1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24
25 #define BHRB_MAX_ENTRIES 32
26 #define BHRB_TARGET 0x0000000000000002
27 #define BHRB_PREDICTION 0x0000000000000001
28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29
30 struct cpu_hw_events {
31 int n_events;
32 int n_percpu;
33 int disabled;
34 int n_added;
35 int n_limited;
36 u8 pmcs_enabled;
37 struct perf_event *event[MAX_HWEVENTS];
38 u64 events[MAX_HWEVENTS];
39 unsigned int flags[MAX_HWEVENTS];
40 /*
41 * The order of the MMCR array is:
42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43 * - 32-bit, MMCR0, MMCR1, MMCR2
44 */
45 unsigned long mmcr[4];
46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51
52 unsigned int txn_flags;
53 int n_txn_start;
54
55 /* BHRB bits */
56 u64 bhrb_filter; /* BHRB HW branch filter */
57 unsigned int bhrb_users;
58 void *bhrb_context;
59 struct perf_branch_stack bhrb_stack;
60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
61 u64 ic_init;
62 };
63
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65
66 static struct power_pmu *ppmu;
67
68 /*
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
74 */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76
77 /*
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
80 */
81 #ifdef CONFIG_PPC32
82
83 #define MMCR0_FCHV 0
84 #define MMCR0_PMCjCE MMCR0_PMCnCE
85 #define MMCR0_FC56 0
86 #define MMCR0_PMAO 0
87 #define MMCR0_EBE 0
88 #define MMCR0_BHRBA 0
89 #define MMCR0_PMCC 0
90 #define MMCR0_PMCC_U6 0
91
92 #define SPRN_MMCRA SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE 0
94
perf_ip_adjust(struct pt_regs * regs)95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97 return 0;
98 }
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)99 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102 return 0;
103 }
perf_read_regs(struct pt_regs * regs)104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106 regs->result = 0;
107 }
perf_intr_is_nmi(struct pt_regs * regs)108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110 return 0;
111 }
112
siar_valid(struct pt_regs * regs)113 static inline int siar_valid(struct pt_regs *regs)
114 {
115 return 1;
116 }
117
is_ebb_event(struct perf_event * event)118 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)119 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)120 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)121 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124 return cpuhw->mmcr[0];
125 }
126
power_pmu_bhrb_enable(struct perf_event * event)127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
power_pmu_bhrb_read(struct cpu_hw_events * cpuhw)130 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133
is_sier_available(void)134 bool is_sier_available(void)
135 {
136 if (ppmu->flags & PPMU_HAS_SIER)
137 return true;
138
139 return false;
140 }
141
regs_use_siar(struct pt_regs * regs)142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144 /*
145 * When we take a performance monitor exception the regs are setup
146 * using perf_read_regs() which overloads some fields, in particular
147 * regs->result to tell us whether to use SIAR.
148 *
149 * However if the regs are from another exception, eg. a syscall, then
150 * they have not been setup using perf_read_regs() and so regs->result
151 * is something random.
152 */
153 return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155
156 /*
157 * Things that are specific to 64-bit implementations.
158 */
159 #ifdef CONFIG_PPC64
160
perf_ip_adjust(struct pt_regs * regs)161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163 unsigned long mmcra = regs->dsisr;
164
165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167 if (slot > 1)
168 return 4 * (slot - 1);
169 }
170
171 return 0;
172 }
173
174 /*
175 * The user wants a data address recorded.
176 * If we're not doing instruction sampling, give them the SDAR
177 * (sampled data address). If we are doing instruction sampling, then
178 * only give them the SDAR if it corresponds to the instruction
179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181 */
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)182 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
183 {
184 unsigned long mmcra = regs->dsisr;
185 bool sdar_valid;
186
187 if (ppmu->flags & PPMU_HAS_SIER)
188 sdar_valid = regs->dar & SIER_SDAR_VALID;
189 else {
190 unsigned long sdsync;
191
192 if (ppmu->flags & PPMU_SIAR_VALID)
193 sdsync = POWER7P_MMCRA_SDAR_VALID;
194 else if (ppmu->flags & PPMU_ALT_SIPR)
195 sdsync = POWER6_MMCRA_SDSYNC;
196 else if (ppmu->flags & PPMU_NO_SIAR)
197 sdsync = MMCRA_SAMPLE_ENABLE;
198 else
199 sdsync = MMCRA_SDSYNC;
200
201 sdar_valid = mmcra & sdsync;
202 }
203
204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205 *addrp = mfspr(SPRN_SDAR);
206
207 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
208 is_kernel_addr(mfspr(SPRN_SDAR)))
209 *addrp = 0;
210 }
211
regs_sihv(struct pt_regs * regs)212 static bool regs_sihv(struct pt_regs *regs)
213 {
214 unsigned long sihv = MMCRA_SIHV;
215
216 if (ppmu->flags & PPMU_HAS_SIER)
217 return !!(regs->dar & SIER_SIHV);
218
219 if (ppmu->flags & PPMU_ALT_SIPR)
220 sihv = POWER6_MMCRA_SIHV;
221
222 return !!(regs->dsisr & sihv);
223 }
224
regs_sipr(struct pt_regs * regs)225 static bool regs_sipr(struct pt_regs *regs)
226 {
227 unsigned long sipr = MMCRA_SIPR;
228
229 if (ppmu->flags & PPMU_HAS_SIER)
230 return !!(regs->dar & SIER_SIPR);
231
232 if (ppmu->flags & PPMU_ALT_SIPR)
233 sipr = POWER6_MMCRA_SIPR;
234
235 return !!(regs->dsisr & sipr);
236 }
237
perf_flags_from_msr(struct pt_regs * regs)238 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
239 {
240 if (regs->msr & MSR_PR)
241 return PERF_RECORD_MISC_USER;
242 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
243 return PERF_RECORD_MISC_HYPERVISOR;
244 return PERF_RECORD_MISC_KERNEL;
245 }
246
perf_get_misc_flags(struct pt_regs * regs)247 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
248 {
249 bool use_siar = regs_use_siar(regs);
250
251 if (!use_siar)
252 return perf_flags_from_msr(regs);
253
254 /*
255 * If we don't have flags in MMCRA, rather than using
256 * the MSR, we intuit the flags from the address in
257 * SIAR which should give slightly more reliable
258 * results
259 */
260 if (ppmu->flags & PPMU_NO_SIPR) {
261 unsigned long siar = mfspr(SPRN_SIAR);
262 if (is_kernel_addr(siar))
263 return PERF_RECORD_MISC_KERNEL;
264 return PERF_RECORD_MISC_USER;
265 }
266
267 /* PR has priority over HV, so order below is important */
268 if (regs_sipr(regs))
269 return PERF_RECORD_MISC_USER;
270
271 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
272 return PERF_RECORD_MISC_HYPERVISOR;
273
274 return PERF_RECORD_MISC_KERNEL;
275 }
276
277 /*
278 * Overload regs->dsisr to store MMCRA so we only need to read it once
279 * on each interrupt.
280 * Overload regs->dar to store SIER if we have it.
281 * Overload regs->result to specify whether we should use the MSR (result
282 * is zero) or the SIAR (result is non zero).
283 */
perf_read_regs(struct pt_regs * regs)284 static inline void perf_read_regs(struct pt_regs *regs)
285 {
286 unsigned long mmcra = mfspr(SPRN_MMCRA);
287 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
288 int use_siar;
289
290 regs->dsisr = mmcra;
291
292 if (ppmu->flags & PPMU_HAS_SIER)
293 regs->dar = mfspr(SPRN_SIER);
294
295 /*
296 * If this isn't a PMU exception (eg a software event) the SIAR is
297 * not valid. Use pt_regs.
298 *
299 * If it is a marked event use the SIAR.
300 *
301 * If the PMU doesn't update the SIAR for non marked events use
302 * pt_regs.
303 *
304 * If the PMU has HV/PR flags then check to see if they
305 * place the exception in userspace. If so, use pt_regs. In
306 * continuous sampling mode the SIAR and the PMU exception are
307 * not synchronised, so they may be many instructions apart.
308 * This can result in confusing backtraces. We still want
309 * hypervisor samples as well as samples in the kernel with
310 * interrupts off hence the userspace check.
311 */
312 if (TRAP(regs) != 0xf00)
313 use_siar = 0;
314 else if ((ppmu->flags & PPMU_NO_SIAR))
315 use_siar = 0;
316 else if (marked)
317 use_siar = 1;
318 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
319 use_siar = 0;
320 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
321 use_siar = 0;
322 else
323 use_siar = 1;
324
325 regs->result = use_siar;
326 }
327
328 /*
329 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
330 * it as an NMI.
331 */
perf_intr_is_nmi(struct pt_regs * regs)332 static inline int perf_intr_is_nmi(struct pt_regs *regs)
333 {
334 return (regs->softe & IRQS_DISABLED);
335 }
336
337 /*
338 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
339 * must be sampled only if the SIAR-valid bit is set.
