1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3 */
4
5 #include "dpu_hwio.h"
6 #include "dpu_hw_catalog.h"
7 #include "dpu_hw_top.h"
8 #include "dpu_kms.h"
9
10 #define SSPP_SPARE 0x28
11 #define UBWC_STATIC 0x144
12
13 #define FLD_SPLIT_DISPLAY_CMD BIT(1)
14 #define FLD_SMART_PANEL_FREE_RUN BIT(2)
15 #define FLD_INTF_1_SW_TRG_MUX BIT(4)
16 #define FLD_INTF_2_SW_TRG_MUX BIT(8)
17 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
18
19 #define DANGER_STATUS 0x360
20 #define SAFE_STATUS 0x364
21
22 #define TE_LINE_INTERVAL 0x3F4
23
24 #define TRAFFIC_SHAPER_EN BIT(31)
25 #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
26 #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
27 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
28
29 #define MDP_WD_TIMER_0_CTL 0x380
30 #define MDP_WD_TIMER_0_CTL2 0x384
31 #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
32 #define MDP_WD_TIMER_1_CTL 0x390
33 #define MDP_WD_TIMER_1_CTL2 0x394
34 #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
35 #define MDP_WD_TIMER_2_CTL 0x420
36 #define MDP_WD_TIMER_2_CTL2 0x424
37 #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
38 #define MDP_WD_TIMER_3_CTL 0x430
39 #define MDP_WD_TIMER_3_CTL2 0x434
40 #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
41 #define MDP_WD_TIMER_4_CTL 0x440
42 #define MDP_WD_TIMER_4_CTL2 0x444
43 #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
44
45 #define MDP_TICK_COUNT 16
46 #define XO_CLK_RATE 19200
47 #define MS_TICKS_IN_SEC 1000
48
49 #define CALCULATE_WD_LOAD_VALUE(fps) \
50 ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
51
52 #define DCE_SEL 0x450
53
dpu_hw_setup_split_pipe(struct dpu_hw_mdp * mdp,struct split_pipe_cfg * cfg)54 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
55 struct split_pipe_cfg *cfg)
56 {
57 struct dpu_hw_blk_reg_map *c;
58 u32 upper_pipe = 0;
59 u32 lower_pipe = 0;
60
61 if (!mdp || !cfg)
62 return;
63
64 c = &mdp->hw;
65
66 if (cfg->en) {
67 if (cfg->mode == INTF_MODE_CMD) {
68 lower_pipe = FLD_SPLIT_DISPLAY_CMD;
69 /* interface controlling sw trigger */
70 if (cfg->intf == INTF_2)
71 lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
72 else
73 lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
74 upper_pipe = lower_pipe;
75 } else {
76 if (cfg->intf == INTF_2) {
77 lower_pipe = FLD_INTF_1_SW_TRG_MUX;
78 upper_pipe = FLD_INTF_2_SW_TRG_MUX;
79 } else {
80 lower_pipe = FLD_INTF_2_SW_TRG_MUX;
81 upper_pipe = FLD_INTF_1_SW_TRG_MUX;
82 }
83 }
84 }
85
86 DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
87 DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
88 DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
89 DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
90 }
91
dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp * mdp,enum dpu_clk_ctrl_type clk_ctrl,bool enable)92 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
93 enum dpu_clk_ctrl_type clk_ctrl, bool enable)
94 {
95 struct dpu_hw_blk_reg_map *c;
96 u32 reg_off, bit_off;
97 u32 reg_val, new_val;
98 bool clk_forced_on;
99
100 if (!mdp)
101 return false;
102
103 c = &mdp->hw;
104
105 if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
106 return false;
107
108 reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
109 bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
110
111 reg_val = DPU_REG_READ(c, reg_off);
112
113 if (enable)
114 new_val = reg_val | BIT(bit_off);
115 else
116 new_val = reg_val & ~BIT(bit_off);
117
118 DPU_REG_WRITE(c, reg_off, new_val);
119
120 clk_forced_on = !(reg_val & BIT(bit_off));
121
122 return clk_forced_on;
123 }
124
125
dpu_hw_get_danger_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)126 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
127 struct dpu_danger_safe_status *status)
128 {
129 struct dpu_hw_blk_reg_map *c;
130 u32 value;
131
132 if (!mdp || !status)
133 return;
134
135 c = &mdp->hw;
136
137 value = DPU_REG_READ(c, DANGER_STATUS);
138 status->mdp = (value >> 0) & 0x3;
139 status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
140 status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
141 status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
142 status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
143 status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
144 status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
145 status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
146 status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
147 status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
148 status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
149 status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
150 status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
151 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
152 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
153 }
154
dpu_hw_setup_vsync_source(struct dpu_hw_mdp * mdp,struct dpu_vsync_source_cfg * cfg)155 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
156 struct dpu_vsync_source_cfg *cfg)
157 {
158 struct dpu_hw_blk_reg_map *c;
159 u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
160 static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
161
162 if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
163 return;
164
165 c = &mdp->hw;
166 reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
167 for (i = 0; i < cfg->pp_count; i++) {
168 int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
169
170 if (pp_idx >= ARRAY_SIZE(pp_offset))
171 continue;
172
173 reg &= ~(0xf << pp_offset[pp_idx]);
174 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
175 }
176 DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
