1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27
28 #include "disasm.h"
29
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 [_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40
41 /* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
52 * Since it's analyzing all paths through the program, the length of the
53 * analysis is limited to 64k insn, which may be hit even if total number of
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
81 * Most of the time the registers have SCALAR_VALUE type, which
82 * means the register has some value, but it's not a valid pointer.
83 * (like pointer plus pointer becomes SCALAR_VALUE type)
84 *
85 * When verifier sees load or store instructions the type of base register
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137 * returns either pointer to map value or NULL.
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
164 */
165
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
172 struct bpf_verifier_state st;
173 int insn_idx;
174 int prev_insn_idx;
175 struct bpf_verifier_stack_elem *next;
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
178 };
179
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
181 #define BPF_COMPLEXITY_LIMIT_STATES 64
182
183 #define BPF_MAP_KEY_POISON (1ULL << 63)
184 #define BPF_MAP_KEY_SEEN (1ULL << 62)
185
186 #define BPF_MAP_PTR_UNPRIV 1UL
187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206 {
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235
bpf_pseudo_call(const struct bpf_insn * insn)236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240 }
241
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247
248 struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
250 bool raw_mode;
251 bool pkt_access;
252 u8 release_regno;
253 int regno;
254 int access_size;
255 int mem_size;
256 u64 msize_max_value;
257 int ref_obj_id;
258 int map_uid;
259 int func_id;
260 struct btf *btf;
261 u32 btf_id;
262 struct btf *ret_btf;
263 u32 ret_btf_id;
264 u32 subprogno;
265 struct bpf_map_value_off_desc *kptr_off_desc;
266 u8 uninit_dynptr_regno;
267 };
268
269 struct btf *btf_vmlinux;
270
271 static DEFINE_MUTEX(bpf_verifier_lock);
272
273 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292 }
293
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
296 {
297 unsigned int n;
298
299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
304 if (log->level == BPF_LOG_KERNEL) {
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 return;
309 }
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
317 }
318
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329 }
330
331 /* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
334 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337 {
338 va_list args;
339
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
343 va_start(args, fmt);
344 bpf_verifier_vlog(&env->log, fmt, args);
345 va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
verbose(void * private_data,const char * fmt,...)349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 struct bpf_verifier_env *env = private_data;
352 va_list args;
353
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
357 va_start(args, fmt);
358 bpf_verifier_vlog(&env->log, fmt, args);
359 va_end(args);
360 }
361
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364 {
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375
ltrim(const char * s)376 static const char *ltrim(const char *s)
377 {
378 while (isspace(*s))
379 s++;
380
381 return s;
382 }
383
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387 {
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410 }
411
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416 {
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428 }
429
type_is_pkt_pointer(enum bpf_reg_type type)430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 type = base_type(type);
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435 }
436
type_is_sk_pointer(enum bpf_reg_type type)437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 return type == PTR_TO_SOCKET ||
440 type == PTR_TO_SOCK_COMMON ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
443 }
444
reg_type_not_null(enum bpf_reg_type type)445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
450 type == PTR_TO_MAP_KEY ||
451 type == PTR_TO_SOCK_COMMON;
452 }
453
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 return reg->type == PTR_TO_MAP_VALUE &&
457 map_value_has_spin_lock(reg->map_ptr);
458 }
459
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 type = base_type(type);
463 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK ||
464 type == PTR_TO_MEM || type == PTR_TO_BTF_ID;
465 }
466
type_is_rdonly_mem(u32 type)467 static bool type_is_rdonly_mem(u32 type)
468 {
469 return type & MEM_RDONLY;
470 }
471
type_may_be_null(u32 type)472 static bool type_may_be_null(u32 type)
473 {
474 return type & PTR_MAYBE_NULL;
475 }
476
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)477 static bool is_acquire_function(enum bpf_func_id func_id,
478 const struct bpf_map *map)
479 {
480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481
482 if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 func_id == BPF_FUNC_sk_lookup_udp ||
484 func_id == BPF_FUNC_skc_lookup_tcp ||
485 func_id == BPF_FUNC_ringbuf_reserve ||
486 func_id == BPF_FUNC_kptr_xchg)
487 return true;
488
489 if (func_id == BPF_FUNC_map_lookup_elem &&
490 (map_type == BPF_MAP_TYPE_SOCKMAP ||
491 map_type == BPF_MAP_TYPE_SOCKHASH))
492 return true;
493
494 return false;
495 }
496
is_ptr_cast_function(enum bpf_func_id func_id)497 static bool is_ptr_cast_function(enum bpf_func_id func_id)
498 {
499 return func_id == BPF_FUNC_tcp_sock ||
500 func_id == BPF_FUNC_sk_fullsock ||
501 func_id == BPF_FUNC_skc_to_tcp_sock ||
502 func_id == BPF_FUNC_skc_to_tcp6_sock ||
503 func_id == BPF_FUNC_skc_to_udp6_sock ||
504 func_id == BPF_FUNC_skc_to_mptcp_sock ||
505 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
506 func_id == BPF_FUNC_skc_to_tcp_request_sock;
507 }
508
is_dynptr_ref_function(enum bpf_func_id func_id)509 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
510 {
511 return func_id == BPF_FUNC_dynptr_data;
512 }
513
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
515 const struct bpf_map *map)
516 {
517 int ref_obj_uses = 0;
518
519 if (is_ptr_cast_function(func_id))
520 ref_obj_uses++;
521 if (is_acquire_function(func_id, map))
522 ref_obj_uses++;
523 if (is_dynptr_ref_function(func_id))
524 ref_obj_uses++;
525
526 return ref_obj_uses > 1;
527 }
528
is_cmpxchg_insn(const struct bpf_insn * insn)529 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
530 {
531 return BPF_CLASS(insn->code) == BPF_STX &&
532 BPF_MODE(insn->code) == BPF_ATOMIC &&
533 insn->imm == BPF_CMPXCHG;
534 }
535
536 /* string representation of 'enum bpf_reg_type'
537 *
538 * Note that reg_type_str() can not appear more than once in a single verbose()
539 * statement.
540 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)541 static const char *reg_type_str(struct bpf_verifier_env *env,
542 enum bpf_reg_type type)
543 {
544 char postfix[16] = {0}, prefix[32] = {0};
545 static const char * const str[] = {
546 [NOT_INIT] = "?",
547 [SCALAR_VALUE] = "scalar",
548 [PTR_TO_CTX] = "ctx",
549 [CONST_PTR_TO_MAP] = "map_ptr",
550 [PTR_TO_MAP_VALUE] = "map_value",
551 [PTR_TO_STACK] = "fp",
552 [PTR_TO_PACKET] = "pkt",
553 [PTR_TO_PACKET_META] = "pkt_meta",
554 [PTR_TO_PACKET_END] = "pkt_end",
555 [PTR_TO_FLOW_KEYS] = "flow_keys",
556 [PTR_TO_SOCKET] = "sock",
557 [PTR_TO_SOCK_COMMON] = "sock_common",
558 [PTR_TO_TCP_SOCK] = "tcp_sock",
559 [PTR_TO_TP_BUFFER] = "tp_buffer",
560 [PTR_TO_XDP_SOCK] = "xdp_sock",
561 [PTR_TO_BTF_ID] = "ptr_",
562 [PTR_TO_MEM] = "mem",
563 [PTR_TO_BUF] = "buf",
564 [PTR_TO_FUNC] = "func",
565 [PTR_TO_MAP_KEY] = "map_key",
566 [PTR_TO_DYNPTR] = "dynptr_ptr",
567 };
568
569 if (type & PTR_MAYBE_NULL) {
570 if (base_type(type) == PTR_TO_BTF_ID)
571 strncpy(postfix, "or_null_", 16);
572 else
573 strncpy(postfix, "_or_null", 16);
574 }
575
576 if (type & MEM_RDONLY)
577 strncpy(prefix, "rdonly_", 32);
578 if (type & MEM_ALLOC)
579 strncpy(prefix, "alloc_", 32);
580 if (type & MEM_USER)
581 strncpy(prefix, "user_", 32);
582 if (type & MEM_PERCPU)
583 strncpy(prefix, "percpu_", 32);
584 if (type & PTR_UNTRUSTED)
585 strncpy(prefix, "untrusted_", 32);
586
587 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
588 prefix, str[base_type(type)], postfix);
589 return env->type_str_buf;
590 }
591
592 static char slot_type_char[] = {
593 [STACK_INVALID] = '?',
594 [STACK_SPILL] = 'r',
595 [STACK_MISC] = 'm',
596 [STACK_ZERO] = '0',
597 [STACK_DYNPTR] = 'd',
598 };
599
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)600 static void print_liveness(struct bpf_verifier_env *env,
601 enum bpf_reg_liveness live)
602 {
603 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
604 verbose(env, "_");
605 if (live & REG_LIVE_READ)
606 verbose(env, "r");
607 if (live & REG_LIVE_WRITTEN)
608 verbose(env, "w");
609 if (live & REG_LIVE_DONE)
610 verbose(env, "D");
611 }
612
get_spi(s32 off)613 static int get_spi(s32 off)
614 {
615 return (-off - 1) / BPF_REG_SIZE;
616 }
617
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
619 {
620 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
621
622 /* We need to check that slots between [spi - nr_slots + 1, spi] are
623 * within [0, allocated_stack).
624 *
625 * Please note that the spi grows downwards. For example, a dynptr
626 * takes the size of two stack slots; the first slot will be at
627 * spi and the second slot will be at spi - 1.
628 */
629 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
630 }
631
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)632 static struct bpf_func_state *func(struct bpf_verifier_env *env,
633 const struct bpf_reg_state *reg)
634 {
635 struct bpf_verifier_state *cur = env->cur_state;
636
637 return cur->frame[reg->frameno];
638 }
639
kernel_type_name(const struct btf * btf,u32 id)640 static const char *kernel_type_name(const struct btf* btf, u32 id)
641 {
642 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
643 }
644
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
646 {
647 env->scratched_regs |= 1U << regno;
648 }
649
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
651 {
652 env->scratched_stack_slots |= 1ULL << spi;
653 }
654
reg_scratched(const struct bpf_verifier_env * env,u32 regno)655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
656 {
657 return (env->scratched_regs >> regno) & 1;
658 }
659
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
661 {
662 return (env->scratched_stack_slots >> regno) & 1;
663 }
664
verifier_state_scratched(const struct bpf_verifier_env * env)665 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
666 {
667 return env->scratched_regs || env->scratched_stack_slots;
668 }
669
mark_verifier_state_clean(struct bpf_verifier_env * env)670 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
671 {
672 env->scratched_regs = 0U;
673 env->scratched_stack_slots = 0ULL;
674 }
675
676 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
678 {
679 env->scratched_regs = ~0U;
680 env->scratched_stack_slots = ~0ULL;
681 }
682
arg_to_dynptr_type(enum bpf_arg_type arg_type)683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
684 {
685 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
686 case DYNPTR_TYPE_LOCAL:
687 return BPF_DYNPTR_TYPE_LOCAL;
688 case DYNPTR_TYPE_RINGBUF:
689 return BPF_DYNPTR_TYPE_RINGBUF;
690 default:
691 return BPF_DYNPTR_TYPE_INVALID;
692 }
693 }
694
dynptr_type_refcounted(enum bpf_dynptr_type type)695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
696 {
697 return type == BPF_DYNPTR_TYPE_RINGBUF;
698 }
699
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx)700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
701 enum bpf_arg_type arg_type, int insn_idx)
702 {
703 struct bpf_func_state *state = func(env, reg);
704 enum bpf_dynptr_type type;
705 int spi, i, id;
706
707 spi = get_spi(reg->off);
708
709 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
710 return -EINVAL;
711
712 for (i = 0; i < BPF_REG_SIZE; i++) {
713 state->stack[spi].slot_type[i] = STACK_DYNPTR;
714 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
715 }
716
717 type = arg_to_dynptr_type(arg_type);
718 if (type == BPF_DYNPTR_TYPE_INVALID)
719 return -EINVAL;
720
721 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
722 state->stack[spi].spilled_ptr.dynptr.type = type;
723 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
724
725 if (dynptr_type_refcounted(type)) {
726 /* The id is used to track proper releasing */
727 id = acquire_reference_state(env, insn_idx);
728 if (id < 0)
729 return id;
730
731 state->stack[spi].spilled_ptr.id = id;
732 state->stack[spi - 1].spilled_ptr.id = id;
733 }
734
735 return 0;
736 }
737
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
739 {
740 struct bpf_func_state *state = func(env, reg);
741 int spi, i;
742
743 spi = get_spi(reg->off);
744
745 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
746 return -EINVAL;
747
748 for (i = 0; i < BPF_REG_SIZE; i++) {
749 state->stack[spi].slot_type[i] = STACK_INVALID;
750 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
751 }
752
753 /* Invalidate any slices associated with this dynptr */
754 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
755 release_reference(env, state->stack[spi].spilled_ptr.id);
756 state->stack[spi].spilled_ptr.id = 0;
757 state->stack[spi - 1].spilled_ptr.id = 0;
758 }
759
760 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
761 state->stack[spi].spilled_ptr.dynptr.type = 0;
762 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
763
764 return 0;
765 }
766
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
768 {
769 struct bpf_func_state *state = func(env, reg);
770 int spi = get_spi(reg->off);
771 int i;
772
773 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
774 return true;
775
776 for (i = 0; i < BPF_REG_SIZE; i++) {
777 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
778 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
779 return false;
780 }
781
782 return true;
783 }
784
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
786 struct bpf_reg_state *reg)
787 {
788 struct bpf_func_state *state = func(env, reg);
789 int spi = get_spi(reg->off);
790 int i;
791
792 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
793 !state->stack[spi].spilled_ptr.dynptr.first_slot)
794 return false;
795
796 for (i = 0; i < BPF_REG_SIZE; i++) {
797 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
798 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
799 return false;
800 }
801
802 return true;
803 }
804
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)805 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
806 struct bpf_reg_state *reg,
807 enum bpf_arg_type arg_type)
808 {
809 struct bpf_func_state *state = func(env, reg);
810 enum bpf_dynptr_type dynptr_type;
811 int spi = get_spi(reg->off);
812
813 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
814 if (arg_type == ARG_PTR_TO_DYNPTR)
815 return true;
816
817 dynptr_type = arg_to_dynptr_type(arg_type);
818
819 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
820 }
821
822 /* The reg state of a pointer or a bounded scalar was saved when
823 * it was spilled to the stack.
824 */
is_spilled_reg(const struct bpf_stack_state * stack)825 static bool is_spilled_reg(const struct bpf_stack_state *stack)
826 {
827 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
828 }
829
scrub_spilled_slot(u8 * stype)830 static void scrub_spilled_slot(u8 *stype)
831 {
832 if (*stype != STACK_INVALID)
833 *stype = STACK_MISC;
834 }
835
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)836 static void print_verifier_state(struct bpf_verifier_env *env,
837 const struct bpf_func_state *state,
838 bool print_all)
839 {
840 const struct bpf_reg_state *reg;
841 enum bpf_reg_type t;
842 int i;
843
844 if (state->frameno)
845 verbose(env, " frame%d:", state->frameno);
846 for (i = 0; i < MAX_BPF_REG; i++) {
847 reg = &state->regs[i];
848 t = reg->type;
849 if (t == NOT_INIT)
850 continue;
851 if (!print_all && !reg_scratched(env, i))
852 continue;
853 verbose(env, " R%d", i);
854 print_liveness(env, reg->live);
855 verbose(env, "=");
856 if (t == SCALAR_VALUE && reg->precise)
857 verbose(env, "P");
858 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
859 tnum_is_const(reg->var_off)) {
860 /* reg->off should be 0 for SCALAR_VALUE */
861 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
862 verbose(env, "%lld", reg->var_off.value + reg->off);
863 } else {
864 const char *sep = "";
865
866 verbose(env, "%s", reg_type_str(env, t));
867 if (base_type(t) == PTR_TO_BTF_ID)
868 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
869 verbose(env, "(");
870 /*
871 * _a stands for append, was shortened to avoid multiline statements below.
872 * This macro is used to output a comma separated list of attributes.
873 */
874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
875
876 if (reg->id)
877 verbose_a("id=%d", reg->id);
878 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
879 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
880 if (t != SCALAR_VALUE)
881 verbose_a("off=%d", reg->off);
882 if (type_is_pkt_pointer(t))
883 verbose_a("r=%d", reg->range);
884 else if (base_type(t) == CONST_PTR_TO_MAP ||
885 base_type(t) == PTR_TO_MAP_KEY ||
886 base_type(t) == PTR_TO_MAP_VALUE)
887 verbose_a("ks=%d,vs=%d",
888 reg->map_ptr->key_size,
889 reg->map_ptr->value_size);
890 if (tnum_is_const(reg->var_off)) {
891 /* Typically an immediate SCALAR_VALUE, but
892 * could be a pointer whose offset is too big
893 * for reg->off
894 */
895 verbose_a("imm=%llx", reg->var_off.value);
896 } else {
897 if (reg->smin_value != reg->umin_value &&
898 reg->smin_value != S64_MIN)
899 verbose_a("smin=%lld", (long long)reg->smin_value);
900 if (reg->smax_value != reg->umax_value &&
901 reg->smax_value != S64_MAX)
902 verbose_a("smax=%lld", (long long)reg->smax_value);
903 if (reg->umin_value != 0)
904 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
905 if (reg->umax_value != U64_MAX)
906 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
907 if (!tnum_is_unknown(reg->var_off)) {
908 char tn_buf[48];
909
910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
911 verbose_a("var_off=%s", tn_buf);
912 }
913 if (reg->s32_min_value != reg->smin_value &&
914 reg->s32_min_value != S32_MIN)
915 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
916 if (reg->s32_max_value != reg->smax_value &&
917 reg->s32_max_value != S32_MAX)
918 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
919 if (reg->u32_min_value != reg->umin_value &&
920 reg->u32_min_value != U32_MIN)
921 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
922 if (reg->u32_max_value != reg->umax_value &&
923 reg->u32_max_value != U32_MAX)
924 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
925 }
926 #undef verbose_a
927
928 verbose(env, ")");
929 }
930 }
931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
932 char types_buf[BPF_REG_SIZE + 1];
933 bool valid = false;
934 int j;
935
936 for (j = 0; j < BPF_REG_SIZE; j++) {
937 if (state->stack[i].slot_type[j] != STACK_INVALID)
938 valid = true;
939 types_buf[j] = slot_type_char[
940 state->stack[i].slot_type[j]];
941 }
942 types_buf[BPF_REG_SIZE] = 0;
943 if (!valid)
944 continue;
945 if (!print_all && !stack_slot_scratched(env, i))
946 continue;
947 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
948 print_liveness(env, state->stack[i].spilled_ptr.live);
949 if (is_spilled_reg(&state->stack[i])) {
950 reg = &state->stack[i].spilled_ptr;
951 t = reg->type;
952 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
953 if (t == SCALAR_VALUE && reg->precise)
954 verbose(env, "P");
955 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
956 verbose(env, "%lld", reg->var_off.value + reg->off);
957 } else {
958 verbose(env, "=%s", types_buf);
959 }
960 }
961 if (state->acquired_refs && state->refs[0].id) {
962 verbose(env, " refs=%d", state->refs[0].id);
963 for (i = 1; i < state->acquired_refs; i++)
964 if (state->refs[i].id)
965 verbose(env, ",%d", state->refs[i].id);
966 }
967 if (state->in_callback_fn)
968 verbose(env, " cb");
969 if (state->in_async_callback_fn)
970 verbose(env, " async_cb");
971 verbose(env, "\n");
972 mark_verifier_state_clean(env);
973 }
974
vlog_alignment(u32 pos)975 static inline u32 vlog_alignment(u32 pos)
976 {
977 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
978 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
979 }
980
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)981 static void print_insn_state(struct bpf_verifier_env *env,
982 const struct bpf_func_state *state)
983 {
984 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
985 /* remove new line character */
986 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
987 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
988 } else {
989 verbose(env, "%d:", env->insn_idx);
990 }
991 print_verifier_state(env, state, false);
992 }
993
994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
995 * small to hold src. This is different from krealloc since we don't want to preserve
996 * the contents of dst.
997 *
998 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
999 * not be allocated.
1000 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1002 {
1003 size_t bytes;
1004
1005 if (ZERO_OR_NULL_PTR(src))
1006 goto out;
1007
1008 if (unlikely(check_mul_overflow(n, size, &bytes)))
1009 return NULL;
1010
1011 if (ksize(dst) < bytes) {
1012 kfree(dst);
1013 dst = kmalloc_track_caller(bytes, flags);
1014 if (!dst)
1015 return NULL;
1016 }
1017
1018 memcpy(dst, src, bytes);
1019 out:
1020 return dst ? dst : ZERO_SIZE_PTR;
1021 }
1022
1023 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1024 * small to hold new_n items. new items are zeroed out if the array grows.
1025 *
1026 * Contrary to krealloc_array, does not free arr if new_n is zero.
1027 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1028 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1029 {
1030 void *new_arr;
1031
1032 if (!new_n || old_n == new_n)
1033 goto out;
1034
1035 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1036 if (!new_arr) {
1037 kfree(arr);
1038 return NULL;
1039 }
1040 arr = new_arr;
1041
1042 if (new_n > old_n)
1043 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1044
1045 out:
1046 return arr ? arr : ZERO_SIZE_PTR;
1047 }
1048
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1049 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1050 {
1051 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1052 sizeof(struct bpf_reference_state), GFP_KERNEL);
1053 if (!dst->refs)
1054 return -ENOMEM;
1055
1056 dst->acquired_refs = src->acquired_refs;
1057 return 0;
1058 }
1059
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1060 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1061 {
1062 size_t n = src->allocated_stack / BPF_REG_SIZE;
1063
1064 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1065 GFP_KERNEL);
1066 if (!dst->stack)
1067 return -ENOMEM;
1068
1069 dst->allocated_stack = src->allocated_stack;
1070 return 0;
1071 }
1072
resize_reference_state(struct bpf_func_state * state,size_t n)1073 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1074 {
1075 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1076 sizeof(struct bpf_reference_state));
1077 if (!state->refs)
1078 return -ENOMEM;
1079
1080 state->acquired_refs = n;
1081 return 0;
1082 }
1083
grow_stack_state(struct bpf_func_state * state,int size)1084 static int grow_stack_state(struct bpf_func_state *state, int size)
1085 {
1086 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1087
1088 if (old_n >= n)
1089 return 0;
1090
1091 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1092 if (!state->stack)
1093 return -ENOMEM;
1094
1095 state->allocated_stack = size;
1096 return 0;
1097 }
1098
1099 /* Acquire a pointer id from the env and update the state->refs to include
1100 * this new pointer reference.
1101 * On success, returns a valid pointer id to associate with the register
1102 * On failure, returns a negative errno.
1103 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1104 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1105 {
1106 struct bpf_func_state *state = cur_func(env);
1107 int new_ofs = state->acquired_refs;
1108 int id, err;
1109
1110 err = resize_reference_state(state, state->acquired_refs + 1);
1111 if (err)
1112 return err;
1113 id = ++env->id_gen;
1114 state->refs[new_ofs].id = id;
1115 state->refs[new_ofs].insn_idx = insn_idx;
1116 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1117
1118 return id;
1119 }
1120
1121 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1122 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1123 {
1124 int i, last_idx;
1125
1126 last_idx = state->acquired_refs - 1;
1127 for (i = 0; i < state->acquired_refs; i++) {
1128 if (state->refs[i].id == ptr_id) {
1129 /* Cannot release caller references in callbacks */
1130 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1131 return -EINVAL;
1132 if (last_idx && i != last_idx)
1133 memcpy(&state->refs[i], &state->refs[last_idx],
1134 sizeof(*state->refs));
1135 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1136 state->acquired_refs--;
1137 return 0;
1138 }
1139 }
1140 return -EINVAL;
1141 }
1142
free_func_state(struct bpf_func_state * state)1143 static void free_func_state(struct bpf_func_state *state)
1144 {
1145 if (!state)
1146 return;
1147 kfree(state->refs);
1148 kfree(state->stack);
1149 kfree(state);
1150 }
1151
clear_jmp_history(struct bpf_verifier_state * state)1152 static void clear_jmp_history(struct bpf_verifier_state *state)
1153 {
1154 kfree(state->jmp_history);
1155 state->jmp_history = NULL;
1156 state->jmp_history_cnt = 0;
1157 }
1158
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1159 static void free_verifier_state(struct bpf_verifier_state *state,
1160 bool free_self)
1161 {
1162 int i;
1163
1164 for (i = 0; i <= state->curframe; i++) {
1165 free_func_state(state->frame[i]);
1166 state->frame[i] = NULL;
1167 }
1168 clear_jmp_history(state);
1169 if (free_self)
1170 kfree(state);
1171 }
1172
1173 /* copy verifier state from src to dst growing dst stack space
1174 * when necessary to accommodate larger src stack
1175 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1176 static int copy_func_state(struct bpf_func_state *dst,
1177 const struct bpf_func_state *src)
1178 {
1179 int err;
1180
1181 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1182 err = copy_reference_state(dst, src);
1183 if (err)
1184 return err;
1185 return copy_stack_state(dst, src);
1186 }
1187
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1188 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1189 const struct bpf_verifier_state *src)
1190 {
1191 struct bpf_func_state *dst;
1192 int i, err;
1193
1194 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1195 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1196 GFP_USER);
1197 if (!dst_state->jmp_history)
1198 return -ENOMEM;
1199 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1200
1201 /* if dst has more stack frames then src frame, free them */
1202 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1203 free_func_state(dst_state->frame[i]);
1204 dst_state->frame[i] = NULL;
1205 }
1206 dst_state->speculative = src->speculative;
1207 dst_state->curframe = src->curframe;
1208 dst_state->active_spin_lock = src->active_spin_lock;
1209 dst_state->branches = src->branches;
1210 dst_state->parent = src->parent;
1211 dst_state->first_insn_idx = src->first_insn_idx;
1212 dst_state->last_insn_idx = src->last_insn_idx;
1213 for (i = 0; i <= src->curframe; i++) {
1214 dst = dst_state->frame[i];
1215 if (!dst) {
1216 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1217 if (!dst)
1218 return -ENOMEM;
1219 dst_state->frame[i] = dst;
1220 }
1221 err = copy_func_state(dst, src->frame[i]);
1222 if (err)
1223 return err;
1224 }
1225 return 0;
1226 }
1227
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1228 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1229 {
1230 while (st) {
1231 u32 br = --st->branches;
1232
1233 /* WARN_ON(br > 1) technically makes sense here,
1234 * but see comment in push_stack(), hence:
1235 */
1236 WARN_ONCE((int)br < 0,
1237 "BUG update_branch_counts:branches_to_explore=%d\n",
1238 br);
1239 if (br)
1240 break;
1241 st = st->parent;
1242 }
1243 }
1244
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1245 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1246 int *insn_idx, bool pop_log)
1247 {
1248 struct bpf_verifier_state *cur = env->cur_state;
1249 struct bpf_verifier_stack_elem *elem, *head = env->head;
1250 int err;
1251
1252 if (env->head == NULL)
1253 return -ENOENT;
1254
1255 if (cur) {
1256 err = copy_verifier_state(cur, &head->st);
1257 if (err)
1258 return err;
1259 }
1260 if (pop_log)
1261 bpf_vlog_reset(&env->log, head->log_pos);
1262 if (insn_idx)
1263 *insn_idx = head->insn_idx;
1264 if (prev_insn_idx)
1265 *prev_insn_idx = head->prev_insn_idx;
1266 elem = head->next;
1267 free_verifier_state(&head->st, false);
1268 kfree(head);
1269 env->head = elem;
1270 env->stack_size--;
1271 return 0;
1272 }
1273
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1274 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1275 int insn_idx, int prev_insn_idx,
1276 bool speculative)
1277 {
1278 struct bpf_verifier_state *cur = env->cur_state;
1279 struct bpf_verifier_stack_elem *elem;
1280 int err;
1281
1282 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1283 if (!elem)
1284 goto err;
1285
1286 elem->insn_idx = insn_idx;
1287 elem->prev_insn_idx = prev_insn_idx;
1288 elem->next = env->head;
1289 elem->log_pos = env->log.len_used;
1290 env->head = elem;
1291 env->stack_size++;
1292 err = copy_verifier_state(&elem->st, cur);
1293 if (err)
1294 goto err;
1295 elem->st.speculative |= speculative;
1296 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1297 verbose(env, "The sequence of %d jumps is too complex.\n",
1298 env->stack_size);
1299 goto err;
1300 }
1301 if (elem->st.parent) {
1302 ++elem->st.parent->branches;
1303 /* WARN_ON(branches > 2) technically makes sense here,
1304 * but
1305 * 1. speculative states will bump 'branches' for non-branch
1306 * instructions
1307 * 2. is_state_visited() heuristics may decide not to create
1308 * a new state for a sequence of branches and all such current
1309 * and cloned states will be pointing to a single parent state
1310 * which might have large 'branches' count.
1311 */
1312 }
1313 return &elem->st;
1314 err:
1315 free_verifier_state(env->cur_state, true);
1316 env->cur_state = NULL;
1317 /* pop all elements and return */
1318 while (!pop_stack(env, NULL, NULL, false));
1319 return NULL;
1320 }
1321
1322 #define CALLER_SAVED_REGS 6
1323 static const int caller_saved[CALLER_SAVED_REGS] = {
1324 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1325 };
1326
1327 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1328 struct bpf_reg_state *reg);
1329
1330 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1331 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1332 {
1333 reg->var_off = tnum_const(imm);
1334 reg->smin_value = (s64)imm;
1335 reg->smax_value = (s64)imm;
1336 reg->umin_value = imm;
1337 reg->umax_value = imm;
1338
1339 reg->s32_min_value = (s32)imm;
1340 reg->s32_max_value = (s32)imm;
1341 reg->u32_min_value = (u32)imm;
1342 reg->u32_max_value = (u32)imm;
1343 }
1344
1345 /* Mark the unknown part of a register (variable offset or scalar value) as
1346 * known to have the value @imm.
1347 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1348 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1349 {
1350 /* Clear id, off, and union(map_ptr, range) */
1351 memset(((u8 *)reg) + sizeof(reg->type), 0,
1352 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1353 ___mark_reg_known(reg, imm);
1354 }
1355
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1356 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1357 {
1358 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1359 reg->s32_min_value = (s32)imm;
1360 reg->s32_max_value = (s32)imm;
1361 reg->u32_min_value = (u32)imm;
1362 reg->u32_max_value = (u32)imm;
1363 }
1364
1365 /* Mark the 'variable offset' part of a register as zero. This should be
1366 * used only on registers holding a pointer type.
1367 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1368 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1369 {
1370 __mark_reg_known(reg, 0);
1371 }
1372
__mark_reg_const_zero(struct bpf_reg_state * reg)1373 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1374 {
1375 __mark_reg_known(reg, 0);
1376 reg->type = SCALAR_VALUE;
1377 }
1378
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1379 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1380 struct bpf_reg_state *regs, u32 regno)
1381 {
1382 if (WARN_ON(regno >= MAX_BPF_REG)) {
1383 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1384 /* Something bad happened, let's kill all regs */
1385 for (regno = 0; regno < MAX_BPF_REG; regno++)
1386 __mark_reg_not_init(env, regs + regno);
1387 return;
1388 }
1389 __mark_reg_known_zero(regs + regno);
1390 }
1391
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1392 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1393 {
1394 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1395 const struct bpf_map *map = reg->map_ptr;
1396
1397 if (map->inner_map_meta) {
1398 reg->type = CONST_PTR_TO_MAP;
1399 reg->map_ptr = map->inner_map_meta;
1400 /* transfer reg's id which is unique for every map_lookup_elem
1401 * as UID of the inner map.
1402 */
1403 if (map_value_has_timer(map->inner_map_meta))
1404 reg->map_uid = reg->id;
1405 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1406 reg->type = PTR_TO_XDP_SOCK;
1407 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1408 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1409 reg->type = PTR_TO_SOCKET;
1410 } else {
1411 reg->type = PTR_TO_MAP_VALUE;
1412 }
1413 return;
1414 }
1415
1416 reg->type &= ~PTR_MAYBE_NULL;
1417 }
1418
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1419 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1420 {
1421 return type_is_pkt_pointer(reg->type);
1422 }
1423
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1424 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1425 {
1426 return reg_is_pkt_pointer(reg) ||
1427 reg->type == PTR_TO_PACKET_END;
1428 }
1429
1430 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1431 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1432 enum bpf_reg_type which)
1433 {
1434 /* The register can already have a range from prior markings.
1435 * This is fine as long as it hasn't been advanced from its
1436 * origin.
1437 */
1438 return reg->type == which &&
1439 reg->id == 0 &&
1440 reg->off == 0 &&
1441 tnum_equals_const(reg->var_off, 0);
1442 }
1443
1444 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1445 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1446 {
1447 reg->smin_value = S64_MIN;
1448 reg->smax_value = S64_MAX;
1449 reg->umin_value = 0;
1450 reg->umax_value = U64_MAX;
1451
1452 reg->s32_min_value = S32_MIN;
1453 reg->s32_max_value = S32_MAX;
1454 reg->u32_min_value = 0;
1455 reg->u32_max_value = U32_MAX;
1456 }
1457
__mark_reg64_unbounded(struct bpf_reg_state * reg)1458 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1459 {
1460 reg->smin_value = S64_MIN;
1461 reg->smax_value = S64_MAX;
1462 reg->umin_value = 0;
1463 reg->umax_value = U64_MAX;
1464 }
1465
__mark_reg32_unbounded(struct bpf_reg_state * reg)1466 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1467 {
1468 reg->s32_min_value = S32_MIN;
1469 reg->s32_max_value = S32_MAX;
1470 reg->u32_min_value = 0;
1471 reg->u32_max_value = U32_MAX;
1472 }
1473
__update_reg32_bounds(struct bpf_reg_state * reg)1474 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1475 {
1476 struct tnum var32_off = tnum_subreg(reg->var_off);
1477
1478 /* min signed is max(sign bit) | min(other bits) */
1479 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1480 var32_off.value | (var32_off.mask & S32_MIN));
1481 /* max signed is min(sign bit) | max(other bits) */
1482 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1483 var32_off.value | (var32_off.mask & S32_MAX));
1484 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1485 reg->u32_max_value = min(reg->u32_max_value,
1486 (u32)(var32_off.value | var32_off.mask));
1487 }
1488
__update_reg64_bounds(struct bpf_reg_state * reg)1489 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1490 {
1491 /* min signed is max(sign bit) | min(other bits) */
1492 reg->smin_value = max_t(s64, reg->smin_value,
1493 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1494 /* max signed is min(sign bit) | max(other bits) */
1495 reg->smax_value = min_t(s64, reg->smax_value,
1496 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1497 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1498 reg->umax_value = min(reg->umax_value,
1499 reg->var_off.value | reg->var_off.mask);
1500 }
1501
__update_reg_bounds(struct bpf_reg_state * reg)1502 static void __update_reg_bounds(struct bpf_reg_state *reg)
1503 {
1504 __update_reg32_bounds(reg);
1505 __update_reg64_bounds(reg);
1506 }
1507
1508 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1509 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1510 {
1511 /* Learn sign from signed bounds.