340 *
341 * For unmarked instructions and for processors that don't have the SIAR-Valid
342 * bit, assume that SIAR is valid.
343 */
siar_valid(struct pt_regs * regs)344 static inline int siar_valid(struct pt_regs *regs)
345 {
346 unsigned long mmcra = regs->dsisr;
347 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
348
349 if (marked) {
350 if (ppmu->flags & PPMU_HAS_SIER)
351 return regs->dar & SIER_SIAR_VALID;
352
353 if (ppmu->flags & PPMU_SIAR_VALID)
354 return mmcra & POWER7P_MMCRA_SIAR_VALID;
355 }
356
357 return 1;
358 }
359
360
361 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)362 static void power_pmu_bhrb_reset(void)
363 {
364 asm volatile(PPC_CLRBHRB);
365 }
366
power_pmu_bhrb_enable(struct perf_event * event)367 static void power_pmu_bhrb_enable(struct perf_event *event)
368 {
369 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
370
371 if (!ppmu->bhrb_nr)
372 return;
373
374 /* Clear BHRB if we changed task context to avoid data leaks */
375 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
376 power_pmu_bhrb_reset();
377 cpuhw->bhrb_context = event->ctx;
378 }
379 cpuhw->bhrb_users++;
380 perf_sched_cb_inc(event->ctx->pmu);
381 }
382
power_pmu_bhrb_disable(struct perf_event * event)383 static void power_pmu_bhrb_disable(struct perf_event *event)
384 {
385 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
386
387 if (!ppmu->bhrb_nr)
388 return;
389
390 WARN_ON_ONCE(!cpuhw->bhrb_users);
391 cpuhw->bhrb_users--;
392 perf_sched_cb_dec(event->ctx->pmu);
393
394 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
395 /* BHRB cannot be turned off when other
396 * events are active on the PMU.
397 */
398
399 /* avoid stale pointer */
400 cpuhw->bhrb_context = NULL;
401 }
402 }
403
404 /* Called from ctxsw to prevent one process's branch entries to
405 * mingle with the other process's entries during context switch.
406 */
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)407 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
408 {
409 if (!ppmu->bhrb_nr)
410 return;
411
412 if (sched_in)
413 power_pmu_bhrb_reset();
414 }
415 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)416 static __u64 power_pmu_bhrb_to(u64 addr)
417 {
418 unsigned int instr;
419 int ret;
420 __u64 target;
421
422 if (is_kernel_addr(addr)) {
423 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
424 return 0;
425
426 return branch_target(&instr);
427 }
428
429 /* Userspace: need copy instruction here then translate it */
430 pagefault_disable();
431 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
432 if (ret) {
433 pagefault_enable();
434 return 0;
435 }
436 pagefault_enable();
437
438 target = branch_target(&instr);
439 if ((!target) || (instr & BRANCH_ABSOLUTE))
440 return target;
441
442 /* Translate relative branch target from kernel to user address */
443 return target - (unsigned long)&instr + addr;
444 }
445
446 /* Processing BHRB entries */
power_pmu_bhrb_read(struct cpu_hw_events * cpuhw)447 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
448 {
449 u64 val;
450 u64 addr;
451 int r_index, u_index, pred;
452
453 r_index = 0;
454 u_index = 0;
455 while (r_index < ppmu->bhrb_nr) {
456 /* Assembly read function */
457 val = read_bhrb(r_index++);
458 if (!val)
459 /* Terminal marker: End of valid BHRB entries */
460 break;
461 else {
462 addr = val & BHRB_EA;
463 pred = val & BHRB_PREDICTION;
464
465 if (!addr)
466 /* invalid entry */
467 continue;
468
469 /*
470 * BHRB rolling buffer could very much contain the kernel
471 * addresses at this point. Check the privileges before
472 * exporting it to userspace (avoid exposure of regions
473 * where we could have speculative execution)
474 */
475 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
476 is_kernel_addr(addr))
477 continue;
478
479 /* Branches are read most recent first (ie. mfbhrb 0 is
480 * the most recent branch).
481 * There are two types of valid entries:
482 * 1) a target entry which is the to address of a
483 * computed goto like a blr,bctr,btar. The next
484 * entry read from the bhrb will be branch
485 * corresponding to this target (ie. the actual
486 * blr/bctr/btar instruction).
487 * 2) a from address which is an actual branch. If a
488 * target entry proceeds this, then this is the
489 * matching branch for that target. If this is not
490 * following a target entry, then this is a branch
491 * where the target is given as an immediate field
492 * in the instruction (ie. an i or b form branch).
493 * In this case we need to read the instruction from
494 * memory to determine the target/to address.
495 */
496
497 if (val & BHRB_TARGET) {
498 /* Target branches use two entries
499 * (ie. computed gotos/XL form)
500 */
501 cpuhw->bhrb_entries[u_index].to = addr;
502 cpuhw->bhrb_entries[u_index].mispred = pred;
503 cpuhw->bhrb_entries[u_index].predicted = ~pred;
504
505 /* Get from address in next entry */
506 val = read_bhrb(r_index++);
507 addr = val & BHRB_EA;
508 if (val & BHRB_TARGET) {
509 /* Shouldn't have two targets in a
510 row.. Reset index and try again */
511 r_index--;
512 addr = 0;
513 }
514 cpuhw->bhrb_entries[u_index].from = addr;
515 } else {
516 /* Branches to immediate field
517 (ie I or B form) */
518 cpuhw->bhrb_entries[u_index].from = addr;
519 cpuhw->bhrb_entries[u_index].to =
520 power_pmu_bhrb_to(addr);
521 cpuhw->bhrb_entries[u_index].mispred = pred;
522 cpuhw->bhrb_entries[u_index].predicted = ~pred;
523 }
524 u_index++;
525
526 }
527 }
528 cpuhw->bhrb_stack.nr = u_index;
529 return;
530 }
531
is_ebb_event(struct perf_event * event)532 static bool is_ebb_event(struct perf_event *event)
533 {
534 /*
535 * This could be a per-PMU callback, but we'd rather avoid the cost. We
536 * check that the PMU supports EBB, meaning those that don't can still
537 * use bit 63 of the event code for something else if they wish.
538 */
539 return (ppmu->flags & PPMU_ARCH_207S) &&
540 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
541 }
542
ebb_event_check(struct perf_event * event)543 static int ebb_event_check(struct perf_event *event)
544 {
545 struct perf_event *leader = event->group_leader;
546
547 /* Event and group leader must agree on EBB */
548 if (is_ebb_event(leader) != is_ebb_event(event))
549 return -EINVAL;
550
551 if (is_ebb_event(event)) {
552 if (!(event->attach_state & PERF_ATTACH_TASK))
553 return -EINVAL;
554
555 if (!leader->attr.pinned || !leader->attr.exclusive)
556 return -EINVAL;
557
558 if (event->attr.freq ||
559 event->attr.inherit ||
560 event->attr.sample_type ||
561 event->attr.sample_period ||
562 event->attr.enable_on_exec)
563 return -EINVAL;
564 }
565
566 return 0;
567 }
568
ebb_event_add(struct perf_event * event)569 static void ebb_event_add(struct perf_event *event)
570 {
571 if (!is_ebb_event(event) || current->thread.used_ebb)
572 return;
573
574 /*
575 * IFF this is the first time we've added an EBB event, set
576 * PMXE in the user MMCR0 so we can detect when it's cleared by
577 * userspace. We need this so that we can context switch while
578 * userspace is in the EBB handler (where PMXE is 0).
579 */
580 current->thread.used_ebb = 1;
581 current->thread.mmcr0 |= MMCR0_PMXE;
582 }
583
ebb_switch_out(unsigned long mmcr0)584 static void ebb_switch_out(unsigned long mmcr0)
585 {
586 if (!(mmcr0 & MMCR0_EBE))
587 return;
588
589 current->thread.siar = mfspr(SPRN_SIAR);
590 current->thread.sier = mfspr(SPRN_SIER);
591 current->thread.sdar = mfspr(SPRN_SDAR);
592 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
593 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
594 }
595
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)596 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
597 {
598 unsigned long mmcr0 = cpuhw->mmcr[0];
599
600 if (!ebb)
601 goto out;
602
603 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
604 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
605
606 /*
607 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
608 * with pmao_restore_workaround() because we may add PMAO but we never
609 * clear it here.
610 */
611 mmcr0 |= current->thread.mmcr0;
612
613 /*
614 * Be careful not to set PMXE if userspace had it cleared. This is also
615 * compatible with pmao_restore_workaround() because it has already
616 * cleared PMXE and we leave PMAO alone.
617 */
618 if (!(current->thread.mmcr0 & MMCR0_PMXE))
619 mmcr0 &= ~MMCR0_PMXE;
620
621 mtspr(SPRN_SIAR, current->thread.siar);
622 mtspr(SPRN_SIER, current->thread.sier);
623 mtspr(SPRN_SDAR, current->thread.sdar);
624
625 /*
626 * Merge the kernel & user values of MMCR2. The semantics we implement
627 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
628 * but not clear bits. If a task wants to be able to clear bits, ie.