177
178 if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
179 cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
180 switch (cfg->vsync_source) {
181 case DPU_VSYNC_SOURCE_WD_TIMER_4:
182 wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
183 wd_ctl = MDP_WD_TIMER_4_CTL;
184 wd_ctl2 = MDP_WD_TIMER_4_CTL2;
185 break;
186 case DPU_VSYNC_SOURCE_WD_TIMER_3:
187 wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
188 wd_ctl = MDP_WD_TIMER_3_CTL;
189 wd_ctl2 = MDP_WD_TIMER_3_CTL2;
190 break;
191 case DPU_VSYNC_SOURCE_WD_TIMER_2:
192 wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
193 wd_ctl = MDP_WD_TIMER_2_CTL;
194 wd_ctl2 = MDP_WD_TIMER_2_CTL2;
195 break;
196 case DPU_VSYNC_SOURCE_WD_TIMER_1:
197 wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
198 wd_ctl = MDP_WD_TIMER_1_CTL;
199 wd_ctl2 = MDP_WD_TIMER_1_CTL2;
200 break;
201 case DPU_VSYNC_SOURCE_WD_TIMER_0:
202 default:
203 wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
204 wd_ctl = MDP_WD_TIMER_0_CTL;
205 wd_ctl2 = MDP_WD_TIMER_0_CTL2;
206 break;
207 }
208
209 DPU_REG_WRITE(c, wd_load_value,
210 CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
211
212 DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
213 reg = DPU_REG_READ(c, wd_ctl2);
214 reg |= BIT(8); /* enable heartbeat timer */
215 reg |= BIT(0); /* enable WD timer */
216 DPU_REG_WRITE(c, wd_ctl2, reg);
217
218 /* make sure that timers are enabled/disabled for vsync state */
219 wmb();
220 }
221 }
222
dpu_hw_get_safe_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)223 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
224 struct dpu_danger_safe_status *status)
225 {
226 struct dpu_hw_blk_reg_map *c;
227 u32 value;
228
229 if (!mdp || !status)
230 return;
231
232 c = &mdp->hw;
233
234 value = DPU_REG_READ(c, SAFE_STATUS);
235 status->mdp = (value >> 0) & 0x1;
236 status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
237 status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
238 status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
239 status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
240 status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
241 status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
242 status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
243 status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
244 status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
245 status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
246 status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
247 status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
248 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
249 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
250 }
251
dpu_hw_reset_ubwc(struct dpu_hw_mdp * mdp,struct dpu_mdss_cfg * m)252 static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m)
253 {
254 struct dpu_hw_blk_reg_map c;
255
256 if (!mdp || !m)
257 return;
258
259 if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version))
260 return;
261
262 /* force blk offset to zero to access beginning of register region */
263 c = mdp->hw;
264 c.blk_off = 0x0;
265 DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
266 }
267
dpu_hw_intf_audio_select(struct dpu_hw_mdp * mdp)268 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
269 {
270 struct dpu_hw_blk_reg_map *c;
271
272 if (!mdp)
273 return;
274
275 c = &mdp->hw;
276
277 DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
278 }
279
_setup_mdp_ops(struct dpu_hw_mdp_ops * ops,unsigned long cap)280 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
281 unsigned long cap)
282 {
283 ops->setup_split_pipe = dpu_hw_setup_split_pipe;
284 ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
285 ops->get_danger_status = dpu_hw_get_danger_status;
286 ops->setup_vsync_source = dpu_hw_setup_vsync_source;
287 ops->get_safe_status = dpu_hw_get_safe_status;
288 ops->reset_ubwc = dpu_hw_reset_ubwc;
289 ops->intf_audio_select = dpu_hw_intf_audio_select;
290 }
291
_top_offset(enum dpu_mdp mdp,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)292 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
293 const struct dpu_mdss_cfg *m,
294 void __iomem *addr,
295 struct dpu_hw_blk_reg_map *b)
296 {
297 int i;
298
299 if (!m || !addr || !b)
300 return ERR_PTR(-EINVAL);
301
302 for (i = 0; i < m->mdp_count; i++) {
303 if (mdp == m->mdp[i].id) {
304 b->base_off = addr;
305 b->blk_off = m->mdp[i].base;
306 b->length = m->mdp[i].len;
307 b->hwversion = m->hwversion;
308 b->log_mask = DPU_DBG_MASK_TOP;
309 return &m->mdp[i];
310 }
311 }
312
313 return ERR_PTR(-EINVAL);
314 }
315
316 static struct dpu_hw_blk_ops dpu_hw_ops;
317
dpu_hw_mdptop_init(enum dpu_mdp idx,void __iomem * addr,const struct dpu_mdss_cfg * m)318 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
319 void __iomem *addr,
320 const struct dpu_mdss_cfg *m)
321 {
322 struct dpu_hw_mdp *mdp;
323 const struct dpu_mdp_cfg *cfg;
324
325 if (!addr || !m)
326 return ERR_PTR(-EINVAL);
327
328 mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
329 if (!mdp)
330 return ERR_PTR(-ENOMEM);
331
332 cfg = _top_offset(idx, m, addr, &mdp->hw);
333 if (IS_ERR_OR_NULL(cfg)) {
334 kfree(mdp);
335 return ERR_PTR(-EINVAL);
336 }
337
338 /*
339 * Assign ops
340 */
341 mdp->idx = idx;
342 mdp->caps = cfg;
343 _setup_mdp_ops(&mdp->ops, mdp->caps->features);
344
345 dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops);
346
347 return mdp;
348 }
349
dpu_hw_mdp_destroy(struct dpu_hw_mdp * mdp)350 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
351 {
352 if (mdp)
353 dpu_hw_blk_destroy(&mdp->base);
354 kfree(mdp);
355 }
356
357