1512 * If we cannot cross the sign boundary, then signed and unsigned bounds
1513 * are the same, so combine. This works even in the negative case, e.g.
1514 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1515 */
1516 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1517 reg->s32_min_value = reg->u32_min_value =
1518 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1519 reg->s32_max_value = reg->u32_max_value =
1520 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1521 return;
1522 }
1523 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1524 * boundary, so we must be careful.
1525 */
1526 if ((s32)reg->u32_max_value >= 0) {
1527 /* Positive. We can't learn anything from the smin, but smax
1528 * is positive, hence safe.
1529 */
1530 reg->s32_min_value = reg->u32_min_value;
1531 reg->s32_max_value = reg->u32_max_value =
1532 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1533 } else if ((s32)reg->u32_min_value < 0) {
1534 /* Negative. We can't learn anything from the smax, but smin
1535 * is negative, hence safe.
1536 */
1537 reg->s32_min_value = reg->u32_min_value =
1538 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1539 reg->s32_max_value = reg->u32_max_value;
1540 }
1541 }
1542
__reg64_deduce_bounds(struct bpf_reg_state * reg)1543 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1544 {
1545 /* Learn sign from signed bounds.
1546 * If we cannot cross the sign boundary, then signed and unsigned bounds
1547 * are the same, so combine. This works even in the negative case, e.g.
1548 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1549 */
1550 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1551 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1552 reg->umin_value);
1553 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1554 reg->umax_value);
1555 return;
1556 }
1557 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1558 * boundary, so we must be careful.
1559 */
1560 if ((s64)reg->umax_value >= 0) {
1561 /* Positive. We can't learn anything from the smin, but smax
1562 * is positive, hence safe.
1563 */
1564 reg->smin_value = reg->umin_value;
1565 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1566 reg->umax_value);
1567 } else if ((s64)reg->umin_value < 0) {
1568 /* Negative. We can't learn anything from the smax, but smin
1569 * is negative, hence safe.
1570 */
1571 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1572 reg->umin_value);
1573 reg->smax_value = reg->umax_value;
1574 }
1575 }
1576
__reg_deduce_bounds(struct bpf_reg_state * reg)1577 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1578 {
1579 __reg32_deduce_bounds(reg);
1580 __reg64_deduce_bounds(reg);
1581 }
1582
1583 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1584 static void __reg_bound_offset(struct bpf_reg_state *reg)
1585 {
1586 struct tnum var64_off = tnum_intersect(reg->var_off,
1587 tnum_range(reg->umin_value,
1588 reg->umax_value));
1589 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1590 tnum_range(reg->u32_min_value,
1591 reg->u32_max_value));
1592
1593 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1594 }
1595
reg_bounds_sync(struct bpf_reg_state * reg)1596 static void reg_bounds_sync(struct bpf_reg_state *reg)
1597 {
1598 /* We might have learned new bounds from the var_off. */
1599 __update_reg_bounds(reg);
1600 /* We might have learned something about the sign bit. */
1601 __reg_deduce_bounds(reg);
1602 /* We might have learned some bits from the bounds. */
1603 __reg_bound_offset(reg);
1604 /* Intersecting with the old var_off might have improved our bounds
1605 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1606 * then new var_off is (0; 0x7f...fc) which improves our umax.
1607 */
1608 __update_reg_bounds(reg);
1609 }
1610
__reg32_bound_s64(s32 a)1611 static bool __reg32_bound_s64(s32 a)
1612 {
1613 return a >= 0 && a <= S32_MAX;
1614 }
1615
__reg_assign_32_into_64(struct bpf_reg_state * reg)1616 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1617 {
1618 reg->umin_value = reg->u32_min_value;
1619 reg->umax_value = reg->u32_max_value;
1620
1621 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1622 * be positive otherwise set to worse case bounds and refine later
1623 * from tnum.
1624 */
1625 if (__reg32_bound_s64(reg->s32_min_value) &&
1626 __reg32_bound_s64(reg->s32_max_value)) {
1627 reg->smin_value = reg->s32_min_value;
1628 reg->smax_value = reg->s32_max_value;
1629 } else {
1630 reg->smin_value = 0;
1631 reg->smax_value = U32_MAX;
1632 }
1633 }
1634
__reg_combine_32_into_64(struct bpf_reg_state * reg)1635 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1636 {
1637 /* special case when 64-bit register has upper 32-bit register
1638 * zeroed. Typically happens after zext or <<32, >>32 sequence
1639 * allowing us to use 32-bit bounds directly,
1640 */
1641 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1642 __reg_assign_32_into_64(reg);
1643 } else {
1644 /* Otherwise the best we can do is push lower 32bit known and
1645 * unknown bits into register (var_off set from jmp logic)
1646 * then learn as much as possible from the 64-bit tnum
1647 * known and unknown bits. The previous smin/smax bounds are
1648 * invalid here because of jmp32 compare so mark them unknown
1649 * so they do not impact tnum bounds calculation.
1650 */
1651 __mark_reg64_unbounded(reg);
1652 }
1653 reg_bounds_sync(reg);
1654 }
1655
__reg64_bound_s32(s64 a)1656 static bool __reg64_bound_s32(s64 a)
1657 {
1658 return a >= S32_MIN && a <= S32_MAX;
1659 }
1660
__reg64_bound_u32(u64 a)1661 static bool __reg64_bound_u32(u64 a)
1662 {
1663 return a >= U32_MIN && a <= U32_MAX;
1664 }
1665
__reg_combine_64_into_32(struct bpf_reg_state * reg)1666 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1667 {
1668 __mark_reg32_unbounded(reg);
1669 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1670 reg->s32_min_value = (s32)reg->smin_value;
1671 reg->s32_max_value = (s32)reg->smax_value;
1672 }
1673 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1674 reg->u32_min_value = (u32)reg->umin_value;
1675 reg->u32_max_value = (u32)reg->umax_value;
1676 }
1677 reg_bounds_sync(reg);
1678 }
1679
1680 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1681 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1682 struct bpf_reg_state *reg)
1683 {
1684 /*
1685 * Clear type, id, off, and union(map_ptr, range) and
1686 * padding between 'type' and union
1687 */
1688 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1689 reg->type = SCALAR_VALUE;
1690 reg->var_off = tnum_unknown;
1691 reg->frameno = 0;
1692 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1693 __mark_reg_unbounded(reg);
1694 }
1695
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1696 static void mark_reg_unknown(struct bpf_verifier_env *env,
1697 struct bpf_reg_state *regs, u32 regno)
1698 {
1699 if (WARN_ON(regno >= MAX_BPF_REG)) {
1700 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1701 /* Something bad happened, let's kill all regs except FP */
1702 for (regno = 0; regno < BPF_REG_FP; regno++)
1703 __mark_reg_not_init(env, regs + regno);
1704 return;
1705 }
1706 __mark_reg_unknown(env, regs + regno);
1707 }
1708
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1709 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1710 struct bpf_reg_state *reg)
1711 {
1712 __mark_reg_unknown(env, reg);
1713 reg->type = NOT_INIT;
1714 }
1715
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1716 static void mark_reg_not_init(struct bpf_verifier_env *env,
1717 struct bpf_reg_state *regs, u32 regno)
1718 {
1719 if (WARN_ON(regno >= MAX_BPF_REG)) {
1720 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1721 /* Something bad happened, let's kill all regs except FP */
1722 for (regno = 0; regno < BPF_REG_FP; regno++)
1723 __mark_reg_not_init(env, regs + regno);
1724 return;
1725 }
1726 __mark_reg_not_init(env, regs + regno);
1727 }
1728
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)1729 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1730 struct bpf_reg_state *regs, u32 regno,
1731 enum bpf_reg_type reg_type,
1732 struct btf *btf, u32 btf_id,
1733 enum bpf_type_flag flag)
1734 {
1735 if (reg_type == SCALAR_VALUE) {
1736 mark_reg_unknown(env, regs, regno);
1737 return;
1738 }
1739 mark_reg_known_zero(env, regs, regno);
1740 regs[regno].type = PTR_TO_BTF_ID | flag;
1741 regs[regno].btf = btf;
1742 regs[regno].btf_id = btf_id;
1743 }
1744
1745 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1746 static void init_reg_state(struct bpf_verifier_env *env,
1747 struct bpf_func_state *state)
1748 {
1749 struct bpf_reg_state *regs = state->regs;
1750 int i;
1751
1752 for (i = 0; i < MAX_BPF_REG; i++) {
1753 mark_reg_not_init(env, regs, i);
1754 regs[i].live = REG_LIVE_NONE;
1755 regs[i].parent = NULL;
1756 regs[i].subreg_def = DEF_NOT_SUBREG;
1757 }
1758
1759 /* frame pointer */
1760 regs[BPF_REG_FP].type = PTR_TO_STACK;
1761 mark_reg_known_zero(env, regs, BPF_REG_FP);
1762 regs[BPF_REG_FP].frameno = state->frameno;
1763 }
1764
1765 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1766 static void init_func_state(struct bpf_verifier_env *env,
1767 struct bpf_func_state *state,
1768 int callsite, int frameno, int subprogno)
1769 {
1770 state->callsite = callsite;
1771 state->frameno = frameno;
1772 state->subprogno = subprogno;
1773 state->callback_ret_range = tnum_range(0, 0);
1774 init_reg_state(env, state);
1775 mark_verifier_state_scratched(env);
1776 }
1777
1778 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)1779 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1780 int insn_idx, int prev_insn_idx,
1781 int subprog)
1782 {
1783 struct bpf_verifier_stack_elem *elem;
1784 struct bpf_func_state *frame;
1785
1786 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1787 if (!elem)
1788 goto err;
1789
1790 elem->insn_idx = insn_idx;
1791 elem->prev_insn_idx = prev_insn_idx;
1792 elem->next = env->head;
1793 elem->log_pos = env->log.len_used;
1794 env->head = elem;
1795 env->stack_size++;
1796 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1797 verbose(env,
1798 "The sequence of %d jumps is too complex for async cb.\n",
1799 env->stack_size);
1800 goto err;
1801 }
1802 /* Unlike push_stack() do not copy_verifier_state().
1803 * The caller state doesn't matter.
1804 * This is async callback. It starts in a fresh stack.
1805 * Initialize it similar to do_check_common().
1806 */
1807 elem->st.branches = 1;
1808 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1809 if (!frame)
1810 goto err;
1811 init_func_state(env, frame,
1812 BPF_MAIN_FUNC /* callsite */,
1813 0 /* frameno within this callchain */,
1814 subprog /* subprog number within this prog */);
1815 elem->st.frame[0] = frame;
1816 return &elem->st;
1817 err:
1818 free_verifier_state(env->cur_state, true);
1819 env->cur_state = NULL;
1820 /* pop all elements and return */
1821 while (!pop_stack(env, NULL, NULL, false));
1822 return NULL;
1823 }
1824
1825
1826 enum reg_arg_type {
1827 SRC_OP, /* register is used as source operand */
1828 DST_OP, /* register is used as destination operand */
1829 DST_OP_NO_MARK /* same as above, check only, don't mark */
1830 };
1831
cmp_subprogs(const void * a,const void * b)1832 static int cmp_subprogs(const void *a, const void *b)
1833 {
1834 return ((struct bpf_subprog_info *)a)->start -
1835 ((struct bpf_subprog_info *)b)->start;
1836 }
1837
find_subprog(struct bpf_verifier_env * env,int off)1838 static int find_subprog(struct bpf_verifier_env *env, int off)
1839 {
1840 struct bpf_subprog_info *p;
1841
1842 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1843 sizeof(env->subprog_info[0]), cmp_subprogs);
1844 if (!p)
1845 return -ENOENT;
1846 return p - env->subprog_info;
1847
1848 }
1849
add_subprog(struct bpf_verifier_env * env,int off)1850 static int add_subprog(struct bpf_verifier_env *env, int off)
1851 {
1852 int insn_cnt = env->prog->len;
1853 int ret;
1854
1855 if (off >= insn_cnt || off < 0) {
1856 verbose(env, "call to invalid destination\n");
1857 return -EINVAL;
1858 }
1859 ret = find_subprog(env, off);
1860 if (ret >= 0)
1861 return ret;
1862 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1863 verbose(env, "too many subprograms\n");
1864 return -E2BIG;
1865 }
1866 /* determine subprog starts. The end is one before the next starts */
1867 env->subprog_info[env->subprog_cnt++].start = off;
1868 sort(env->subprog_info, env->subprog_cnt,
1869 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1870 return env->subprog_cnt - 1;
1871 }
1872
1873 #define MAX_KFUNC_DESCS 256
1874 #define MAX_KFUNC_BTFS 256
1875
1876 struct bpf_kfunc_desc {
1877 struct btf_func_model func_model;
1878 u32 func_id;
1879 s32 imm;
1880 u16 offset;
1881 };
1882
1883 struct bpf_kfunc_btf {
1884 struct btf *btf;
1885 struct module *module;
1886 u16 offset;
1887 };
1888
1889 struct bpf_kfunc_desc_tab {
1890 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1891 u32 nr_descs;
1892 };
1893
1894 struct bpf_kfunc_btf_tab {
1895 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1896 u32 nr_descs;
1897 };
1898
kfunc_desc_cmp_by_id_off(const void * a,const void * b)1899 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1900 {
1901 const struct bpf_kfunc_desc *d0 = a;
1902 const struct bpf_kfunc_desc *d1 = b;
1903
1904 /* func_id is not greater than BTF_MAX_TYPE */
1905 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1906 }
1907
kfunc_btf_cmp_by_off(const void * a,const void * b)1908 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1909 {
1910 const struct bpf_kfunc_btf *d0 = a;
1911 const struct bpf_kfunc_btf *d1 = b;
1912
1913 return d0->offset - d1->offset;
1914 }
1915
1916 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)1917 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1918 {
1919 struct bpf_kfunc_desc desc = {
1920 .func_id = func_id,
1921 .offset = offset,
1922 };
1923 struct bpf_kfunc_desc_tab *tab;
1924
1925 tab = prog->aux->kfunc_tab;
1926 return bsearch(&desc, tab->descs, tab->nr_descs,
1927 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1928 }
1929
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)1930 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1931 s16 offset)
1932 {
1933 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1934 struct bpf_kfunc_btf_tab *tab;
1935 struct bpf_kfunc_btf *b;
1936 struct module *mod;
1937 struct btf *btf;
1938 int btf_fd;
1939
1940 tab = env->prog->aux->kfunc_btf_tab;
1941 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1942 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1943 if (!b) {
1944 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1945 verbose(env, "too many different module BTFs\n");
1946 return ERR_PTR(-E2BIG);
1947 }
1948
1949 if (bpfptr_is_null(env->fd_array)) {
1950 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1951 return ERR_PTR(-EPROTO);
1952 }
1953
1954 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1955 offset * sizeof(btf_fd),
1956 sizeof(btf_fd)))
1957 return ERR_PTR(-EFAULT);
1958
1959 btf = btf_get_by_fd(btf_fd);
1960 if (IS_ERR(btf)) {
1961 verbose(env, "invalid module BTF fd specified\n");
1962 return btf;
1963 }
1964
1965 if (!btf_is_module(btf)) {
1966 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1967 btf_put(btf);
1968 return ERR_PTR(-EINVAL);
1969 }
1970
1971 mod = btf_try_get_module(btf);
1972 if (!mod) {
1973 btf_put(btf);
1974 return ERR_PTR(-ENXIO);
1975 }
1976
1977 b = &tab->descs[tab->nr_descs++];
1978 b->btf = btf;
1979 b->module = mod;
1980 b->offset = offset;
1981
1982 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1983 kfunc_btf_cmp_by_off, NULL);
1984 }
1985 return b->btf;
1986 }
1987
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)1988 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1989 {
1990 if (!tab)
1991 return;
1992
1993 while (tab->nr_descs--) {
1994 module_put(tab->descs[tab->nr_descs].module);
1995 btf_put(tab->descs[tab->nr_descs].btf);
1996 }
1997 kfree(tab);
1998 }
1999
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2000 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2001 {
2002 if (offset) {
2003 if (offset < 0) {
2004 /* In the future, this can be allowed to increase limit
2005 * of fd index into fd_array, interpreted as u16.
2006 */
2007 verbose(env, "negative offset disallowed for kernel module function call\n");
2008 return ERR_PTR(-EINVAL);
2009 }
2010
2011 return __find_kfunc_desc_btf(env, offset);
2012 }
2013 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2014 }
2015
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2016 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2017 {
2018 const struct btf_type *func, *func_proto;
2019 struct bpf_kfunc_btf_tab *btf_tab;
2020 struct bpf_kfunc_desc_tab *tab;
2021 struct bpf_prog_aux *prog_aux;
2022 struct bpf_kfunc_desc *desc;
2023 const char *func_name;
2024 struct btf *desc_btf;
2025 unsigned long call_imm;
2026 unsigned long addr;
2027 int err;
2028
2029 prog_aux = env->prog->aux;
2030 tab = prog_aux->kfunc_tab;
2031 btf_tab = prog_aux->kfunc_btf_tab;
2032 if (!tab) {
2033 if (!btf_vmlinux) {
2034 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2035 return -ENOTSUPP;
2036 }
2037
2038 if (!env->prog->jit_requested) {
2039 verbose(env, "JIT is required for calling kernel function\n");
2040 return -ENOTSUPP;
2041 }
2042
2043 if (!bpf_jit_supports_kfunc_call()) {
2044 verbose(env, "JIT does not support calling kernel function\n");
2045 return -ENOTSUPP;
2046 }
2047
2048 if (!env->prog->gpl_compatible) {
2049 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2050 return -EINVAL;
2051 }
2052
2053 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2054 if (!tab)
2055 return -ENOMEM;
2056 prog_aux->kfunc_tab = tab;
2057 }
2058
2059 /* func_id == 0 is always invalid, but instead of returning an error, be
2060 * conservative and wait until the code elimination pass before returning
2061 * error, so that invalid calls that get pruned out can be in BPF programs
2062 * loaded from userspace. It is also required that offset be untouched
2063 * for such calls.
2064 */
2065 if (!func_id && !offset)
2066 return 0;
2067
2068 if (!btf_tab && offset) {
2069 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2070 if (!btf_tab)
2071 return -ENOMEM;
2072 prog_aux->kfunc_btf_tab = btf_tab;
2073 }
2074
2075 desc_btf = find_kfunc_desc_btf(env, offset);
2076 if (IS_ERR(desc_btf)) {
2077 verbose(env, "failed to find BTF for kernel function\n");
2078 return PTR_ERR(desc_btf);
2079 }
2080
2081 if (find_kfunc_desc(env->prog, func_id, offset))
2082 return 0;
2083
2084 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2085 verbose(env, "too many different kernel function calls\n");
2086 return -E2BIG;
2087 }
2088
2089 func = btf_type_by_id(desc_btf, func_id);
2090 if (!func || !btf_type_is_func(func)) {
2091 verbose(env, "kernel btf_id %u is not a function\n",
2092 func_id);
2093 return -EINVAL;
2094 }
2095 func_proto = btf_type_by_id(desc_btf, func->type);
2096 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2097 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2098 func_id);
2099 return -EINVAL;
2100 }
2101
2102 func_name = btf_name_by_offset(desc_btf, func->name_off);
2103 addr = kallsyms_lookup_name(func_name);
2104 if (!addr) {
2105 verbose(env, "cannot find address for kernel function %s\n",
2106 func_name);
2107 return -EINVAL;
2108 }
2109
2110 call_imm = BPF_CALL_IMM(addr);
2111 /* Check whether or not the relative offset overflows desc->imm */
2112 if ((unsigned long)(s32)call_imm != call_imm) {
2113 verbose(env, "address of kernel function %s is out of range\n",
2114 func_name);
2115 return -EINVAL;
2116 }
2117
2118 desc = &tab->descs[tab->nr_descs++];
2119 desc->func_id = func_id;
2120 desc->imm = call_imm;
2121 desc->offset = offset;
2122 err = btf_distill_func_proto(&env->log, desc_btf,
2123 func_proto, func_name,
2124 &desc->func_model);
2125 if (!err)
2126 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2127 kfunc_desc_cmp_by_id_off, NULL);
2128 return err;
2129 }
2130
kfunc_desc_cmp_by_imm(const void * a,const void * b)2131 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2132 {
2133 const struct bpf_kfunc_desc *d0 = a;
2134 const struct bpf_kfunc_desc *d1 = b;
2135
2136 if (d0->imm > d1->imm)
2137 return 1;
2138 else if (d0->imm < d1->imm)
2139 return -1;
2140 return 0;
2141 }
2142
sort_kfunc_descs_by_imm(struct bpf_prog * prog)2143 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2144 {
2145 struct bpf_kfunc_desc_tab *tab;
2146
2147 tab = prog->aux->kfunc_tab;
2148 if (!tab)
2149 return;
2150
2151 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2152 kfunc_desc_cmp_by_imm, NULL);
2153 }
2154
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2155 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2156 {
2157 return !!prog->aux->kfunc_tab;
2158 }
2159
2160 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2161 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2162 const struct bpf_insn *insn)
2163 {
2164 const struct bpf_kfunc_desc desc = {
2165 .imm = insn->imm,
2166 };
2167 const struct bpf_kfunc_desc *res;
2168 struct bpf_kfunc_desc_tab *tab;
2169
2170 tab = prog->aux->kfunc_tab;
2171 res = bsearch(&desc, tab->descs, tab->nr_descs,
2172 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2173
2174 return res ? &res->func_model : NULL;
2175 }
2176
add_subprog_and_kfunc(struct bpf_verifier_env * env)2177 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2178 {
2179 struct bpf_subprog_info *subprog = env->subprog_info;
2180 struct bpf_insn *insn = env->prog->insnsi;
2181 int i, ret, insn_cnt = env->prog->len;
2182
2183 /* Add entry function. */
2184 ret = add_subprog(env, 0);
2185 if (ret)
2186 return ret;
2187
2188 for (i = 0; i < insn_cnt; i++, insn++) {
2189 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2190 !bpf_pseudo_kfunc_call(insn))
2191 continue;
2192
2193 if (!env->bpf_capable) {
2194 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2195 return -EPERM;
2196 }
2197
2198 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2199 ret = add_subprog(env, i + insn->imm + 1);
2200 else
2201 ret = add_kfunc_call(env, insn->imm, insn->off);
2202
2203 if (ret < 0)
2204 return ret;
2205 }
2206
2207 /* Add a fake 'exit' subprog which could simplify subprog iteration
2208 * logic. 'subprog_cnt' should not be increased.
2209 */
2210 subprog[env->subprog_cnt].start = insn_cnt;
2211
2212 if (env->log.level & BPF_LOG_LEVEL2)
2213 for (i = 0; i < env->subprog_cnt; i++)
2214 verbose(env, "func#%d @%d\n", i, subprog[i].start);
2215
2216 return 0;
2217 }
2218
check_subprogs(struct bpf_verifier_env * env)2219 static int check_subprogs(struct bpf_verifier_env *env)
2220 {
2221 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2222 struct bpf_subprog_info *subprog = env->subprog_info;
2223 struct bpf_insn *insn = env->prog->insnsi;
2224 int insn_cnt = env->prog->len;
2225
2226 /* now check that all jumps are within the same subprog */
2227 subprog_start = subprog[cur_subprog].start;
2228 subprog_end = subprog[cur_subprog + 1].start;
2229 for (i = 0; i < insn_cnt; i++) {
2230 u8 code = insn[i].code;
2231
2232 if (code == (BPF_JMP | BPF_CALL) &&
2233 insn[i].imm == BPF_FUNC_tail_call &&
2234 insn[i].src_reg != BPF_PSEUDO_CALL)
2235 subprog[cur_subprog].has_tail_call = true;
2236 if (BPF_CLASS(code) == BPF_LD &&
2237 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2238 subprog[cur_subprog].has_ld_abs = true;
2239 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2240 goto next;
2241 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2242 goto next;
2243 off = i + insn[i].off + 1;
2244 if (off < subprog_start || off >= subprog_end) {
2245 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2246 return -EINVAL;
2247 }
2248 next:
2249 if (i == subprog_end - 1) {
2250 /* to avoid fall-through from one subprog into another
2251 * the last insn of the subprog should be either exit
2252 * or unconditional jump back
2253 */
2254 if (code != (BPF_JMP | BPF_EXIT) &&
2255 code != (BPF_JMP | BPF_JA)) {
2256 verbose(env, "last insn is not an exit or jmp\n");
2257 return -EINVAL;
2258 }
2259 subprog_start = subprog_end;
2260 cur_subprog++;
2261 if (cur_subprog < env->subprog_cnt)
2262 subprog_end = subprog[cur_subprog + 1].start;
2263 }
2264 }
2265 return 0;
2266 }
2267
2268 /* Parentage chain of this register (or stack slot) should take care of all
2269 * issues like callee-saved registers, stack slot allocation time, etc.
2270 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)2271 static int mark_reg_read(struct bpf_verifier_env *env,
2272 const struct bpf_reg_state *state,
2273 struct bpf_reg_state *parent, u8 flag)
2274 {
2275 bool writes = parent == state->parent; /* Observe write marks */
2276 int cnt = 0;
2277
2278 while (parent) {
2279 /* if read wasn't screened by an earlier write ... */
2280 if (writes && state->live & REG_LIVE_WRITTEN)
2281 break;
2282 if (parent->live & REG_LIVE_DONE) {
2283 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2284 reg_type_str(env, parent->type),
2285 parent->var_off.value, parent->off);
2286 return -EFAULT;
2287 }
2288 /* The first condition is more likely to be true than the
2289 * second, checked it first.
2290 */
2291 if ((parent->live & REG_LIVE_READ) == flag ||
2292 parent->live & REG_LIVE_READ64)
2293 /* The parentage chain never changes and
2294 * this parent was already marked as LIVE_READ.
2295 * There is no need to keep walking the chain again and
2296 * keep re-marking all parents as LIVE_READ.
2297 * This case happens when the same register is read
2298 * multiple times without writes into it in-between.
2299 * Also, if parent has the stronger REG_LIVE_READ64 set,
2300 * then no need to set the weak REG_LIVE_READ32.
2301 */
2302 break;
2303 /* ... then we depend on parent's value */
2304 parent->live |= flag;
2305 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2306 if (flag == REG_LIVE_READ64)
2307 parent->live &= ~REG_LIVE_READ32;
2308 state = parent;
2309 parent = state->parent;
2310 writes = true;
2311 cnt++;
2312 }
2313
2314 if (env->longest_mark_read_walk < cnt)
2315 env->longest_mark_read_walk = cnt;
2316 return 0;
2317 }
2318
2319 /* This function is supposed to be used by the following 32-bit optimization
2320 * code only. It returns TRUE if the source or destination register operates
2321 * on 64-bit, otherwise return FALSE.
2322 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)2323 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2324 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2325 {
2326 u8 code, class, op;
2327
2328 code = insn->code;
2329 class = BPF_CLASS(code);
2330 op = BPF_OP(code);
2331 if (class == BPF_JMP) {
2332 /* BPF_EXIT for "main" will reach here. Return TRUE
2333 * conservatively.
2334 */
2335 if (op == BPF_EXIT)
2336 return true;
2337 if (op == BPF_CALL) {
2338 /* BPF to BPF call will reach here because of marking
2339 * caller saved clobber with DST_OP_NO_MARK for which we
2340 * don't care the register def because they are anyway
2341 * marked as NOT_INIT already.
2342 */
2343 if (insn->src_reg == BPF_PSEUDO_CALL)
2344 return false;
2345 /* Helper call will reach here because of arg type
2346 * check, conservatively return TRUE.
2347 */
2348 if (t == SRC_OP)
2349 return true;
2350
2351 return false;
2352 }
2353 }
2354
2355 if (class == BPF_ALU64 || class == BPF_JMP ||
2356 /* BPF_END always use BPF_ALU class. */
2357 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2358 return true;
2359
2360 if (class == BPF_ALU || class == BPF_JMP32)
2361 return false;
2362
2363 if (class == BPF_LDX) {
2364 if (t != SRC_OP)
2365 return BPF_SIZE(code) == BPF_DW;
2366 /* LDX source must be ptr. */
2367 return true;
2368 }
2369
2370 if (class == BPF_STX) {
2371 /* BPF_STX (including atomic variants) has multiple source
2372 * operands, one of which is a ptr. Check whether the caller is
2373 * asking about it.
2374 */
2375 if (t == SRC_OP && reg->type != SCALAR_VALUE)
2376 return true;
2377 return BPF_SIZE(code) == BPF_DW;
2378 }
2379
2380 if (class == BPF_LD) {
2381 u8 mode = BPF_MODE(code);
2382
2383 /* LD_IMM64 */
2384 if (mode == BPF_IMM)
2385 return true;
2386
2387 /* Both LD_IND and LD_ABS return 32-bit data. */
2388 if (t != SRC_OP)
2389 return false;
2390
2391 /* Implicit ctx ptr. */
2392 if (regno == BPF_REG_6)
2393 return true;
2394
2395 /* Explicit source could be any width. */
2396 return true;
2397 }
2398
2399 if (class == BPF_ST)
2400 /* The only source register for BPF_ST is a ptr. */
2401 return true;
2402
2403 /* Conservatively return true at default. */
2404 return true;
2405 }
2406
2407 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)2408 static int insn_def_regno(const struct bpf_insn *insn)
2409 {
2410 switch (BPF_CLASS(insn->code)) {
2411 case BPF_JMP:
2412 case BPF_JMP32:
2413 case BPF_ST:
2414 return -1;
2415 case BPF_STX:
2416 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2417 (insn->imm & BPF_FETCH)) {
2418 if (insn->imm == BPF_CMPXCHG)
2419 return BPF_REG_0;
2420 else
2421 return insn->src_reg;
2422 } else {
2423 return -1;
2424 }
2425 default:
2426 return insn->dst_reg;
2427 }
2428 }
2429
2430 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)2431 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2432 {
2433 int dst_reg = insn_def_regno(insn);
2434
2435 if (dst_reg == -1)
2436 return false;
2437
2438 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2439 }
2440
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)2441 static void mark_insn_zext(struct bpf_verifier_env *env,
2442 struct bpf_reg_state *reg)
2443 {
2444 s32 def_idx = reg->subreg_def;
2445
2446 if (def_idx == DEF_NOT_SUBREG)
2447 return;
2448
2449 env->insn_aux_data[def_idx - 1].zext_dst = true;
2450 /* The dst will be zero extended, so won't be sub-register anymore. */
2451 reg->subreg_def = DEF_NOT_SUBREG;
2452 }
2453
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)2454 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2455 enum reg_arg_type t)
2456 {
2457 struct bpf_verifier_state *vstate = env->cur_state;
2458 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2459 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2460 struct bpf_reg_state *reg, *regs = state->regs;
2461 bool rw64;
2462
2463 if (regno >= MAX_BPF_REG) {
2464 verbose(env, "R%d is invalid\n", regno);
2465 return -EINVAL;
2466 }
2467
2468 mark_reg_scratched(env, regno);
2469
2470 reg = ®s[regno];
2471 rw64 = is_reg64(env, insn, regno, reg, t);
2472 if (t == SRC_OP) {
2473 /* check whether register used as source operand can be read */
2474 if (reg->type == NOT_INIT) {
2475 verbose(env, "R%d !read_ok\n", regno);
2476 return -EACCES;
2477 }
2478 /* We don't need to worry about FP liveness because it's read-only */
2479 if (regno == BPF_REG_FP)
2480 return 0;
2481
2482 if (rw64)
2483 mark_insn_zext(env, reg);
2484
2485 return mark_reg_read(env, reg, reg->parent,
2486 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2487 } else {
2488 /* check whether register used as dest operand can be written to */
2489 if (regno == BPF_REG_FP) {
2490 verbose(env, "frame pointer is read only\n");
2491 return -EACCES;
2492 }
2493 reg->live |= REG_LIVE_WRITTEN;
2494 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2495 if (t == DST_OP)
2496 mark_reg_unknown(env, regs, regno);
2497 }
2498 return 0;
2499 }
2500
2501 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)2502 static int push_jmp_history(struct bpf_verifier_env *env,
2503 struct bpf_verifier_state *cur)
2504 {
2505 u32 cnt = cur->jmp_history_cnt;
2506 struct bpf_idx_pair *p;
2507
2508 cnt++;
2509 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2510 if (!p)
2511 return -ENOMEM;
2512 p[cnt - 1].idx = env->insn_idx;
2513 p[cnt - 1].prev_idx = env->prev_insn_idx;
2514 cur->jmp_history = p;
2515 cur->jmp_history_cnt = cnt;
2516 return 0;
2517 }
2518
2519 /* Backtrack one insn at a time. If idx is not at the top of recorded
2520 * history then previous instruction came from straight line execution.
