * @e: The entry containing the reserved data information.
1614 *
1615 * This is the public function available to writers to commit data.
1616 *
1617 * Note that the data is not yet available to readers until it is finalized.
1618 * Finalizing happens automatically when space for the next record is
1619 * reserved.
1620 *
1621 * See prb_final_commit() for a version of this function that finalizes
1622 * immediately.
1623 *
1624 * Context: Any context. Enables local interrupts.
1625 */
prb_commit(struct prb_reserved_entry * e)1626 void prb_commit(struct prb_reserved_entry *e)
1627 {
1628 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1629 unsigned long head_id;
1630
1631 _prb_commit(e, desc_committed);
1632
1633 /*
1634 * If this descriptor is no longer the head (i.e. a new record has
1635 * been allocated), extending the data for this record is no longer
1636 * allowed and therefore it must be finalized.
1637 */
1638 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1639 if (head_id != e->id)
1640 desc_make_final(desc_ring, e->id);
1641 }
1642
1643 /**
1644 * prb_final_commit() - Commit and finalize (previously reserved) data to
1645 * the ringbuffer.
1646 *
1647 * @e: The entry containing the reserved data information.
1648 *
1649 * This is the public function available to writers to commit+finalize data.
1650 *
1651 * By finalizing, the data is made immediately available to readers.
1652 *
1653 * This function should only be used if there are no intentions of extending
1654 * this data using prb_reserve_in_last().
1655 *
1656 * Context: Any context. Enables local interrupts.
1657 */
prb_final_commit(struct prb_reserved_entry * e)1658 void prb_final_commit(struct prb_reserved_entry *e)
1659 {
1660 _prb_commit(e, desc_finalized);
1661 }
1662
1663 /*
1664 * Count the number of lines in provided text. All text has at least 1 line
1665 * (even if @text_size is 0). Each '\n' processed is counted as an additional
1666 * line.
1667 */
count_lines(const char * text,unsigned int text_size)1668 static unsigned int count_lines(const char *text, unsigned int text_size)
1669 {
1670 unsigned int next_size = text_size;
1671 unsigned int line_count = 1;
1672 const char *next = text;
1673
1674 while (next_size) {
1675 next = memchr(next, '\n', next_size);
1676 if (!next)
1677 break;
1678 line_count++;
1679 next++;
1680 next_size = text_size - (next - text);
1681 }
1682
1683 return line_count;
1684 }
1685
1686 /*
1687 * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1688 * If @line_count is provided, count the number of lines in the data.
1689 *
1690 * This function (used by readers) performs strict validation on the data
1691 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1692 * triggered if an internal error is detected.
1693 */
copy_data(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos,u16 len,char * buf,unsigned int buf_size,unsigned int * line_count)1694 static bool copy_data(struct prb_data_ring *data_ring,
1695 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1696 unsigned int buf_size, unsigned int *line_count)
1697 {
1698 unsigned int data_size;
1699 const char *data;
1700
1701 /* Caller might not want any data. */
1702 if ((!buf || !buf_size) && !line_count)
1703 return true;
1704
1705 data = get_data(data_ring, blk_lpos, &data_size);
1706 if (!data)
1707 return false;
1708
1709 /*
1710 * Actual cannot be less than expected. It can be more than expected
1711 * because of the trailing alignment padding.
1712 *
1713 * Note that invalid @len values can occur because the caller loads
1714 * the value during an allowed data race.
1715 */
1716 if (data_size < (unsigned int)len)
1717 return false;
1718
1719 /* Caller interested in the line count? */
1720 if (line_count)
1721 *line_count = count_lines(data, len);
1722
1723 /* Caller interested in the data content? */
1724 if (!buf || !buf_size)
1725 return true;
1726
1727 data_size = min_t(u16, buf_size, len);
1728
1729 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1730 return true;
1731 }
1732
1733 /*
1734 * This is an extended version of desc_read(). It gets a copy of a specified
1735 * descriptor. However, it also verifies that the record is finalized and has
1736 * the sequence number @seq. On success, 0 is returned.