629 * unfreeze counters, it should not set exclude_xxx in its events and
630 * instead manage the MMCR2 entirely by itself.
631 */
632 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
633 out:
634 return mmcr0;
635 }
636
pmao_restore_workaround(bool ebb)637 static void pmao_restore_workaround(bool ebb)
638 {
639 unsigned pmcs[6];
640
641 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
642 return;
643
644 /*
645 * On POWER8E there is a hardware defect which affects the PMU context
646 * switch logic, ie. power_pmu_disable/enable().
647 *
648 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
649 * by the hardware. Sometime later the actual PMU exception is
650 * delivered.
651 *
652 * If we context switch, or simply disable/enable, the PMU prior to the
653 * exception arriving, the exception will be lost when we clear PMAO.
654 *
655 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
656 * set, and this _should_ generate an exception. However because of the
657 * defect no exception is generated when we write PMAO, and we get
658 * stuck with no counters counting but no exception delivered.
659 *
660 * The workaround is to detect this case and tweak the hardware to
661 * create another pending PMU exception.
662 *
663 * We do that by setting up PMC6 (cycles) for an imminent overflow and
664 * enabling the PMU. That causes a new exception to be generated in the
665 * chip, but we don't take it yet because we have interrupts hard
666 * disabled. We then write back the PMU state as we want it to be seen
667 * by the exception handler. When we reenable interrupts the exception
668 * handler will be called and see the correct state.
669 *
670 * The logic is the same for EBB, except that the exception is gated by
671 * us having interrupts hard disabled as well as the fact that we are
672 * not in userspace. The exception is finally delivered when we return
673 * to userspace.
674 */
675
676 /* Only if PMAO is set and PMAO_SYNC is clear */
677 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
678 return;
679
680 /* If we're doing EBB, only if BESCR[GE] is set */
681 if (ebb && !(current->thread.bescr & BESCR_GE))
682 return;
683
684 /*
685 * We are already soft-disabled in power_pmu_enable(). We need to hard
686 * disable to actually prevent the PMU exception from firing.
687 */
688 hard_irq_disable();
689
690 /*
691 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
692 * Using read/write_pmc() in a for loop adds 12 function calls and
693 * almost doubles our code size.
694 */
695 pmcs[0] = mfspr(SPRN_PMC1);
696 pmcs[1] = mfspr(SPRN_PMC2);
697 pmcs[2] = mfspr(SPRN_PMC3);
698 pmcs[3] = mfspr(SPRN_PMC4);
699 pmcs[4] = mfspr(SPRN_PMC5);
700 pmcs[5] = mfspr(SPRN_PMC6);
701
702 /* Ensure all freeze bits are unset */
703 mtspr(SPRN_MMCR2, 0);
704
705 /* Set up PMC6 to overflow in one cycle */
706 mtspr(SPRN_PMC6, 0x7FFFFFFE);
707
708 /* Enable exceptions and unfreeze PMC6 */
709 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
710
711 /* Now we need to refreeze and restore the PMCs */
712 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
713
714 mtspr(SPRN_PMC1, pmcs[0]);
715 mtspr(SPRN_PMC2, pmcs[1]);
716 mtspr(SPRN_PMC3, pmcs[2]);
717 mtspr(SPRN_PMC4, pmcs[3]);
718 mtspr(SPRN_PMC5, pmcs[4]);
719 mtspr(SPRN_PMC6, pmcs[5]);
720 }
721
722 #endif /* CONFIG_PPC64 */
723
724 static void perf_event_interrupt(struct pt_regs *regs);
725
726 /*
727 * Read one performance monitor counter (PMC).
728 */
read_pmc(int idx)729 static unsigned long read_pmc(int idx)
730 {
731 unsigned long val;
732
733 switch (idx) {
734 case 1:
735 val = mfspr(SPRN_PMC1);
736 break;
737 case 2:
738 val = mfspr(SPRN_PMC2);
739 break;
740 case 3:
741 val = mfspr(SPRN_PMC3);
742 break;
743 case 4:
744 val = mfspr(SPRN_PMC4);
745 break;
746 case 5:
747 val = mfspr(SPRN_PMC5);
748 break;
749 case 6:
750 val = mfspr(SPRN_PMC6);
751 break;
752 #ifdef CONFIG_PPC64
753 case 7:
754 val = mfspr(SPRN_PMC7);
755 break;
756 case 8:
757 val = mfspr(SPRN_PMC8);
758 break;
759 #endif /* CONFIG_PPC64 */
760 default:
761 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
762 val = 0;
763 }
764 return val;
765 }
766
767 /*
768 * Write one PMC.
769 */
write_pmc(int idx,unsigned long val)770 static void write_pmc(int idx, unsigned long val)
771 {
772 switch (idx) {
773 case 1:
774 mtspr(SPRN_PMC1, val);
775 break;
776 case 2:
777 mtspr(SPRN_PMC2, val);
778 break;
779 case 3:
780 mtspr(SPRN_PMC3, val);
781 break;
782 case 4:
783 mtspr(SPRN_PMC4, val);
784 break;
785 case 5:
786 mtspr(SPRN_PMC5, val);
787 break;
788 case 6:
789 mtspr(SPRN_PMC6, val);
790 break;
791 #ifdef CONFIG_PPC64
792 case 7:
793 mtspr(SPRN_PMC7, val);
794 break;
795 case 8:
796 mtspr(SPRN_PMC8, val);
797 break;
798 #endif /* CONFIG_PPC64 */
799 default:
800 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
801 }
802 }
803
804 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)805 void perf_event_print_debug(void)
806 {
807 unsigned long sdar, sier, flags;
808 u32 pmcs[MAX_HWEVENTS];
809 int i;
810
811 if (!ppmu) {
812 pr_info("Performance monitor hardware not registered.\n");
813 return;
814 }
815
816 if (!ppmu->n_counter)
817 return;
818
819 local_irq_save(flags);
820
821 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
822 smp_processor_id(), ppmu->name, ppmu->n_counter);
823
824 for (i = 0; i < ppmu->n_counter; i++)
825 pmcs[i] = read_pmc(i + 1);
826
827 for (; i < MAX_HWEVENTS; i++)
828 pmcs[i] = 0xdeadbeef;
829
830 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
831 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
832
833 if (ppmu->n_counter > 4)
834 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
835 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
836
837 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
838 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
839
840 sdar = sier = 0;
841 #ifdef CONFIG_PPC64
842 sdar = mfspr(SPRN_SDAR);
843
844 if (ppmu->flags & PPMU_HAS_SIER)
845 sier = mfspr(SPRN_SIER);
846
847 if (ppmu->flags & PPMU_ARCH_207S) {
848 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
849 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
850 pr_info("EBBRR: %016lx BESCR: %016lx\n",
851 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
852 }
853 #endif
854 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
855 mfspr(SPRN_SIAR), sdar, sier);
856
857 local_irq_restore(flags);
858 }
859
860 /*
861 * Check if a set of events can all go on the PMU at once.
862 * If they can't, this will look at alternative codes for the events
863 * and see if any combination of alternative codes is feasible.
864 * The feasible set is returned in event_id[].
865 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)866 static int power_check_constraints(struct cpu_hw_events *cpuhw,
867 u64 event_id[], unsigned int cflags[],
868 int n_ev)
869 {
870 unsigned long mask, value, nv;
871 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
872 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
873 int i, j;
874 unsigned long addf = ppmu->add_fields;
875 unsigned long tadd = ppmu->test_adder;
876 unsigned long grp_mask = ppmu->group_constraint_mask;
877 unsigned long grp_val = ppmu->group_constraint_val;
878
879 if (n_ev > ppmu->n_counter)
880 return -1;
881
882 /* First see if the events will go on as-is */
883 for (i = 0; i < n_ev; ++i) {
884 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
885 && !ppmu->limited_pmc_event(event_id[i])) {
886 ppmu->get_alternatives(event_id[i], cflags[i],
887 cpuhw->alternatives[i]);
888 event_id[i] = cpuhw->alternatives[i][0];
889 }
890 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
891 &cpuhw->avalues[i][0]))
892 return -1;
893 }
894 value = mask = 0;
895 for (i = 0; i < n_ev; ++i) {
896 nv = (value | cpuhw->avalues[i][0]) +
897 (value & cpuhw->avalues[i][0] & addf);
898
899 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
900 break;
901
902 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
903 & (~grp_mask)) != 0)
904 break;
905
906 value = nv;
907 mask |= cpuhw->amasks[i][0];
908 }
909 if (i == n_ev) {
910 if ((value & mask & grp_mask) != (mask & grp_val))
911 return -1;
912 else
913 return 0; /* all OK */
914 }
915
916 /* doesn't work, gather alternatives... */
917 if (!ppmu->get_alternatives)
918 return -1;
919 for (i = 0; i < n_ev; ++i) {
920 choice[i] = 0;
921 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
922 cpuhw->alternatives[i]);
923 for (j = 1; j < n_alt[i]; ++j)
924 ppmu->get_constraint(cpuhw->alternatives[i][j],
925 &cpuhw->amasks[i][j],
926 &cpuhw->avalues[i][j]);
927 }
928
929 /* enumerate all possibilities and see if any will work */
930 i = 0;
931 j = -1;
932 value = mask = nv = 0;
933 while (i < n_ev) {
934 if (j >= 0) {
935 /* we're backtracking, restore context */
936 value = svalues[i];
937 mask = smasks[i];
938 j = choice[i];
939 }
940 /*
941 * See if any alternative k for event_id i,
942 * where k > j, will satisfy the constraints.