2521 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)2522 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2523 u32 *history)
2524 {
2525 u32 cnt = *history;
2526
2527 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2528 i = st->jmp_history[cnt - 1].prev_idx;
2529 (*history)--;
2530 } else {
2531 i--;
2532 }
2533 return i;
2534 }
2535
disasm_kfunc_name(void * data,const struct bpf_insn * insn)2536 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2537 {
2538 const struct btf_type *func;
2539 struct btf *desc_btf;
2540
2541 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2542 return NULL;
2543
2544 desc_btf = find_kfunc_desc_btf(data, insn->off);
2545 if (IS_ERR(desc_btf))
2546 return "<error>";
2547
2548 func = btf_type_by_id(desc_btf, insn->imm);
2549 return btf_name_by_offset(desc_btf, func->name_off);
2550 }
2551
2552 /* For given verifier state backtrack_insn() is called from the last insn to
2553 * the first insn. Its purpose is to compute a bitmask of registers and
2554 * stack slots that needs precision in the parent verifier state.
2555 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)2556 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2557 u32 *reg_mask, u64 *stack_mask)
2558 {
2559 const struct bpf_insn_cbs cbs = {
2560 .cb_call = disasm_kfunc_name,
2561 .cb_print = verbose,
2562 .private_data = env,
2563 };
2564 struct bpf_insn *insn = env->prog->insnsi + idx;
2565 u8 class = BPF_CLASS(insn->code);
2566 u8 opcode = BPF_OP(insn->code);
2567 u8 mode = BPF_MODE(insn->code);
2568 u32 dreg = 1u << insn->dst_reg;
2569 u32 sreg = 1u << insn->src_reg;
2570 u32 spi;
2571
2572 if (insn->code == 0)
2573 return 0;
2574 if (env->log.level & BPF_LOG_LEVEL2) {
2575 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2576 verbose(env, "%d: ", idx);
2577 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2578 }
2579
2580 if (class == BPF_ALU || class == BPF_ALU64) {
2581 if (!(*reg_mask & dreg))
2582 return 0;
2583 if (opcode == BPF_MOV) {
2584 if (BPF_SRC(insn->code) == BPF_X) {
2585 /* dreg = sreg
2586 * dreg needs precision after this insn
2587 * sreg needs precision before this insn
2588 */
2589 *reg_mask &= ~dreg;
2590 *reg_mask |= sreg;
2591 } else {
2592 /* dreg = K
2593 * dreg needs precision after this insn.
2594 * Corresponding register is already marked
2595 * as precise=true in this verifier state.
2596 * No further markings in parent are necessary
2597 */
2598 *reg_mask &= ~dreg;
2599 }
2600 } else {
2601 if (BPF_SRC(insn->code) == BPF_X) {
2602 /* dreg += sreg
2603 * both dreg and sreg need precision
2604 * before this insn
2605 */
2606 *reg_mask |= sreg;
2607 } /* else dreg += K
2608 * dreg still needs precision before this insn
2609 */
2610 }
2611 } else if (class == BPF_LDX) {
2612 if (!(*reg_mask & dreg))
2613 return 0;
2614 *reg_mask &= ~dreg;
2615
2616 /* scalars can only be spilled into stack w/o losing precision.
2617 * Load from any other memory can be zero extended.
2618 * The desire to keep that precision is already indicated
2619 * by 'precise' mark in corresponding register of this state.
2620 * No further tracking necessary.
2621 */
2622 if (insn->src_reg != BPF_REG_FP)
2623 return 0;
2624
2625 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2626 * that [fp - off] slot contains scalar that needs to be
2627 * tracked with precision
2628 */
2629 spi = (-insn->off - 1) / BPF_REG_SIZE;
2630 if (spi >= 64) {
2631 verbose(env, "BUG spi %d\n", spi);
2632 WARN_ONCE(1, "verifier backtracking bug");
2633 return -EFAULT;
2634 }
2635 *stack_mask |= 1ull << spi;
2636 } else if (class == BPF_STX || class == BPF_ST) {
2637 if (*reg_mask & dreg)
2638 /* stx & st shouldn't be using _scalar_ dst_reg
2639 * to access memory. It means backtracking
2640 * encountered a case of pointer subtraction.
2641 */
2642 return -ENOTSUPP;
2643 /* scalars can only be spilled into stack */
2644 if (insn->dst_reg != BPF_REG_FP)
2645 return 0;
2646 spi = (-insn->off - 1) / BPF_REG_SIZE;
2647 if (spi >= 64) {
2648 verbose(env, "BUG spi %d\n", spi);
2649 WARN_ONCE(1, "verifier backtracking bug");
2650 return -EFAULT;
2651 }
2652 if (!(*stack_mask & (1ull << spi)))
2653 return 0;
2654 *stack_mask &= ~(1ull << spi);
2655 if (class == BPF_STX)
2656 *reg_mask |= sreg;
2657 } else if (class == BPF_JMP || class == BPF_JMP32) {
2658 if (opcode == BPF_CALL) {
2659 if (insn->src_reg == BPF_PSEUDO_CALL)
2660 return -ENOTSUPP;
2661 /* regular helper call sets R0 */
2662 *reg_mask &= ~1;
2663 if (*reg_mask & 0x3f) {
2664 /* if backtracing was looking for registers R1-R5
2665 * they should have been found already.
2666 */
2667 verbose(env, "BUG regs %x\n", *reg_mask);
2668 WARN_ONCE(1, "verifier backtracking bug");
2669 return -EFAULT;
2670 }
2671 } else if (opcode == BPF_EXIT) {
2672 return -ENOTSUPP;
2673 }
2674 } else if (class == BPF_LD) {
2675 if (!(*reg_mask & dreg))
2676 return 0;
2677 *reg_mask &= ~dreg;
2678 /* It's ld_imm64 or ld_abs or ld_ind.
2679 * For ld_imm64 no further tracking of precision
2680 * into parent is necessary
2681 */
2682 if (mode == BPF_IND || mode == BPF_ABS)
2683 /* to be analyzed */
2684 return -ENOTSUPP;
2685 }
2686 return 0;
2687 }
2688
2689 /* the scalar precision tracking algorithm:
2690 * . at the start all registers have precise=false.
2691 * . scalar ranges are tracked as normal through alu and jmp insns.
2692 * . once precise value of the scalar register is used in:
2693 * . ptr + scalar alu
2694 * . if (scalar cond K|scalar)
2695 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2696 * backtrack through the verifier states and mark all registers and
2697 * stack slots with spilled constants that these scalar regisers
2698 * should be precise.
2699 * . during state pruning two registers (or spilled stack slots)
2700 * are equivalent if both are not precise.
2701 *
2702 * Note the verifier cannot simply walk register parentage chain,
2703 * since many different registers and stack slots could have been
2704 * used to compute single precise scalar.
2705 *
2706 * The approach of starting with precise=true for all registers and then
2707 * backtrack to mark a register as not precise when the verifier detects
2708 * that program doesn't care about specific value (e.g., when helper
2709 * takes register as ARG_ANYTHING parameter) is not safe.
2710 *
2711 * It's ok to walk single parentage chain of the verifier states.
2712 * It's possible that this backtracking will go all the way till 1st insn.
2713 * All other branches will be explored for needing precision later.
2714 *
2715 * The backtracking needs to deal with cases like:
2716 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2717 * r9 -= r8
2718 * r5 = r9
2719 * if r5 > 0x79f goto pc+7
2720 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2721 * r5 += 1
2722 * ...
2723 * call bpf_perf_event_output#25
2724 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2725 *
2726 * and this case:
2727 * r6 = 1
2728 * call foo // uses callee's r6 inside to compute r0
2729 * r0 += r6
2730 * if r0 == 0 goto
2731 *
2732 * to track above reg_mask/stack_mask needs to be independent for each frame.
2733 *
2734 * Also if parent's curframe > frame where backtracking started,
2735 * the verifier need to mark registers in both frames, otherwise callees
2736 * may incorrectly prune callers. This is similar to
2737 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2738 *
2739 * For now backtracking falls back into conservative marking.
2740 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2741 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2742 struct bpf_verifier_state *st)
2743 {
2744 struct bpf_func_state *func;
2745 struct bpf_reg_state *reg;
2746 int i, j;
2747
2748 /* big hammer: mark all scalars precise in this path.
2749 * pop_stack may still get !precise scalars.
2750 */
2751 for (; st; st = st->parent)
2752 for (i = 0; i <= st->curframe; i++) {
2753 func = st->frame[i];
2754 for (j = 0; j < BPF_REG_FP; j++) {
2755 reg = &func->regs[j];
2756 if (reg->type != SCALAR_VALUE)
2757 continue;
2758 reg->precise = true;
2759 }
2760 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2761 if (!is_spilled_reg(&func->stack[j]))
2762 continue;
2763 reg = &func->stack[j].spilled_ptr;
2764 if (reg->type != SCALAR_VALUE)
2765 continue;
2766 reg->precise = true;
2767 }
2768 }
2769 }
2770
__mark_chain_precision(struct bpf_verifier_env * env,int regno,int spi)2771 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2772 int spi)
2773 {
2774 struct bpf_verifier_state *st = env->cur_state;
2775 int first_idx = st->first_insn_idx;
2776 int last_idx = env->insn_idx;
2777 struct bpf_func_state *func;
2778 struct bpf_reg_state *reg;
2779 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2780 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2781 bool skip_first = true;
2782 bool new_marks = false;
2783 int i, err;
2784
2785 if (!env->bpf_capable)
2786 return 0;
2787
2788 func = st->frame[st->curframe];
2789 if (regno >= 0) {
2790 reg = &func->regs[regno];
2791 if (reg->type != SCALAR_VALUE) {
2792 WARN_ONCE(1, "backtracing misuse");
2793 return -EFAULT;
2794 }
2795 if (!reg->precise)
2796 new_marks = true;
2797 else
2798 reg_mask = 0;
2799 reg->precise = true;
2800 }
2801
2802 while (spi >= 0) {
2803 if (!is_spilled_reg(&func->stack[spi])) {
2804 stack_mask = 0;
2805 break;
2806 }
2807 reg = &func->stack[spi].spilled_ptr;
2808 if (reg->type != SCALAR_VALUE) {
2809 stack_mask = 0;
2810 break;
2811 }
2812 if (!reg->precise)
2813 new_marks = true;
2814 else
2815 stack_mask = 0;
2816 reg->precise = true;
2817 break;
2818 }
2819
2820 if (!new_marks)
2821 return 0;
2822 if (!reg_mask && !stack_mask)
2823 return 0;
2824 for (;;) {
2825 DECLARE_BITMAP(mask, 64);
2826 u32 history = st->jmp_history_cnt;
2827
2828 if (env->log.level & BPF_LOG_LEVEL2)
2829 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2830 for (i = last_idx;;) {
2831 if (skip_first) {
2832 err = 0;
2833 skip_first = false;
2834 } else {
2835 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2836 }
2837 if (err == -ENOTSUPP) {
2838 mark_all_scalars_precise(env, st);
2839 return 0;
2840 } else if (err) {
2841 return err;
2842 }
2843 if (!reg_mask && !stack_mask)
2844 /* Found assignment(s) into tracked register in this state.
2845 * Since this state is already marked, just return.
2846 * Nothing to be tracked further in the parent state.
2847 */
2848 return 0;
2849 if (i == first_idx)
2850 break;
2851 i = get_prev_insn_idx(st, i, &history);
2852 if (i >= env->prog->len) {
2853 /* This can happen if backtracking reached insn 0
2854 * and there are still reg_mask or stack_mask
2855 * to backtrack.
2856 * It means the backtracking missed the spot where
2857 * particular register was initialized with a constant.
2858 */
2859 verbose(env, "BUG backtracking idx %d\n", i);
2860 WARN_ONCE(1, "verifier backtracking bug");
2861 return -EFAULT;
2862 }
2863 }
2864 st = st->parent;
2865 if (!st)
2866 break;
2867
2868 new_marks = false;
2869 func = st->frame[st->curframe];
2870 bitmap_from_u64(mask, reg_mask);
2871 for_each_set_bit(i, mask, 32) {
2872 reg = &func->regs[i];
2873 if (reg->type != SCALAR_VALUE) {
2874 reg_mask &= ~(1u << i);
2875 continue;
2876 }
2877 if (!reg->precise)
2878 new_marks = true;
2879 reg->precise = true;
2880 }
2881
2882 bitmap_from_u64(mask, stack_mask);
2883 for_each_set_bit(i, mask, 64) {
2884 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2885 /* the sequence of instructions:
2886 * 2: (bf) r3 = r10
2887 * 3: (7b) *(u64 *)(r3 -8) = r0
2888 * 4: (79) r4 = *(u64 *)(r10 -8)
2889 * doesn't contain jmps. It's backtracked
2890 * as a single block.
2891 * During backtracking insn 3 is not recognized as
2892 * stack access, so at the end of backtracking
2893 * stack slot fp-8 is still marked in stack_mask.
2894 * However the parent state may not have accessed
2895 * fp-8 and it's "unallocated" stack space.
2896 * In such case fallback to conservative.
2897 */
2898 mark_all_scalars_precise(env, st);
2899 return 0;
2900 }
2901
2902 if (!is_spilled_reg(&func->stack[i])) {
2903 stack_mask &= ~(1ull << i);
2904 continue;
2905 }
2906 reg = &func->stack[i].spilled_ptr;
2907 if (reg->type != SCALAR_VALUE) {
2908 stack_mask &= ~(1ull << i);
2909 continue;
2910 }
2911 if (!reg->precise)
2912 new_marks = true;
2913 reg->precise = true;
2914 }
2915 if (env->log.level & BPF_LOG_LEVEL2) {
2916 verbose(env, "parent %s regs=%x stack=%llx marks:",
2917 new_marks ? "didn't have" : "already had",
2918 reg_mask, stack_mask);
2919 print_verifier_state(env, func, true);
2920 }
2921
2922 if (!reg_mask && !stack_mask)
2923 break;
2924 if (!new_marks)
2925 break;
2926
2927 last_idx = st->last_insn_idx;
2928 first_idx = st->first_insn_idx;
2929 }
2930 return 0;
2931 }
2932
mark_chain_precision(struct bpf_verifier_env * env,int regno)2933 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2934 {
2935 return __mark_chain_precision(env, regno, -1);
2936 }
2937
mark_chain_precision_stack(struct bpf_verifier_env * env,int spi)2938 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2939 {
2940 return __mark_chain_precision(env, -1, spi);
2941 }
2942
is_spillable_regtype(enum bpf_reg_type type)2943 static bool is_spillable_regtype(enum bpf_reg_type type)
2944 {
2945 switch (base_type(type)) {
2946 case PTR_TO_MAP_VALUE:
2947 case PTR_TO_STACK:
2948 case PTR_TO_CTX:
2949 case PTR_TO_PACKET:
2950 case PTR_TO_PACKET_META:
2951 case PTR_TO_PACKET_END:
2952 case PTR_TO_FLOW_KEYS:
2953 case CONST_PTR_TO_MAP:
2954 case PTR_TO_SOCKET:
2955 case PTR_TO_SOCK_COMMON:
2956 case PTR_TO_TCP_SOCK:
2957 case PTR_TO_XDP_SOCK:
2958 case PTR_TO_BTF_ID:
2959 case PTR_TO_BUF:
2960 case PTR_TO_MEM:
2961 case PTR_TO_FUNC:
2962 case PTR_TO_MAP_KEY:
2963 return true;
2964 default:
2965 return false;
2966 }
2967 }
2968
2969 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2970 static bool register_is_null(struct bpf_reg_state *reg)
2971 {
2972 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2973 }
2974
register_is_const(struct bpf_reg_state * reg)2975 static bool register_is_const(struct bpf_reg_state *reg)
2976 {
2977 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2978 }
2979
__is_scalar_unbounded(struct bpf_reg_state * reg)2980 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2981 {
2982 return tnum_is_unknown(reg->var_off) &&
2983 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2984 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2985 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2986 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2987 }
2988
register_is_bounded(struct bpf_reg_state * reg)2989 static bool register_is_bounded(struct bpf_reg_state *reg)
2990 {
2991 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2992 }
2993
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2994 static bool __is_pointer_value(bool allow_ptr_leaks,
2995 const struct bpf_reg_state *reg)
2996 {
2997 if (allow_ptr_leaks)
2998 return false;
2999
3000 return reg->type != SCALAR_VALUE;
3001 }
3002
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)3003 static void save_register_state(struct bpf_func_state *state,
3004 int spi, struct bpf_reg_state *reg,
3005 int size)
3006 {
3007 int i;
3008
3009 state->stack[spi].spilled_ptr = *reg;
3010 if (size == BPF_REG_SIZE)
3011 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3012
3013 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3014 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3015
3016 /* size < 8 bytes spill */
3017 for (; i; i--)
3018 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3019 }
3020
3021 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3022 * stack boundary and alignment are checked in check_mem_access()
3023 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)3024 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3025 /* stack frame we're writing to */
3026 struct bpf_func_state *state,
3027 int off, int size, int value_regno,
3028 int insn_idx)
3029 {
3030 struct bpf_func_state *cur; /* state of the current function */
3031 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3032 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3033 struct bpf_reg_state *reg = NULL;
3034
3035 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3036 if (err)
3037 return err;
3038 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3039 * so it's aligned access and [off, off + size) are within stack limits
3040 */
3041 if (!env->allow_ptr_leaks &&
3042 state->stack[spi].slot_type[0] == STACK_SPILL &&
3043 size != BPF_REG_SIZE) {
3044 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3045 return -EACCES;
3046 }
3047
3048 cur = env->cur_state->frame[env->cur_state->curframe];
3049 if (value_regno >= 0)
3050 reg = &cur->regs[value_regno];
3051 if (!env->bypass_spec_v4) {
3052 bool sanitize = reg && is_spillable_regtype(reg->type);
3053
3054 for (i = 0; i < size; i++) {
3055 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3056 sanitize = true;
3057 break;
3058 }
3059 }
3060
3061 if (sanitize)
3062 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3063 }
3064
3065 mark_stack_slot_scratched(env, spi);
3066 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3067 !register_is_null(reg) && env->bpf_capable) {
3068 if (dst_reg != BPF_REG_FP) {
3069 /* The backtracking logic can only recognize explicit
3070 * stack slot address like [fp - 8]. Other spill of
3071 * scalar via different register has to be conservative.
3072 * Backtrack from here and mark all registers as precise
3073 * that contributed into 'reg' being a constant.
3074 */
3075 err = mark_chain_precision(env, value_regno);
3076 if (err)
3077 return err;
3078 }
3079 save_register_state(state, spi, reg, size);
3080 } else if (reg && is_spillable_regtype(reg->type)) {
3081 /* register containing pointer is being spilled into stack */
3082 if (size != BPF_REG_SIZE) {
3083 verbose_linfo(env, insn_idx, "; ");
3084 verbose(env, "invalid size of register spill\n");
3085 return -EACCES;
3086 }
3087 if (state != cur && reg->type == PTR_TO_STACK) {
3088 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3089 return -EINVAL;
3090 }
3091 save_register_state(state, spi, reg, size);
3092 } else {
3093 u8 type = STACK_MISC;
3094
3095 /* regular write of data into stack destroys any spilled ptr */
3096 state->stack[spi].spilled_ptr.type = NOT_INIT;
3097 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3098 if (is_spilled_reg(&state->stack[spi]))
3099 for (i = 0; i < BPF_REG_SIZE; i++)
3100 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3101
3102 /* only mark the slot as written if all 8 bytes were written
3103 * otherwise read propagation may incorrectly stop too soon
3104 * when stack slots are partially written.
3105 * This heuristic means that read propagation will be
3106 * conservative, since it will add reg_live_read marks
3107 * to stack slots all the way to first state when programs
3108 * writes+reads less than 8 bytes
3109 */
3110 if (size == BPF_REG_SIZE)
3111 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3112
3113 /* when we zero initialize stack slots mark them as such */
3114 if (reg && register_is_null(reg)) {
3115 /* backtracking doesn't work for STACK_ZERO yet. */
3116 err = mark_chain_precision(env, value_regno);
3117 if (err)
3118 return err;
3119 type = STACK_ZERO;
3120 }
3121
3122 /* Mark slots affected by this stack write. */
3123 for (i = 0; i < size; i++)
3124 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3125 type;
3126 }
3127 return 0;
3128 }
3129
3130 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3131 * known to contain a variable offset.
3132 * This function checks whether the write is permitted and conservatively
3133 * tracks the effects of the write, considering that each stack slot in the
3134 * dynamic range is potentially written to.
3135 *
3136 * 'off' includes 'regno->off'.
3137 * 'value_regno' can be -1, meaning that an unknown value is being written to
3138 * the stack.
3139 *
3140 * Spilled pointers in range are not marked as written because we don't know
3141 * what's going to be actually written. This means that read propagation for
3142 * future reads cannot be terminated by this write.
3143 *
3144 * For privileged programs, uninitialized stack slots are considered
3145 * initialized by this write (even though we don't know exactly what offsets
3146 * are going to be written to). The idea is that we don't want the verifier to
3147 * reject future reads that access slots written to through variable offsets.
3148 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)3149 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3150 /* func where register points to */
3151 struct bpf_func_state *state,
3152 int ptr_regno, int off, int size,
3153 int value_regno, int insn_idx)
3154 {
3155 struct bpf_func_state *cur; /* state of the current function */
3156 int min_off, max_off;
3157 int i, err;
3158 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3159 bool writing_zero = false;
3160 /* set if the fact that we're writing a zero is used to let any
3161 * stack slots remain STACK_ZERO
3162 */
3163 bool zero_used = false;
3164
3165 cur = env->cur_state->frame[env->cur_state->curframe];
3166 ptr_reg = &cur->regs[ptr_regno];
3167 min_off = ptr_reg->smin_value + off;
3168 max_off = ptr_reg->smax_value + off + size;
3169 if (value_regno >= 0)
3170 value_reg = &cur->regs[value_regno];
3171 if (value_reg && register_is_null(value_reg))
3172 writing_zero = true;
3173
3174 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3175 if (err)
3176 return err;
3177
3178
3179 /* Variable offset writes destroy any spilled pointers in range. */
3180 for (i = min_off; i < max_off; i++) {
3181 u8 new_type, *stype;
3182 int slot, spi;
3183
3184 slot = -i - 1;
3185 spi = slot / BPF_REG_SIZE;
3186 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3187 mark_stack_slot_scratched(env, spi);
3188
3189 if (!env->allow_ptr_leaks
3190 && *stype != NOT_INIT
3191 && *stype != SCALAR_VALUE) {
3192 /* Reject the write if there's are spilled pointers in
3193 * range. If we didn't reject here, the ptr status
3194 * would be erased below (even though not all slots are
3195 * actually overwritten), possibly opening the door to
3196 * leaks.
3197 */
3198 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3199 insn_idx, i);
3200 return -EINVAL;
3201 }
3202
3203 /* Erase all spilled pointers. */
3204 state->stack[spi].spilled_ptr.type = NOT_INIT;
3205
3206 /* Update the slot type. */
3207 new_type = STACK_MISC;
3208 if (writing_zero && *stype == STACK_ZERO) {
3209 new_type = STACK_ZERO;
3210 zero_used = true;
3211 }
3212 /* If the slot is STACK_INVALID, we check whether it's OK to
3213 * pretend that it will be initialized by this write. The slot
3214 * might not actually be written to, and so if we mark it as
3215 * initialized future reads might leak uninitialized memory.
3216 * For privileged programs, we will accept such reads to slots
3217 * that may or may not be written because, if we're reject
3218 * them, the error would be too confusing.
3219 */
3220 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3221 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3222 insn_idx, i);
3223 return -EINVAL;
3224 }
3225 *stype = new_type;
3226 }
3227 if (zero_used) {
3228 /* backtracking doesn't work for STACK_ZERO yet. */
3229 err = mark_chain_precision(env, value_regno);
3230 if (err)
3231 return err;
3232 }
3233 return 0;
3234 }
3235
3236 /* When register 'dst_regno' is assigned some values from stack[min_off,
3237 * max_off), we set the register's type according to the types of the
3238 * respective stack slots. If all the stack values are known to be zeros, then
3239 * so is the destination reg. Otherwise, the register is considered to be
3240 * SCALAR. This function does not deal with register filling; the caller must
3241 * ensure that all spilled registers in the stack range have been marked as
3242 * read.
3243 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)3244 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3245 /* func where src register points to */
3246 struct bpf_func_state *ptr_state,
3247 int min_off, int max_off, int dst_regno)
3248 {
3249 struct bpf_verifier_state *vstate = env->cur_state;
3250 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3251 int i, slot, spi;
3252 u8 *stype;
3253 int zeros = 0;
3254
3255 for (i = min_off; i < max_off; i++) {
3256 slot = -i - 1;
3257 spi = slot / BPF_REG_SIZE;
3258 stype = ptr_state->stack[spi].slot_type;
3259 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3260 break;
3261 zeros++;
3262 }
3263 if (zeros == max_off - min_off) {
3264 /* any access_size read into register is zero extended,
3265 * so the whole register == const_zero
3266 */
3267 __mark_reg_const_zero(&state->regs[dst_regno]);
3268 /* backtracking doesn't support STACK_ZERO yet,
3269 * so mark it precise here, so that later
3270 * backtracking can stop here.
3271 * Backtracking may not need this if this register
3272 * doesn't participate in pointer adjustment.
3273 * Forward propagation of precise flag is not
3274 * necessary either. This mark is only to stop
3275 * backtracking. Any register that contributed
3276 * to const 0 was marked precise before spill.
3277 */
3278 state->regs[dst_regno].precise = true;
3279 } else {
3280 /* have read misc data from the stack */
3281 mark_reg_unknown(env, state->regs, dst_regno);
3282 }
3283 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3284 }
3285
3286 /* Read the stack at 'off' and put the results into the register indicated by
3287 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3288 * spilled reg.
3289 *
3290 * 'dst_regno' can be -1, meaning that the read value is not going to a
3291 * register.
3292 *
3293 * The access is assumed to be within the current stack bounds.
3294 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)3295 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3296 /* func where src register points to */
3297 struct bpf_func_state *reg_state,
3298 int off, int size, int dst_regno)
3299 {
3300 struct bpf_verifier_state *vstate = env->cur_state;
3301 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3302 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3303 struct bpf_reg_state *reg;
3304 u8 *stype, type;
3305
3306 stype = reg_state->stack[spi].slot_type;
3307 reg = ®_state->stack[spi].spilled_ptr;
3308
3309 if (is_spilled_reg(®_state->stack[spi])) {
3310 u8 spill_size = 1;
3311
3312 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3313 spill_size++;
3314
3315 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3316 if (reg->type != SCALAR_VALUE) {
3317 verbose_linfo(env, env->insn_idx, "; ");
3318 verbose(env, "invalid size of register fill\n");
3319 return -EACCES;
3320 }
3321
3322 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3323 if (dst_regno < 0)
3324 return 0;
3325
3326 if (!(off % BPF_REG_SIZE) && size == spill_size) {
3327 /* The earlier check_reg_arg() has decided the
3328 * subreg_def for this insn. Save it first.
3329 */
3330 s32 subreg_def = state->regs[dst_regno].subreg_def;
3331
3332 state->regs[dst_regno] = *reg;
3333 state->regs[dst_regno].subreg_def = subreg_def;
3334 } else {
3335 for (i = 0; i < size; i++) {
3336 type = stype[(slot - i) % BPF_REG_SIZE];
3337 if (type == STACK_SPILL)
3338 continue;
3339 if (type == STACK_MISC)
3340 continue;
3341 verbose(env, "invalid read from stack off %d+%d size %d\n",
3342 off, i, size);
3343 return -EACCES;
3344 }
3345 mark_reg_unknown(env, state->regs, dst_regno);
3346 }
3347 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3348 return 0;
3349 }
3350
3351 if (dst_regno >= 0) {
3352 /* restore register state from stack */
3353 state->regs[dst_regno] = *reg;
3354 /* mark reg as written since spilled pointer state likely
3355 * has its liveness marks cleared by is_state_visited()
3356 * which resets stack/reg liveness for state transitions
3357 */
3358 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3359 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3360 /* If dst_regno==-1, the caller is asking us whether
3361 * it is acceptable to use this value as a SCALAR_VALUE
3362 * (e.g. for XADD).
3363 * We must not allow unprivileged callers to do that
3364 * with spilled pointers.
3365 */
3366 verbose(env, "leaking pointer from stack off %d\n",
3367 off);
3368 return -EACCES;
3369 }
3370 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3371 } else {
3372 for (i = 0; i < size; i++) {
3373 type = stype[(slot - i) % BPF_REG_SIZE];
3374 if (type == STACK_MISC)
3375 continue;
3376 if (type == STACK_ZERO)
3377 continue;
3378 verbose(env, "invalid read from stack off %d+%d size %d\n",
3379 off, i, size);
3380 return -EACCES;
3381 }
3382 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3383 if (dst_regno >= 0)
3384 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3385 }
3386 return 0;
3387 }
3388
3389 enum bpf_access_src {
3390 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3391 ACCESS_HELPER = 2, /* the access is performed by a helper */
3392 };
3393
3394 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3395 int regno, int off, int access_size,
3396 bool zero_size_allowed,
3397 enum bpf_access_src type,
3398 struct bpf_call_arg_meta *meta);
3399
reg_state(struct bpf_verifier_env * env,int regno)3400 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3401 {
3402 return cur_regs(env) + regno;
3403 }
3404
3405 /* Read the stack at 'ptr_regno + off' and put the result into the register
3406 * 'dst_regno'.
3407 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3408 * but not its variable offset.
3409 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3410 *
3411 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3412 * filling registers (i.e. reads of spilled register cannot be detected when
3413 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3414 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3415 * offset; for a fixed offset check_stack_read_fixed_off should be used
3416 * instead.
3417 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3418 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3419 int ptr_regno, int off, int size, int dst_regno)
3420 {
3421 /* The state of the source register. */
3422 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3423 struct bpf_func_state *ptr_state = func(env, reg);
3424 int err;
3425 int min_off, max_off;
3426
3427 /* Note that we pass a NULL meta, so raw access will not be permitted.
3428 */
3429 err = check_stack_range_initialized(env, ptr_regno, off, size,
3430 false, ACCESS_DIRECT, NULL);
3431 if (err)
3432 return err;
3433
3434 min_off = reg->smin_value + off;
3435 max_off = reg->smax_value + off;
3436 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3437 return 0;
3438 }
3439
3440 /* check_stack_read dispatches to check_stack_read_fixed_off or
3441 * check_stack_read_var_off.
3442 *
3443 * The caller must ensure that the offset falls within the allocated stack
3444 * bounds.
3445 *
3446 * 'dst_regno' is a register which will receive the value from the stack. It
3447 * can be -1, meaning that the read value is not going to a register.
3448 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3449 static int check_stack_read(struct bpf_verifier_env *env,
3450 int ptr_regno, int off, int size,
3451 int dst_regno)
3452 {
3453 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3454 struct bpf_func_state *state = func(env, reg);
3455 int err;
3456 /* Some accesses are only permitted with a static offset. */
3457 bool var_off = !tnum_is_const(reg->var_off);
3458
3459 /* The offset is required to be static when reads don't go to a
3460 * register, in order to not leak pointers (see
3461 * check_stack_read_fixed_off).
3462 */
3463 if (dst_regno < 0 && var_off) {
3464 char tn_buf[48];
3465
3466 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3467 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3468 tn_buf, off, size);
3469 return -EACCES;
3470 }
3471 /* Variable offset is prohibited for unprivileged mode for simplicity
3472 * since it requires corresponding support in Spectre masking for stack
3473 * ALU. See also retrieve_ptr_limit().
3474 */
3475 if (!env->bypass_spec_v1 && var_off) {
3476 char tn_buf[48];
3477
3478 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3479 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3480 ptr_regno, tn_buf);
3481 return -EACCES;
3482 }
3483
3484 if (!var_off) {
3485 off += reg->var_off.value;
3486 err = check_stack_read_fixed_off(env, state, off, size,
3487 dst_regno);
3488 } else {
3489 /* Variable offset stack reads need more conservative handling
3490 * than fixed offset ones. Note that dst_regno >= 0 on this
3491 * branch.
3492 */
3493 err = check_stack_read_var_off(env, ptr_regno, off, size,
3494 dst_regno);
3495 }
3496 return err;
3497 }
3498
3499
3500 /* check_stack_write dispatches to check_stack_write_fixed_off or
3501 * check_stack_write_var_off.
3502 *
3503 * 'ptr_regno' is the register used as a pointer into the stack.
3504 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3505 * 'value_regno' is the register whose value we're writing to the stack. It can
3506 * be -1, meaning that we're not writing from a register.
3507 *
3508 * The caller must ensure that the offset falls within the maximum stack size.
3509 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)3510 static int check_stack_write(struct bpf_verifier_env *env,
3511 int ptr_regno, int off, int size,
3512 int value_regno, int insn_idx)
3513 {
3514 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3515 struct bpf_func_state *state = func(env, reg);
3516 int err;
3517
3518 if (tnum_is_const(reg->var_off)) {
3519 off += reg->var_off.value;
3520 err = check_stack_write_fixed_off(env, state, off, size,
3521 value_regno, insn_idx);
3522 } else {
3523 /* Variable offset stack reads need more conservative handling
3524 * than fixed offset ones.
3525 */
3526 err = check_stack_write_var_off(env, state,
3527 ptr_regno, off, size,
3528 value_regno, insn_idx);
3529 }
3530 return err;
3531 }
3532
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)3533 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3534 int off, int size, enum bpf_access_type type)
3535 {
3536 struct bpf_reg_state *regs = cur_regs(env);
3537 struct bpf_map *map = regs[regno].map_ptr;
3538 u32 cap = bpf_map_flags_to_cap(map);
3539
3540 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3541 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3542 map->value_size, off, size);
3543 return -EACCES;
3544 }
3545
3546 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3547 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3548 map->value_size, off, size);
3549 return -EACCES;
3550 }
3551
3552 return 0;
3553 }
3554
3555 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3556 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3557 int off, int size, u32 mem_size,
3558 bool zero_size_allowed)
3559 {
3560 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3561 struct bpf_reg_state *reg;
3562
3563 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3564 return 0;
3565
3566 reg = &cur_regs(env)[regno];
3567 switch (reg->type) {
3568 case PTR_TO_MAP_KEY:
3569 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3570 mem_size, off, size);
3571 break;
3572 case PTR_TO_MAP_VALUE:
3573 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3574 mem_size, off, size);
3575 break;
3576 case PTR_TO_PACKET:
3577 case PTR_TO_PACKET_META:
3578 case PTR_TO_PACKET_END:
3579 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3580 off, size, regno, reg->id, off, mem_size);
3581 break;
3582 case PTR_TO_MEM:
3583 default:
3584 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3585 mem_size, off, size);
3586 }
3587
3588 return -EACCES;
3589 }
3590
3591 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3592 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3593 int off, int size, u32 mem_size,
3594 bool zero_size_allowed)
3595 {
3596 struct bpf_verifier_state *vstate = env->cur_state;
3597 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3598 struct bpf_reg_state *reg = &state->regs[regno];
3599 int err;
3600
3601 /* We may have adjusted the register pointing to memory region, so we
3602 * need to try adding each of min_value and max_value to off
3603 * to make sure our theoretical access will be safe.