1737 *
1738 * Error return values:
1739 * -EINVAL: A finalized record with sequence number @seq does not exist.
1740 * -ENOENT: A finalized record with sequence number @seq exists, but its data
1741 * is not available. This is a valid record, so readers should
1742 * continue with the next record.
1743 */
desc_read_finalized_seq(struct prb_desc_ring * desc_ring,unsigned long id,u64 seq,struct prb_desc * desc_out)1744 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1745 unsigned long id, u64 seq,
1746 struct prb_desc *desc_out)
1747 {
1748 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1749 enum desc_state d_state;
1750 u64 s;
1751
1752 d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1753
1754 /*
1755 * An unexpected @id (desc_miss) or @seq mismatch means the record
1756 * does not exist. A descriptor in the reserved or committed state
1757 * means the record does not yet exist for the reader.
1758 */
1759 if (d_state == desc_miss ||
1760 d_state == desc_reserved ||
1761 d_state == desc_committed ||
1762 s != seq) {
1763 return -EINVAL;
1764 }
1765
1766 /*
1767 * A descriptor in the reusable state may no longer have its data
1768 * available; report it as existing but with lost data. Or the record
1769 * may actually be a record with lost data.
1770 */
1771 if (d_state == desc_reusable ||
1772 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1773 return -ENOENT;
1774 }
1775
1776 return 0;
1777 }
1778
1779 /*
1780 * Copy the ringbuffer data from the record with @seq to the provided
1781 * @r buffer. On success, 0 is returned.
1782 *
1783 * See desc_read_finalized_seq() for error return values.
1784 */
prb_read(struct printk_ringbuffer * rb,u64 seq,struct printk_record * r,unsigned int * line_count)1785 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1786 struct printk_record *r, unsigned int *line_count)
1787 {
1788 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1789 struct printk_info *info = to_info(desc_ring, seq);
1790 struct prb_desc *rdesc = to_desc(desc_ring, seq);
1791 atomic_long_t *state_var = &rdesc->state_var;
1792 struct prb_desc desc;
1793 unsigned long id;
1794 int err;
1795
1796 /* Extract the ID, used to specify the descriptor to read. */
1797 id = DESC_ID(atomic_long_read(state_var));
1798
1799 /* Get a local copy of the correct descriptor (if available). */
1800 err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1801
1802 /*
1803 * If @r is NULL, the caller is only interested in the availability
1804 * of the record.
1805 */
1806 if (err || !r)
1807 return err;
1808
1809 /* If requested, copy meta data. */
1810 if (r->info)
1811 memcpy(r->info, info, sizeof(*(r->info)));
1812
1813 /* Copy text data. If it fails, this is a data-less record. */
1814 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1815 r->text_buf, r->text_buf_size, line_count)) {
1816 return -ENOENT;
1817 }
1818
1819 /* Ensure the record is still finalized and has the same @seq. */
1820 return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1821 }
1822
1823 /* Get the sequence number of the tail descriptor. */
prb_first_seq(struct printk_ringbuffer * rb)1824 static u64 prb_first_seq(struct printk_ringbuffer *rb)
1825 {
1826 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1827 enum desc_state d_state;
1828 struct prb_desc desc;
1829 unsigned long id;
1830 u64 seq;
1831
1832 for (;;) {
1833 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1834
1835 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1836
1837 /*
1838 * This loop will not be infinite because the tail is
1839 * _always_ in the finalized or reusable state.
1840 */
1841 if (d_state == desc_finalized || d_state == desc_reusable)
1842 break;
1843
1844 /*
1845 * Guarantee the last state load from desc_read() is before
1846 * reloading @tail_id in order to see a new tail in the case
1847 * that the descriptor has been recycled. This pairs with
1848 * desc_reserve:D.
1849 *
1850 * Memory barrier involvement:
1851 *
1852 * If prb_first_seq:B reads from desc_reserve:F, then
1853 * prb_first_seq:A reads from desc_push_tail:B.