943 */
944 while (++j < n_alt[i]) {
945 nv = (value | cpuhw->avalues[i][j]) +
946 (value & cpuhw->avalues[i][j] & addf);
947 if ((((nv + tadd) ^ value) & mask) == 0 &&
948 (((nv + tadd) ^ cpuhw->avalues[i][j])
949 & cpuhw->amasks[i][j]) == 0)
950 break;
951 }
952 if (j >= n_alt[i]) {
953 /*
954 * No feasible alternative, backtrack
955 * to event_id i-1 and continue enumerating its
956 * alternatives from where we got up to.
957 */
958 if (--i < 0)
959 return -1;
960 } else {
961 /*
962 * Found a feasible alternative for event_id i,
963 * remember where we got up to with this event_id,
964 * go on to the next event_id, and start with
965 * the first alternative for it.
966 */
967 choice[i] = j;
968 svalues[i] = value;
969 smasks[i] = mask;
970 value = nv;
971 mask |= cpuhw->amasks[i][j];
972 ++i;
973 j = -1;
974 }
975 }
976
977 /* OK, we have a feasible combination, tell the caller the solution */
978 for (i = 0; i < n_ev; ++i)
979 event_id[i] = cpuhw->alternatives[i][choice[i]];
980 return 0;
981 }
982
983 /*
984 * Check if newly-added events have consistent settings for
985 * exclude_{user,kernel,hv} with each other and any previously
986 * added events.
987 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)988 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
989 int n_prev, int n_new)
990 {
991 int eu = 0, ek = 0, eh = 0;
992 int i, n, first;
993 struct perf_event *event;
994
995 /*
996 * If the PMU we're on supports per event exclude settings then we
997 * don't need to do any of this logic. NB. This assumes no PMU has both
998 * per event exclude and limited PMCs.
999 */
1000 if (ppmu->flags & PPMU_ARCH_207S)
1001 return 0;
1002
1003 n = n_prev + n_new;
1004 if (n <= 1)
1005 return 0;
1006
1007 first = 1;
1008 for (i = 0; i < n; ++i) {
1009 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1010 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1011 continue;
1012 }
1013 event = ctrs[i];
1014 if (first) {
1015 eu = event->attr.exclude_user;
1016 ek = event->attr.exclude_kernel;
1017 eh = event->attr.exclude_hv;
1018 first = 0;
1019 } else if (event->attr.exclude_user != eu ||
1020 event->attr.exclude_kernel != ek ||
1021 event->attr.exclude_hv != eh) {
1022 return -EAGAIN;
1023 }
1024 }
1025
1026 if (eu || ek || eh)
1027 for (i = 0; i < n; ++i)
1028 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1029 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1030
1031 return 0;
1032 }
1033
check_and_compute_delta(u64 prev,u64 val)1034 static u64 check_and_compute_delta(u64 prev, u64 val)
1035 {
1036 u64 delta = (val - prev) & 0xfffffffful;
1037
1038 /*
1039 * POWER7 can roll back counter values, if the new value is smaller
1040 * than the previous value it will cause the delta and the counter to
1041 * have bogus values unless we rolled a counter over. If a coutner is
1042 * rolled back, it will be smaller, but within 256, which is the maximum
1043 * number of events to rollback at once. If we detect a rollback
1044 * return 0. This can lead to a small lack of precision in the
1045 * counters.
1046 */
1047 if (prev > val && (prev - val) < 256)
1048 delta = 0;
1049
1050 return delta;
1051 }
1052
power_pmu_read(struct perf_event * event)1053 static void power_pmu_read(struct perf_event *event)
1054 {
1055 s64 val, delta, prev;
1056
1057 if (event->hw.state & PERF_HES_STOPPED)
1058 return;
1059
1060 if (!event->hw.idx)
1061 return;
1062
1063 if (is_ebb_event(event)) {
1064 val = read_pmc(event->hw.idx);
1065 local64_set(&event->hw.prev_count, val);
1066 return;
1067 }
1068
1069 /*
1070 * Performance monitor interrupts come even when interrupts
1071 * are soft-disabled, as long as interrupts are hard-enabled.
1072 * Therefore we treat them like NMIs.
1073 */
1074 do {
1075 prev = local64_read(&event->hw.prev_count);
1076 barrier();
1077 val = read_pmc(event->hw.idx);
1078 delta = check_and_compute_delta(prev, val);
1079 if (!delta)
1080 return;
1081 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1082
1083 local64_add(delta, &event->count);
1084
1085 /*
1086 * A number of places program the PMC with (0x80000000 - period_left).
1087 * We never want period_left to be less than 1 because we will program
1088 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1089 * roll around to 0 before taking an exception. We have seen this
1090 * on POWER8.
1091 *
1092 * To fix this, clamp the minimum value of period_left to 1.
1093 */
1094 do {
1095 prev = local64_read(&event->hw.period_left);
1096 val = prev - delta;
1097 if (val < 1)
1098 val = 1;
1099 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1100 }
1101
1102 /*
1103 * On some machines, PMC5 and PMC6 can't be written, don't respect
1104 * the freeze conditions, and don't generate interrupts. This tells
1105 * us if `event' is using such a PMC.
1106 */
is_limited_pmc(int pmcnum)1107 static int is_limited_pmc(int pmcnum)
1108 {
1109 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1110 && (pmcnum == 5 || pmcnum == 6);
1111 }
1112
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1113 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1114 unsigned long pmc5, unsigned long pmc6)
1115 {
1116 struct perf_event *event;
1117 u64 val, prev, delta;
1118 int i;
1119
1120 for (i = 0; i < cpuhw->n_limited; ++i) {
1121 event = cpuhw->limited_counter[i];
1122 if (!event->hw.idx)
1123 continue;
1124 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125 prev = local64_read(&event->hw.prev_count);
1126 event->hw.idx = 0;
1127 delta = check_and_compute_delta(prev, val);
1128 if (delta)
1129 local64_add(delta, &event->count);
1130 }
1131 }
1132
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1133 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1134 unsigned long pmc5, unsigned long pmc6)
1135 {
1136 struct perf_event *event;
1137 u64 val, prev;
1138 int i;
1139
1140 for (i = 0; i < cpuhw->n_limited; ++i) {
1141 event = cpuhw->limited_counter[i];
1142 event->hw.idx = cpuhw->limited_hwidx[i];
1143 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1144 prev = local64_read(&event->hw.prev_count);
1145 if (check_and_compute_delta(prev, val))
1146 local64_set(&event->hw.prev_count, val);
1147 perf_event_update_userpage(event);
1148 }
1149 }
1150
1151 /*
1152 * Since limited events don't respect the freeze conditions, we
1153 * have to read them immediately after freezing or unfreezing the
1154 * other events. We try to keep the values from the limited
1155 * events as consistent as possible by keeping the delay (in
1156 * cycles and instructions) between freezing/unfreezing and reading
1157 * the limited events as small and consistent as possible.
1158 * Therefore, if any limited events are in use, we read them
1159 * both, and always in the same order, to minimize variability,
1160 * and do it inside the same asm that writes MMCR0.
1161 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1162 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1163 {
1164 unsigned long pmc5, pmc6;
1165
1166 if (!cpuhw->n_limited) {
1167 mtspr(SPRN_MMCR0, mmcr0);
1168 return;
1169 }
1170
1171 /*
1172 * Write MMCR0, then read PMC5 and PMC6 immediately.
1173 * To ensure we don't get a performance monitor interrupt
1174 * between writing MMCR0 and freezing/thawing the limited
1175 * events, we first write MMCR0 with the event overflow
1176 * interrupt enable bits turned off.
1177 */
1178 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1179 : "=&r" (pmc5), "=&r" (pmc6)
1180 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1181 "i" (SPRN_MMCR0),
1182 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1183
1184 if (mmcr0 & MMCR0_FC)
1185 freeze_limited_counters(cpuhw, pmc5, pmc6);
1186 else
1187 thaw_limited_counters(cpuhw, pmc5, pmc6);
1188
1189 /*
1190 * Write the full MMCR0 including the event overflow interrupt
1191 * enable bits, if necessary.