3604 *
3605 * The minimum value is only important with signed
3606 * comparisons where we can't assume the floor of a
3607 * value is 0. If we are using signed variables for our
3608 * index'es we need to make sure that whatever we use
3609 * will have a set floor within our range.
3610 */
3611 if (reg->smin_value < 0 &&
3612 (reg->smin_value == S64_MIN ||
3613 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3614 reg->smin_value + off < 0)) {
3615 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3616 regno);
3617 return -EACCES;
3618 }
3619 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3620 mem_size, zero_size_allowed);
3621 if (err) {
3622 verbose(env, "R%d min value is outside of the allowed memory range\n",
3623 regno);
3624 return err;
3625 }
3626
3627 /* If we haven't set a max value then we need to bail since we can't be
3628 * sure we won't do bad things.
3629 * If reg->umax_value + off could overflow, treat that as unbounded too.
3630 */
3631 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3632 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3633 regno);
3634 return -EACCES;
3635 }
3636 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3637 mem_size, zero_size_allowed);
3638 if (err) {
3639 verbose(env, "R%d max value is outside of the allowed memory range\n",
3640 regno);
3641 return err;
3642 }
3643
3644 return 0;
3645 }
3646
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3647 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3648 const struct bpf_reg_state *reg, int regno,
3649 bool fixed_off_ok)
3650 {
3651 /* Access to this pointer-typed register or passing it to a helper
3652 * is only allowed in its original, unmodified form.
3653 */
3654
3655 if (reg->off < 0) {
3656 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3657 reg_type_str(env, reg->type), regno, reg->off);
3658 return -EACCES;
3659 }
3660
3661 if (!fixed_off_ok && reg->off) {
3662 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3663 reg_type_str(env, reg->type), regno, reg->off);
3664 return -EACCES;
3665 }
3666
3667 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3668 char tn_buf[48];
3669
3670 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3671 verbose(env, "variable %s access var_off=%s disallowed\n",
3672 reg_type_str(env, reg->type), tn_buf);
3673 return -EACCES;
3674 }
3675
3676 return 0;
3677 }
3678
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3679 int check_ptr_off_reg(struct bpf_verifier_env *env,
3680 const struct bpf_reg_state *reg, int regno)
3681 {
3682 return __check_ptr_off_reg(env, reg, regno, false);
3683 }
3684
map_kptr_match_type(struct bpf_verifier_env * env,struct bpf_map_value_off_desc * off_desc,struct bpf_reg_state * reg,u32 regno)3685 static int map_kptr_match_type(struct bpf_verifier_env *env,
3686 struct bpf_map_value_off_desc *off_desc,
3687 struct bpf_reg_state *reg, u32 regno)
3688 {
3689 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3690 int perm_flags = PTR_MAYBE_NULL;
3691 const char *reg_name = "";
3692
3693 /* Only unreferenced case accepts untrusted pointers */
3694 if (off_desc->type == BPF_KPTR_UNREF)
3695 perm_flags |= PTR_UNTRUSTED;
3696
3697 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3698 goto bad_type;
3699
3700 if (!btf_is_kernel(reg->btf)) {
3701 verbose(env, "R%d must point to kernel BTF\n", regno);
3702 return -EINVAL;
3703 }
3704 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3705 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3706
3707 /* For ref_ptr case, release function check should ensure we get one
3708 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3709 * normal store of unreferenced kptr, we must ensure var_off is zero.
3710 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3711 * reg->off and reg->ref_obj_id are not needed here.
3712 */
3713 if (__check_ptr_off_reg(env, reg, regno, true))
3714 return -EACCES;
3715
3716 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3717 * we also need to take into account the reg->off.
3718 *
3719 * We want to support cases like:
3720 *
3721 * struct foo {
3722 * struct bar br;
3723 * struct baz bz;
3724 * };
3725 *
3726 * struct foo *v;
3727 * v = func(); // PTR_TO_BTF_ID
3728 * val->foo = v; // reg->off is zero, btf and btf_id match type
3729 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3730 * // first member type of struct after comparison fails
3731 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3732 * // to match type
3733 *
3734 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3735 * is zero. We must also ensure that btf_struct_ids_match does not walk
3736 * the struct to match type against first member of struct, i.e. reject
3737 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3738 * strict mode to true for type match.
3739 */
3740 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3741 off_desc->kptr.btf, off_desc->kptr.btf_id,
3742 off_desc->type == BPF_KPTR_REF))
3743 goto bad_type;
3744 return 0;
3745 bad_type:
3746 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3747 reg_type_str(env, reg->type), reg_name);
3748 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3749 if (off_desc->type == BPF_KPTR_UNREF)
3750 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3751 targ_name);
3752 else
3753 verbose(env, "\n");
3754 return -EINVAL;
3755 }
3756
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct bpf_map_value_off_desc * off_desc)3757 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3758 int value_regno, int insn_idx,
3759 struct bpf_map_value_off_desc *off_desc)
3760 {
3761 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3762 int class = BPF_CLASS(insn->code);
3763 struct bpf_reg_state *val_reg;
3764
3765 /* Things we already checked for in check_map_access and caller:
3766 * - Reject cases where variable offset may touch kptr
3767 * - size of access (must be BPF_DW)
3768 * - tnum_is_const(reg->var_off)
3769 * - off_desc->offset == off + reg->var_off.value
3770 */
3771 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3772 if (BPF_MODE(insn->code) != BPF_MEM) {
3773 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3774 return -EACCES;
3775 }
3776
3777 /* We only allow loading referenced kptr, since it will be marked as
3778 * untrusted, similar to unreferenced kptr.
3779 */
3780 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3781 verbose(env, "store to referenced kptr disallowed\n");
3782 return -EACCES;
3783 }
3784
3785 if (class == BPF_LDX) {
3786 val_reg = reg_state(env, value_regno);
3787 /* We can simply mark the value_regno receiving the pointer
3788 * value from map as PTR_TO_BTF_ID, with the correct type.
3789 */
3790 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3791 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3792 /* For mark_ptr_or_null_reg */
3793 val_reg->id = ++env->id_gen;
3794 } else if (class == BPF_STX) {
3795 val_reg = reg_state(env, value_regno);
3796 if (!register_is_null(val_reg) &&
3797 map_kptr_match_type(env, off_desc, val_reg, value_regno))
3798 return -EACCES;
3799 } else if (class == BPF_ST) {
3800 if (insn->imm) {
3801 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3802 off_desc->offset);
3803 return -EACCES;
3804 }
3805 } else {
3806 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3807 return -EACCES;
3808 }
3809 return 0;
3810 }
3811
3812 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)3813 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3814 int off, int size, bool zero_size_allowed,
3815 enum bpf_access_src src)
3816 {
3817 struct bpf_verifier_state *vstate = env->cur_state;
3818 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3819 struct bpf_reg_state *reg = &state->regs[regno];
3820 struct bpf_map *map = reg->map_ptr;
3821 int err;
3822
3823 err = check_mem_region_access(env, regno, off, size, map->value_size,
3824 zero_size_allowed);
3825 if (err)
3826 return err;
3827
3828 if (map_value_has_spin_lock(map)) {
3829 u32 lock = map->spin_lock_off;
3830
3831 /* if any part of struct bpf_spin_lock can be touched by
3832 * load/store reject this program.
3833 * To check that [x1, x2) overlaps with [y1, y2)
3834 * it is sufficient to check x1 < y2 && y1 < x2.
3835 */
3836 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3837 lock < reg->umax_value + off + size) {
3838 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3839 return -EACCES;
3840 }
3841 }
3842 if (map_value_has_timer(map)) {
3843 u32 t = map->timer_off;
3844
3845 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3846 t < reg->umax_value + off + size) {
3847 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3848 return -EACCES;
3849 }
3850 }
3851 if (map_value_has_kptrs(map)) {
3852 struct bpf_map_value_off *tab = map->kptr_off_tab;
3853 int i;
3854
3855 for (i = 0; i < tab->nr_off; i++) {
3856 u32 p = tab->off[i].offset;
3857
3858 if (reg->smin_value + off < p + sizeof(u64) &&
3859 p < reg->umax_value + off + size) {
3860 if (src != ACCESS_DIRECT) {
3861 verbose(env, "kptr cannot be accessed indirectly by helper\n");
3862 return -EACCES;
3863 }
3864 if (!tnum_is_const(reg->var_off)) {
3865 verbose(env, "kptr access cannot have variable offset\n");
3866 return -EACCES;
3867 }
3868 if (p != off + reg->var_off.value) {
3869 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3870 p, off + reg->var_off.value);
3871 return -EACCES;
3872 }
3873 if (size != bpf_size_to_bytes(BPF_DW)) {
3874 verbose(env, "kptr access size must be BPF_DW\n");
3875 return -EACCES;
3876 }
3877 break;
3878 }
3879 }
3880 }
3881 return err;
3882 }
3883
3884 #define MAX_PACKET_OFF 0xffff
3885
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)3886 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3887 const struct bpf_call_arg_meta *meta,
3888 enum bpf_access_type t)
3889 {
3890 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3891
3892 switch (prog_type) {
3893 /* Program types only with direct read access go here! */
3894 case BPF_PROG_TYPE_LWT_IN:
3895 case BPF_PROG_TYPE_LWT_OUT:
3896 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3897 case BPF_PROG_TYPE_SK_REUSEPORT:
3898 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3899 case BPF_PROG_TYPE_CGROUP_SKB:
3900 if (t == BPF_WRITE)
3901 return false;
3902 fallthrough;
3903
3904 /* Program types with direct read + write access go here! */
3905 case BPF_PROG_TYPE_SCHED_CLS:
3906 case BPF_PROG_TYPE_SCHED_ACT:
3907 case BPF_PROG_TYPE_XDP:
3908 case BPF_PROG_TYPE_LWT_XMIT:
3909 case BPF_PROG_TYPE_SK_SKB:
3910 case BPF_PROG_TYPE_SK_MSG:
3911 if (meta)
3912 return meta->pkt_access;
3913
3914 env->seen_direct_write = true;
3915 return true;
3916
3917 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3918 if (t == BPF_WRITE)
3919 env->seen_direct_write = true;
3920
3921 return true;
3922
3923 default:
3924 return false;
3925 }
3926 }
3927
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3928 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3929 int size, bool zero_size_allowed)
3930 {
3931 struct bpf_reg_state *regs = cur_regs(env);
3932 struct bpf_reg_state *reg = ®s[regno];
3933 int err;
3934
3935 /* We may have added a variable offset to the packet pointer; but any
3936 * reg->range we have comes after that. We are only checking the fixed
3937 * offset.
3938 */
3939
3940 /* We don't allow negative numbers, because we aren't tracking enough
3941 * detail to prove they're safe.
3942 */
3943 if (reg->smin_value < 0) {
3944 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3945 regno);
3946 return -EACCES;
3947 }
3948
3949 err = reg->range < 0 ? -EINVAL :
3950 __check_mem_access(env, regno, off, size, reg->range,
3951 zero_size_allowed);
3952 if (err) {
3953 verbose(env, "R%d offset is outside of the packet\n", regno);
3954 return err;
3955 }
3956
3957 /* __check_mem_access has made sure "off + size - 1" is within u16.
3958 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3959 * otherwise find_good_pkt_pointers would have refused to set range info
3960 * that __check_mem_access would have rejected this pkt access.
3961 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3962 */
3963 env->prog->aux->max_pkt_offset =
3964 max_t(u32, env->prog->aux->max_pkt_offset,
3965 off + reg->umax_value + size - 1);
3966
3967 return err;
3968 }
3969
3970 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)3971 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3972 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3973 struct btf **btf, u32 *btf_id)
3974 {
3975 struct bpf_insn_access_aux info = {
3976 .reg_type = *reg_type,
3977 .log = &env->log,
3978 };
3979
3980 if (env->ops->is_valid_access &&
3981 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3982 /* A non zero info.ctx_field_size indicates that this field is a
3983 * candidate for later verifier transformation to load the whole
3984 * field and then apply a mask when accessed with a narrower
3985 * access than actual ctx access size. A zero info.ctx_field_size
3986 * will only allow for whole field access and rejects any other
3987 * type of narrower access.
3988 */
3989 *reg_type = info.reg_type;
3990
3991 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3992 *btf = info.btf;
3993 *btf_id = info.btf_id;
3994 } else {
3995 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3996 }
3997 /* remember the offset of last byte accessed in ctx */
3998 if (env->prog->aux->max_ctx_offset < off + size)
3999 env->prog->aux->max_ctx_offset = off + size;
4000 return 0;
4001 }
4002
4003 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4004 return -EACCES;
4005 }
4006
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)4007 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4008 int size)
4009 {
4010 if (size < 0 || off < 0 ||
4011 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4012 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4013 off, size);
4014 return -EACCES;
4015 }
4016 return 0;
4017 }
4018
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)4019 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4020 u32 regno, int off, int size,
4021 enum bpf_access_type t)
4022 {
4023 struct bpf_reg_state *regs = cur_regs(env);
4024 struct bpf_reg_state *reg = ®s[regno];
4025 struct bpf_insn_access_aux info = {};
4026 bool valid;
4027
4028 if (reg->smin_value < 0) {
4029 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4030 regno);
4031 return -EACCES;
4032 }
4033
4034 switch (reg->type) {
4035 case PTR_TO_SOCK_COMMON:
4036 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4037 break;
4038 case PTR_TO_SOCKET:
4039 valid = bpf_sock_is_valid_access(off, size, t, &info);
4040 break;
4041 case PTR_TO_TCP_SOCK:
4042 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4043 break;
4044 case PTR_TO_XDP_SOCK:
4045 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4046 break;
4047 default:
4048 valid = false;
4049 }
4050
4051
4052 if (valid) {
4053 env->insn_aux_data[insn_idx].ctx_field_size =
4054 info.ctx_field_size;
4055 return 0;
4056 }
4057
4058 verbose(env, "R%d invalid %s access off=%d size=%d\n",
4059 regno, reg_type_str(env, reg->type), off, size);
4060
4061 return -EACCES;
4062 }
4063
is_pointer_value(struct bpf_verifier_env * env,int regno)4064 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4065 {
4066 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4067 }
4068
is_ctx_reg(struct bpf_verifier_env * env,int regno)4069 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4070 {
4071 const struct bpf_reg_state *reg = reg_state(env, regno);
4072
4073 return reg->type == PTR_TO_CTX;
4074 }
4075
is_sk_reg(struct bpf_verifier_env * env,int regno)4076 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4077 {
4078 const struct bpf_reg_state *reg = reg_state(env, regno);
4079
4080 return type_is_sk_pointer(reg->type);
4081 }
4082
is_pkt_reg(struct bpf_verifier_env * env,int regno)4083 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4084 {
4085 const struct bpf_reg_state *reg = reg_state(env, regno);
4086
4087 return type_is_pkt_pointer(reg->type);
4088 }
4089
is_flow_key_reg(struct bpf_verifier_env * env,int regno)4090 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4091 {
4092 const struct bpf_reg_state *reg = reg_state(env, regno);
4093
4094 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4095 return reg->type == PTR_TO_FLOW_KEYS;
4096 }
4097
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)4098 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4099 const struct bpf_reg_state *reg,
4100 int off, int size, bool strict)
4101 {
4102 struct tnum reg_off;
4103 int ip_align;
4104
4105 /* Byte size accesses are always allowed. */
4106 if (!strict || size == 1)
4107 return 0;
4108
4109 /* For platforms that do not have a Kconfig enabling
4110 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4111 * NET_IP_ALIGN is universally set to '2'. And on platforms
4112 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4113 * to this code only in strict mode where we want to emulate
4114 * the NET_IP_ALIGN==2 checking. Therefore use an
4115 * unconditional IP align value of '2'.
4116 */
4117 ip_align = 2;
4118
4119 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4120 if (!tnum_is_aligned(reg_off, size)) {
4121 char tn_buf[48];
4122
4123 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4124 verbose(env,
4125 "misaligned packet access off %d+%s+%d+%d size %d\n",
4126 ip_align, tn_buf, reg->off, off, size);
4127 return -EACCES;
4128 }
4129
4130 return 0;
4131 }
4132
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)4133 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4134 const struct bpf_reg_state *reg,
4135 const char *pointer_desc,
4136 int off, int size, bool strict)
4137 {
4138 struct tnum reg_off;
4139
4140 /* Byte size accesses are always allowed. */
4141 if (!strict || size == 1)
4142 return 0;
4143
4144 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4145 if (!tnum_is_aligned(reg_off, size)) {
4146 char tn_buf[48];
4147
4148 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4149 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4150 pointer_desc, tn_buf, reg->off, off, size);
4151 return -EACCES;
4152 }
4153
4154 return 0;
4155 }
4156
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)4157 static int check_ptr_alignment(struct bpf_verifier_env *env,
4158 const struct bpf_reg_state *reg, int off,
4159 int size, bool strict_alignment_once)
4160 {
4161 bool strict = env->strict_alignment || strict_alignment_once;
4162 const char *pointer_desc = "";
4163
4164 switch (reg->type) {
4165 case PTR_TO_PACKET:
4166 case PTR_TO_PACKET_META:
4167 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4168 * right in front, treat it the very same way.
4169 */
4170 return check_pkt_ptr_alignment(env, reg, off, size, strict);
4171 case PTR_TO_FLOW_KEYS:
4172 pointer_desc = "flow keys ";
4173 break;
4174 case PTR_TO_MAP_KEY:
4175 pointer_desc = "key ";
4176 break;
4177 case PTR_TO_MAP_VALUE:
4178 pointer_desc = "value ";
4179 break;
4180 case PTR_TO_CTX:
4181 pointer_desc = "context ";
4182 break;
4183 case PTR_TO_STACK:
4184 pointer_desc = "stack ";
4185 /* The stack spill tracking logic in check_stack_write_fixed_off()
4186 * and check_stack_read_fixed_off() relies on stack accesses being
4187 * aligned.
4188 */
4189 strict = true;
4190 break;
4191 case PTR_TO_SOCKET:
4192 pointer_desc = "sock ";
4193 break;
4194 case PTR_TO_SOCK_COMMON:
4195 pointer_desc = "sock_common ";
4196 break;
4197 case PTR_TO_TCP_SOCK:
4198 pointer_desc = "tcp_sock ";
4199 break;
4200 case PTR_TO_XDP_SOCK:
4201 pointer_desc = "xdp_sock ";
4202 break;
4203 default:
4204 break;
4205 }
4206 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4207 strict);
4208 }
4209
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)4210 static int update_stack_depth(struct bpf_verifier_env *env,
4211 const struct bpf_func_state *func,
4212 int off)
4213 {
4214 u16 stack = env->subprog_info[func->subprogno].stack_depth;
4215
4216 if (stack >= -off)
4217 return 0;
4218
4219 /* update known max for given subprogram */
4220 env->subprog_info[func->subprogno].stack_depth = -off;
4221 return 0;
4222 }
4223
4224 /* starting from main bpf function walk all instructions of the function
4225 * and recursively walk all callees that given function can call.
4226 * Ignore jump and exit insns.
4227 * Since recursion is prevented by check_cfg() this algorithm
4228 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4229 */
check_max_stack_depth(struct bpf_verifier_env * env)4230 static int check_max_stack_depth(struct bpf_verifier_env *env)
4231 {
4232 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4233 struct bpf_subprog_info *subprog = env->subprog_info;
4234 struct bpf_insn *insn = env->prog->insnsi;
4235 bool tail_call_reachable = false;
4236 int ret_insn[MAX_CALL_FRAMES];
4237 int ret_prog[MAX_CALL_FRAMES];
4238 int j;
4239
4240 process_func:
4241 /* protect against potential stack overflow that might happen when
4242 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4243 * depth for such case down to 256 so that the worst case scenario
4244 * would result in 8k stack size (32 which is tailcall limit * 256 =
4245 * 8k).
4246 *
4247 * To get the idea what might happen, see an example:
4248 * func1 -> sub rsp, 128
4249 * subfunc1 -> sub rsp, 256
4250 * tailcall1 -> add rsp, 256
4251 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4252 * subfunc2 -> sub rsp, 64
4253 * subfunc22 -> sub rsp, 128
4254 * tailcall2 -> add rsp, 128
4255 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4256 *
4257 * tailcall will unwind the current stack frame but it will not get rid
4258 * of caller's stack as shown on the example above.
4259 */
4260 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4261 verbose(env,
4262 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4263 depth);
4264 return -EACCES;
4265 }
4266 /* round up to 32-bytes, since this is granularity
4267 * of interpreter stack size
4268 */
4269 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4270 if (depth > MAX_BPF_STACK) {
4271 verbose(env, "combined stack size of %d calls is %d. Too large\n",
4272 frame + 1, depth);
4273 return -EACCES;
4274 }
4275 continue_func:
4276 subprog_end = subprog[idx + 1].start;
4277 for (; i < subprog_end; i++) {
4278 int next_insn;
4279
4280 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4281 continue;
4282 /* remember insn and function to return to */
4283 ret_insn[frame] = i + 1;
4284 ret_prog[frame] = idx;
4285
4286 /* find the callee */
4287 next_insn = i + insn[i].imm + 1;
4288 idx = find_subprog(env, next_insn);
4289 if (idx < 0) {
4290 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4291 next_insn);
4292 return -EFAULT;
4293 }
4294 if (subprog[idx].is_async_cb) {
4295 if (subprog[idx].has_tail_call) {
4296 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4297 return -EFAULT;
4298 }
4299 /* async callbacks don't increase bpf prog stack size */
4300 continue;
4301 }
4302 i = next_insn;
4303
4304 if (subprog[idx].has_tail_call)
4305 tail_call_reachable = true;
4306
4307 frame++;
4308 if (frame >= MAX_CALL_FRAMES) {
4309 verbose(env, "the call stack of %d frames is too deep !\n",
4310 frame);
4311 return -E2BIG;
4312 }
4313 goto process_func;
4314 }
4315 /* if tail call got detected across bpf2bpf calls then mark each of the
4316 * currently present subprog frames as tail call reachable subprogs;
4317 * this info will be utilized by JIT so that we will be preserving the
4318 * tail call counter throughout bpf2bpf calls combined with tailcalls
4319 */
4320 if (tail_call_reachable)
4321 for (j = 0; j < frame; j++)
4322 subprog[ret_prog[j]].tail_call_reachable = true;
4323 if (subprog[0].tail_call_reachable)
4324 env->prog->aux->tail_call_reachable = true;
4325
4326 /* end of for() loop means the last insn of the 'subprog'
4327 * was reached. Doesn't matter whether it was JA or EXIT
4328 */
4329 if (frame == 0)
4330 return 0;
4331 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4332 frame--;
4333 i = ret_insn[frame];
4334 idx = ret_prog[frame];
4335 goto continue_func;
4336 }
4337
4338 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)4339 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4340 const struct bpf_insn *insn, int idx)
4341 {
4342 int start = idx + insn->imm + 1, subprog;
4343
4344 subprog = find_subprog(env, start);
4345 if (subprog < 0) {
4346 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4347 start);
4348 return -EFAULT;
4349 }
4350 return env->subprog_info[subprog].stack_depth;
4351 }
4352 #endif
4353
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)4354 static int __check_buffer_access(struct bpf_verifier_env *env,
4355 const char *buf_info,
4356 const struct bpf_reg_state *reg,
4357 int regno, int off, int size)
4358 {
4359 if (off < 0) {
4360 verbose(env,
4361 "R%d invalid %s buffer access: off=%d, size=%d\n",
4362 regno, buf_info, off, size);
4363 return -EACCES;
4364 }
4365 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4366 char tn_buf[48];
4367
4368 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4369 verbose(env,
4370 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4371 regno, off, tn_buf);
4372 return -EACCES;
4373 }
4374
4375 return 0;
4376 }
4377
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)4378 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4379 const struct bpf_reg_state *reg,
4380 int regno, int off, int size)
4381 {
4382 int err;
4383
4384 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4385 if (err)
4386 return err;
4387
4388 if (off + size > env->prog->aux->max_tp_access)
4389 env->prog->aux->max_tp_access = off + size;
4390
4391 return 0;
4392 }
4393
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)4394 static int check_buffer_access(struct bpf_verifier_env *env,
4395 const struct bpf_reg_state *reg,
4396 int regno, int off, int size,
4397 bool zero_size_allowed,
4398 u32 *max_access)
4399 {
4400 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4401 int err;
4402
4403 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4404 if (err)
4405 return err;
4406
4407 if (off + size > *max_access)
4408 *max_access = off + size;
4409
4410 return 0;
4411 }
4412
4413 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)4414 static void zext_32_to_64(struct bpf_reg_state *reg)
4415 {
4416 reg->var_off = tnum_subreg(reg->var_off);
4417 __reg_assign_32_into_64(reg);
4418 }
4419
4420 /* truncate register to smaller size (in bytes)
4421 * must be called with size < BPF_REG_SIZE
4422 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)4423 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4424 {
4425 u64 mask;
4426
4427 /* clear high bits in bit representation */
4428 reg->var_off = tnum_cast(reg->var_off, size);
4429
4430 /* fix arithmetic bounds */
4431 mask = ((u64)1 << (size * 8)) - 1;
4432 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4433 reg->umin_value &= mask;
4434 reg->umax_value &= mask;
4435 } else {
4436 reg->umin_value = 0;
4437 reg->umax_value = mask;
4438 }
4439 reg->smin_value = reg->umin_value;
4440 reg->smax_value = reg->umax_value;
4441
4442 /* If size is smaller than 32bit register the 32bit register
4443 * values are also truncated so we push 64-bit bounds into
4444 * 32-bit bounds. Above were truncated < 32-bits already.
4445 */
4446 if (size >= 4)
4447 return;
4448 __reg_combine_64_into_32(reg);
4449 }
4450
bpf_map_is_rdonly(const struct bpf_map * map)4451 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4452 {
4453 /* A map is considered read-only if the following condition are true:
4454 *
4455 * 1) BPF program side cannot change any of the map content. The
4456 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4457 * and was set at map creation time.
4458 * 2) The map value(s) have been initialized from user space by a
4459 * loader and then "frozen", such that no new map update/delete
4460 * operations from syscall side are possible for the rest of
4461 * the map's lifetime from that point onwards.
4462 * 3) Any parallel/pending map update/delete operations from syscall
4463 * side have been completed. Only after that point, it's safe to
4464 * assume that map value(s) are immutable.
4465 */
4466 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4467 READ_ONCE(map->frozen) &&
4468 !bpf_map_write_active(map);
4469 }
4470
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)4471 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4472 {
4473 void *ptr;
4474 u64 addr;
4475 int err;
4476
4477 err = map->ops->map_direct_value_addr(map, &addr, off);
4478 if (err)
4479 return err;
4480 ptr = (void *)(long)addr + off;
4481
4482 switch (size) {
4483 case sizeof(u8):
4484 *val = (u64)*(u8 *)ptr;
4485 break;
4486 case sizeof(u16):
4487 *val = (u64)*(u16 *)ptr;
4488 break;
4489 case sizeof(u32):
4490 *val = (u64)*(u32 *)ptr;
4491 break;
4492 case sizeof(u64):
4493 *val = *(u64 *)ptr;
4494 break;
4495 default:
4496 return -EINVAL;
4497 }
4498 return 0;
4499 }
4500
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4501 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4502 struct bpf_reg_state *regs,
4503 int regno, int off, int size,
4504 enum bpf_access_type atype,
4505 int value_regno)
4506 {
4507 struct bpf_reg_state *reg = regs + regno;
4508 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4509 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4510 enum bpf_type_flag flag = 0;
4511 u32 btf_id;
4512 int ret;
4513
4514 if (off < 0) {
4515 verbose(env,
4516 "R%d is ptr_%s invalid negative access: off=%d\n",
4517 regno, tname, off);
4518 return -EACCES;
4519 }
4520 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4521 char tn_buf[48];
4522
4523 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4524 verbose(env,
4525 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4526 regno, tname, off, tn_buf);
4527 return -EACCES;
4528 }
4529
4530 if (reg->type & MEM_USER) {
4531 verbose(env,
4532 "R%d is ptr_%s access user memory: off=%d\n",
4533 regno, tname, off);
4534 return -EACCES;
4535 }
4536
4537 if (reg->type & MEM_PERCPU) {
4538 verbose(env,
4539 "R%d is ptr_%s access percpu memory: off=%d\n",
4540 regno, tname, off);
4541 return -EACCES;
4542 }
4543
4544 if (env->ops->btf_struct_access) {
4545 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4546 off, size, atype, &btf_id, &flag);
4547 } else {
4548 if (atype != BPF_READ) {
4549 verbose(env, "only read is supported\n");
4550 return -EACCES;
4551 }
4552
4553 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4554 atype, &btf_id, &flag);
4555 }
4556
4557 if (ret < 0)
4558 return ret;
4559
4560 /* If this is an untrusted pointer, all pointers formed by walking it
4561 * also inherit the untrusted flag.
4562 */
4563 if (type_flag(reg->type) & PTR_UNTRUSTED)
4564 flag |= PTR_UNTRUSTED;
4565
4566 if (atype == BPF_READ && value_regno >= 0)
4567 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4568
4569 return 0;
4570 }
4571
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4572 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4573 struct bpf_reg_state *regs,
4574 int regno, int off, int size,
4575 enum bpf_access_type atype,
4576 int value_regno)
4577 {
4578 struct bpf_reg_state *reg = regs + regno;
4579 struct bpf_map *map = reg->map_ptr;
4580 enum bpf_type_flag flag = 0;
4581 const struct btf_type *t;
4582 const char *tname;
4583 u32 btf_id;
4584 int ret;
4585
4586 if (!btf_vmlinux) {
4587 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4588 return -ENOTSUPP;
4589 }
4590
4591 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4592 verbose(env, "map_ptr access not supported for map type %d\n",
4593 map->map_type);
4594 return -ENOTSUPP;
4595 }
4596
4597 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4598 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4599
4600 if (!env->allow_ptr_to_map_access) {
4601 verbose(env,
4602 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4603 tname);
4604 return -EPERM;
4605 }
4606
4607 if (off < 0) {
4608 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4609 regno, tname, off);
4610 return -EACCES;
4611 }
4612
4613 if (atype != BPF_READ) {
4614 verbose(env, "only read from %s is supported\n", tname);
4615 return -EACCES;
4616 }
4617
4618 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4619 if (ret < 0)
4620 return ret;
4621
4622 if (value_regno >= 0)
4623 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4624
4625 return 0;
4626 }
4627
4628 /* Check that the stack access at the given offset is within bounds. The
4629 * maximum valid offset is -1.
4630 *
4631 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4632 * -state->allocated_stack for reads.
4633 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)4634 static int check_stack_slot_within_bounds(int off,
4635 struct bpf_func_state *state,
4636 enum bpf_access_type t)
4637 {
4638 int min_valid_off;
4639
4640 if (t == BPF_WRITE)
4641 min_valid_off = -MAX_BPF_STACK;
4642 else
4643 min_valid_off = -state->allocated_stack;
4644
4645 if (off < min_valid_off || off > -1)
4646 return -EACCES;
4647 return 0;
4648 }
4649
4650 /* Check that the stack access at 'regno + off' falls within the maximum stack
4651 * bounds.