1854 *
1855 * Relies on:
1856 *
1857 * MB from desc_push_tail:B to desc_reserve:F
1858 * matching
1859 * RMB prb_first_seq:B to prb_first_seq:A
1860 */
1861 smp_rmb(); /* LMM(prb_first_seq:C) */
1862 }
1863
1864 return seq;
1865 }
1866
1867 /*
1868 * Non-blocking read of a record. Updates @seq to the last finalized record
1869 * (which may have no data available).
1870 *
1871 * See the description of prb_read_valid() and prb_read_valid_info()
1872 * for details.
1873 */
_prb_read_valid(struct printk_ringbuffer * rb,u64 * seq,struct printk_record * r,unsigned int * line_count)1874 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1875 struct printk_record *r, unsigned int *line_count)
1876 {
1877 u64 tail_seq;
1878 int err;
1879
1880 while ((err = prb_read(rb, *seq, r, line_count))) {
1881 tail_seq = prb_first_seq(rb);
1882
1883 if (*seq < tail_seq) {
1884 /*
1885 * Behind the tail. Catch up and try again. This
1886 * can happen for -ENOENT and -EINVAL cases.
1887 */
1888 *seq = tail_seq;
1889
1890 } else if (err == -ENOENT) {
1891 /* Record exists, but no data available. Skip. */
1892 (*seq)++;
1893
1894 } else {
1895 /* Non-existent/non-finalized record. Must stop. */
1896 return false;
1897 }
1898 }
1899
1900 return true;
1901 }
1902
1903 /**
1904 * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1905 * the next available record.
1906 *
1907 * @rb: The ringbuffer to read from.
1908 * @seq: The sequence number of the record to read.
1909 * @r: A record data buffer to store the read record to.
1910 *
1911 * This is the public function available to readers to read a record.
1912 *
1913 * The reader provides the @info and @text_buf buffers of @r to be
1914 * filled in. Any of the buffer pointers can be set to NULL if the reader
1915 * is not interested in that data. To ensure proper initialization of @r,
1916 * prb_rec_init_rd() should be used.
1917 *
1918 * Context: Any context.
1919 * Return: true if a record was read, otherwise false.
1920 *
1921 * On success, the reader must check r->info.seq to see which record was
1922 * actually read. This allows the reader to detect dropped records.
1923 *
1924 * Failure means @seq refers to a not yet written record.
1925 */
prb_read_valid(struct printk_ringbuffer * rb,u64 seq,struct printk_record * r)1926 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1927 struct printk_record *r)
1928 {
1929 return _prb_read_valid(rb, &seq, r, NULL);
1930 }
1931
1932 /**
1933 * prb_read_valid_info() - Non-blocking read of meta data for a requested
1934 * record or (if gone) the next available record.
1935 *
1936 * @rb: The ringbuffer to read from.
1937 * @seq: The sequence number of the record to read.
1938 * @info: A buffer to store the read record meta data to.
1939 * @line_count: A buffer to store the number of lines in the record text.
1940 *
1941 * This is the public function available to readers to read only the
1942 * meta data of a record.
1943 *
1944 * The reader provides the @info, @line_count buffers to be filled in.
1945 * Either of the buffer pointers can be set to NULL if the reader is not
1946 * interested in that data.
1947 *
1948 * Context: Any context.
1949 * Return: true if a record's meta data was read, otherwise false.
1950 *
1951 * On success, the reader must check info->seq to see which record meta data
1952 * was actually read. This allows the reader to detect dropped records.
1953 *
1954 * Failure means @seq refers to a not yet written record.
1955 */
prb_read_valid_info(struct printk_ringbuffer * rb,u64 seq,struct printk_info * info,unsigned int * line_count)1956 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1957 struct printk_info *info, unsigned int *line_count)
1958 {
1959 struct printk_record r;
1960
1961 prb_rec_init_rd(&r, info, NULL, 0);
1962
1963 return _prb_read_valid(rb, &seq, &r, line_count);
1964 }
1965
1966 /**
1967 * prb_first_valid_seq() - Get the sequence number of the oldest available
1968 * record.