1192 */
1193 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1194 mtspr(SPRN_MMCR0, mmcr0);
1195 }
1196
1197 /*
1198 * Disable all events to prevent PMU interrupts and to allow
1199 * events to be added or removed.
1200 */
power_pmu_disable(struct pmu * pmu)1201 static void power_pmu_disable(struct pmu *pmu)
1202 {
1203 struct cpu_hw_events *cpuhw;
1204 unsigned long flags, mmcr0, val;
1205
1206 if (!ppmu)
1207 return;
1208 local_irq_save(flags);
1209 cpuhw = this_cpu_ptr(&cpu_hw_events);
1210
1211 if (!cpuhw->disabled) {
1212 /*
1213 * Check if we ever enabled the PMU on this cpu.
1214 */
1215 if (!cpuhw->pmcs_enabled) {
1216 ppc_enable_pmcs();
1217 cpuhw->pmcs_enabled = 1;
1218 }
1219
1220 /*
1221 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1222 */
1223 val = mmcr0 = mfspr(SPRN_MMCR0);
1224 val |= MMCR0_FC;
1225 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1226 MMCR0_FC56);
1227
1228 /*
1229 * The barrier is to make sure the mtspr has been
1230 * executed and the PMU has frozen the events etc.
1231 * before we return.
1232 */
1233 write_mmcr0(cpuhw, val);
1234 mb();
1235 isync();
1236
1237 /*
1238 * Disable instruction sampling if it was enabled
1239 */
1240 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1241 mtspr(SPRN_MMCRA,
1242 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1243 mb();
1244 isync();
1245 }
1246
1247 cpuhw->disabled = 1;
1248 cpuhw->n_added = 0;
1249
1250 ebb_switch_out(mmcr0);
1251
1252 #ifdef CONFIG_PPC64
1253 /*
1254 * These are readable by userspace, may contain kernel
1255 * addresses and are not switched by context switch, so clear
1256 * them now to avoid leaking anything to userspace in general
1257 * including to another process.
1258 */
1259 if (ppmu->flags & PPMU_ARCH_207S) {
1260 mtspr(SPRN_SDAR, 0);
1261 mtspr(SPRN_SIAR, 0);
1262 }
1263 #endif
1264 }
1265
1266 local_irq_restore(flags);
1267 }
1268
1269 /*
1270 * Re-enable all events if disable == 0.
1271 * If we were previously disabled and events were added, then
1272 * put the new config on the PMU.
1273 */
power_pmu_enable(struct pmu * pmu)1274 static void power_pmu_enable(struct pmu *pmu)
1275 {
1276 struct perf_event *event;
1277 struct cpu_hw_events *cpuhw;
1278 unsigned long flags;
1279 long i;
1280 unsigned long val, mmcr0;
1281 s64 left;
1282 unsigned int hwc_index[MAX_HWEVENTS];
1283 int n_lim;
1284 int idx;
1285 bool ebb;
1286
1287 if (!ppmu)
1288 return;
1289 local_irq_save(flags);
1290
1291 cpuhw = this_cpu_ptr(&cpu_hw_events);
1292 if (!cpuhw->disabled)
1293 goto out;
1294
1295 if (cpuhw->n_events == 0) {
1296 ppc_set_pmu_inuse(0);
1297 goto out;
1298 }
1299
1300 cpuhw->disabled = 0;
1301
1302 /*
1303 * EBB requires an exclusive group and all events must have the EBB
1304 * flag set, or not set, so we can just check a single event. Also we
1305 * know we have at least one event.
1306 */
1307 ebb = is_ebb_event(cpuhw->event[0]);
1308
1309 /*
1310 * If we didn't change anything, or only removed events,
1311 * no need to recalculate MMCR* settings and reset the PMCs.
1312 * Just reenable the PMU with the current MMCR* settings
1313 * (possibly updated for removal of events).
1314 */
1315 if (!cpuhw->n_added) {
1316 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1317 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1318 goto out_enable;
1319 }
1320
1321 /*
1322 * Clear all MMCR settings and recompute them for the new set of events.
1323 */
1324 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1325
1326 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1327 cpuhw->mmcr, cpuhw->event)) {
1328 /* shouldn't ever get here */
1329 printk(KERN_ERR "oops compute_mmcr failed\n");
1330 goto out;
1331 }
1332
1333 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1334 /*
1335 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1336 * bits for the first event. We have already checked that all
1337 * events have the same value for these bits as the first event.
1338 */
1339 event = cpuhw->event[0];
1340 if (event->attr.exclude_user)
1341 cpuhw->mmcr[0] |= MMCR0_FCP;
1342 if (event->attr.exclude_kernel)
1343 cpuhw->mmcr[0] |= freeze_events_kernel;
1344 if (event->attr.exclude_hv)
1345 cpuhw->mmcr[0] |= MMCR0_FCHV;
1346 }
1347
1348 /*
1349 * Write the new configuration to MMCR* with the freeze
1350 * bit set and set the hardware events to their initial values.
1351 * Then unfreeze the events.
1352 */
1353 ppc_set_pmu_inuse(1);
1354 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1355 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1356 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1357 | MMCR0_FC);
1358 if (ppmu->flags & PPMU_ARCH_207S)
1359 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1360
1361 /*
1362 * Read off any pre-existing events that need to move
1363 * to another PMC.
1364 */
1365 for (i = 0; i < cpuhw->n_events; ++i) {
1366 event = cpuhw->event[i];
1367 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1368 power_pmu_read(event);
1369 write_pmc(event->hw.idx, 0);
1370 event->hw.idx = 0;
1371 }
1372 }
1373
1374 /*
1375 * Initialize the PMCs for all the new and moved events.
1376 */
1377 cpuhw->n_limited = n_lim = 0;
1378 for (i = 0; i < cpuhw->n_events; ++i) {
1379 event = cpuhw->event[i];
1380 if (event->hw.idx)
1381 continue;
1382 idx = hwc_index[i] + 1;
1383 if (is_limited_pmc(idx)) {
1384 cpuhw->limited_counter[n_lim] = event;
1385 cpuhw->limited_hwidx[n_lim] = idx;
1386 ++n_lim;
1387 continue;
1388 }
1389
1390 if (ebb)
1391 val = local64_read(&event->hw.prev_count);
1392 else {
1393 val = 0;
1394 if (event->hw.sample_period) {
1395 left = local64_read(&event->hw.period_left);
1396 if (left < 0x80000000L)
1397 val = 0x80000000L - left;
1398 }
1399 local64_set(&event->hw.prev_count, val);
1400 }
1401
1402 event->hw.idx = idx;
1403 if (event->hw.state & PERF_HES_STOPPED)
1404 val = 0;
1405 write_pmc(idx, val);
1406
1407 perf_event_update_userpage(event);
1408 }
1409 cpuhw->n_limited = n_lim;
1410 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1411
1412 out_enable:
1413 pmao_restore_workaround(ebb);
1414
1415 mmcr0 = ebb_switch_in(ebb, cpuhw);
1416
1417 mb();
1418 if (cpuhw->bhrb_users)
1419 ppmu->config_bhrb(cpuhw->bhrb_filter);
1420
1421 write_mmcr0(cpuhw, mmcr0);
1422
1423 /*
1424 * Enable instruction sampling if necessary
1425 */
1426 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1427 mb();
1428 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1429 }
1430
1431 out:
1432
1433 local_irq_restore(flags);
1434 }
1435
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1436 static int collect_events(struct perf_event *group, int max_count,
1437 struct perf_event *ctrs[], u64 *events,
1438 unsigned int *flags)
1439 {
1440 int n = 0;
1441 struct perf_event *event;
1442
1443 if (group->pmu->task_ctx_nr == perf_hw_context) {
1444 if (n >= max_count)
1445 return -1;
1446 ctrs[n] = group;
1447 flags[n] = group->hw.event_base;
1448 events[n++] = group->hw.config;
1449 }
1450 for_each_sibling_event(event, group) {
1451 if (event->pmu->task_ctx_nr == perf_hw_context &&
1452 event->state != PERF_EVENT_STATE_OFF) {
1453 if (n >= max_count)
1454 return -1;
1455 ctrs[n] = event;
1456 flags[n] = event->hw.event_base;
1457 events[n++] = event->hw.config;
1458 }
1459 }
1460 return n;
1461 }
1462
1463 /*
1464 * Add an event to the PMU.
1465 * If all events are not already frozen, then we disable and
1466 * re-enable the PMU in order to get hw_perf_enable to do the
1467 * actual work of reconfiguring the PMU.
1468 */
power_pmu_add(struct perf_event * event,int ef_flags)1469 static int power_pmu_add(struct perf_event *event, int ef_flags)
1470 {
1471 struct cpu_hw_events *cpuhw;
1472 unsigned long flags;
1473 int n0;
1474 int ret = -EAGAIN;
1475
1476 local_irq_save(flags);
1477 perf_pmu_disable(event->pmu);
1478
1479 /*
1480 * Add the event to the list (if there is room)
1481 * and check whether the total set is still feasible.