4652 *
4653 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4654 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)4655 static int check_stack_access_within_bounds(
4656 struct bpf_verifier_env *env,
4657 int regno, int off, int access_size,
4658 enum bpf_access_src src, enum bpf_access_type type)
4659 {
4660 struct bpf_reg_state *regs = cur_regs(env);
4661 struct bpf_reg_state *reg = regs + regno;
4662 struct bpf_func_state *state = func(env, reg);
4663 int min_off, max_off;
4664 int err;
4665 char *err_extra;
4666
4667 if (src == ACCESS_HELPER)
4668 /* We don't know if helpers are reading or writing (or both). */
4669 err_extra = " indirect access to";
4670 else if (type == BPF_READ)
4671 err_extra = " read from";
4672 else
4673 err_extra = " write to";
4674
4675 if (tnum_is_const(reg->var_off)) {
4676 min_off = reg->var_off.value + off;
4677 if (access_size > 0)
4678 max_off = min_off + access_size - 1;
4679 else
4680 max_off = min_off;
4681 } else {
4682 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4683 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4684 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4685 err_extra, regno);
4686 return -EACCES;
4687 }
4688 min_off = reg->smin_value + off;
4689 if (access_size > 0)
4690 max_off = reg->smax_value + off + access_size - 1;
4691 else
4692 max_off = min_off;
4693 }
4694
4695 err = check_stack_slot_within_bounds(min_off, state, type);
4696 if (!err)
4697 err = check_stack_slot_within_bounds(max_off, state, type);
4698
4699 if (err) {
4700 if (tnum_is_const(reg->var_off)) {
4701 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4702 err_extra, regno, off, access_size);
4703 } else {
4704 char tn_buf[48];
4705
4706 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4707 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4708 err_extra, regno, tn_buf, access_size);
4709 }
4710 }
4711 return err;
4712 }
4713
4714 /* check whether memory at (regno + off) is accessible for t = (read | write)
4715 * if t==write, value_regno is a register which value is stored into memory
4716 * if t==read, value_regno is a register which will receive the value from memory
4717 * if t==write && value_regno==-1, some unknown value is stored into memory
4718 * if t==read && value_regno==-1, don't care what we read from memory
4719 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)4720 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4721 int off, int bpf_size, enum bpf_access_type t,
4722 int value_regno, bool strict_alignment_once)
4723 {
4724 struct bpf_reg_state *regs = cur_regs(env);
4725 struct bpf_reg_state *reg = regs + regno;
4726 struct bpf_func_state *state;
4727 int size, err = 0;
4728
4729 size = bpf_size_to_bytes(bpf_size);
4730 if (size < 0)
4731 return size;
4732
4733 /* alignment checks will add in reg->off themselves */
4734 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4735 if (err)
4736 return err;
4737
4738 /* for access checks, reg->off is just part of off */
4739 off += reg->off;
4740
4741 if (reg->type == PTR_TO_MAP_KEY) {
4742 if (t == BPF_WRITE) {
4743 verbose(env, "write to change key R%d not allowed\n", regno);
4744 return -EACCES;
4745 }
4746
4747 err = check_mem_region_access(env, regno, off, size,
4748 reg->map_ptr->key_size, false);
4749 if (err)
4750 return err;
4751 if (value_regno >= 0)
4752 mark_reg_unknown(env, regs, value_regno);
4753 } else if (reg->type == PTR_TO_MAP_VALUE) {
4754 struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4755
4756 if (t == BPF_WRITE && value_regno >= 0 &&
4757 is_pointer_value(env, value_regno)) {
4758 verbose(env, "R%d leaks addr into map\n", value_regno);
4759 return -EACCES;
4760 }
4761 err = check_map_access_type(env, regno, off, size, t);
4762 if (err)
4763 return err;
4764 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4765 if (err)
4766 return err;
4767 if (tnum_is_const(reg->var_off))
4768 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4769 off + reg->var_off.value);
4770 if (kptr_off_desc) {
4771 err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4772 kptr_off_desc);
4773 } else if (t == BPF_READ && value_regno >= 0) {
4774 struct bpf_map *map = reg->map_ptr;
4775
4776 /* if map is read-only, track its contents as scalars */
4777 if (tnum_is_const(reg->var_off) &&
4778 bpf_map_is_rdonly(map) &&
4779 map->ops->map_direct_value_addr) {
4780 int map_off = off + reg->var_off.value;
4781 u64 val = 0;
4782
4783 err = bpf_map_direct_read(map, map_off, size,
4784 &val);
4785 if (err)
4786 return err;
4787
4788 regs[value_regno].type = SCALAR_VALUE;
4789 __mark_reg_known(®s[value_regno], val);
4790 } else {
4791 mark_reg_unknown(env, regs, value_regno);
4792 }
4793 }
4794 } else if (base_type(reg->type) == PTR_TO_MEM) {
4795 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4796
4797 if (type_may_be_null(reg->type)) {
4798 verbose(env, "R%d invalid mem access '%s'\n", regno,
4799 reg_type_str(env, reg->type));
4800 return -EACCES;
4801 }
4802
4803 if (t == BPF_WRITE && rdonly_mem) {
4804 verbose(env, "R%d cannot write into %s\n",
4805 regno, reg_type_str(env, reg->type));
4806 return -EACCES;
4807 }
4808
4809 if (t == BPF_WRITE && value_regno >= 0 &&
4810 is_pointer_value(env, value_regno)) {
4811 verbose(env, "R%d leaks addr into mem\n", value_regno);
4812 return -EACCES;
4813 }
4814
4815 err = check_mem_region_access(env, regno, off, size,
4816 reg->mem_size, false);
4817 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4818 mark_reg_unknown(env, regs, value_regno);
4819 } else if (reg->type == PTR_TO_CTX) {
4820 enum bpf_reg_type reg_type = SCALAR_VALUE;
4821 struct btf *btf = NULL;
4822 u32 btf_id = 0;
4823
4824 if (t == BPF_WRITE && value_regno >= 0 &&
4825 is_pointer_value(env, value_regno)) {
4826 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4827 return -EACCES;
4828 }
4829
4830 err = check_ptr_off_reg(env, reg, regno);
4831 if (err < 0)
4832 return err;
4833
4834 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
4835 &btf_id);
4836 if (err)
4837 verbose_linfo(env, insn_idx, "; ");
4838 if (!err && t == BPF_READ && value_regno >= 0) {
4839 /* ctx access returns either a scalar, or a
4840 * PTR_TO_PACKET[_META,_END]. In the latter
4841 * case, we know the offset is zero.
4842 */
4843 if (reg_type == SCALAR_VALUE) {
4844 mark_reg_unknown(env, regs, value_regno);
4845 } else {
4846 mark_reg_known_zero(env, regs,
4847 value_regno);
4848 if (type_may_be_null(reg_type))
4849 regs[value_regno].id = ++env->id_gen;
4850 /* A load of ctx field could have different
4851 * actual load size with the one encoded in the
4852 * insn. When the dst is PTR, it is for sure not
4853 * a sub-register.
4854 */
4855 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4856 if (base_type(reg_type) == PTR_TO_BTF_ID) {
4857 regs[value_regno].btf = btf;
4858 regs[value_regno].btf_id = btf_id;
4859 }
4860 }
4861 regs[value_regno].type = reg_type;
4862 }
4863
4864 } else if (reg->type == PTR_TO_STACK) {
4865 /* Basic bounds checks. */
4866 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4867 if (err)
4868 return err;
4869
4870 state = func(env, reg);
4871 err = update_stack_depth(env, state, off);
4872 if (err)
4873 return err;
4874
4875 if (t == BPF_READ)
4876 err = check_stack_read(env, regno, off, size,
4877 value_regno);
4878 else
4879 err = check_stack_write(env, regno, off, size,
4880 value_regno, insn_idx);
4881 } else if (reg_is_pkt_pointer(reg)) {
4882 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4883 verbose(env, "cannot write into packet\n");
4884 return -EACCES;
4885 }
4886 if (t == BPF_WRITE && value_regno >= 0 &&
4887 is_pointer_value(env, value_regno)) {
4888 verbose(env, "R%d leaks addr into packet\n",
4889 value_regno);
4890 return -EACCES;
4891 }
4892 err = check_packet_access(env, regno, off, size, false);
4893 if (!err && t == BPF_READ && value_regno >= 0)
4894 mark_reg_unknown(env, regs, value_regno);
4895 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4896 if (t == BPF_WRITE && value_regno >= 0 &&
4897 is_pointer_value(env, value_regno)) {
4898 verbose(env, "R%d leaks addr into flow keys\n",
4899 value_regno);
4900 return -EACCES;
4901 }
4902
4903 err = check_flow_keys_access(env, off, size);
4904 if (!err && t == BPF_READ && value_regno >= 0)
4905 mark_reg_unknown(env, regs, value_regno);
4906 } else if (type_is_sk_pointer(reg->type)) {
4907 if (t == BPF_WRITE) {
4908 verbose(env, "R%d cannot write into %s\n",
4909 regno, reg_type_str(env, reg->type));
4910 return -EACCES;
4911 }
4912 err = check_sock_access(env, insn_idx, regno, off, size, t);
4913 if (!err && value_regno >= 0)
4914 mark_reg_unknown(env, regs, value_regno);
4915 } else if (reg->type == PTR_TO_TP_BUFFER) {
4916 err = check_tp_buffer_access(env, reg, regno, off, size);
4917 if (!err && t == BPF_READ && value_regno >= 0)
4918 mark_reg_unknown(env, regs, value_regno);
4919 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4920 !type_may_be_null(reg->type)) {
4921 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4922 value_regno);
4923 } else if (reg->type == CONST_PTR_TO_MAP) {
4924 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4925 value_regno);
4926 } else if (base_type(reg->type) == PTR_TO_BUF) {
4927 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4928 u32 *max_access;
4929
4930 if (rdonly_mem) {
4931 if (t == BPF_WRITE) {
4932 verbose(env, "R%d cannot write into %s\n",
4933 regno, reg_type_str(env, reg->type));
4934 return -EACCES;
4935 }
4936 max_access = &env->prog->aux->max_rdonly_access;
4937 } else {
4938 max_access = &env->prog->aux->max_rdwr_access;
4939 }
4940
4941 err = check_buffer_access(env, reg, regno, off, size, false,
4942 max_access);
4943
4944 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4945 mark_reg_unknown(env, regs, value_regno);
4946 } else {
4947 verbose(env, "R%d invalid mem access '%s'\n", regno,
4948 reg_type_str(env, reg->type));
4949 return -EACCES;
4950 }
4951
4952 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4953 regs[value_regno].type == SCALAR_VALUE) {
4954 /* b/h/w load zero-extends, mark upper bits as known 0 */
4955 coerce_reg_to_size(®s[value_regno], size);
4956 }
4957 return err;
4958 }
4959
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4960 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4961 {
4962 int load_reg;
4963 int err;
4964
4965 switch (insn->imm) {
4966 case BPF_ADD:
4967 case BPF_ADD | BPF_FETCH:
4968 case BPF_AND:
4969 case BPF_AND | BPF_FETCH:
4970 case BPF_OR:
4971 case BPF_OR | BPF_FETCH:
4972 case BPF_XOR:
4973 case BPF_XOR | BPF_FETCH:
4974 case BPF_XCHG:
4975 case BPF_CMPXCHG:
4976 break;
4977 default:
4978 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4979 return -EINVAL;
4980 }
4981
4982 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4983 verbose(env, "invalid atomic operand size\n");
4984 return -EINVAL;
4985 }
4986
4987 /* check src1 operand */
4988 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4989 if (err)
4990 return err;
4991
4992 /* check src2 operand */
4993 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4994 if (err)
4995 return err;
4996
4997 if (insn->imm == BPF_CMPXCHG) {
4998 /* Check comparison of R0 with memory location */
4999 const u32 aux_reg = BPF_REG_0;
5000
5001 err = check_reg_arg(env, aux_reg, SRC_OP);
5002 if (err)
5003 return err;
5004
5005 if (is_pointer_value(env, aux_reg)) {
5006 verbose(env, "R%d leaks addr into mem\n", aux_reg);
5007 return -EACCES;
5008 }
5009 }
5010
5011 if (is_pointer_value(env, insn->src_reg)) {
5012 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5013 return -EACCES;
5014 }
5015
5016 if (is_ctx_reg(env, insn->dst_reg) ||
5017 is_pkt_reg(env, insn->dst_reg) ||
5018 is_flow_key_reg(env, insn->dst_reg) ||
5019 is_sk_reg(env, insn->dst_reg)) {
5020 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5021 insn->dst_reg,
5022 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5023 return -EACCES;
5024 }
5025
5026 if (insn->imm & BPF_FETCH) {
5027 if (insn->imm == BPF_CMPXCHG)
5028 load_reg = BPF_REG_0;
5029 else
5030 load_reg = insn->src_reg;
5031
5032 /* check and record load of old value */
5033 err = check_reg_arg(env, load_reg, DST_OP);
5034 if (err)
5035 return err;
5036 } else {
5037 /* This instruction accesses a memory location but doesn't
5038 * actually load it into a register.
5039 */
5040 load_reg = -1;
5041 }
5042
5043 /* Check whether we can read the memory, with second call for fetch
5044 * case to simulate the register fill.
5045 */
5046 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5047 BPF_SIZE(insn->code), BPF_READ, -1, true);
5048 if (!err && load_reg >= 0)
5049 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5050 BPF_SIZE(insn->code), BPF_READ, load_reg,
5051 true);
5052 if (err)
5053 return err;
5054
5055 /* Check whether we can write into the same memory. */
5056 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5057 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5058 if (err)
5059 return err;
5060
5061 return 0;
5062 }
5063
5064 /* When register 'regno' is used to read the stack (either directly or through
5065 * a helper function) make sure that it's within stack boundary and, depending
5066 * on the access type, that all elements of the stack are initialized.
5067 *
5068 * 'off' includes 'regno->off', but not its dynamic part (if any).
5069 *
5070 * All registers that have been spilled on the stack in the slots within the
5071 * read offsets are marked as read.
5072 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)5073 static int check_stack_range_initialized(
5074 struct bpf_verifier_env *env, int regno, int off,
5075 int access_size, bool zero_size_allowed,
5076 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5077 {
5078 struct bpf_reg_state *reg = reg_state(env, regno);
5079 struct bpf_func_state *state = func(env, reg);
5080 int err, min_off, max_off, i, j, slot, spi;
5081 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5082 enum bpf_access_type bounds_check_type;
5083 /* Some accesses can write anything into the stack, others are
5084 * read-only.
5085 */
5086 bool clobber = false;
5087
5088 if (access_size == 0 && !zero_size_allowed) {
5089 verbose(env, "invalid zero-sized read\n");
5090 return -EACCES;
5091 }
5092
5093 if (type == ACCESS_HELPER) {
5094 /* The bounds checks for writes are more permissive than for
5095 * reads. However, if raw_mode is not set, we'll do extra
5096 * checks below.
5097 */
5098 bounds_check_type = BPF_WRITE;
5099 clobber = true;
5100 } else {
5101 bounds_check_type = BPF_READ;
5102 }
5103 err = check_stack_access_within_bounds(env, regno, off, access_size,
5104 type, bounds_check_type);
5105 if (err)
5106 return err;
5107
5108
5109 if (tnum_is_const(reg->var_off)) {
5110 min_off = max_off = reg->var_off.value + off;
5111 } else {
5112 /* Variable offset is prohibited for unprivileged mode for
5113 * simplicity since it requires corresponding support in
5114 * Spectre masking for stack ALU.
5115 * See also retrieve_ptr_limit().
5116 */
5117 if (!env->bypass_spec_v1) {
5118 char tn_buf[48];
5119
5120 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5121 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5122 regno, err_extra, tn_buf);
5123 return -EACCES;
5124 }
5125 /* Only initialized buffer on stack is allowed to be accessed
5126 * with variable offset. With uninitialized buffer it's hard to
5127 * guarantee that whole memory is marked as initialized on
5128 * helper return since specific bounds are unknown what may
5129 * cause uninitialized stack leaking.
5130 */
5131 if (meta && meta->raw_mode)
5132 meta = NULL;
5133
5134 min_off = reg->smin_value + off;
5135 max_off = reg->smax_value + off;
5136 }
5137
5138 if (meta && meta->raw_mode) {
5139 meta->access_size = access_size;
5140 meta->regno = regno;
5141 return 0;
5142 }
5143
5144 for (i = min_off; i < max_off + access_size; i++) {
5145 u8 *stype;
5146
5147 slot = -i - 1;
5148 spi = slot / BPF_REG_SIZE;
5149 if (state->allocated_stack <= slot)
5150 goto err;
5151 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5152 if (*stype == STACK_MISC)
5153 goto mark;
5154 if (*stype == STACK_ZERO) {
5155 if (clobber) {
5156 /* helper can write anything into the stack */
5157 *stype = STACK_MISC;
5158 }
5159 goto mark;
5160 }
5161
5162 if (is_spilled_reg(&state->stack[spi]) &&
5163 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
5164 goto mark;
5165
5166 if (is_spilled_reg(&state->stack[spi]) &&
5167 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5168 env->allow_ptr_leaks)) {
5169 if (clobber) {
5170 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5171 for (j = 0; j < BPF_REG_SIZE; j++)
5172 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5173 }
5174 goto mark;
5175 }
5176
5177 err:
5178 if (tnum_is_const(reg->var_off)) {
5179 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5180 err_extra, regno, min_off, i - min_off, access_size);
5181 } else {
5182 char tn_buf[48];
5183
5184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5185 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5186 err_extra, regno, tn_buf, i - min_off, access_size);
5187 }
5188 return -EACCES;
5189 mark:
5190 /* reading any byte out of 8-byte 'spill_slot' will cause
5191 * the whole slot to be marked as 'read'
5192 */
5193 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5194 state->stack[spi].spilled_ptr.parent,
5195 REG_LIVE_READ64);
5196 }
5197 return update_stack_depth(env, state, min_off);
5198 }
5199
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5200 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5201 int access_size, bool zero_size_allowed,
5202 struct bpf_call_arg_meta *meta)
5203 {
5204 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5205 u32 *max_access;
5206
5207 switch (base_type(reg->type)) {
5208 case PTR_TO_PACKET:
5209 case PTR_TO_PACKET_META:
5210 return check_packet_access(env, regno, reg->off, access_size,
5211 zero_size_allowed);
5212 case PTR_TO_MAP_KEY:
5213 if (meta && meta->raw_mode) {
5214 verbose(env, "R%d cannot write into %s\n", regno,
5215 reg_type_str(env, reg->type));
5216 return -EACCES;
5217 }
5218 return check_mem_region_access(env, regno, reg->off, access_size,
5219 reg->map_ptr->key_size, false);
5220 case PTR_TO_MAP_VALUE:
5221 if (check_map_access_type(env, regno, reg->off, access_size,
5222 meta && meta->raw_mode ? BPF_WRITE :
5223 BPF_READ))
5224 return -EACCES;
5225 return check_map_access(env, regno, reg->off, access_size,
5226 zero_size_allowed, ACCESS_HELPER);
5227 case PTR_TO_MEM:
5228 if (type_is_rdonly_mem(reg->type)) {
5229 if (meta && meta->raw_mode) {
5230 verbose(env, "R%d cannot write into %s\n", regno,
5231 reg_type_str(env, reg->type));
5232 return -EACCES;
5233 }
5234 }
5235 return check_mem_region_access(env, regno, reg->off,
5236 access_size, reg->mem_size,
5237 zero_size_allowed);
5238 case PTR_TO_BUF:
5239 if (type_is_rdonly_mem(reg->type)) {
5240 if (meta && meta->raw_mode) {
5241 verbose(env, "R%d cannot write into %s\n", regno,
5242 reg_type_str(env, reg->type));
5243 return -EACCES;
5244 }
5245
5246 max_access = &env->prog->aux->max_rdonly_access;
5247 } else {
5248 max_access = &env->prog->aux->max_rdwr_access;
5249 }
5250 return check_buffer_access(env, reg, regno, reg->off,
5251 access_size, zero_size_allowed,
5252 max_access);
5253 case PTR_TO_STACK:
5254 return check_stack_range_initialized(
5255 env,
5256 regno, reg->off, access_size,
5257 zero_size_allowed, ACCESS_HELPER, meta);
5258 case PTR_TO_CTX:
5259 /* in case the function doesn't know how to access the context,
5260 * (because we are in a program of type SYSCALL for example), we
5261 * can not statically check its size.
5262 * Dynamically check it now.
5263 */
5264 if (!env->ops->convert_ctx_access) {
5265 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5266 int offset = access_size - 1;
5267
5268 /* Allow zero-byte read from PTR_TO_CTX */
5269 if (access_size == 0)
5270 return zero_size_allowed ? 0 : -EACCES;
5271
5272 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5273 atype, -1, false);
5274 }
5275
5276 fallthrough;
5277 default: /* scalar_value or invalid ptr */
5278 /* Allow zero-byte read from NULL, regardless of pointer type */
5279 if (zero_size_allowed && access_size == 0 &&
5280 register_is_null(reg))
5281 return 0;
5282
5283 verbose(env, "R%d type=%s ", regno,
5284 reg_type_str(env, reg->type));
5285 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5286 return -EACCES;
5287 }
5288 }
5289
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5290 static int check_mem_size_reg(struct bpf_verifier_env *env,
5291 struct bpf_reg_state *reg, u32 regno,
5292 bool zero_size_allowed,
5293 struct bpf_call_arg_meta *meta)
5294 {
5295 int err;
5296
5297 /* This is used to refine r0 return value bounds for helpers
5298 * that enforce this value as an upper bound on return values.
5299 * See do_refine_retval_range() for helpers that can refine
5300 * the return value. C type of helper is u32 so we pull register
5301 * bound from umax_value however, if negative verifier errors
5302 * out. Only upper bounds can be learned because retval is an
5303 * int type and negative retvals are allowed.
5304 */
5305 meta->msize_max_value = reg->umax_value;
5306
5307 /* The register is SCALAR_VALUE; the access check
5308 * happens using its boundaries.
5309 */
5310 if (!tnum_is_const(reg->var_off))
5311 /* For unprivileged variable accesses, disable raw
5312 * mode so that the program is required to
5313 * initialize all the memory that the helper could
5314 * just partially fill up.
5315 */
5316 meta = NULL;
5317
5318 if (reg->smin_value < 0) {
5319 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5320 regno);
5321 return -EACCES;
5322 }
5323
5324 if (reg->umin_value == 0) {
5325 err = check_helper_mem_access(env, regno - 1, 0,
5326 zero_size_allowed,
5327 meta);
5328 if (err)
5329 return err;
5330 }
5331
5332 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5333 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5334 regno);
5335 return -EACCES;
5336 }
5337 err = check_helper_mem_access(env, regno - 1,
5338 reg->umax_value,
5339 zero_size_allowed, meta);
5340 if (!err)
5341 err = mark_chain_precision(env, regno);
5342 return err;
5343 }
5344
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)5345 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5346 u32 regno, u32 mem_size)
5347 {
5348 bool may_be_null = type_may_be_null(reg->type);
5349 struct bpf_reg_state saved_reg;
5350 struct bpf_call_arg_meta meta;
5351 int err;
5352
5353 if (register_is_null(reg))
5354 return 0;
5355
5356 memset(&meta, 0, sizeof(meta));
5357 /* Assuming that the register contains a value check if the memory
5358 * access is safe. Temporarily save and restore the register's state as
5359 * the conversion shouldn't be visible to a caller.
5360 */
5361 if (may_be_null) {
5362 saved_reg = *reg;
5363 mark_ptr_not_null_reg(reg);
5364 }
5365
5366 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5367 /* Check access for BPF_WRITE */
5368 meta.raw_mode = true;
5369 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5370
5371 if (may_be_null)
5372 *reg = saved_reg;
5373
5374 return err;
5375 }
5376
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)5377 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5378 u32 regno)
5379 {
5380 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5381 bool may_be_null = type_may_be_null(mem_reg->type);
5382 struct bpf_reg_state saved_reg;
5383 struct bpf_call_arg_meta meta;
5384 int err;
5385
5386 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5387
5388 memset(&meta, 0, sizeof(meta));
5389
5390 if (may_be_null) {
5391 saved_reg = *mem_reg;
5392 mark_ptr_not_null_reg(mem_reg);
5393 }
5394
5395 err = check_mem_size_reg(env, reg, regno, true, &meta);
5396 /* Check access for BPF_WRITE */
5397 meta.raw_mode = true;
5398 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5399
5400 if (may_be_null)
5401 *mem_reg = saved_reg;
5402 return err;
5403 }
5404
5405 /* Implementation details:
5406 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5407 * Two bpf_map_lookups (even with the same key) will have different reg->id.
5408 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5409 * value_or_null->value transition, since the verifier only cares about
5410 * the range of access to valid map value pointer and doesn't care about actual
5411 * address of the map element.
5412 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5413 * reg->id > 0 after value_or_null->value transition. By doing so
5414 * two bpf_map_lookups will be considered two different pointers that
5415 * point to different bpf_spin_locks.
5416 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5417 * dead-locks.
5418 * Since only one bpf_spin_lock is allowed the checks are simpler than
5419 * reg_is_refcounted() logic. The verifier needs to remember only
5420 * one spin_lock instead of array of acquired_refs.
5421 * cur_state->active_spin_lock remembers which map value element got locked
5422 * and clears it after bpf_spin_unlock.
5423 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)5424 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5425 bool is_lock)
5426 {
5427 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5428 struct bpf_verifier_state *cur = env->cur_state;
5429 bool is_const = tnum_is_const(reg->var_off);
5430 struct bpf_map *map = reg->map_ptr;
5431 u64 val = reg->var_off.value;
5432
5433 if (!is_const) {
5434 verbose(env,
5435 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5436 regno);
5437 return -EINVAL;
5438 }
5439 if (!map->btf) {
5440 verbose(env,
5441 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5442 map->name);
5443 return -EINVAL;
5444 }
5445 if (!map_value_has_spin_lock(map)) {
5446 if (map->spin_lock_off == -E2BIG)
5447 verbose(env,
5448 "map '%s' has more than one 'struct bpf_spin_lock'\n",
5449 map->name);
5450 else if (map->spin_lock_off == -ENOENT)
5451 verbose(env,
5452 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
5453 map->name);
5454 else
5455 verbose(env,
5456 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5457 map->name);
5458 return -EINVAL;
5459 }
5460 if (map->spin_lock_off != val + reg->off) {
5461 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5462 val + reg->off);
5463 return -EINVAL;
5464 }
5465 if (is_lock) {
5466 if (cur->active_spin_lock) {
5467 verbose(env,
5468 "Locking two bpf_spin_locks are not allowed\n");
5469 return -EINVAL;
5470 }
5471 cur->active_spin_lock = reg->id;
5472 } else {
5473 if (!cur->active_spin_lock) {
5474 verbose(env, "bpf_spin_unlock without taking a lock\n");
5475 return -EINVAL;
5476 }
5477 if (cur->active_spin_lock != reg->id) {
5478 verbose(env, "bpf_spin_unlock of different lock\n");
5479 return -EINVAL;
5480 }
5481 cur->active_spin_lock = 0;
5482 }
5483 return 0;
5484 }
5485
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5486 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5487 struct bpf_call_arg_meta *meta)
5488 {
5489 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5490 bool is_const = tnum_is_const(reg->var_off);
5491 struct bpf_map *map = reg->map_ptr;
5492 u64 val = reg->var_off.value;
5493
5494 if (!is_const) {
5495 verbose(env,
5496 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5497 regno);
5498 return -EINVAL;
5499 }
5500 if (!map->btf) {
5501 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5502 map->name);
5503 return -EINVAL;
5504 }
5505 if (!map_value_has_timer(map)) {
5506 if (map->timer_off == -E2BIG)
5507 verbose(env,
5508 "map '%s' has more than one 'struct bpf_timer'\n",
5509 map->name);
5510 else if (map->timer_off == -ENOENT)
5511 verbose(env,
5512 "map '%s' doesn't have 'struct bpf_timer'\n",
5513 map->name);
5514 else
5515 verbose(env,
5516 "map '%s' is not a struct type or bpf_timer is mangled\n",
5517 map->name);
5518 return -EINVAL;
5519 }
5520 if (map->timer_off != val + reg->off) {
5521 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5522 val + reg->off, map->timer_off);
5523 return -EINVAL;
5524 }
5525 if (meta->map_ptr) {
5526 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5527 return -EFAULT;
5528 }
5529 meta->map_uid = reg->map_uid;
5530 meta->map_ptr = map;
5531 return 0;
5532 }
5533
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5534 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5535 struct bpf_call_arg_meta *meta)
5536 {
5537 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5538 struct bpf_map_value_off_desc *off_desc;
5539 struct bpf_map *map_ptr = reg->map_ptr;
5540 u32 kptr_off;
5541 int ret;
5542
5543 if (!tnum_is_const(reg->var_off)) {
5544 verbose(env,
5545 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5546 regno);
5547 return -EINVAL;
5548 }
5549 if (!map_ptr->btf) {
5550 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5551 map_ptr->name);
5552 return -EINVAL;
5553 }
5554 if (!map_value_has_kptrs(map_ptr)) {
5555 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5556 if (ret == -E2BIG)
5557 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5558 BPF_MAP_VALUE_OFF_MAX);
5559 else if (ret == -EEXIST)
5560 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5561 else
5562 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5563 return -EINVAL;
5564 }
5565
5566 meta->map_ptr = map_ptr;
5567 kptr_off = reg->off + reg->var_off.value;
5568 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5569 if (!off_desc) {
5570 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5571 return -EACCES;
5572 }
5573 if (off_desc->type != BPF_KPTR_REF) {
5574 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5575 return -EACCES;
5576 }
5577 meta->kptr_off_desc = off_desc;
5578 return 0;
5579 }
5580
arg_type_is_mem_size(enum bpf_arg_type type)5581 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5582 {
5583 return type == ARG_CONST_SIZE ||
5584 type == ARG_CONST_SIZE_OR_ZERO;
5585 }
5586
arg_type_is_release(enum bpf_arg_type type)5587 static bool arg_type_is_release(enum bpf_arg_type type)
5588 {
5589 return type & OBJ_RELEASE;
5590 }
5591
arg_type_is_dynptr(enum bpf_arg_type type)5592 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5593 {
5594 return base_type(type) == ARG_PTR_TO_DYNPTR;
5595 }
5596
int_ptr_type_to_size(enum bpf_arg_type type)5597 static int int_ptr_type_to_size(enum bpf_arg_type type)
5598 {
5599 if (type == ARG_PTR_TO_INT)
5600 return sizeof(u32);
5601 else if (type == ARG_PTR_TO_LONG)
5602 return sizeof(u64);
5603
5604 return -EINVAL;
5605 }
5606
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)5607 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5608 const struct bpf_call_arg_meta *meta,
5609 enum bpf_arg_type *arg_type)
5610 {
5611 if (!meta->map_ptr) {
5612 /* kernel subsystem misconfigured verifier */
5613 verbose(env, "invalid map_ptr to access map->type\n");
5614 return -EACCES;
5615 }
5616
5617 switch (meta->map_ptr->map_type) {
5618 case BPF_MAP_TYPE_SOCKMAP:
5619 case BPF_MAP_TYPE_SOCKHASH:
5620 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5621 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5622 } else {
5623 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5624 return -EINVAL;
5625 }
5626 break;
5627 case BPF_MAP_TYPE_BLOOM_FILTER:
5628 if (meta->func_id == BPF_FUNC_map_peek_elem)
5629 *arg_type = ARG_PTR_TO_MAP_VALUE;
5630 break;
5631 default:
5632 break;
5633 }
5634 return 0;
5635 }
5636
5637 struct bpf_reg_types {
5638 const enum bpf_reg_type types[10];
5639 u32 *btf_id;
5640 };
5641
5642 static const struct bpf_reg_types map_key_value_types = {
5643 .types = {
5644 PTR_TO_STACK,
5645 PTR_TO_PACKET,
5646 PTR_TO_PACKET_META,
5647 PTR_TO_MAP_KEY,
5648 PTR_TO_MAP_VALUE,
5649 },
5650 };
5651
5652 static const struct bpf_reg_types sock_types = {
5653 .types = {
5654 PTR_TO_SOCK_COMMON,
5655 PTR_TO_SOCKET,
5656 PTR_TO_TCP_SOCK,
5657 PTR_TO_XDP_SOCK,
5658 },
5659 };
5660
5661 #ifdef CONFIG_NET
5662 static const struct bpf_reg_types btf_id_sock_common_types = {
5663 .types = {
5664 PTR_TO_SOCK_COMMON,
5665 PTR_TO_SOCKET,
5666 PTR_TO_TCP_SOCK,
5667 PTR_TO_XDP_SOCK,
5668 PTR_TO_BTF_ID,
5669 },
5670 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5671 };
5672 #endif
5673
5674 static const struct bpf_reg_types mem_types = {
5675 .types = {
5676 PTR_TO_STACK,
5677 PTR_TO_PACKET,
5678 PTR_TO_PACKET_META,
5679 PTR_TO_MAP_KEY,
5680 PTR_TO_MAP_VALUE,
5681 PTR_TO_MEM,
5682 PTR_TO_MEM | MEM_ALLOC,
5683 PTR_TO_BUF,
5684 },
5685 };
5686
5687 static const struct bpf_reg_types int_ptr_types = {
5688 .types = {
5689 PTR_TO_STACK,
5690 PTR_TO_PACKET,
5691 PTR_TO_PACKET_META,
5692 PTR_TO_MAP_KEY,
5693 PTR_TO_MAP_VALUE,
5694 },
5695 };
5696
5697 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5698 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5699 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5700 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5701 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5702 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5703 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5704 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5705 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5706 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5707 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5708 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5709 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5710 static const struct bpf_reg_types dynptr_types = {
5711 .types = {
5712 PTR_TO_STACK,
5713 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5714 }
5715 };
5716
5717 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5718 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5719 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5720 [ARG_CONST_SIZE] = &scalar_types,
5721 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5722 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5723 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5724 [ARG_PTR_TO_CTX] = &context_types,
5725 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
5726 #ifdef CONFIG_NET
5727 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
5728 #endif
5729 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5730 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5731 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5732 [ARG_PTR_TO_MEM] = &mem_types,
5733 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5734 [ARG_PTR_TO_INT] = &int_ptr_types,
5735 [ARG_PTR_TO_LONG] = &int_ptr_types,
5736 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
5737 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5738 [ARG_PTR_TO_STACK] = &stack_ptr_types,
5739 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
5740 [ARG_PTR_TO_TIMER] = &timer_types,
5741 [ARG_PTR_TO_KPTR] = &kptr_types,
5742 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
5743 };
5744
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)5745 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5746 enum bpf_arg_type arg_type,
5747 const u32 *arg_btf_id,
5748 struct bpf_call_arg_meta *meta)
5749 {
5750 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5751 enum bpf_reg_type expected, type = reg->type;
5752 const struct bpf_reg_types *compatible;
5753 int i, j;
5754
5755 compatible = compatible_reg_types[base_type(arg_type)];
5756 if (!compatible) {
5757 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5758 return -EFAULT;
5759 }
5760
5761 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5762 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5763 *
5764 * Same for MAYBE_NULL:
5765 *
5766 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5767 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5768 *
5769 * Therefore we fold these flags depending on the arg_type before comparison.
5770 */
5771 if (arg_type & MEM_RDONLY)
5772 type &= ~MEM_RDONLY;
5773 if (arg_type & PTR_MAYBE_NULL)
5774 type &= ~PTR_MAYBE_NULL;
5775
5776 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5777 expected = compatible->types[i];
5778 if (expected == NOT_INIT)
5779 break;
5780
5781 if (type == expected)
5782 goto found;
5783 }
5784
5785 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5786 for (j = 0; j + 1 < i; j++)
5787 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5788 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5789 return -EACCES;
5790
5791 found:
5792 if (reg->type == PTR_TO_BTF_ID) {
5793 /* For bpf_sk_release, it needs to match against first member
5794 * 'struct sock_common', hence make an exception for it. This
5795 * allows bpf_sk_release to work for multiple socket types.