1969 *
1970 * @rb: The ringbuffer to get the sequence number from.
1971 *
1972 * This is the public function available to readers to see what the
1973 * first/oldest valid sequence number is.
1974 *
1975 * This provides readers a starting point to begin iterating the ringbuffer.
1976 *
1977 * Context: Any context.
1978 * Return: The sequence number of the first/oldest record or, if the
1979 * ringbuffer is empty, 0 is returned.
1980 */
prb_first_valid_seq(struct printk_ringbuffer * rb)1981 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1982 {
1983 u64 seq = 0;
1984
1985 if (!_prb_read_valid(rb, &seq, NULL, NULL))
1986 return 0;
1987
1988 return seq;
1989 }
1990
1991 /**
1992 * prb_next_seq() - Get the sequence number after the last available record.
1993 *
1994 * @rb: The ringbuffer to get the sequence number from.
1995 *
1996 * This is the public function available to readers to see what the next
1997 * newest sequence number available to readers will be.
1998 *
1999 * This provides readers a sequence number to jump to if all currently
2000 * available records should be skipped.
2001 *
2002 * Context: Any context.
2003 * Return: The sequence number of the next newest (not yet available) record
2004 * for readers.
2005 */
prb_next_seq(struct printk_ringbuffer * rb)2006 u64 prb_next_seq(struct printk_ringbuffer *rb)
2007 {
2008 u64 seq = 0;
2009
2010 /* Search forward from the oldest descriptor. */
2011 while (_prb_read_valid(rb, &seq, NULL, NULL))
2012 seq++;
2013
2014 return seq;
2015 }
2016
2017 /**
2018 * prb_init() - Initialize a ringbuffer to use provided external buffers.
2019 *
2020 * @rb: The ringbuffer to initialize.
2021 * @text_buf: The data buffer for text data.
2022 * @textbits: The size of @text_buf as a power-of-2 value.
2023 * @descs: The descriptor buffer for ringbuffer records.
2024 * @descbits: The count of @descs items as a power-of-2 value.
2025 * @infos: The printk_info buffer for ringbuffer records.
2026 *
2027 * This is the public function available to writers to setup a ringbuffer
2028 * during runtime using provided buffers.
2029 *
2030 * This must match the initialization of DEFINE_PRINTKRB().
2031 *
2032 * Context: Any context.
2033 */
prb_init(struct printk_ringbuffer * rb,char * text_buf,unsigned int textbits,struct prb_desc * descs,unsigned int descbits,struct printk_info * infos)2034 void prb_init(struct printk_ringbuffer *rb,
2035 char *text_buf, unsigned int textbits,
2036 struct prb_desc *descs, unsigned int descbits,
2037 struct printk_info *infos)
2038 {
2039 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2040 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2041
2042 rb->desc_ring.count_bits = descbits;
2043 rb->desc_ring.descs = descs;
2044 rb->desc_ring.infos = infos;
2045 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2046 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2047
2048 rb->text_data_ring.size_bits = textbits;
2049 rb->text_data_ring.data = text_buf;
2050 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2051 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2052
2053 atomic_long_set(&rb->fail, 0);
2054
2055 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2056 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2057 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2058
2059 infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2060 infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2061 }
2062
2063 /**
2064 * prb_record_text_space() - Query the full actual used ringbuffer space for
2065 * the text data of a reserved entry.
2066 *
2067 * @e: The successfully reserved entry to query.
2068 *
2069 * This is the public function available to writers to see how much actual
2070 * space is used in the ringbuffer to store the text data of the specified
2071 * entry.
2072 *
2073 * This function is only valid if @e has been successfully reserved using
2074 * prb_reserve().
2075 *
2076 * Context: Any context.
2077 * Return: The size in bytes used by the text data of the associated record.
2078 */
prb_record_text_space(struct prb_reserved_entry * e)2079 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2080 {
2081 return e->text_space;
2082 }
2083