1482 */
1483 cpuhw = this_cpu_ptr(&cpu_hw_events);
1484 n0 = cpuhw->n_events;
1485 if (n0 >= ppmu->n_counter)
1486 goto out;
1487 cpuhw->event[n0] = event;
1488 cpuhw->events[n0] = event->hw.config;
1489 cpuhw->flags[n0] = event->hw.event_base;
1490
1491 /*
1492 * This event may have been disabled/stopped in record_and_restart()
1493 * because we exceeded the ->event_limit. If re-starting the event,
1494 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1495 * notification is re-enabled.
1496 */
1497 if (!(ef_flags & PERF_EF_START))
1498 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1499 else
1500 event->hw.state = 0;
1501
1502 /*
1503 * If group events scheduling transaction was started,
1504 * skip the schedulability test here, it will be performed
1505 * at commit time(->commit_txn) as a whole
1506 */
1507 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1508 goto nocheck;
1509
1510 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1511 goto out;
1512 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1513 goto out;
1514 event->hw.config = cpuhw->events[n0];
1515
1516 nocheck:
1517 ebb_event_add(event);
1518
1519 ++cpuhw->n_events;
1520 ++cpuhw->n_added;
1521
1522 ret = 0;
1523 out:
1524 if (has_branch_stack(event)) {
1525 power_pmu_bhrb_enable(event);
1526 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1527 event->attr.branch_sample_type);
1528 }
1529
1530 perf_pmu_enable(event->pmu);
1531 local_irq_restore(flags);
1532 return ret;
1533 }
1534
1535 /*
1536 * Remove an event from the PMU.
1537 */
power_pmu_del(struct perf_event * event,int ef_flags)1538 static void power_pmu_del(struct perf_event *event, int ef_flags)
1539 {
1540 struct cpu_hw_events *cpuhw;
1541 long i;
1542 unsigned long flags;
1543
1544 local_irq_save(flags);
1545 perf_pmu_disable(event->pmu);
1546
1547 power_pmu_read(event);
1548
1549 cpuhw = this_cpu_ptr(&cpu_hw_events);
1550 for (i = 0; i < cpuhw->n_events; ++i) {
1551 if (event == cpuhw->event[i]) {
1552 while (++i < cpuhw->n_events) {
1553 cpuhw->event[i-1] = cpuhw->event[i];
1554 cpuhw->events[i-1] = cpuhw->events[i];
1555 cpuhw->flags[i-1] = cpuhw->flags[i];
1556 }
1557 --cpuhw->n_events;
1558 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1559 if (event->hw.idx) {
1560 write_pmc(event->hw.idx, 0);
1561 event->hw.idx = 0;
1562 }
1563 perf_event_update_userpage(event);
1564 break;
1565 }
1566 }
1567 for (i = 0; i < cpuhw->n_limited; ++i)
1568 if (event == cpuhw->limited_counter[i])
1569 break;
1570 if (i < cpuhw->n_limited) {
1571 while (++i < cpuhw->n_limited) {
1572 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1573 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1574 }
1575 --cpuhw->n_limited;
1576 }
1577 if (cpuhw->n_events == 0) {
1578 /* disable exceptions if no events are running */
1579 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1580 }
1581
1582 if (has_branch_stack(event))
1583 power_pmu_bhrb_disable(event);
1584
1585 perf_pmu_enable(event->pmu);
1586 local_irq_restore(flags);
1587 }
1588
1589 /*
1590 * POWER-PMU does not support disabling individual counters, hence
1591 * program their cycle counter to their max value and ignore the interrupts.
1592 */
1593
power_pmu_start(struct perf_event * event,int ef_flags)1594 static void power_pmu_start(struct perf_event *event, int ef_flags)
1595 {
1596 unsigned long flags;
1597 s64 left;
1598 unsigned long val;
1599
1600 if (!event->hw.idx || !event->hw.sample_period)
1601 return;
1602
1603 if (!(event->hw.state & PERF_HES_STOPPED))
1604 return;
1605
1606 if (ef_flags & PERF_EF_RELOAD)
1607 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1608
1609 local_irq_save(flags);
1610 perf_pmu_disable(event->pmu);
1611
1612 event->hw.state = 0;
1613 left = local64_read(&event->hw.period_left);
1614
1615 val = 0;
1616 if (left < 0x80000000L)
1617 val = 0x80000000L - left;
1618
1619 write_pmc(event->hw.idx, val);
1620
1621 perf_event_update_userpage(event);
1622 perf_pmu_enable(event->pmu);
1623 local_irq_restore(flags);
1624 }
1625
power_pmu_stop(struct perf_event * event,int ef_flags)1626 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1627 {
1628 unsigned long flags;
1629
1630 if (!event->hw.idx || !event->hw.sample_period)
1631 return;
1632
1633 if (event->hw.state & PERF_HES_STOPPED)
1634 return;
1635
1636 local_irq_save(flags);
1637 perf_pmu_disable(event->pmu);
1638
1639 power_pmu_read(event);
1640 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1641 write_pmc(event->hw.idx, 0);
1642
1643 perf_event_update_userpage(event);
1644 perf_pmu_enable(event->pmu);
1645 local_irq_restore(flags);
1646 }
1647
1648 /*
1649 * Start group events scheduling transaction
1650 * Set the flag to make pmu::enable() not perform the
1651 * schedulability test, it will be performed at commit time
1652 *
1653 * We only support PERF_PMU_TXN_ADD transactions. Save the
1654 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1655 * transactions.
1656 */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1657 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1658 {
1659 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660
1661 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1662
1663 cpuhw->txn_flags = txn_flags;
1664 if (txn_flags & ~PERF_PMU_TXN_ADD)
1665 return;
1666
1667 perf_pmu_disable(pmu);
1668 cpuhw->n_txn_start = cpuhw->n_events;
1669 }
1670
1671 /*
1672 * Stop group events scheduling transaction
1673 * Clear the flag and pmu::enable() will perform the
1674 * schedulability test.
1675 */
power_pmu_cancel_txn(struct pmu * pmu)1676 static void power_pmu_cancel_txn(struct pmu *pmu)
1677 {
1678 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1679 unsigned int txn_flags;
1680
1681 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1682
1683 txn_flags = cpuhw->txn_flags;
1684 cpuhw->txn_flags = 0;
1685 if (txn_flags & ~PERF_PMU_TXN_ADD)
1686 return;
1687
1688 perf_pmu_enable(pmu);
1689 }
1690
1691 /*
1692 * Commit group events scheduling transaction
1693 * Perform the group schedulability test as a whole
1694 * Return 0 if success
1695 */
power_pmu_commit_txn(struct pmu * pmu)1696 static int power_pmu_commit_txn(struct pmu *pmu)
1697 {
1698 struct cpu_hw_events *cpuhw;
1699 long i, n;
1700
1701 if (!ppmu)
1702 return -EAGAIN;
1703
1704 cpuhw = this_cpu_ptr(&cpu_hw_events);
1705 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1706
1707 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1708 cpuhw->txn_flags = 0;
1709 return 0;
1710 }
1711
1712 n = cpuhw->n_events;
1713 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1714 return -EAGAIN;
1715 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1716 if (i < 0)
1717 return -EAGAIN;
1718
1719 for (i = cpuhw->n_txn_start; i < n; ++i)
1720 cpuhw->event[i]->hw.config = cpuhw->events[i];
1721
1722 cpuhw->txn_flags = 0;
1723 perf_pmu_enable(pmu);
1724 return 0;
1725 }
1726
1727 /*
1728 * Return 1 if we might be able to put event on a limited PMC,
1729 * or 0 if not.
1730 * An event can only go on a limited PMC if it counts something
1731 * that a limited PMC can count, doesn't require interrupts, and
1732 * doesn't exclude any processor mode.
1733 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1734 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1735 unsigned int flags)
1736 {
1737 int n;
1738 u64 alt[MAX_EVENT_ALTERNATIVES];
1739
1740 if (event->attr.exclude_user
1741 || event->attr.exclude_kernel
1742 || event->attr.exclude_hv
1743 || event->attr.sample_period)
1744 return 0;
1745
1746 if (ppmu->limited_pmc_event(ev))
1747 return 1;
1748
1749 /*
1750 * The requested event_id isn't on a limited PMC already;
1751 * see if any alternative code goes on a limited PMC.
1752 */
1753 if (!ppmu->get_alternatives)
1754 return 0;
1755
1756 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1757 n = ppmu->get_alternatives(ev, flags, alt);
1758
1759 return n > 0;
1760 }
1761
1762 /*
1763 * Find an alternative event_id that goes on a normal PMC, if possible,
1764 * and return the event_id code, or 0 if there is no such alternative.
1765 * (Note: event_id code 0 is "don't count" on all machines.)