5796 */
5797 bool strict_type_match = arg_type_is_release(arg_type) &&
5798 meta->func_id != BPF_FUNC_sk_release;
5799
5800 if (!arg_btf_id) {
5801 if (!compatible->btf_id) {
5802 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5803 return -EFAULT;
5804 }
5805 arg_btf_id = compatible->btf_id;
5806 }
5807
5808 if (meta->func_id == BPF_FUNC_kptr_xchg) {
5809 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5810 return -EACCES;
5811 } else {
5812 if (arg_btf_id == BPF_PTR_POISON) {
5813 verbose(env, "verifier internal error:");
5814 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
5815 regno);
5816 return -EACCES;
5817 }
5818
5819 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5820 btf_vmlinux, *arg_btf_id,
5821 strict_type_match)) {
5822 verbose(env, "R%d is of type %s but %s is expected\n",
5823 regno, kernel_type_name(reg->btf, reg->btf_id),
5824 kernel_type_name(btf_vmlinux, *arg_btf_id));
5825 return -EACCES;
5826 }
5827 }
5828 }
5829
5830 return 0;
5831 }
5832
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)5833 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5834 const struct bpf_reg_state *reg, int regno,
5835 enum bpf_arg_type arg_type)
5836 {
5837 enum bpf_reg_type type = reg->type;
5838 bool fixed_off_ok = false;
5839
5840 switch ((u32)type) {
5841 /* Pointer types where reg offset is explicitly allowed: */
5842 case PTR_TO_STACK:
5843 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5844 verbose(env, "cannot pass in dynptr at an offset\n");
5845 return -EINVAL;
5846 }
5847 fallthrough;
5848 case PTR_TO_PACKET:
5849 case PTR_TO_PACKET_META:
5850 case PTR_TO_MAP_KEY:
5851 case PTR_TO_MAP_VALUE:
5852 case PTR_TO_MEM:
5853 case PTR_TO_MEM | MEM_RDONLY:
5854 case PTR_TO_MEM | MEM_ALLOC:
5855 case PTR_TO_BUF:
5856 case PTR_TO_BUF | MEM_RDONLY:
5857 case SCALAR_VALUE:
5858 /* Some of the argument types nevertheless require a
5859 * zero register offset.
5860 */
5861 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5862 return 0;
5863 break;
5864 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5865 * fixed offset.
5866 */
5867 case PTR_TO_BTF_ID:
5868 /* When referenced PTR_TO_BTF_ID is passed to release function,
5869 * it's fixed offset must be 0. In the other cases, fixed offset
5870 * can be non-zero.
5871 */
5872 if (arg_type_is_release(arg_type) && reg->off) {
5873 verbose(env, "R%d must have zero offset when passed to release func\n",
5874 regno);
5875 return -EINVAL;
5876 }
5877 /* For arg is release pointer, fixed_off_ok must be false, but
5878 * we already checked and rejected reg->off != 0 above, so set
5879 * to true to allow fixed offset for all other cases.
5880 */
5881 fixed_off_ok = true;
5882 break;
5883 default:
5884 break;
5885 }
5886 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5887 }
5888
stack_slot_get_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)5889 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5890 {
5891 struct bpf_func_state *state = func(env, reg);
5892 int spi = get_spi(reg->off);
5893
5894 return state->stack[spi].spilled_ptr.id;
5895 }
5896
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)5897 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5898 struct bpf_call_arg_meta *meta,
5899 const struct bpf_func_proto *fn)
5900 {
5901 u32 regno = BPF_REG_1 + arg;
5902 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
5903 enum bpf_arg_type arg_type = fn->arg_type[arg];
5904 enum bpf_reg_type type = reg->type;
5905 u32 *arg_btf_id = NULL;
5906 int err = 0;
5907
5908 if (arg_type == ARG_DONTCARE)
5909 return 0;
5910
5911 err = check_reg_arg(env, regno, SRC_OP);
5912 if (err)
5913 return err;
5914
5915 if (arg_type == ARG_ANYTHING) {
5916 if (is_pointer_value(env, regno)) {
5917 verbose(env, "R%d leaks addr into helper function\n",
5918 regno);
5919 return -EACCES;
5920 }
5921 return 0;
5922 }
5923
5924 if (type_is_pkt_pointer(type) &&
5925 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5926 verbose(env, "helper access to the packet is not allowed\n");
5927 return -EACCES;
5928 }
5929
5930 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5931 err = resolve_map_arg_type(env, meta, &arg_type);
5932 if (err)
5933 return err;
5934 }
5935
5936 if (register_is_null(reg) && type_may_be_null(arg_type))
5937 /* A NULL register has a SCALAR_VALUE type, so skip
5938 * type checking.
5939 */
5940 goto skip_type_check;
5941
5942 /* arg_btf_id and arg_size are in a union. */
5943 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5944 arg_btf_id = fn->arg_btf_id[arg];
5945
5946 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5947 if (err)
5948 return err;
5949
5950 err = check_func_arg_reg_off(env, reg, regno, arg_type);
5951 if (err)
5952 return err;
5953
5954 skip_type_check:
5955 if (arg_type_is_release(arg_type)) {
5956 if (arg_type_is_dynptr(arg_type)) {
5957 struct bpf_func_state *state = func(env, reg);
5958 int spi = get_spi(reg->off);
5959
5960 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5961 !state->stack[spi].spilled_ptr.id) {
5962 verbose(env, "arg %d is an unacquired reference\n", regno);
5963 return -EINVAL;
5964 }
5965 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
5966 verbose(env, "R%d must be referenced when passed to release function\n",
5967 regno);
5968 return -EINVAL;
5969 }
5970 if (meta->release_regno) {
5971 verbose(env, "verifier internal error: more than one release argument\n");
5972 return -EFAULT;
5973 }
5974 meta->release_regno = regno;
5975 }
5976
5977 if (reg->ref_obj_id) {
5978 if (meta->ref_obj_id) {
5979 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5980 regno, reg->ref_obj_id,
5981 meta->ref_obj_id);
5982 return -EFAULT;
5983 }
5984 meta->ref_obj_id = reg->ref_obj_id;
5985 }
5986
5987 switch (base_type(arg_type)) {
5988 case ARG_CONST_MAP_PTR:
5989 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5990 if (meta->map_ptr) {
5991 /* Use map_uid (which is unique id of inner map) to reject:
5992 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5993 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5994 * if (inner_map1 && inner_map2) {
5995 * timer = bpf_map_lookup_elem(inner_map1);
5996 * if (timer)
5997 * // mismatch would have been allowed
5998 * bpf_timer_init(timer, inner_map2);
5999 * }
6000 *
6001 * Comparing map_ptr is enough to distinguish normal and outer maps.
6002 */
6003 if (meta->map_ptr != reg->map_ptr ||
6004 meta->map_uid != reg->map_uid) {
6005 verbose(env,
6006 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6007 meta->map_uid, reg->map_uid);
6008 return -EINVAL;
6009 }
6010 }
6011 meta->map_ptr = reg->map_ptr;
6012 meta->map_uid = reg->map_uid;
6013 break;
6014 case ARG_PTR_TO_MAP_KEY:
6015 /* bpf_map_xxx(..., map_ptr, ..., key) call:
6016 * check that [key, key + map->key_size) are within
6017 * stack limits and initialized
6018 */
6019 if (!meta->map_ptr) {
6020 /* in function declaration map_ptr must come before
6021 * map_key, so that it's verified and known before
6022 * we have to check map_key here. Otherwise it means
6023 * that kernel subsystem misconfigured verifier
6024 */
6025 verbose(env, "invalid map_ptr to access map->key\n");
6026 return -EACCES;
6027 }
6028 err = check_helper_mem_access(env, regno,
6029 meta->map_ptr->key_size, false,
6030 NULL);
6031 break;
6032 case ARG_PTR_TO_MAP_VALUE:
6033 if (type_may_be_null(arg_type) && register_is_null(reg))
6034 return 0;
6035
6036 /* bpf_map_xxx(..., map_ptr, ..., value) call:
6037 * check [value, value + map->value_size) validity
6038 */
6039 if (!meta->map_ptr) {
6040 /* kernel subsystem misconfigured verifier */
6041 verbose(env, "invalid map_ptr to access map->value\n");
6042 return -EACCES;
6043 }
6044 meta->raw_mode = arg_type & MEM_UNINIT;
6045 err = check_helper_mem_access(env, regno,
6046 meta->map_ptr->value_size, false,
6047 meta);
6048 break;
6049 case ARG_PTR_TO_PERCPU_BTF_ID:
6050 if (!reg->btf_id) {
6051 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6052 return -EACCES;
6053 }
6054 meta->ret_btf = reg->btf;
6055 meta->ret_btf_id = reg->btf_id;
6056 break;
6057 case ARG_PTR_TO_SPIN_LOCK:
6058 if (meta->func_id == BPF_FUNC_spin_lock) {
6059 if (process_spin_lock(env, regno, true))
6060 return -EACCES;
6061 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6062 if (process_spin_lock(env, regno, false))
6063 return -EACCES;
6064 } else {
6065 verbose(env, "verifier internal error\n");
6066 return -EFAULT;
6067 }
6068 break;
6069 case ARG_PTR_TO_TIMER:
6070 if (process_timer_func(env, regno, meta))
6071 return -EACCES;
6072 break;
6073 case ARG_PTR_TO_FUNC:
6074 meta->subprogno = reg->subprogno;
6075 break;
6076 case ARG_PTR_TO_MEM:
6077 /* The access to this pointer is only checked when we hit the
6078 * next is_mem_size argument below.
6079 */
6080 meta->raw_mode = arg_type & MEM_UNINIT;
6081 if (arg_type & MEM_FIXED_SIZE) {
6082 err = check_helper_mem_access(env, regno,
6083 fn->arg_size[arg], false,
6084 meta);
6085 }
6086 break;
6087 case ARG_CONST_SIZE:
6088 err = check_mem_size_reg(env, reg, regno, false, meta);
6089 break;
6090 case ARG_CONST_SIZE_OR_ZERO:
6091 err = check_mem_size_reg(env, reg, regno, true, meta);
6092 break;
6093 case ARG_PTR_TO_DYNPTR:
6094 /* We only need to check for initialized / uninitialized helper
6095 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6096 * assumption is that if it is, that a helper function
6097 * initialized the dynptr on behalf of the BPF program.
6098 */
6099 if (base_type(reg->type) == PTR_TO_DYNPTR)
6100 break;
6101 if (arg_type & MEM_UNINIT) {
6102 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6103 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6104 return -EINVAL;
6105 }
6106
6107 /* We only support one dynptr being uninitialized at the moment,
6108 * which is sufficient for the helper functions we have right now.
6109 */
6110 if (meta->uninit_dynptr_regno) {
6111 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6112 return -EFAULT;
6113 }
6114
6115 meta->uninit_dynptr_regno = regno;
6116 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6117 verbose(env,
6118 "Expected an initialized dynptr as arg #%d\n",
6119 arg + 1);
6120 return -EINVAL;
6121 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6122 const char *err_extra = "";
6123
6124 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6125 case DYNPTR_TYPE_LOCAL:
6126 err_extra = "local";
6127 break;
6128 case DYNPTR_TYPE_RINGBUF:
6129 err_extra = "ringbuf";
6130 break;
6131 default:
6132 err_extra = "<unknown>";
6133 break;
6134 }
6135 verbose(env,
6136 "Expected a dynptr of type %s as arg #%d\n",
6137 err_extra, arg + 1);
6138 return -EINVAL;
6139 }
6140 break;
6141 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6142 if (!tnum_is_const(reg->var_off)) {
6143 verbose(env, "R%d is not a known constant'\n",
6144 regno);
6145 return -EACCES;
6146 }
6147 meta->mem_size = reg->var_off.value;
6148 err = mark_chain_precision(env, regno);
6149 if (err)
6150 return err;
6151 break;
6152 case ARG_PTR_TO_INT:
6153 case ARG_PTR_TO_LONG:
6154 {
6155 int size = int_ptr_type_to_size(arg_type);
6156
6157 err = check_helper_mem_access(env, regno, size, false, meta);
6158 if (err)
6159 return err;
6160 err = check_ptr_alignment(env, reg, 0, size, true);
6161 break;
6162 }
6163 case ARG_PTR_TO_CONST_STR:
6164 {
6165 struct bpf_map *map = reg->map_ptr;
6166 int map_off;
6167 u64 map_addr;
6168 char *str_ptr;
6169
6170 if (!bpf_map_is_rdonly(map)) {
6171 verbose(env, "R%d does not point to a readonly map'\n", regno);
6172 return -EACCES;
6173 }
6174
6175 if (!tnum_is_const(reg->var_off)) {
6176 verbose(env, "R%d is not a constant address'\n", regno);
6177 return -EACCES;
6178 }
6179
6180 if (!map->ops->map_direct_value_addr) {
6181 verbose(env, "no direct value access support for this map type\n");
6182 return -EACCES;
6183 }
6184
6185 err = check_map_access(env, regno, reg->off,
6186 map->value_size - reg->off, false,
6187 ACCESS_HELPER);
6188 if (err)
6189 return err;
6190
6191 map_off = reg->off + reg->var_off.value;
6192 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6193 if (err) {
6194 verbose(env, "direct value access on string failed\n");
6195 return err;
6196 }
6197
6198 str_ptr = (char *)(long)(map_addr);
6199 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6200 verbose(env, "string is not zero-terminated\n");
6201 return -EINVAL;
6202 }
6203 break;
6204 }
6205 case ARG_PTR_TO_KPTR:
6206 if (process_kptr_func(env, regno, meta))
6207 return -EACCES;
6208 break;
6209 }
6210
6211 return err;
6212 }
6213
may_update_sockmap(struct bpf_verifier_env * env,int func_id)6214 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6215 {
6216 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6217 enum bpf_prog_type type = resolve_prog_type(env->prog);
6218
6219 if (func_id != BPF_FUNC_map_update_elem)
6220 return false;
6221
6222 /* It's not possible to get access to a locked struct sock in these
6223 * contexts, so updating is safe.
6224 */
6225 switch (type) {
6226 case BPF_PROG_TYPE_TRACING:
6227 if (eatype == BPF_TRACE_ITER)
6228 return true;
6229 break;
6230 case BPF_PROG_TYPE_SOCKET_FILTER:
6231 case BPF_PROG_TYPE_SCHED_CLS:
6232 case BPF_PROG_TYPE_SCHED_ACT:
6233 case BPF_PROG_TYPE_XDP:
6234 case BPF_PROG_TYPE_SK_REUSEPORT:
6235 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6236 case BPF_PROG_TYPE_SK_LOOKUP:
6237 return true;
6238 default:
6239 break;
6240 }
6241
6242 verbose(env, "cannot update sockmap in this context\n");
6243 return false;
6244 }
6245
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)6246 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6247 {
6248 return env->prog->jit_requested &&
6249 bpf_jit_supports_subprog_tailcalls();
6250 }
6251
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)6252 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6253 struct bpf_map *map, int func_id)
6254 {
6255 if (!map)
6256 return 0;
6257
6258 /* We need a two way check, first is from map perspective ... */
6259 switch (map->map_type) {
6260 case BPF_MAP_TYPE_PROG_ARRAY:
6261 if (func_id != BPF_FUNC_tail_call)
6262 goto error;
6263 break;
6264 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6265 if (func_id != BPF_FUNC_perf_event_read &&
6266 func_id != BPF_FUNC_perf_event_output &&
6267 func_id != BPF_FUNC_skb_output &&
6268 func_id != BPF_FUNC_perf_event_read_value &&
6269 func_id != BPF_FUNC_xdp_output)
6270 goto error;
6271 break;
6272 case BPF_MAP_TYPE_RINGBUF:
6273 if (func_id != BPF_FUNC_ringbuf_output &&
6274 func_id != BPF_FUNC_ringbuf_reserve &&
6275 func_id != BPF_FUNC_ringbuf_query &&
6276 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6277 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6278 func_id != BPF_FUNC_ringbuf_discard_dynptr)
6279 goto error;
6280 break;
6281 case BPF_MAP_TYPE_USER_RINGBUF:
6282 if (func_id != BPF_FUNC_user_ringbuf_drain)
6283 goto error;
6284 break;
6285 case BPF_MAP_TYPE_STACK_TRACE:
6286 if (func_id != BPF_FUNC_get_stackid)
6287 goto error;
6288 break;
6289 case BPF_MAP_TYPE_CGROUP_ARRAY:
6290 if (func_id != BPF_FUNC_skb_under_cgroup &&
6291 func_id != BPF_FUNC_current_task_under_cgroup)
6292 goto error;
6293 break;
6294 case BPF_MAP_TYPE_CGROUP_STORAGE:
6295 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6296 if (func_id != BPF_FUNC_get_local_storage)
6297 goto error;
6298 break;
6299 case BPF_MAP_TYPE_DEVMAP:
6300 case BPF_MAP_TYPE_DEVMAP_HASH:
6301 if (func_id != BPF_FUNC_redirect_map &&
6302 func_id != BPF_FUNC_map_lookup_elem)
6303 goto error;
6304 break;
6305 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6306 * appear.
6307 */
6308 case BPF_MAP_TYPE_CPUMAP:
6309 if (func_id != BPF_FUNC_redirect_map)
6310 goto error;
6311 break;
6312 case BPF_MAP_TYPE_XSKMAP:
6313 if (func_id != BPF_FUNC_redirect_map &&
6314 func_id != BPF_FUNC_map_lookup_elem)
6315 goto error;
6316 break;
6317 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6318 case BPF_MAP_TYPE_HASH_OF_MAPS:
6319 if (func_id != BPF_FUNC_map_lookup_elem)
6320 goto error;
6321 break;
6322 case BPF_MAP_TYPE_SOCKMAP:
6323 if (func_id != BPF_FUNC_sk_redirect_map &&
6324 func_id != BPF_FUNC_sock_map_update &&
6325 func_id != BPF_FUNC_map_delete_elem &&
6326 func_id != BPF_FUNC_msg_redirect_map &&
6327 func_id != BPF_FUNC_sk_select_reuseport &&
6328 func_id != BPF_FUNC_map_lookup_elem &&
6329 !may_update_sockmap(env, func_id))
6330 goto error;
6331 break;
6332 case BPF_MAP_TYPE_SOCKHASH:
6333 if (func_id != BPF_FUNC_sk_redirect_hash &&
6334 func_id != BPF_FUNC_sock_hash_update &&
6335 func_id != BPF_FUNC_map_delete_elem &&
6336 func_id != BPF_FUNC_msg_redirect_hash &&
6337 func_id != BPF_FUNC_sk_select_reuseport &&
6338 func_id != BPF_FUNC_map_lookup_elem &&
6339 !may_update_sockmap(env, func_id))
6340 goto error;
6341 break;
6342 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6343 if (func_id != BPF_FUNC_sk_select_reuseport)
6344 goto error;
6345 break;
6346 case BPF_MAP_TYPE_QUEUE:
6347 case BPF_MAP_TYPE_STACK:
6348 if (func_id != BPF_FUNC_map_peek_elem &&
6349 func_id != BPF_FUNC_map_pop_elem &&
6350 func_id != BPF_FUNC_map_push_elem)
6351 goto error;
6352 break;
6353 case BPF_MAP_TYPE_SK_STORAGE:
6354 if (func_id != BPF_FUNC_sk_storage_get &&
6355 func_id != BPF_FUNC_sk_storage_delete)
6356 goto error;
6357 break;
6358 case BPF_MAP_TYPE_INODE_STORAGE:
6359 if (func_id != BPF_FUNC_inode_storage_get &&
6360 func_id != BPF_FUNC_inode_storage_delete)
6361 goto error;
6362 break;
6363 case BPF_MAP_TYPE_TASK_STORAGE:
6364 if (func_id != BPF_FUNC_task_storage_get &&
6365 func_id != BPF_FUNC_task_storage_delete)
6366 goto error;
6367 break;
6368 case BPF_MAP_TYPE_BLOOM_FILTER:
6369 if (func_id != BPF_FUNC_map_peek_elem &&
6370 func_id != BPF_FUNC_map_push_elem)
6371 goto error;
6372 break;
6373 default:
6374 break;
6375 }
6376
6377 /* ... and second from the function itself. */
6378 switch (func_id) {
6379 case BPF_FUNC_tail_call:
6380 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6381 goto error;
6382 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6383 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6384 return -EINVAL;
6385 }
6386 break;
6387 case BPF_FUNC_perf_event_read:
6388 case BPF_FUNC_perf_event_output:
6389 case BPF_FUNC_perf_event_read_value:
6390 case BPF_FUNC_skb_output:
6391 case BPF_FUNC_xdp_output:
6392 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6393 goto error;
6394 break;
6395 case BPF_FUNC_ringbuf_output:
6396 case BPF_FUNC_ringbuf_reserve:
6397 case BPF_FUNC_ringbuf_query:
6398 case BPF_FUNC_ringbuf_reserve_dynptr:
6399 case BPF_FUNC_ringbuf_submit_dynptr:
6400 case BPF_FUNC_ringbuf_discard_dynptr:
6401 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6402 goto error;
6403 break;
6404 case BPF_FUNC_user_ringbuf_drain:
6405 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6406 goto error;
6407 break;
6408 case BPF_FUNC_get_stackid:
6409 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6410 goto error;
6411 break;
6412 case BPF_FUNC_current_task_under_cgroup:
6413 case BPF_FUNC_skb_under_cgroup:
6414 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6415 goto error;
6416 break;
6417 case BPF_FUNC_redirect_map:
6418 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6419 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6420 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6421 map->map_type != BPF_MAP_TYPE_XSKMAP)
6422 goto error;
6423 break;
6424 case BPF_FUNC_sk_redirect_map:
6425 case BPF_FUNC_msg_redirect_map:
6426 case BPF_FUNC_sock_map_update:
6427 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6428 goto error;
6429 break;
6430 case BPF_FUNC_sk_redirect_hash:
6431 case BPF_FUNC_msg_redirect_hash:
6432 case BPF_FUNC_sock_hash_update:
6433 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6434 goto error;
6435 break;
6436 case BPF_FUNC_get_local_storage:
6437 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6438 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6439 goto error;
6440 break;
6441 case BPF_FUNC_sk_select_reuseport:
6442 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6443 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6444 map->map_type != BPF_MAP_TYPE_SOCKHASH)
6445 goto error;
6446 break;
6447 case BPF_FUNC_map_pop_elem:
6448 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6449 map->map_type != BPF_MAP_TYPE_STACK)
6450 goto error;
6451 break;
6452 case BPF_FUNC_map_peek_elem:
6453 case BPF_FUNC_map_push_elem:
6454 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6455 map->map_type != BPF_MAP_TYPE_STACK &&
6456 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6457 goto error;
6458 break;
6459 case BPF_FUNC_map_lookup_percpu_elem:
6460 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6461 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6462 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6463 goto error;
6464 break;
6465 case BPF_FUNC_sk_storage_get:
6466 case BPF_FUNC_sk_storage_delete:
6467 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6468 goto error;
6469 break;
6470 case BPF_FUNC_inode_storage_get:
6471 case BPF_FUNC_inode_storage_delete:
6472 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6473 goto error;
6474 break;
6475 case BPF_FUNC_task_storage_get:
6476 case BPF_FUNC_task_storage_delete:
6477 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6478 goto error;
6479 break;
6480 default:
6481 break;
6482 }
6483
6484 return 0;
6485 error:
6486 verbose(env, "cannot pass map_type %d into func %s#%d\n",
6487 map->map_type, func_id_name(func_id), func_id);
6488 return -EINVAL;
6489 }
6490
check_raw_mode_ok(const struct bpf_func_proto * fn)6491 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6492 {
6493 int count = 0;
6494
6495 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6496 count++;
6497 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6498 count++;
6499 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6500 count++;
6501 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6502 count++;
6503 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6504 count++;
6505
6506 /* We only support one arg being in raw mode at the moment,
6507 * which is sufficient for the helper functions we have
6508 * right now.
6509 */
6510 return count <= 1;
6511 }
6512
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)6513 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6514 {
6515 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6516 bool has_size = fn->arg_size[arg] != 0;
6517 bool is_next_size = false;
6518
6519 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6520 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6521
6522 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6523 return is_next_size;
6524
6525 return has_size == is_next_size || is_next_size == is_fixed;
6526 }
6527
check_arg_pair_ok(const struct bpf_func_proto * fn)6528 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6529 {
6530 /* bpf_xxx(..., buf, len) call will access 'len'
6531 * bytes from memory 'buf'. Both arg types need
6532 * to be paired, so make sure there's no buggy
6533 * helper function specification.
6534 */
6535 if (arg_type_is_mem_size(fn->arg1_type) ||
6536 check_args_pair_invalid(fn, 0) ||
6537 check_args_pair_invalid(fn, 1) ||
6538 check_args_pair_invalid(fn, 2) ||
6539 check_args_pair_invalid(fn, 3) ||
6540 check_args_pair_invalid(fn, 4))
6541 return false;
6542
6543 return true;
6544 }
6545
check_btf_id_ok(const struct bpf_func_proto * fn)6546 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6547 {
6548 int i;
6549
6550 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6551 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6552 return false;
6553
6554 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6555 /* arg_btf_id and arg_size are in a union. */
6556 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6557 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6558 return false;
6559 }
6560
6561 return true;
6562 }
6563
check_func_proto(const struct bpf_func_proto * fn,int func_id)6564 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6565 {
6566 return check_raw_mode_ok(fn) &&
6567 check_arg_pair_ok(fn) &&
6568 check_btf_id_ok(fn) ? 0 : -EINVAL;
6569 }
6570
6571 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6572 * are now invalid, so turn them into unknown SCALAR_VALUE.
6573 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)6574 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6575 {
6576 struct bpf_func_state *state;
6577 struct bpf_reg_state *reg;
6578
6579 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6580 if (reg_is_pkt_pointer_any(reg))
6581 __mark_reg_unknown(env, reg);
6582 }));
6583 }
6584
6585 enum {
6586 AT_PKT_END = -1,
6587 BEYOND_PKT_END = -2,
6588 };
6589
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)6590 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6591 {
6592 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6593 struct bpf_reg_state *reg = &state->regs[regn];
6594
6595 if (reg->type != PTR_TO_PACKET)
6596 /* PTR_TO_PACKET_META is not supported yet */
6597 return;
6598
6599 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6600 * How far beyond pkt_end it goes is unknown.
6601 * if (!range_open) it's the case of pkt >= pkt_end
6602 * if (range_open) it's the case of pkt > pkt_end
6603 * hence this pointer is at least 1 byte bigger than pkt_end
6604 */
6605 if (range_open)
6606 reg->range = BEYOND_PKT_END;
6607 else
6608 reg->range = AT_PKT_END;
6609 }
6610
6611 /* The pointer with the specified id has released its reference to kernel
6612 * resources. Identify all copies of the same pointer and clear the reference.
6613 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)6614 static int release_reference(struct bpf_verifier_env *env,
6615 int ref_obj_id)
6616 {
6617 struct bpf_func_state *state;
6618 struct bpf_reg_state *reg;
6619 int err;
6620
6621 err = release_reference_state(cur_func(env), ref_obj_id);
6622 if (err)
6623 return err;
6624
6625 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6626 if (reg->ref_obj_id == ref_obj_id) {
6627 if (!env->allow_ptr_leaks)
6628 __mark_reg_not_init(env, reg);
6629 else
6630 __mark_reg_unknown(env, reg);
6631 }
6632 }));
6633
6634 return 0;
6635 }
6636
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)6637 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6638 struct bpf_reg_state *regs)
6639 {
6640 int i;
6641
6642 /* after the call registers r0 - r5 were scratched */
6643 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6644 mark_reg_not_init(env, regs, caller_saved[i]);
6645 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6646 }
6647 }
6648
6649 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6650 struct bpf_func_state *caller,
6651 struct bpf_func_state *callee,
6652 int insn_idx);
6653
__check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)6654 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6655 int *insn_idx, int subprog,
6656 set_callee_state_fn set_callee_state_cb)
6657 {
6658 struct bpf_verifier_state *state = env->cur_state;
6659 struct bpf_func_info_aux *func_info_aux;
6660 struct bpf_func_state *caller, *callee;
6661 int err;
6662 bool is_global = false;
6663
6664 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6665 verbose(env, "the call stack of %d frames is too deep\n",
6666 state->curframe + 2);
6667 return -E2BIG;
6668 }
6669
6670 caller = state->frame[state->curframe];
6671 if (state->frame[state->curframe + 1]) {
6672 verbose(env, "verifier bug. Frame %d already allocated\n",
6673 state->curframe + 1);
6674 return -EFAULT;
6675 }
6676
6677 func_info_aux = env->prog->aux->func_info_aux;
6678 if (func_info_aux)
6679 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6680 err = btf_check_subprog_call(env, subprog, caller->regs);
6681 if (err == -EFAULT)
6682 return err;
6683 if (is_global) {
6684 if (err) {
6685 verbose(env, "Caller passes invalid args into func#%d\n",
6686 subprog);
6687 return err;
6688 } else {
6689 if (env->log.level & BPF_LOG_LEVEL)
6690 verbose(env,
6691 "Func#%d is global and valid. Skipping.\n",
6692 subprog);
6693 clear_caller_saved_regs(env, caller->regs);
6694
6695 /* All global functions return a 64-bit SCALAR_VALUE */
6696 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6697 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6698
6699 /* continue with next insn after call */
6700 return 0;
6701 }
6702 }
6703
6704 if (insn->code == (BPF_JMP | BPF_CALL) &&
6705 insn->src_reg == 0 &&
6706 insn->imm == BPF_FUNC_timer_set_callback) {
6707 struct bpf_verifier_state *async_cb;
6708
6709 /* there is no real recursion here. timer callbacks are async */
6710 env->subprog_info[subprog].is_async_cb = true;
6711 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6712 *insn_idx, subprog);
6713 if (!async_cb)
6714 return -EFAULT;
6715 callee = async_cb->frame[0];
6716 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6717
6718 /* Convert bpf_timer_set_callback() args into timer callback args */
6719 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6720 if (err)
6721 return err;
6722
6723 clear_caller_saved_regs(env, caller->regs);
6724 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6725 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6726 /* continue with next insn after call */
6727 return 0;
6728 }
6729
6730 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6731 if (!callee)
6732 return -ENOMEM;
6733 state->frame[state->curframe + 1] = callee;
6734
6735 /* callee cannot access r0, r6 - r9 for reading and has to write
6736 * into its own stack before reading from it.
6737 * callee can read/write into caller's stack
6738 */
6739 init_func_state(env, callee,
6740 /* remember the callsite, it will be used by bpf_exit */
6741 *insn_idx /* callsite */,
6742 state->curframe + 1 /* frameno within this callchain */,
6743 subprog /* subprog number within this prog */);
6744
6745 /* Transfer references to the callee */
6746 err = copy_reference_state(callee, caller);
6747 if (err)
6748 goto err_out;
6749
6750 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6751 if (err)
6752 goto err_out;
6753
6754 clear_caller_saved_regs(env, caller->regs);
6755
6756 /* only increment it after check_reg_arg() finished */
6757 state->curframe++;
6758
6759 /* and go analyze first insn of the callee */
6760 *insn_idx = env->subprog_info[subprog].start - 1;
6761
6762 if (env->log.level & BPF_LOG_LEVEL) {
6763 verbose(env, "caller:\n");
6764 print_verifier_state(env, caller, true);
6765 verbose(env, "callee:\n");
6766 print_verifier_state(env, callee, true);
6767 }
6768 return 0;
6769
6770 err_out:
6771 free_func_state(callee);
6772 state->frame[state->curframe + 1] = NULL;
6773 return err;
6774 }
6775
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)6776 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6777 struct bpf_func_state *caller,
6778 struct bpf_func_state *callee)
6779 {
6780 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6781 * void *callback_ctx, u64 flags);
6782 * callback_fn(struct bpf_map *map, void *key, void *value,
6783 * void *callback_ctx);
6784 */
6785 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6786
6787 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6788 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6789 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6790
6791 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6792 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6793 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6794
6795 /* pointer to stack or null */
6796 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6797
6798 /* unused */
6799 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6800 return 0;
6801 }
6802
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6803 static int set_callee_state(struct bpf_verifier_env *env,
6804 struct bpf_func_state *caller,
6805 struct bpf_func_state *callee, int insn_idx)
6806 {
6807 int i;
6808
6809 /* copy r1 - r5 args that callee can access. The copy includes parent
6810 * pointers, which connects us up to the liveness chain
6811 */
6812 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6813 callee->regs[i] = caller->regs[i];
6814 return 0;
6815 }
6816
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)6817 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6818 int *insn_idx)
6819 {
6820 int subprog, target_insn;
6821
6822 target_insn = *insn_idx + insn->imm + 1;
6823 subprog = find_subprog(env, target_insn);
6824 if (subprog < 0) {
6825 verbose(env, "verifier bug. No program starts at insn %d\n",
6826 target_insn);
6827 return -EFAULT;
6828 }
6829
6830 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6831 }
6832
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6833 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6834 struct bpf_func_state *caller,
6835 struct bpf_func_state *callee,
6836 int insn_idx)
6837 {
6838 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6839 struct bpf_map *map;
6840 int err;
6841
6842 if (bpf_map_ptr_poisoned(insn_aux)) {
6843 verbose(env, "tail_call abusing map_ptr\n");
6844 return -EINVAL;
6845 }
6846
6847 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6848 if (!map->ops->map_set_for_each_callback_args ||
6849 !map->ops->map_for_each_callback) {
6850 verbose(env, "callback function not allowed for map\n");
6851 return -ENOTSUPP;
6852 }
6853
6854 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6855 if (err)
6856 return err;
6857
6858 callee->in_callback_fn = true;
6859 callee->callback_ret_range = tnum_range(0, 1);
6860 return 0;
6861 }
6862
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6863 static int set_loop_callback_state(struct bpf_verifier_env *env,
6864 struct bpf_func_state *caller,
6865 struct bpf_func_state *callee,
6866 int insn_idx)
6867 {
6868 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6869 * u64 flags);
6870 * callback_fn(u32 index, void *callback_ctx);
6871 */
6872 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6873 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6874
6875 /* unused */
6876 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6877 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6878 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6879
6880 callee->in_callback_fn = true;
6881 callee->callback_ret_range = tnum_range(0, 1);
6882 return 0;
6883 }
6884
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6885 static int set_timer_callback_state(struct bpf_verifier_env *env,
6886 struct bpf_func_state *caller,
6887 struct bpf_func_state *callee,
6888 int insn_idx)
6889 {
6890 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6891
6892 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6893 * callback_fn(struct bpf_map *map, void *key, void *value);
6894 */
6895 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6896 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6897 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6898
6899 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6900 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6901 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6902
6903 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6904 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6905 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6906
6907 /* unused */
6908 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6909 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6910 callee->in_async_callback_fn = true;
6911 callee->callback_ret_range = tnum_range(0, 1);
6912 return 0;
6913 }
6914
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6915 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6916 struct bpf_func_state *caller,
6917 struct bpf_func_state *callee,
6918 int insn_idx)
6919 {
6920 /* bpf_find_vma(struct task_struct *task, u64 addr,
6921 * void *callback_fn, void *callback_ctx, u64 flags)
6922 * (callback_fn)(struct task_struct *task,
6923 * struct vm_area_struct *vma, void *callback_ctx);
6924 */
6925 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6926
6927 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6928 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6929 callee->regs[BPF_REG_2].btf = btf_vmlinux;
6930 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6931
6932 /* pointer to stack or null */
6933 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6934
6935 /* unused */
6936 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6937 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6938 callee->in_callback_fn = true;
6939 callee->callback_ret_range = tnum_range(0, 1);
6940 return 0;
6941 }
6942
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)6943 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
6944 struct bpf_func_state *caller,
6945 struct bpf_func_state *callee,
6946 int insn_idx)
6947 {
6948 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
6949 * callback_ctx, u64 flags);
6950 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
6951 */
6952 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
6953 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
6954 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6955 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6956
6957 /* unused */
6958 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6959 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6960 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6961
6962 callee->in_callback_fn = true;
6963 callee->callback_ret_range = tnum_range(0, 1);
6964 return 0;
6965 }
6966
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)6967 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6968 {
6969 struct bpf_verifier_state *state = env->cur_state;
6970 struct bpf_func_state *caller, *callee;
6971 struct bpf_reg_state *r0;
6972 int err;
6973
6974 callee = state->frame[state->curframe];
6975 r0 = &callee->regs[BPF_REG_0];
6976 if (r0->type == PTR_TO_STACK) {
6977 /* technically it's ok to return caller's stack pointer
6978 * (or caller's caller's pointer) back to the caller,
6979 * since these pointers are valid. Only current stack
6980 * pointer will be invalid as soon as function exits,
6981 * but let's be conservative
6982 */
6983 verbose(env, "cannot return stack pointer to the caller\n");
6984 return -EINVAL;
6985 }
6986
6987 caller = state->frame[state->curframe - 1];
6988 if (callee->in_callback_fn) {
6989 /* enforce R0 return value range [0, 1]. */
6990 struct tnum range = callee->callback_ret_range;
6991
6992 if (r0->type != SCALAR_VALUE) {
6993 verbose(env, "R0 not a scalar value\n");
6994 return -EACCES;
6995 }
6996 if (!tnum_in(range, r0->var_off)) {
6997 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6998 return -EINVAL;
6999 }
7000 } else {
7001 /* return to the caller whatever r0 had in the callee */
7002 caller->regs[BPF_REG_0] = *r0;
7003 }
7004
7005 /* callback_fn frame should have released its own additions to parent's
7006 * reference state at this point, or check_reference_leak would
7007 * complain, hence it must be the same as the caller. There is no need
7008 * to copy it back.
7009 */
7010 if (!callee->in_callback_fn) {
7011 /* Transfer references to the caller */
7012 err = copy_reference_state(caller, callee);
7013 if (err)
7014 return err;
7015 }
7016
7017 *insn_idx = callee->callsite + 1;
7018 if (env->log.level & BPF_LOG_LEVEL) {
7019 verbose(env, "returning from callee:\n");
7020 print_verifier_state(env, callee, true);
7021 verbose(env, "to caller at %d:\n", *insn_idx);
7022 print_verifier_state(env, caller, true);
7023 }
7024 /* clear everything in the callee */
7025 free_func_state(callee);
7026 state->frame[state->curframe--] = NULL;
7027 return 0;
7028 }
7029
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)7030 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7031 int func_id,
7032 struct bpf_call_arg_meta *meta)
7033 {
7034 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
7035
7036 if (ret_type != RET_INTEGER ||
7037 (func_id != BPF_FUNC_get_stack &&
7038 func_id != BPF_FUNC_get_task_stack &&
7039 func_id != BPF_FUNC_probe_read_str &&
7040 func_id != BPF_FUNC_probe_read_kernel_str &&
7041 func_id != BPF_FUNC_probe_read_user_str))
7042 return;
7043
7044 ret_reg->smax_value = meta->msize_max_value;
7045 ret_reg->s32_max_value = meta->msize_max_value;
7046 ret_reg->smin_value = -MAX_ERRNO;
7047 ret_reg->s32_min_value = -MAX_ERRNO;
7048 reg_bounds_sync(ret_reg);
7049 }
7050
7051 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7052 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7053 int func_id, int insn_idx)
7054 {
7055 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7056 struct bpf_map *map = meta->map_ptr;
7057
7058 if (func_id != BPF_FUNC_tail_call &&
7059 func_id != BPF_FUNC_map_lookup_elem &&
7060 func_id != BPF_FUNC_map_update_elem &&
7061 func_id != BPF_FUNC_map_delete_elem &&
7062 func_id != BPF_FUNC_map_push_elem &&
7063 func_id != BPF_FUNC_map_pop_elem &&
7064 func_id != BPF_FUNC_map_peek_elem &&
7065 func_id != BPF_FUNC_for_each_map_elem &&
7066 func_id != BPF_FUNC_redirect_map &&
7067 func_id != BPF_FUNC_map_lookup_percpu_elem)
7068 return 0;
7069
7070 if (map == NULL) {
7071 verbose(env, "kernel subsystem misconfigured verifier\n");
7072 return -EINVAL;
7073 }
7074
7075 /* In case of read-only, some additional restrictions
7076 * need to be applied in order to prevent altering the
7077 * state of the map from program side.
7078 */
7079 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7080 (func_id == BPF_FUNC_map_delete_elem ||
7081 func_id == BPF_FUNC_map_update_elem ||
7082 func_id == BPF_FUNC_map_push_elem ||
7083 func_id == BPF_FUNC_map_pop_elem)) {
7084 verbose(env, "write into map forbidden\n");
7085 return -EACCES;
7086 }
7087
7088 if (!BPF_MAP_PTR(aux->map_ptr_state))
7089 bpf_map_ptr_store(aux, meta->map_ptr,
7090 !meta->map_ptr->bypass_spec_v1);
7091 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7092 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7093 !meta->map_ptr->bypass_spec_v1);
7094 return 0;
7095 }
7096
7097 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7098 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7099 int func_id, int insn_idx)
7100 {
7101 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7102 struct bpf_reg_state *regs = cur_regs(env), *reg;
7103 struct bpf_map *map = meta->map_ptr;
7104 u64 val, max;
7105 int err;
7106
7107 if (func_id != BPF_FUNC_tail_call)
7108 return 0;
7109 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7110 verbose(env, "kernel subsystem misconfigured verifier\n");
7111 return -EINVAL;
7112 }
7113
7114 reg = ®s[BPF_REG_3];
7115 val = reg->var_off.value;
7116 max = map->max_entries;
7117
7118 if (!(register_is_const(reg) && val < max)) {
7119 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7120 return 0;
7121 }
7122
7123 err = mark_chain_precision(env, BPF_REG_3);
7124 if (err)
7125 return err;
7126 if (bpf_map_key_unseen(aux))
7127 bpf_map_key_store(aux, val);
7128 else if (!bpf_map_key_poisoned(aux) &&
7129 bpf_map_key_immediate(aux) != val)
7130 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7131 return 0;
7132 }
7133
check_reference_leak(struct bpf_verifier_env * env)7134 static int check_reference_leak(struct bpf_verifier_env *env)
7135 {
7136 struct bpf_func_state *state = cur_func(env);
7137 bool refs_lingering = false;
7138 int i;
7139
7140 if (state->frameno && !state->in_callback_fn)
7141 return 0;
7142
7143 for (i = 0; i < state->acquired_refs; i++) {
7144 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7145 continue;
7146 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7147 state->refs[i].id, state->refs[i].insn_idx);
7148 refs_lingering = true;
7149 }
7150 return refs_lingering ? -EINVAL : 0;
7151 }
7152
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)7153 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7154 struct bpf_reg_state *regs)
7155 {
7156 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
7157 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
7158 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7159 int err, fmt_map_off, num_args;
7160 u64 fmt_addr;
7161 char *fmt;
7162
7163 /* data must be an array of u64 */
7164 if (data_len_reg->var_off.value % 8)
7165 return -EINVAL;
7166 num_args = data_len_reg->var_off.value / 8;
7167
7168 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7169 * and map_direct_value_addr is set.
7170 */
7171 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7172 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7173 fmt_map_off);
7174 if (err) {
7175 verbose(env, "verifier bug\n");
7176 return -EFAULT;
7177 }
7178 fmt = (char *)(long)fmt_addr + fmt_map_off;
7179
7180 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7181 * can focus on validating the format specifiers.
7182 */
7183 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7184 if (err < 0)
7185 verbose(env, "Invalid format string\n");
7186
7187 return err;
7188 }
7189
check_get_func_ip(struct bpf_verifier_env * env)7190 static int check_get_func_ip(struct bpf_verifier_env *env)
7191 {
7192 enum bpf_prog_type type = resolve_prog_type(env->prog);
7193 int func_id = BPF_FUNC_get_func_ip;
7194
7195 if (type == BPF_PROG_TYPE_TRACING) {
7196 if (!bpf_prog_has_trampoline(env->prog)) {
7197 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7198 func_id_name(func_id), func_id);
7199 return -ENOTSUPP;
7200 }
7201 return 0;
7202 } else if (type == BPF_PROG_TYPE_KPROBE) {
7203 return 0;
7204 }
7205
7206 verbose(env, "func %s#%d not supported for program type %d\n",
7207 func_id_name(func_id), func_id, type);
7208 return -ENOTSUPP;
7209 }
7210
cur_aux(struct bpf_verifier_env * env)7211 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7212 {
7213 return &env->insn_aux_data[env->insn_idx];
7214 }
7215
loop_flag_is_zero(struct bpf_verifier_env * env)7216 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7217 {
7218 struct bpf_reg_state *regs = cur_regs(env);
7219 struct bpf_reg_state *reg = ®s[BPF_REG_4];
7220 bool reg_is_null = register_is_null(reg);
7221
7222 if (reg_is_null)
7223 mark_chain_precision(env, BPF_REG_4);
7224
7225 return reg_is_null;
7226 }
7227
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)7228 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7229 {
7230 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7231
7232 if (!state->initialized) {
7233 state->initialized = 1;
7234 state->fit_for_inline = loop_flag_is_zero(env);
7235 state->callback_subprogno = subprogno;
7236 return;
7237 }
7238
7239 if (!state->fit_for_inline)
7240 return;
7241
7242 state->fit_for_inline = (loop_flag_is_zero(env) &&
7243 state->callback_subprogno == subprogno);
7244 }
7245
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7246 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7247 int *insn_idx_p)
7248 {
7249 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7250 const struct bpf_func_proto *fn = NULL;
7251 enum bpf_return_type ret_type;
7252 enum bpf_type_flag ret_flag;
7253 struct bpf_reg_state *regs;
7254 struct bpf_call_arg_meta meta;
7255 int insn_idx = *insn_idx_p;
7256 bool changes_data;
7257 int i, err, func_id;
7258
7259 /* find function prototype */
7260 func_id = insn->imm;
7261 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7262 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7263 func_id);
7264 return -EINVAL;
7265 }
7266
7267 if (env->ops->get_func_proto)
7268 fn = env->ops->get_func_proto(func_id, env->prog);
7269 if (!fn) {
7270 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7271 func_id);
7272 return -EINVAL;
7273 }
7274
7275 /* eBPF programs must be GPL compatible to use GPL-ed functions */
7276 if (!env->prog->gpl_compatible && fn->gpl_only) {
7277 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7278 return -EINVAL;
7279 }
7280
7281 if (fn->allowed && !fn->allowed(env->prog)) {
7282 verbose(env, "helper call is not allowed in probe\n");
7283 return -EINVAL;
7284 }
7285
7286 /* With LD_ABS/IND some JITs save/restore skb from r1. */
7287 changes_data = bpf_helper_changes_pkt_data(fn->func);
7288 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7289 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7290 func_id_name(func_id), func_id);
7291 return -EINVAL;
7292 }
7293
7294 memset(&meta, 0, sizeof(meta));
7295 meta.pkt_access = fn->pkt_access;
7296
7297 err = check_func_proto(fn, func_id);
7298 if (err) {
7299 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7300 func_id_name(func_id), func_id);
7301 return err;
7302 }
7303
7304 meta.func_id = func_id;
7305 /* check args */
7306 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7307 err = check_func_arg(env, i, &meta, fn);
7308 if (err)
7309 return err;
7310 }
7311
7312 err = record_func_map(env, &meta, func_id, insn_idx);
7313 if (err)
7314 return err;
7315
7316 err = record_func_key(env, &meta, func_id, insn_idx);
7317 if (err)
7318 return err;
7319
7320 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7321 * is inferred from register state.
7322 */
7323 for (i = 0; i < meta.access_size; i++) {
7324 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7325 BPF_WRITE, -1, false);
7326 if (err)
7327 return err;
7328 }
7329
7330 regs = cur_regs(env);
7331
7332 if (meta.uninit_dynptr_regno) {
7333 /* we write BPF_DW bits (8 bytes) at a time */
7334 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7335 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7336 i, BPF_DW, BPF_WRITE, -1, false);
7337 if (err)
7338 return err;
7339 }
7340
7341 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno],
7342 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7343 insn_idx);
7344 if (err)
7345 return err;
7346 }
7347
7348 if (meta.release_regno) {
7349 err = -EINVAL;
7350 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7351 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
7352 else if (meta.ref_obj_id)
7353 err = release_reference(env, meta.ref_obj_id);
7354 /* meta.ref_obj_id can only be 0 if register that is meant to be
7355 * released is NULL, which must be > R0.
7356 */
7357 else if (register_is_null(®s[meta.release_regno]))
7358 err = 0;
7359 if (err) {
7360 verbose(env, "func %s#%d reference has not been acquired before\n",
7361 func_id_name(func_id), func_id);
7362 return err;
7363 }
7364 }
7365
7366 switch (func_id) {
7367 case BPF_FUNC_tail_call:
7368 err = check_reference_leak(env);
7369 if (err) {
7370 verbose(env, "tail_call would lead to reference leak\n");
7371 return err;
7372 }
7373 break;
7374 case BPF_FUNC_get_local_storage:
7375 /* check that flags argument in get_local_storage(map, flags) is 0,
7376 * this is required because get_local_storage() can't return an error.
7377 */
7378 if (!register_is_null(®s[BPF_REG_2])) {
7379 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7380 return -EINVAL;
7381 }
7382 break;
7383 case BPF_FUNC_for_each_map_elem:
7384 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7385 set_map_elem_callback_state);
7386 break;
7387 case BPF_FUNC_timer_set_callback:
7388 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7389 set_timer_callback_state);
7390 break;
7391 case BPF_FUNC_find_vma:
7392 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7393 set_find_vma_callback_state);
7394 break;
7395 case BPF_FUNC_snprintf:
7396 err = check_bpf_snprintf_call(env, regs);
7397 break;
7398 case BPF_FUNC_loop:
7399 update_loop_inline_state(env, meta.subprogno);
7400 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7401 set_loop_callback_state);
7402 break;
7403 case BPF_FUNC_dynptr_from_mem:
7404 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7405 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7406 reg_type_str(env, regs[BPF_REG_1].type));
7407 return -EACCES;
7408 }
7409 break;
7410 case BPF_FUNC_set_retval:
7411 if (prog_type == BPF_PROG_TYPE_LSM &&
7412 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7413 if (!env->prog->aux->attach_func_proto->type) {
7414 /* Make sure programs that attach to void
7415 * hooks don't try to modify return value.
7416 */
7417 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7418 return -EINVAL;
7419 }
7420 }
7421 break;
7422 case BPF_FUNC_dynptr_data:
7423 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7424 if (arg_type_is_dynptr(fn->arg_type[i])) {
7425 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i];
7426
7427 if (meta.ref_obj_id) {
7428 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7429 return -EFAULT;
7430 }
7431
7432 if (base_type(reg->type) != PTR_TO_DYNPTR)
7433 /* Find the id of the dynptr we're
7434 * tracking the reference of
7435 */
7436 meta.ref_obj_id = stack_slot_get_id(env, reg);
7437 break;
7438 }
7439 }
7440 if (i == MAX_BPF_FUNC_REG_ARGS) {
7441 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7442 return -EFAULT;
7443 }
7444 break;
7445 case BPF_FUNC_user_ringbuf_drain:
7446 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7447 set_user_ringbuf_callback_state);
7448 break;
7449 }
7450
7451 if (err)
7452 return err;
7453
7454 /* reset caller saved regs */
7455 for (i = 0; i < CALLER_SAVED_REGS; i++) {
7456 mark_reg_not_init(env, regs, caller_saved[i]);
7457 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7458 }
7459
7460 /* helper call returns 64-bit value. */
7461 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7462
7463 /* update return register (already marked as written above) */
7464 ret_type = fn->ret_type;
7465 ret_flag = type_flag(ret_type);
7466
7467 switch (base_type(ret_type)) {
7468 case RET_INTEGER:
7469 /* sets type to SCALAR_VALUE */
7470 mark_reg_unknown(env, regs, BPF_REG_0);
7471 break;
7472 case RET_VOID:
7473 regs[BPF_REG_0].type = NOT_INIT;
7474 break;
7475 case RET_PTR_TO_MAP_VALUE:
7476 /* There is no offset yet applied, variable or fixed */
7477 mark_reg_known_zero(env, regs, BPF_REG_0);
7478 /* remember map_ptr, so that check_map_access()
7479 * can check 'value_size' boundary of memory access
7480 * to map element returned from bpf_map_lookup_elem()
7481 */
7482 if (meta.map_ptr == NULL) {
7483 verbose(env,
7484 "kernel subsystem misconfigured verifier\n");
7485 return -EINVAL;
7486 }
7487 regs[BPF_REG_0].map_ptr = meta.map_ptr;
7488 regs[BPF_REG_0].map_uid = meta.map_uid;
7489 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7490 if (!type_may_be_null(ret_type) &&
7491 map_value_has_spin_lock(meta.map_ptr)) {
7492 regs[BPF_REG_0].id = ++env->id_gen;
7493 }
7494 break;
7495 case RET_PTR_TO_SOCKET:
7496 mark_reg_known_zero(env, regs, BPF_REG_0);
7497 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7498 break;
7499 case RET_PTR_TO_SOCK_COMMON:
7500 mark_reg_known_zero(env, regs, BPF_REG_0);
7501 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7502 break;
7503 case RET_PTR_TO_TCP_SOCK:
7504 mark_reg_known_zero(env, regs, BPF_REG_0);
7505 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7506 break;
7507 case RET_PTR_TO_ALLOC_MEM:
7508 mark_reg_known_zero(env, regs, BPF_REG_0);
7509 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7510 regs[BPF_REG_0].mem_size = meta.mem_size;
7511 break;
7512 case RET_PTR_TO_MEM_OR_BTF_ID:
7513 {
7514 const struct btf_type *t;
7515
7516 mark_reg_known_zero(env, regs, BPF_REG_0);
7517 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7518 if (!btf_type_is_struct(t)) {
7519 u32 tsize;
7520 const struct btf_type *ret;
7521 const char *tname;
7522
7523 /* resolve the type size of ksym. */
7524 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7525 if (IS_ERR(ret)) {
7526 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7527 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7528 tname, PTR_ERR(ret));
7529 return -EINVAL;
7530 }
7531 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7532 regs[BPF_REG_0].mem_size = tsize;
7533 } else {
7534 /* MEM_RDONLY may be carried from ret_flag, but it
7535 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7536 * it will confuse the check of PTR_TO_BTF_ID in
7537 * check_mem_access().
7538 */
7539 ret_flag &= ~MEM_RDONLY;
7540
7541 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7542 regs[BPF_REG_0].btf = meta.ret_btf;
7543 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7544 }
7545 break;
7546 }
7547 case RET_PTR_TO_BTF_ID:
7548 {
7549 struct btf *ret_btf;
7550 int ret_btf_id;
7551
7552 mark_reg_known_zero(env, regs, BPF_REG_0);
7553 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7554 if (func_id == BPF_FUNC_kptr_xchg) {
7555 ret_btf = meta.kptr_off_desc->kptr.btf;
7556 ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7557 } else {
7558 if (fn->ret_btf_id == BPF_PTR_POISON) {
7559 verbose(env, "verifier internal error:");
7560 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7561 func_id_name(func_id));
7562 return -EINVAL;
7563 }
7564 ret_btf = btf_vmlinux;
7565 ret_btf_id = *fn->ret_btf_id;
7566 }
7567 if (ret_btf_id == 0) {
7568 verbose(env, "invalid return type %u of func %s#%d\n",
7569 base_type(ret_type), func_id_name(func_id),
7570 func_id);
7571 return -EINVAL;
7572 }
7573 regs[BPF_REG_0].btf = ret_btf;
7574 regs[BPF_REG_0].btf_id = ret_btf_id;
7575 break;
7576 }
7577 default:
7578 verbose(env, "unknown return type %u of func %s#%d\n",
7579 base_type(ret_type), func_id_name(func_id), func_id);
7580 return -EINVAL;
7581 }
7582
7583 if (type_may_be_null(regs[BPF_REG_0].type))
7584 regs[BPF_REG_0].id = ++env->id_gen;
7585
7586 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7587 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7588 func_id_name(func_id), func_id);
7589 return -EFAULT;
7590 }
7591
7592 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7593 /* For release_reference() */
7594 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7595 } else if (is_acquire_function(func_id, meta.map_ptr)) {
7596 int id = acquire_reference_state(env, insn_idx);
7597
7598 if (id < 0)
7599 return id;
7600 /* For mark_ptr_or_null_reg() */
7601 regs[BPF_REG_0].id = id;
7602 /* For release_reference() */
7603 regs[BPF_REG_0].ref_obj_id = id;
7604 }
7605
7606 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7607
7608 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7609 if (err)
7610 return err;
7611
7612 if ((func_id == BPF_FUNC_get_stack ||
7613 func_id == BPF_FUNC_get_task_stack) &&
7614 !env->prog->has_callchain_buf) {
7615 const char *err_str;
7616
7617 #ifdef CONFIG_PERF_EVENTS
7618 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7619 err_str = "cannot get callchain buffer for func %s#%d\n";
7620 #else
7621 err = -ENOTSUPP;
7622 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7623 #endif
7624 if (err) {
7625 verbose(env, err_str, func_id_name(func_id), func_id);
7626 return err;
7627 }
7628
7629 env->prog->has_callchain_buf = true;
7630 }
7631
7632 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7633 env->prog->call_get_stack = true;
7634
7635 if (func_id == BPF_FUNC_get_func_ip) {
7636 if (check_get_func_ip(env))
7637 return -ENOTSUPP;
7638 env->prog->call_get_func_ip = true;
7639 }
7640
7641 if (changes_data)
7642 clear_all_pkt_pointers(env);
7643 return 0;
7644 }
7645
7646 /* mark_btf_func_reg_size() is used when the reg size is determined by
7647 * the BTF func_proto's return value size and argument.
7648 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)7649 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7650 size_t reg_size)
7651 {
7652 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7653
7654 if (regno == BPF_REG_0) {
7655 /* Function return value */
7656 reg->live |= REG_LIVE_WRITTEN;
7657 reg->subreg_def = reg_size == sizeof(u64) ?
7658 DEF_NOT_SUBREG : env->insn_idx + 1;
7659 } else {
7660 /* Function argument */
7661 if (reg_size == sizeof(u64)) {
7662 mark_insn_zext(env, reg);
7663 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7664 } else {
7665 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7666 }
7667 }
7668 }
7669
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7670 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7671 int *insn_idx_p)
7672 {
7673 const struct btf_type *t, *func, *func_proto, *ptr_type;
7674 struct bpf_reg_state *regs = cur_regs(env);
7675 struct bpf_kfunc_arg_meta meta = { 0 };
7676 const char *func_name, *ptr_type_name;
7677 u32 i, nargs, func_id, ptr_type_id;
7678 int err, insn_idx = *insn_idx_p;
7679 const struct btf_param *args;
7680 struct btf *desc_btf;
7681 u32 *kfunc_flags;
7682 bool acq;
7683
7684 /* skip for now, but return error when we find this in fixup_kfunc_call */
7685 if (!insn->imm)
7686 return 0;
7687
7688 desc_btf = find_kfunc_desc_btf(env, insn->off);
7689 if (IS_ERR(desc_btf))
7690 return PTR_ERR(desc_btf);
7691
7692 func_id = insn->imm;
7693 func = btf_type_by_id(desc_btf, func_id);
7694 func_name = btf_name_by_offset(desc_btf, func->name_off);
7695 func_proto = btf_type_by_id(desc_btf, func->type);
7696
7697 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7698 if (!kfunc_flags) {
7699 verbose(env, "calling kernel function %s is not allowed\n",
7700 func_name);
7701 return -EACCES;
7702 }
7703 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
7704 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
7705 return -EACCES;
7706 }
7707
7708 acq = *kfunc_flags & KF_ACQUIRE;
7709
7710 meta.flags = *kfunc_flags;
7711
7712 /* Check the arguments */
7713 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
7714 if (err < 0)
7715 return err;
7716 /* In case of release function, we get register number of refcounted
7717 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7718 */
7719 if (err) {
7720 err = release_reference(env, regs[err].ref_obj_id);
7721 if (err) {
7722 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7723 func_name, func_id);
7724 return err;
7725 }
7726 }
7727
7728 for (i = 0; i < CALLER_SAVED_REGS; i++)
7729 mark_reg_not_init(env, regs, caller_saved[i]);
7730
7731 /* Check return type */
7732 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7733
7734 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
7735 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7736 return -EINVAL;
7737 }
7738
7739 if (btf_type_is_scalar(t)) {
7740 mark_reg_unknown(env, regs, BPF_REG_0);
7741 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7742 } else if (btf_type_is_ptr(t)) {
7743 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7744 &ptr_type_id);
7745 if (!btf_type_is_struct(ptr_type)) {
7746 if (!meta.r0_size) {
7747 ptr_type_name = btf_name_by_offset(desc_btf,
7748 ptr_type->name_off);
7749 verbose(env,
7750 "kernel function %s returns pointer type %s %s is not supported\n",
7751 func_name,
7752 btf_type_str(ptr_type),
7753 ptr_type_name);
7754 return -EINVAL;
7755 }
7756
7757 mark_reg_known_zero(env, regs, BPF_REG_0);
7758 regs[BPF_REG_0].type = PTR_TO_MEM;
7759 regs[BPF_REG_0].mem_size = meta.r0_size;
7760
7761 if (meta.r0_rdonly)
7762 regs[BPF_REG_0].type |= MEM_RDONLY;
7763
7764 /* Ensures we don't access the memory after a release_reference() */
7765 if (meta.ref_obj_id)
7766 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7767 } else {
7768 mark_reg_known_zero(env, regs, BPF_REG_0);
7769 regs[BPF_REG_0].btf = desc_btf;
7770 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7771 regs[BPF_REG_0].btf_id = ptr_type_id;
7772 }
7773 if (*kfunc_flags & KF_RET_NULL) {
7774 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7775 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7776 regs[BPF_REG_0].id = ++env->id_gen;
7777 }
7778 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7779 if (acq) {
7780 int id = acquire_reference_state(env, insn_idx);
7781
7782 if (id < 0)
7783 return id;
7784 regs[BPF_REG_0].id = id;
7785 regs[BPF_REG_0].ref_obj_id = id;
7786 }
7787 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7788
7789 nargs = btf_type_vlen(func_proto);
7790 args = (const struct btf_param *)(func_proto + 1);
7791 for (i = 0; i < nargs; i++) {
7792 u32 regno = i + 1;
7793
7794 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7795 if (btf_type_is_ptr(t))
7796 mark_btf_func_reg_size(env, regno, sizeof(void *));
7797 else
7798 /* scalar. ensured by btf_check_kfunc_arg_match() */
7799 mark_btf_func_reg_size(env, regno, t->size);
7800 }
7801
7802 return 0;
7803 }
7804
signed_add_overflows(s64 a,s64 b)7805 static bool signed_add_overflows(s64 a, s64 b)
7806 {
7807 /* Do the add in u64, where overflow is well-defined */
7808 s64 res = (s64)((u64)a + (u64)b);
7809
7810 if (b < 0)
7811 return res > a;
7812 return res < a;
7813 }
7814
signed_add32_overflows(s32 a,s32 b)7815 static bool signed_add32_overflows(s32 a, s32 b)
7816 {
7817 /* Do the add in u32, where overflow is well-defined */
7818 s32 res = (s32)((u32)a + (u32)b);
7819
7820 if (b < 0)
7821 return res > a;
7822 return res < a;
7823 }
7824
signed_sub_overflows(s64 a,s64 b)7825 static bool signed_sub_overflows(s64 a, s64 b)
7826 {
7827 /* Do the sub in u64, where overflow is well-defined */
7828 s64 res = (s64)((u64)a - (u64)b);
7829
7830 if (b < 0)
7831 return res < a;
7832 return res > a;
7833 }
7834
signed_sub32_overflows(s32 a,s32 b)7835 static bool signed_sub32_overflows(s32 a, s32 b)
7836 {
7837 /* Do the sub in u32, where overflow is well-defined */
7838 s32 res = (s32)((u32)a - (u32)b);
7839
7840 if (b < 0)
7841 return res < a;
7842 return res > a;
7843 }
7844
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)7845 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7846 const struct bpf_reg_state *reg,
7847 enum bpf_reg_type type)
7848 {
7849 bool known = tnum_is_const(reg->var_off);
7850 s64 val = reg->var_off.value;
7851 s64 smin = reg->smin_value;
7852
7853 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7854 verbose(env, "math between %s pointer and %lld is not allowed\n",
7855 reg_type_str(env, type), val);
7856 return false;
7857 }
7858
7859 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7860 verbose(env, "%s pointer offset %d is not allowed\n",
7861 reg_type_str(env, type), reg->off);
7862 return false;
7863 }
7864
7865 if (smin == S64_MIN) {
7866 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7867 reg_type_str(env, type));
7868 return false;
7869 }
7870
7871 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7872 verbose(env, "value %lld makes %s pointer be out of bounds\n",
7873 smin, reg_type_str(env, type));
7874 return false;
7875 }
7876
7877 return true;
7878 }
7879
7880 enum {
7881 REASON_BOUNDS = -1,
7882 REASON_TYPE = -2,
7883 REASON_PATHS = -3,
7884 REASON_LIMIT = -4,
7885 REASON_STACK = -5,
7886 };
7887
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)7888 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7889 u32 *alu_limit, bool mask_to_left)
7890 {
7891 u32 max = 0, ptr_limit = 0;
7892
7893 switch (ptr_reg->type) {
7894 case PTR_TO_STACK:
7895 /* Offset 0 is out-of-bounds, but acceptable start for the
7896 * left direction, see BPF_REG_FP. Also, unknown scalar
7897 * offset where we would need to deal with min/max bounds is
7898 * currently prohibited for unprivileged.
7899 */
7900 max = MAX_BPF_STACK + mask_to_left;
7901 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7902 break;
7903 case PTR_TO_MAP_VALUE:
7904 max = ptr_reg->map_ptr->value_size;
7905 ptr_limit = (mask_to_left ?
7906 ptr_reg->smin_value :
7907 ptr_reg->umax_value) + ptr_reg->off;
7908 break;
7909 default:
7910 return REASON_TYPE;
7911 }
7912
7913 if (ptr_limit >= max)
7914 return REASON_LIMIT;
7915 *alu_limit = ptr_limit;
7916 return 0;
7917 }
7918
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)7919 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7920 const struct bpf_insn *insn)
7921 {
7922 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7923 }
7924
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)7925 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7926 u32 alu_state, u32 alu_limit)
7927 {
7928 /* If we arrived here from different branches with different
7929 * state or limits to sanitize, then this won't work.
7930 */
7931 if (aux->alu_state &&
7932 (aux->alu_state != alu_state ||
7933 aux->alu_limit != alu_limit))
7934 return REASON_PATHS;
7935
7936 /* Corresponding fixup done in do_misc_fixups(). */
7937 aux->alu_state = alu_state;
7938 aux->alu_limit = alu_limit;
7939 return 0;
7940 }
7941
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)7942 static int sanitize_val_alu(struct bpf_verifier_env *env,
7943 struct bpf_insn *insn)
7944 {
7945 struct bpf_insn_aux_data *aux = cur_aux(env);
7946
7947 if (can_skip_alu_sanitation(env, insn))
7948 return 0;
7949
7950 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7951 }
7952
sanitize_needed(u8 opcode)7953 static bool sanitize_needed(u8 opcode)
7954 {
7955 return opcode == BPF_ADD || opcode == BPF_SUB;
7956 }
7957
7958 struct bpf_sanitize_info {
7959 struct bpf_insn_aux_data aux;
7960 bool mask_to_left;
7961 };
7962
7963 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)7964 sanitize_speculative_path(struct bpf_verifier_env *env,
7965 const struct bpf_insn *insn,
7966 u32 next_idx, u32 curr_idx)
7967 {
7968 struct bpf_verifier_state *branch;
7969 struct bpf_reg_state *regs;
7970
7971 branch = push_stack(env, next_idx, curr_idx, true);
7972 if (branch && insn) {
7973 regs = branch->frame[branch->curframe]->regs;
7974 if (BPF_SRC(insn->code) == BPF_K) {
7975 mark_reg_unknown(env, regs, insn->dst_reg);
7976 } else if (BPF_SRC(insn->code) == BPF_X) {
7977 mark_reg_unknown(env, regs, insn->dst_reg);
7978 mark_reg_unknown(env, regs, insn->src_reg);
7979 }
7980 }
7981 return branch;
7982 }
7983
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)7984 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7985 struct bpf_insn *insn,
7986 const struct bpf_reg_state *ptr_reg,
7987 const struct bpf_reg_state *off_reg,
7988 struct bpf_reg_state *dst_reg,
7989 struct bpf_sanitize_info *info,
7990 const bool commit_window)
7991 {
7992 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7993 struct bpf_verifier_state *vstate = env->cur_state;
7994 bool off_is_imm = tnum_is_const(off_reg->var_off);
7995 bool off_is_neg = off_reg->smin_value < 0;
7996 bool ptr_is_dst_reg = ptr_reg == dst_reg;
7997 u8 opcode = BPF_OP(insn->code);
7998 u32 alu_state, alu_limit;
7999 struct bpf_reg_state tmp;
8000 bool ret;
8001 int err;
8002
8003 if (can_skip_alu_sanitation(env, insn))
8004 return 0;
8005
8006 /* We already marked aux for masking from non-speculative
8007 * paths, thus we got here in the first place. We only care
8008 * to explore bad access from here.