1766 */
normal_pmc_alternative(u64 ev,unsigned long flags)1767 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1768 {
1769 u64 alt[MAX_EVENT_ALTERNATIVES];
1770 int n;
1771
1772 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1773 n = ppmu->get_alternatives(ev, flags, alt);
1774 if (!n)
1775 return 0;
1776 return alt[0];
1777 }
1778
1779 /* Number of perf_events counting hardware events */
1780 static atomic_t num_events;
1781 /* Used to avoid races in calling reserve/release_pmc_hardware */
1782 static DEFINE_MUTEX(pmc_reserve_mutex);
1783
1784 /*
1785 * Release the PMU if this is the last perf_event.
1786 */
hw_perf_event_destroy(struct perf_event * event)1787 static void hw_perf_event_destroy(struct perf_event *event)
1788 {
1789 if (!atomic_add_unless(&num_events, -1, 1)) {
1790 mutex_lock(&pmc_reserve_mutex);
1791 if (atomic_dec_return(&num_events) == 0)
1792 release_pmc_hardware();
1793 mutex_unlock(&pmc_reserve_mutex);
1794 }
1795 }
1796
1797 /*
1798 * Translate a generic cache event_id config to a raw event_id code.
1799 */
hw_perf_cache_event(u64 config,u64 * eventp)1800 static int hw_perf_cache_event(u64 config, u64 *eventp)
1801 {
1802 unsigned long type, op, result;
1803 int ev;
1804
1805 if (!ppmu->cache_events)
1806 return -EINVAL;
1807
1808 /* unpack config */
1809 type = config & 0xff;
1810 op = (config >> 8) & 0xff;
1811 result = (config >> 16) & 0xff;
1812
1813 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1814 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1815 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1816 return -EINVAL;
1817
1818 ev = (*ppmu->cache_events)[type][op][result];
1819 if (ev == 0)
1820 return -EOPNOTSUPP;
1821 if (ev == -1)
1822 return -EINVAL;
1823 *eventp = ev;
1824 return 0;
1825 }
1826
is_event_blacklisted(u64 ev)1827 static bool is_event_blacklisted(u64 ev)
1828 {
1829 int i;
1830
1831 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1832 if (ppmu->blacklist_ev[i] == ev)
1833 return true;
1834 }
1835
1836 return false;
1837 }
1838
power_pmu_event_init(struct perf_event * event)1839 static int power_pmu_event_init(struct perf_event *event)
1840 {
1841 u64 ev;
1842 unsigned long flags;
1843 struct perf_event *ctrs[MAX_HWEVENTS];
1844 u64 events[MAX_HWEVENTS];
1845 unsigned int cflags[MAX_HWEVENTS];
1846 int n;
1847 int err;
1848 struct cpu_hw_events *cpuhw;
1849 u64 bhrb_filter;
1850
1851 if (!ppmu)
1852 return -ENOENT;
1853
1854 if (has_branch_stack(event)) {
1855 /* PMU has BHRB enabled */
1856 if (!(ppmu->flags & PPMU_ARCH_207S))
1857 return -EOPNOTSUPP;
1858 }
1859
1860 switch (event->attr.type) {
1861 case PERF_TYPE_HARDWARE:
1862 ev = event->attr.config;
1863 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1864 return -EOPNOTSUPP;
1865
1866 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1867 return -EINVAL;
1868 ev = ppmu->generic_events[ev];
1869 break;
1870 case PERF_TYPE_HW_CACHE:
1871 err = hw_perf_cache_event(event->attr.config, &ev);
1872 if (err)
1873 return err;
1874
1875 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1876 return -EINVAL;
1877 break;
1878 case PERF_TYPE_RAW:
1879 ev = event->attr.config;
1880
1881 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1882 return -EINVAL;
1883 break;
1884 default:
1885 return -ENOENT;
1886 }
1887
1888 event->hw.config_base = ev;
1889 event->hw.idx = 0;
1890
1891 /*
1892 * If we are not running on a hypervisor, force the
1893 * exclude_hv bit to 0 so that we don't care what
1894 * the user set it to.
1895 */
1896 if (!firmware_has_feature(FW_FEATURE_LPAR))
1897 event->attr.exclude_hv = 0;
1898
1899 /*
1900 * If this is a per-task event, then we can use
1901 * PM_RUN_* events interchangeably with their non RUN_*
1902 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1903 * XXX we should check if the task is an idle task.
1904 */
1905 flags = 0;
1906 if (event->attach_state & PERF_ATTACH_TASK)
1907 flags |= PPMU_ONLY_COUNT_RUN;
1908
1909 /*
1910 * If this machine has limited events, check whether this
1911 * event_id could go on a limited event.
1912 */
1913 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1914 if (can_go_on_limited_pmc(event, ev, flags)) {
1915 flags |= PPMU_LIMITED_PMC_OK;
1916 } else if (ppmu->limited_pmc_event(ev)) {
1917 /*
1918 * The requested event_id is on a limited PMC,
1919 * but we can't use a limited PMC; see if any
1920 * alternative goes on a normal PMC.
1921 */
1922 ev = normal_pmc_alternative(ev, flags);
1923 if (!ev)
1924 return -EINVAL;
1925 }
1926 }
1927
1928 /* Extra checks for EBB */
1929 err = ebb_event_check(event);
1930 if (err)
1931 return err;
1932
1933 /*
1934 * If this is in a group, check if it can go on with all the
1935 * other hardware events in the group. We assume the event
1936 * hasn't been linked into its leader's sibling list at this point.
1937 */
1938 n = 0;
1939 if (event->group_leader != event) {
1940 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1941 ctrs, events, cflags);
1942 if (n < 0)
1943 return -EINVAL;
1944 }
1945 events[n] = ev;
1946 ctrs[n] = event;
1947 cflags[n] = flags;
1948 if (check_excludes(ctrs, cflags, n, 1))
1949 return -EINVAL;
1950
1951 cpuhw = &get_cpu_var(cpu_hw_events);
1952 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1953
1954 if (has_branch_stack(event)) {
1955 bhrb_filter = ppmu->bhrb_filter_map(
1956 event->attr.branch_sample_type);
1957
1958 if (bhrb_filter == -1) {
1959 put_cpu_var(cpu_hw_events);
1960 return -EOPNOTSUPP;
1961 }
1962 cpuhw->bhrb_filter = bhrb_filter;
1963 }
1964
1965 put_cpu_var(cpu_hw_events);
1966 if (err)
1967 return -EINVAL;
1968
1969 event->hw.config = events[n];
1970 event->hw.event_base = cflags[n];
1971 event->hw.last_period = event->hw.sample_period;
1972 local64_set(&event->hw.period_left, event->hw.last_period);
1973
1974 /*
1975 * For EBB events we just context switch the PMC value, we don't do any
1976 * of the sample_period logic. We use hw.prev_count for this.
1977 */
1978 if (is_ebb_event(event))
1979 local64_set(&event->hw.prev_count, 0);
1980
1981 /*
1982 * See if we need to reserve the PMU.
1983 * If no events are currently in use, then we have to take a
1984 * mutex to ensure that we don't race with another task doing
1985 * reserve_pmc_hardware or release_pmc_hardware.
1986 */
1987 err = 0;
1988 if (!atomic_inc_not_zero(&num_events)) {
1989 mutex_lock(&pmc_reserve_mutex);
1990 if (atomic_read(&num_events) == 0 &&
1991 reserve_pmc_hardware(perf_event_interrupt))
1992 err = -EBUSY;
1993 else
1994 atomic_inc(&num_events);
1995 mutex_unlock(&pmc_reserve_mutex);
1996 }
1997 event->destroy = hw_perf_event_destroy;
1998
1999 return err;
2000 }
2001
power_pmu_event_idx(struct perf_event * event)2002 static int power_pmu_event_idx(struct perf_event *event)
2003 {
2004 return event->hw.idx;
2005 }
2006
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)2007 ssize_t power_events_sysfs_show(struct device *dev,
2008 struct device_attribute *attr, char *page)
2009 {
2010 struct perf_pmu_events_attr *pmu_attr;
2011
2012 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2013
2014 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2015 }
2016
2017 static struct pmu power_pmu = {
2018 .pmu_enable = power_pmu_enable,
2019 .pmu_disable = power_pmu_disable,
2020 .event_init = power_pmu_event_init,
2021 .add = power_pmu_add,
2022 .del = power_pmu_del,
2023 .start = power_pmu_start,
2024 .stop = power_pmu_stop,
2025 .read = power_pmu_read,
2026 .start_txn = power_pmu_start_txn,
2027 .cancel_txn = power_pmu_cancel_txn,
2028 .commit_txn = power_pmu_commit_txn,
2029 .event_idx = power_pmu_event_idx,
2030 .sched_task = power_pmu_sched_task,
2031 };
2032
2033 /*
2034 * A counter has overflowed; update its count and record
2035 * things if requested. Note that interrupts are hard-disabled
2036 * here so there is no possibility of being interrupted.
2037 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)2038 static void record_and_restart(struct perf_event *event, unsigned long val,
2039 struct pt_regs *regs)
2040 {
2041 u64 period = event->hw.sample_period;
2042 s64 prev, delta, left;
2043 int record = 0;
2044
2045 if (event->hw.state & PERF_HES_STOPPED) {
2046 write_pmc(event->hw.idx, 0);
2047 return;
2048 }
2049
2050 /* we don't have to worry about interrupts here */
2051 prev = local64_read(&event->hw.prev_count);
2052 delta = check_and_compute_delta(prev, val);
2053 local64_add(delta, &event->count);
2054
2055 /*
2056 * See if the total period for this event has expired,
2057 * and update for the next period.
2058 */
2059 val = 0;
2060 left = local64_read(&event->hw.period_left) - delta;
2061 if (delta == 0)
2062 left++;
2063 if (period) {
2064 if (left <= 0) {
2065 left += period;
2066 if (left <= 0)
2067 left = period;
2068 record = siar_valid(regs);
2069 event->hw.last_period = event->hw.sample_period;
2070 }
2071 if (left < 0x80000000LL)
2072 val = 0x80000000LL - left;
2073 }
2074
2075 write_pmc(event->hw.idx, val);
2076 local64_set(&event->hw.prev_count, val);
2077 local64_set(&event->hw.period_left, left);
2078 perf_event_update_userpage(event);
2079
2080 /*
2081 * Finally record data if requested.
2082 */
2083 if (record) {
2084 struct perf_sample_data data;
2085
2086 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2087
2088 if (event->attr.sample_type &
2089 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2090 perf_get_data_addr(regs, &data.addr);
2091
2092 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2093 struct cpu_hw_events *cpuhw;
2094 cpuhw = this_cpu_ptr(&cpu_hw_events);
2095 power_pmu_bhrb_read(cpuhw);
2096 data.br_stack = &cpuhw->bhrb_stack;
2097 }
2098
2099 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2100 ppmu->get_mem_data_src)
2101 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2102
2103 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2104 ppmu->get_mem_weight)
2105 ppmu->get_mem_weight(&data.weight);
2106
2107 if (perf_event_overflow(event, &data, regs))
2108 power_pmu_stop(event, 0);
2109 }
2110 }
2111
2112 /*
2113 * Called from generic code to get the misc flags (i.e. processor mode)
2114 * for an event_id.
2115 */
perf_misc_flags(struct pt_regs * regs)2116 unsigned long perf_misc_flags(struct pt_regs *regs)
2117 {
2118 u32 flags = perf_get_misc_flags(regs);
2119
2120 if (flags)
2121 return flags;
2122 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2123 PERF_RECORD_MISC_KERNEL;
2124 }
2125
2126 /*
2127 * Called from generic code to get the instruction pointer
2128 * for an event_id.
2129 */
perf_instruction_pointer(struct pt_regs * regs)2130 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2131 {
2132 bool use_siar = regs_use_siar(regs);
2133
2134 if (use_siar && siar_valid(regs))
2135 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2136 else if (use_siar)
2137 return 0; // no valid instruction pointer
2138 else
2139 return regs->nip;
2140 }
2141
pmc_overflow_power7(unsigned long val)2142 static bool pmc_overflow_power7(unsigned long val)
2143 {
2144 /*
2145 * Events on POWER7 can roll back if a speculative event doesn't
2146 * eventually complete. Unfortunately in some rare cases they will
2147 * raise a performance monitor exception. We need to catch this to
2148 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2149 * cycles from overflow.
2150 *
2151 * We only do this if the first pass fails to find any overflowing
2152 * PMCs because a user might set a period of less than 256 and we
2153 * don't want to mistakenly reset them.
2154 */
2155 if ((0x80000000 - val) <= 256)
2156 return true;
2157
2158 return false;
2159 }
2160
pmc_overflow(unsigned long val)2161 static bool pmc_overflow(unsigned long val)
2162 {
2163 if ((int)val < 0)
2164 return true;
2165
2166 return false;
2167 }
2168
2169 /*
2170 * Performance monitor interrupt stuff
2171 */
__perf_event_interrupt(struct pt_regs * regs)2172 static void __perf_event_interrupt(struct pt_regs *regs)
2173 {
2174 int i, j;
2175 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2176 struct perf_event *event;
2177 unsigned long val[8];
2178 int found, active;
2179 int nmi;
2180
2181 if (cpuhw->n_limited)
2182 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2183 mfspr(SPRN_PMC6));
2184
2185 perf_read_regs(regs);
2186
2187 nmi = perf_intr_is_nmi(regs);
2188 if (nmi)
2189 nmi_enter();
2190 else
2191 irq_enter();
2192
2193 /* Read all the PMCs since we'll need them a bunch of times */
2194 for (i = 0; i < ppmu->n_counter; ++i)
2195 val[i] = read_pmc(i + 1);
2196
2197 /* Try to find what caused the IRQ */
2198 found = 0;
2199 for (i = 0; i < ppmu->n_counter; ++i) {
2200 if (!pmc_overflow(val[i]))
2201 continue;
2202 if (is_limited_pmc(i + 1))
2203 continue; /* these won't generate IRQs */
2204 /*
2205 * We've found one that's overflowed. For active
2206 * counters we need to log this. For inactive
2207 * counters, we need to reset it anyway
2208 */
2209 found = 1;
2210 active = 0;
2211 for (j = 0; j < cpuhw->n_events; ++j) {
2212 event = cpuhw->event[j];
2213 if (event->hw.idx == (i + 1)) {
2214 active = 1;
2215 record_and_restart(event, val[i], regs);
2216 break;
2217 }
2218 }
2219 if (!active)
2220 /* reset non active counters that have overflowed */
2221 write_pmc(i + 1, 0);
2222 }
2223 if (!found && pvr_version_is(PVR_POWER7)) {
2224 /* check active counters for special buggy p7 overflow */
2225 for (i = 0; i < cpuhw->n_events; ++i) {
2226 event = cpuhw->event[i];
2227 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2228 continue;
2229 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2230 /* event has overflowed in a buggy way*/
2231 found = 1;
2232 record_and_restart(event,
2233 val[event->hw.idx - 1],
2234 regs);
2235 }
2236 }
2237 }
2238 if (!found && !nmi && printk_ratelimit())
2239 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2240
2241 /*
2242 * Reset MMCR0 to its normal value. This will set PMXE and
2243 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2244 * and thus allow interrupts to occur again.
2245 * XXX might want to use MSR.PM to keep the events frozen until
2246 * we get back out of this interrupt.
2247 */
2248 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2249
2250 if (nmi)
2251 nmi_exit();
2252 else
2253 irq_exit();
2254 }
2255
perf_event_interrupt(struct pt_regs * regs)2256 static void perf_event_interrupt(struct pt_regs *regs)
2257 {
2258 u64 start_clock = sched_clock();
2259
2260 __perf_event_interrupt(regs);
2261 perf_sample_event_took(sched_clock() - start_clock);
2262 }
2263
power_pmu_prepare_cpu(unsigned int cpu)2264 static int power_pmu_prepare_cpu(unsigned int cpu)
2265 {
2266 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2267
2268 if (ppmu) {
2269 memset(cpuhw, 0, sizeof(*cpuhw));
2270 cpuhw->mmcr[0] = MMCR0_FC;
2271 }
2272 return 0;
2273 }
2274
register_power_pmu(struct power_pmu * pmu)2275 int register_power_pmu(struct power_pmu *pmu)
2276 {
2277 if (ppmu)
2278 return -EBUSY; /* something's already registered */
2279
2280 ppmu = pmu;
2281 pr_info("%s performance monitor hardware support registered\n",
2282 pmu->name);
2283
2284 power_pmu.attr_groups = ppmu->attr_groups;
2285
2286 #ifdef MSR_HV
2287 /*
2288 * Use FCHV to ignore kernel events if MSR.HV is set.
2289 */
2290 if (mfmsr() & MSR_HV)
2291 freeze_events_kernel = MMCR0_FCHV;
2292 #endif /* CONFIG_PPC64 */
2293
2294 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2295 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2296 power_pmu_prepare_cpu, NULL);
2297 return 0;
2298 }
2299
2300 #ifdef CONFIG_PPC64
init_ppc64_pmu(void)2301 static int __init init_ppc64_pmu(void)
2302 {
2303 /* run through all the pmu drivers one at a time */
2304 if (!init_power5_pmu())
2305 return 0;
2306 else if (!init_power5p_pmu())
2307 return 0;
2308 else if (!init_power6_pmu())
2309 return 0;
2310 else if (!init_power7_pmu())
2311 return 0;
2312 else if (!init_power8_pmu())
2313 return 0;
2314 else if (!init_power9_pmu())
2315 return 0;
2316 else if (!init_ppc970_pmu())
2317 return 0;
2318 else
2319 return init_generic_compat_pmu();
2320 }
2321 early_initcall(init_ppc64_pmu);
2322 #endif
2323