8009 */
8010 if (vstate->speculative)
8011 goto do_sim;
8012
8013 if (!commit_window) {
8014 if (!tnum_is_const(off_reg->var_off) &&
8015 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
8016 return REASON_BOUNDS;
8017
8018 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
8019 (opcode == BPF_SUB && !off_is_neg);
8020 }
8021
8022 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
8023 if (err < 0)
8024 return err;
8025
8026 if (commit_window) {
8027 /* In commit phase we narrow the masking window based on
8028 * the observed pointer move after the simulated operation.
8029 */
8030 alu_state = info->aux.alu_state;
8031 alu_limit = abs(info->aux.alu_limit - alu_limit);
8032 } else {
8033 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
8034 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
8035 alu_state |= ptr_is_dst_reg ?
8036 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
8037
8038 /* Limit pruning on unknown scalars to enable deep search for
8039 * potential masking differences from other program paths.
8040 */
8041 if (!off_is_imm)
8042 env->explore_alu_limits = true;
8043 }
8044
8045 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
8046 if (err < 0)
8047 return err;
8048 do_sim:
8049 /* If we're in commit phase, we're done here given we already
8050 * pushed the truncated dst_reg into the speculative verification
8051 * stack.
8052 *
8053 * Also, when register is a known constant, we rewrite register-based
8054 * operation to immediate-based, and thus do not need masking (and as
8055 * a consequence, do not need to simulate the zero-truncation either).
8056 */
8057 if (commit_window || off_is_imm)
8058 return 0;
8059
8060 /* Simulate and find potential out-of-bounds access under
8061 * speculative execution from truncation as a result of
8062 * masking when off was not within expected range. If off
8063 * sits in dst, then we temporarily need to move ptr there
8064 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8065 * for cases where we use K-based arithmetic in one direction
8066 * and truncated reg-based in the other in order to explore
8067 * bad access.
8068 */
8069 if (!ptr_is_dst_reg) {
8070 tmp = *dst_reg;
8071 *dst_reg = *ptr_reg;
8072 }
8073 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8074 env->insn_idx);
8075 if (!ptr_is_dst_reg && ret)
8076 *dst_reg = tmp;
8077 return !ret ? REASON_STACK : 0;
8078 }
8079
sanitize_mark_insn_seen(struct bpf_verifier_env * env)8080 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8081 {
8082 struct bpf_verifier_state *vstate = env->cur_state;
8083
8084 /* If we simulate paths under speculation, we don't update the
8085 * insn as 'seen' such that when we verify unreachable paths in
8086 * the non-speculative domain, sanitize_dead_code() can still
8087 * rewrite/sanitize them.
8088 */
8089 if (!vstate->speculative)
8090 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8091 }
8092
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)8093 static int sanitize_err(struct bpf_verifier_env *env,
8094 const struct bpf_insn *insn, int reason,
8095 const struct bpf_reg_state *off_reg,
8096 const struct bpf_reg_state *dst_reg)
8097 {
8098 static const char *err = "pointer arithmetic with it prohibited for !root";
8099 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8100 u32 dst = insn->dst_reg, src = insn->src_reg;
8101
8102 switch (reason) {
8103 case REASON_BOUNDS:
8104 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8105 off_reg == dst_reg ? dst : src, err);
8106 break;
8107 case REASON_TYPE:
8108 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8109 off_reg == dst_reg ? src : dst, err);
8110 break;
8111 case REASON_PATHS:
8112 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8113 dst, op, err);
8114 break;
8115 case REASON_LIMIT:
8116 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8117 dst, op, err);
8118 break;
8119 case REASON_STACK:
8120 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8121 dst, err);
8122 break;
8123 default:
8124 verbose(env, "verifier internal error: unknown reason (%d)\n",
8125 reason);
8126 break;
8127 }
8128
8129 return -EACCES;
8130 }
8131
8132 /* check that stack access falls within stack limits and that 'reg' doesn't
8133 * have a variable offset.
8134 *
8135 * Variable offset is prohibited for unprivileged mode for simplicity since it
8136 * requires corresponding support in Spectre masking for stack ALU. See also
8137 * retrieve_ptr_limit().
8138 *
8139 *
8140 * 'off' includes 'reg->off'.
8141 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)8142 static int check_stack_access_for_ptr_arithmetic(
8143 struct bpf_verifier_env *env,
8144 int regno,
8145 const struct bpf_reg_state *reg,
8146 int off)
8147 {
8148 if (!tnum_is_const(reg->var_off)) {
8149 char tn_buf[48];
8150
8151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8152 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8153 regno, tn_buf, off);
8154 return -EACCES;
8155 }
8156
8157 if (off >= 0 || off < -MAX_BPF_STACK) {
8158 verbose(env, "R%d stack pointer arithmetic goes out of range, "
8159 "prohibited for !root; off=%d\n", regno, off);
8160 return -EACCES;
8161 }
8162
8163 return 0;
8164 }
8165
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)8166 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8167 const struct bpf_insn *insn,
8168 const struct bpf_reg_state *dst_reg)
8169 {
8170 u32 dst = insn->dst_reg;
8171
8172 /* For unprivileged we require that resulting offset must be in bounds
8173 * in order to be able to sanitize access later on.
8174 */
8175 if (env->bypass_spec_v1)
8176 return 0;
8177
8178 switch (dst_reg->type) {
8179 case PTR_TO_STACK:
8180 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8181 dst_reg->off + dst_reg->var_off.value))
8182 return -EACCES;
8183 break;
8184 case PTR_TO_MAP_VALUE:
8185 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8186 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8187 "prohibited for !root\n", dst);
8188 return -EACCES;
8189 }
8190 break;
8191 default:
8192 break;
8193 }
8194
8195 return 0;
8196 }
8197
8198 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8199 * Caller should also handle BPF_MOV case separately.
8200 * If we return -EACCES, caller may want to try again treating pointer as a
8201 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
8202 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)8203 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8204 struct bpf_insn *insn,
8205 const struct bpf_reg_state *ptr_reg,
8206 const struct bpf_reg_state *off_reg)
8207 {
8208 struct bpf_verifier_state *vstate = env->cur_state;
8209 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8210 struct bpf_reg_state *regs = state->regs, *dst_reg;
8211 bool known = tnum_is_const(off_reg->var_off);
8212 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8213 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8214 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8215 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8216 struct bpf_sanitize_info info = {};
8217 u8 opcode = BPF_OP(insn->code);
8218 u32 dst = insn->dst_reg;
8219 int ret;
8220
8221 dst_reg = ®s[dst];
8222
8223 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8224 smin_val > smax_val || umin_val > umax_val) {
8225 /* Taint dst register if offset had invalid bounds derived from
8226 * e.g. dead branches.
8227 */
8228 __mark_reg_unknown(env, dst_reg);
8229 return 0;
8230 }
8231
8232 if (BPF_CLASS(insn->code) != BPF_ALU64) {
8233 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
8234 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8235 __mark_reg_unknown(env, dst_reg);
8236 return 0;
8237 }
8238
8239 verbose(env,
8240 "R%d 32-bit pointer arithmetic prohibited\n",
8241 dst);
8242 return -EACCES;
8243 }
8244
8245 if (ptr_reg->type & PTR_MAYBE_NULL) {
8246 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8247 dst, reg_type_str(env, ptr_reg->type));
8248 return -EACCES;
8249 }
8250
8251 switch (base_type(ptr_reg->type)) {
8252 case CONST_PTR_TO_MAP:
8253 /* smin_val represents the known value */
8254 if (known && smin_val == 0 && opcode == BPF_ADD)
8255 break;
8256 fallthrough;
8257 case PTR_TO_PACKET_END:
8258 case PTR_TO_SOCKET:
8259 case PTR_TO_SOCK_COMMON:
8260 case PTR_TO_TCP_SOCK:
8261 case PTR_TO_XDP_SOCK:
8262 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8263 dst, reg_type_str(env, ptr_reg->type));
8264 return -EACCES;
8265 default:
8266 break;
8267 }
8268
8269 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8270 * The id may be overwritten later if we create a new variable offset.
8271 */
8272 dst_reg->type = ptr_reg->type;
8273 dst_reg->id = ptr_reg->id;
8274
8275 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8276 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8277 return -EINVAL;
8278
8279 /* pointer types do not carry 32-bit bounds at the moment. */
8280 __mark_reg32_unbounded(dst_reg);
8281
8282 if (sanitize_needed(opcode)) {
8283 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8284 &info, false);
8285 if (ret < 0)
8286 return sanitize_err(env, insn, ret, off_reg, dst_reg);
8287 }
8288
8289 switch (opcode) {
8290 case BPF_ADD:
8291 /* We can take a fixed offset as long as it doesn't overflow
8292 * the s32 'off' field
8293 */
8294 if (known && (ptr_reg->off + smin_val ==
8295 (s64)(s32)(ptr_reg->off + smin_val))) {
8296 /* pointer += K. Accumulate it into fixed offset */
8297 dst_reg->smin_value = smin_ptr;
8298 dst_reg->smax_value = smax_ptr;
8299 dst_reg->umin_value = umin_ptr;
8300 dst_reg->umax_value = umax_ptr;
8301 dst_reg->var_off = ptr_reg->var_off;
8302 dst_reg->off = ptr_reg->off + smin_val;
8303 dst_reg->raw = ptr_reg->raw;
8304 break;
8305 }
8306 /* A new variable offset is created. Note that off_reg->off
8307 * == 0, since it's a scalar.
8308 * dst_reg gets the pointer type and since some positive
8309 * integer value was added to the pointer, give it a new 'id'
8310 * if it's a PTR_TO_PACKET.
8311 * this creates a new 'base' pointer, off_reg (variable) gets
8312 * added into the variable offset, and we copy the fixed offset
8313 * from ptr_reg.
8314 */
8315 if (signed_add_overflows(smin_ptr, smin_val) ||
8316 signed_add_overflows(smax_ptr, smax_val)) {
8317 dst_reg->smin_value = S64_MIN;
8318 dst_reg->smax_value = S64_MAX;
8319 } else {
8320 dst_reg->smin_value = smin_ptr + smin_val;
8321 dst_reg->smax_value = smax_ptr + smax_val;
8322 }
8323 if (umin_ptr + umin_val < umin_ptr ||
8324 umax_ptr + umax_val < umax_ptr) {
8325 dst_reg->umin_value = 0;
8326 dst_reg->umax_value = U64_MAX;
8327 } else {
8328 dst_reg->umin_value = umin_ptr + umin_val;
8329 dst_reg->umax_value = umax_ptr + umax_val;
8330 }
8331 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8332 dst_reg->off = ptr_reg->off;
8333 dst_reg->raw = ptr_reg->raw;
8334 if (reg_is_pkt_pointer(ptr_reg)) {
8335 dst_reg->id = ++env->id_gen;
8336 /* something was added to pkt_ptr, set range to zero */
8337 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8338 }
8339 break;
8340 case BPF_SUB:
8341 if (dst_reg == off_reg) {
8342 /* scalar -= pointer. Creates an unknown scalar */
8343 verbose(env, "R%d tried to subtract pointer from scalar\n",
8344 dst);
8345 return -EACCES;
8346 }
8347 /* We don't allow subtraction from FP, because (according to
8348 * test_verifier.c test "invalid fp arithmetic", JITs might not
8349 * be able to deal with it.
8350 */
8351 if (ptr_reg->type == PTR_TO_STACK) {
8352 verbose(env, "R%d subtraction from stack pointer prohibited\n",
8353 dst);
8354 return -EACCES;
8355 }
8356 if (known && (ptr_reg->off - smin_val ==
8357 (s64)(s32)(ptr_reg->off - smin_val))) {
8358 /* pointer -= K. Subtract it from fixed offset */
8359 dst_reg->smin_value = smin_ptr;
8360 dst_reg->smax_value = smax_ptr;
8361 dst_reg->umin_value = umin_ptr;
8362 dst_reg->umax_value = umax_ptr;
8363 dst_reg->var_off = ptr_reg->var_off;
8364 dst_reg->id = ptr_reg->id;
8365 dst_reg->off = ptr_reg->off - smin_val;
8366 dst_reg->raw = ptr_reg->raw;
8367 break;
8368 }
8369 /* A new variable offset is created. If the subtrahend is known
8370 * nonnegative, then any reg->range we had before is still good.
8371 */
8372 if (signed_sub_overflows(smin_ptr, smax_val) ||
8373 signed_sub_overflows(smax_ptr, smin_val)) {
8374 /* Overflow possible, we know nothing */
8375 dst_reg->smin_value = S64_MIN;
8376 dst_reg->smax_value = S64_MAX;
8377 } else {
8378 dst_reg->smin_value = smin_ptr - smax_val;
8379 dst_reg->smax_value = smax_ptr - smin_val;
8380 }
8381 if (umin_ptr < umax_val) {
8382 /* Overflow possible, we know nothing */
8383 dst_reg->umin_value = 0;
8384 dst_reg->umax_value = U64_MAX;
8385 } else {
8386 /* Cannot overflow (as long as bounds are consistent) */
8387 dst_reg->umin_value = umin_ptr - umax_val;
8388 dst_reg->umax_value = umax_ptr - umin_val;
8389 }
8390 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8391 dst_reg->off = ptr_reg->off;
8392 dst_reg->raw = ptr_reg->raw;
8393 if (reg_is_pkt_pointer(ptr_reg)) {
8394 dst_reg->id = ++env->id_gen;
8395 /* something was added to pkt_ptr, set range to zero */
8396 if (smin_val < 0)
8397 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8398 }
8399 break;
8400 case BPF_AND:
8401 case BPF_OR:
8402 case BPF_XOR:
8403 /* bitwise ops on pointers are troublesome, prohibit. */
8404 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8405 dst, bpf_alu_string[opcode >> 4]);
8406 return -EACCES;
8407 default:
8408 /* other operators (e.g. MUL,LSH) produce non-pointer results */
8409 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8410 dst, bpf_alu_string[opcode >> 4]);
8411 return -EACCES;
8412 }
8413
8414 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8415 return -EINVAL;
8416 reg_bounds_sync(dst_reg);
8417 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8418 return -EACCES;
8419 if (sanitize_needed(opcode)) {
8420 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8421 &info, true);
8422 if (ret < 0)
8423 return sanitize_err(env, insn, ret, off_reg, dst_reg);
8424 }
8425
8426 return 0;
8427 }
8428
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8429 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8430 struct bpf_reg_state *src_reg)
8431 {
8432 s32 smin_val = src_reg->s32_min_value;
8433 s32 smax_val = src_reg->s32_max_value;
8434 u32 umin_val = src_reg->u32_min_value;
8435 u32 umax_val = src_reg->u32_max_value;
8436
8437 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8438 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8439 dst_reg->s32_min_value = S32_MIN;
8440 dst_reg->s32_max_value = S32_MAX;
8441 } else {
8442 dst_reg->s32_min_value += smin_val;
8443 dst_reg->s32_max_value += smax_val;
8444 }
8445 if (dst_reg->u32_min_value + umin_val < umin_val ||
8446 dst_reg->u32_max_value + umax_val < umax_val) {
8447 dst_reg->u32_min_value = 0;
8448 dst_reg->u32_max_value = U32_MAX;
8449 } else {
8450 dst_reg->u32_min_value += umin_val;
8451 dst_reg->u32_max_value += umax_val;
8452 }
8453 }
8454
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8455 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8456 struct bpf_reg_state *src_reg)
8457 {
8458 s64 smin_val = src_reg->smin_value;
8459 s64 smax_val = src_reg->smax_value;
8460 u64 umin_val = src_reg->umin_value;
8461 u64 umax_val = src_reg->umax_value;
8462
8463 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8464 signed_add_overflows(dst_reg->smax_value, smax_val)) {
8465 dst_reg->smin_value = S64_MIN;
8466 dst_reg->smax_value = S64_MAX;
8467 } else {
8468 dst_reg->smin_value += smin_val;
8469 dst_reg->smax_value += smax_val;
8470 }
8471 if (dst_reg->umin_value + umin_val < umin_val ||
8472 dst_reg->umax_value + umax_val < umax_val) {
8473 dst_reg->umin_value = 0;
8474 dst_reg->umax_value = U64_MAX;
8475 } else {
8476 dst_reg->umin_value += umin_val;
8477 dst_reg->umax_value += umax_val;
8478 }
8479 }
8480
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8481 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8482 struct bpf_reg_state *src_reg)
8483 {
8484 s32 smin_val = src_reg->s32_min_value;
8485 s32 smax_val = src_reg->s32_max_value;
8486 u32 umin_val = src_reg->u32_min_value;
8487 u32 umax_val = src_reg->u32_max_value;
8488
8489 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8490 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8491 /* Overflow possible, we know nothing */
8492 dst_reg->s32_min_value = S32_MIN;
8493 dst_reg->s32_max_value = S32_MAX;
8494 } else {
8495 dst_reg->s32_min_value -= smax_val;
8496 dst_reg->s32_max_value -= smin_val;
8497 }
8498 if (dst_reg->u32_min_value < umax_val) {
8499 /* Overflow possible, we know nothing */
8500 dst_reg->u32_min_value = 0;
8501 dst_reg->u32_max_value = U32_MAX;
8502 } else {
8503 /* Cannot overflow (as long as bounds are consistent) */
8504 dst_reg->u32_min_value -= umax_val;
8505 dst_reg->u32_max_value -= umin_val;
8506 }
8507 }
8508
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8509 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8510 struct bpf_reg_state *src_reg)
8511 {
8512 s64 smin_val = src_reg->smin_value;
8513 s64 smax_val = src_reg->smax_value;
8514 u64 umin_val = src_reg->umin_value;
8515 u64 umax_val = src_reg->umax_value;
8516
8517 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8518 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8519 /* Overflow possible, we know nothing */
8520 dst_reg->smin_value = S64_MIN;
8521 dst_reg->smax_value = S64_MAX;
8522 } else {
8523 dst_reg->smin_value -= smax_val;
8524 dst_reg->smax_value -= smin_val;
8525 }
8526 if (dst_reg->umin_value < umax_val) {
8527 /* Overflow possible, we know nothing */
8528 dst_reg->umin_value = 0;
8529 dst_reg->umax_value = U64_MAX;
8530 } else {
8531 /* Cannot overflow (as long as bounds are consistent) */
8532 dst_reg->umin_value -= umax_val;
8533 dst_reg->umax_value -= umin_val;
8534 }
8535 }
8536
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8537 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8538 struct bpf_reg_state *src_reg)
8539 {
8540 s32 smin_val = src_reg->s32_min_value;
8541 u32 umin_val = src_reg->u32_min_value;
8542 u32 umax_val = src_reg->u32_max_value;
8543
8544 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8545 /* Ain't nobody got time to multiply that sign */
8546 __mark_reg32_unbounded(dst_reg);
8547 return;
8548 }
8549 /* Both values are positive, so we can work with unsigned and
8550 * copy the result to signed (unless it exceeds S32_MAX).
8551 */
8552 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8553 /* Potential overflow, we know nothing */
8554 __mark_reg32_unbounded(dst_reg);
8555 return;
8556 }
8557 dst_reg->u32_min_value *= umin_val;
8558 dst_reg->u32_max_value *= umax_val;
8559 if (dst_reg->u32_max_value > S32_MAX) {
8560 /* Overflow possible, we know nothing */
8561 dst_reg->s32_min_value = S32_MIN;
8562 dst_reg->s32_max_value = S32_MAX;
8563 } else {
8564 dst_reg->s32_min_value = dst_reg->u32_min_value;
8565 dst_reg->s32_max_value = dst_reg->u32_max_value;
8566 }
8567 }
8568
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8569 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8570 struct bpf_reg_state *src_reg)
8571 {
8572 s64 smin_val = src_reg->smin_value;
8573 u64 umin_val = src_reg->umin_value;
8574 u64 umax_val = src_reg->umax_value;
8575
8576 if (smin_val < 0 || dst_reg->smin_value < 0) {
8577 /* Ain't nobody got time to multiply that sign */
8578 __mark_reg64_unbounded(dst_reg);
8579 return;
8580 }
8581 /* Both values are positive, so we can work with unsigned and
8582 * copy the result to signed (unless it exceeds S64_MAX).
8583 */
8584 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8585 /* Potential overflow, we know nothing */
8586 __mark_reg64_unbounded(dst_reg);
8587 return;
8588 }
8589 dst_reg->umin_value *= umin_val;
8590 dst_reg->umax_value *= umax_val;
8591 if (dst_reg->umax_value > S64_MAX) {
8592 /* Overflow possible, we know nothing */
8593 dst_reg->smin_value = S64_MIN;
8594 dst_reg->smax_value = S64_MAX;
8595 } else {
8596 dst_reg->smin_value = dst_reg->umin_value;
8597 dst_reg->smax_value = dst_reg->umax_value;
8598 }
8599 }
8600
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8601 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8602 struct bpf_reg_state *src_reg)
8603 {
8604 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8605 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8606 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8607 s32 smin_val = src_reg->s32_min_value;
8608 u32 umax_val = src_reg->u32_max_value;
8609
8610 if (src_known && dst_known) {
8611 __mark_reg32_known(dst_reg, var32_off.value);
8612 return;
8613 }
8614
8615 /* We get our minimum from the var_off, since that's inherently
8616 * bitwise. Our maximum is the minimum of the operands' maxima.
8617 */
8618 dst_reg->u32_min_value = var32_off.value;
8619 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8620 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8621 /* Lose signed bounds when ANDing negative numbers,
8622 * ain't nobody got time for that.
8623 */
8624 dst_reg->s32_min_value = S32_MIN;
8625 dst_reg->s32_max_value = S32_MAX;
8626 } else {
8627 /* ANDing two positives gives a positive, so safe to
8628 * cast result into s64.
8629 */
8630 dst_reg->s32_min_value = dst_reg->u32_min_value;
8631 dst_reg->s32_max_value = dst_reg->u32_max_value;
8632 }
8633 }
8634
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8635 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8636 struct bpf_reg_state *src_reg)
8637 {
8638 bool src_known = tnum_is_const(src_reg->var_off);
8639 bool dst_known = tnum_is_const(dst_reg->var_off);
8640 s64 smin_val = src_reg->smin_value;
8641 u64 umax_val = src_reg->umax_value;
8642
8643 if (src_known && dst_known) {
8644 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8645 return;
8646 }
8647
8648 /* We get our minimum from the var_off, since that's inherently
8649 * bitwise. Our maximum is the minimum of the operands' maxima.
8650 */
8651 dst_reg->umin_value = dst_reg->var_off.value;
8652 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8653 if (dst_reg->smin_value < 0 || smin_val < 0) {
8654 /* Lose signed bounds when ANDing negative numbers,
8655 * ain't nobody got time for that.
8656 */
8657 dst_reg->smin_value = S64_MIN;
8658 dst_reg->smax_value = S64_MAX;
8659 } else {
8660 /* ANDing two positives gives a positive, so safe to
8661 * cast result into s64.
8662 */
8663 dst_reg->smin_value = dst_reg->umin_value;
8664 dst_reg->smax_value = dst_reg->umax_value;
8665 }
8666 /* We may learn something more from the var_off */
8667 __update_reg_bounds(dst_reg);
8668 }
8669
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8670 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8671 struct bpf_reg_state *src_reg)
8672 {
8673 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8674 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8675 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8676 s32 smin_val = src_reg->s32_min_value;
8677 u32 umin_val = src_reg->u32_min_value;
8678
8679 if (src_known && dst_known) {
8680 __mark_reg32_known(dst_reg, var32_off.value);
8681 return;
8682 }
8683
8684 /* We get our maximum from the var_off, and our minimum is the
8685 * maximum of the operands' minima
8686 */
8687 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8688 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8689 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8690 /* Lose signed bounds when ORing negative numbers,
8691 * ain't nobody got time for that.
8692 */
8693 dst_reg->s32_min_value = S32_MIN;
8694 dst_reg->s32_max_value = S32_MAX;
8695 } else {
8696 /* ORing two positives gives a positive, so safe to
8697 * cast result into s64.
8698 */
8699 dst_reg->s32_min_value = dst_reg->u32_min_value;
8700 dst_reg->s32_max_value = dst_reg->u32_max_value;
8701 }
8702 }
8703
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8704 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8705 struct bpf_reg_state *src_reg)
8706 {
8707 bool src_known = tnum_is_const(src_reg->var_off);
8708 bool dst_known = tnum_is_const(dst_reg->var_off);
8709 s64 smin_val = src_reg->smin_value;
8710 u64 umin_val = src_reg->umin_value;
8711
8712 if (src_known && dst_known) {
8713 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8714 return;
8715 }
8716
8717 /* We get our maximum from the var_off, and our minimum is the
8718 * maximum of the operands' minima
8719 */
8720 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8721 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8722 if (dst_reg->smin_value < 0 || smin_val < 0) {
8723 /* Lose signed bounds when ORing negative numbers,
8724 * ain't nobody got time for that.
8725 */
8726 dst_reg->smin_value = S64_MIN;
8727 dst_reg->smax_value = S64_MAX;
8728 } else {
8729 /* ORing two positives gives a positive, so safe to
8730 * cast result into s64.
8731 */
8732 dst_reg->smin_value = dst_reg->umin_value;
8733 dst_reg->smax_value = dst_reg->umax_value;
8734 }
8735 /* We may learn something more from the var_off */
8736 __update_reg_bounds(dst_reg);
8737 }
8738
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8739 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8740 struct bpf_reg_state *src_reg)
8741 {
8742 bool src_known = tnum_subreg_is_const(src_reg->var_off);
8743 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8744 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8745 s32 smin_val = src_reg->s32_min_value;
8746
8747 if (src_known && dst_known) {
8748 __mark_reg32_known(dst_reg, var32_off.value);
8749 return;
8750 }
8751
8752 /* We get both minimum and maximum from the var32_off. */
8753 dst_reg->u32_min_value = var32_off.value;
8754 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8755
8756 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8757 /* XORing two positive sign numbers gives a positive,
8758 * so safe to cast u32 result into s32.
8759 */
8760 dst_reg->s32_min_value = dst_reg->u32_min_value;
8761 dst_reg->s32_max_value = dst_reg->u32_max_value;
8762 } else {
8763 dst_reg->s32_min_value = S32_MIN;
8764 dst_reg->s32_max_value = S32_MAX;
8765 }
8766 }
8767
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8768 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8769 struct bpf_reg_state *src_reg)
8770 {
8771 bool src_known = tnum_is_const(src_reg->var_off);
8772 bool dst_known = tnum_is_const(dst_reg->var_off);
8773 s64 smin_val = src_reg->smin_value;
8774
8775 if (src_known && dst_known) {
8776 /* dst_reg->var_off.value has been updated earlier */
8777 __mark_reg_known(dst_reg, dst_reg->var_off.value);
8778 return;
8779 }
8780
8781 /* We get both minimum and maximum from the var_off. */
8782 dst_reg->umin_value = dst_reg->var_off.value;
8783 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8784
8785 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8786 /* XORing two positive sign numbers gives a positive,
8787 * so safe to cast u64 result into s64.
8788 */
8789 dst_reg->smin_value = dst_reg->umin_value;
8790 dst_reg->smax_value = dst_reg->umax_value;
8791 } else {
8792 dst_reg->smin_value = S64_MIN;
8793 dst_reg->smax_value = S64_MAX;
8794 }
8795
8796 __update_reg_bounds(dst_reg);
8797 }
8798
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)8799 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8800 u64 umin_val, u64 umax_val)
8801 {
8802 /* We lose all sign bit information (except what we can pick
8803 * up from var_off)
8804 */
8805 dst_reg->s32_min_value = S32_MIN;
8806 dst_reg->s32_max_value = S32_MAX;
8807 /* If we might shift our top bit out, then we know nothing */
8808 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8809 dst_reg->u32_min_value = 0;
8810 dst_reg->u32_max_value = U32_MAX;
8811 } else {
8812 dst_reg->u32_min_value <<= umin_val;
8813 dst_reg->u32_max_value <<= umax_val;
8814 }
8815 }
8816
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8817 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8818 struct bpf_reg_state *src_reg)
8819 {
8820 u32 umax_val = src_reg->u32_max_value;
8821 u32 umin_val = src_reg->u32_min_value;
8822 /* u32 alu operation will zext upper bits */
8823 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8824
8825 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8826 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8827 /* Not required but being careful mark reg64 bounds as unknown so
8828 * that we are forced to pick them up from tnum and zext later and
8829 * if some path skips this step we are still safe.
8830 */
8831 __mark_reg64_unbounded(dst_reg);
8832 __update_reg32_bounds(dst_reg);
8833 }
8834
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)8835 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8836 u64 umin_val, u64 umax_val)
8837 {
8838 /* Special case <<32 because it is a common compiler pattern to sign
8839 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8840 * positive we know this shift will also be positive so we can track
8841 * bounds correctly. Otherwise we lose all sign bit information except
8842 * what we can pick up from var_off. Perhaps we can generalize this
8843 * later to shifts of any length.
8844 */
8845 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8846 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8847 else
8848 dst_reg->smax_value = S64_MAX;
8849
8850 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8851 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8852 else
8853 dst_reg->smin_value = S64_MIN;
8854
8855 /* If we might shift our top bit out, then we know nothing */
8856 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8857 dst_reg->umin_value = 0;
8858 dst_reg->umax_value = U64_MAX;
8859 } else {
8860 dst_reg->umin_value <<= umin_val;
8861 dst_reg->umax_value <<= umax_val;
8862 }
8863 }
8864
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8865 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8866 struct bpf_reg_state *src_reg)
8867 {
8868 u64 umax_val = src_reg->umax_value;
8869 u64 umin_val = src_reg->umin_value;
8870
8871 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
8872 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8873 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8874
8875 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8876 /* We may learn something more from the var_off */
8877 __update_reg_bounds(dst_reg);
8878 }
8879
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8880 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8881 struct bpf_reg_state *src_reg)
8882 {
8883 struct tnum subreg = tnum_subreg(dst_reg->var_off);
8884 u32 umax_val = src_reg->u32_max_value;
8885 u32 umin_val = src_reg->u32_min_value;
8886
8887 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8888 * be negative, then either:
8889 * 1) src_reg might be zero, so the sign bit of the result is
8890 * unknown, so we lose our signed bounds
8891 * 2) it's known negative, thus the unsigned bounds capture the
8892 * signed bounds
8893 * 3) the signed bounds cross zero, so they tell us nothing
8894 * about the result
8895 * If the value in dst_reg is known nonnegative, then again the
8896 * unsigned bounds capture the signed bounds.
8897 * Thus, in all cases it suffices to blow away our signed bounds
8898 * and rely on inferring new ones from the unsigned bounds and
8899 * var_off of the result.
8900 */
8901 dst_reg->s32_min_value = S32_MIN;
8902 dst_reg->s32_max_value = S32_MAX;
8903
8904 dst_reg->var_off = tnum_rshift(subreg, umin_val);
8905 dst_reg->u32_min_value >>= umax_val;
8906 dst_reg->u32_max_value >>= umin_val;
8907
8908 __mark_reg64_unbounded(dst_reg);
8909 __update_reg32_bounds(dst_reg);
8910 }
8911
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8912 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8913 struct bpf_reg_state *src_reg)
8914 {
8915 u64 umax_val = src_reg->umax_value;
8916 u64 umin_val = src_reg->umin_value;
8917
8918 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
8919 * be negative, then either:
8920 * 1) src_reg might be zero, so the sign bit of the result is
8921 * unknown, so we lose our signed bounds
8922 * 2) it's known negative, thus the unsigned bounds capture the
8923 * signed bounds
8924 * 3) the signed bounds cross zero, so they tell us nothing
8925 * about the result
8926 * If the value in dst_reg is known nonnegative, then again the
8927 * unsigned bounds capture the signed bounds.
8928 * Thus, in all cases it suffices to blow away our signed bounds
8929 * and rely on inferring new ones from the unsigned bounds and
8930 * var_off of the result.
8931 */
8932 dst_reg->smin_value = S64_MIN;
8933 dst_reg->smax_value = S64_MAX;
8934 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8935 dst_reg->umin_value >>= umax_val;
8936 dst_reg->umax_value >>= umin_val;
8937
8938 /* Its not easy to operate on alu32 bounds here because it depends
8939 * on bits being shifted in. Take easy way out and mark unbounded
8940 * so we can recalculate later from tnum.
8941 */
8942 __mark_reg32_unbounded(dst_reg);
8943 __update_reg_bounds(dst_reg);
8944 }
8945
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8946 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8947 struct bpf_reg_state *src_reg)
8948 {
8949 u64 umin_val = src_reg->u32_min_value;
8950
8951 /* Upon reaching here, src_known is true and
8952 * umax_val is equal to umin_val.
8953 */
8954 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8955 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8956
8957 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8958
8959 /* blow away the dst_reg umin_value/umax_value and rely on
8960 * dst_reg var_off to refine the result.
8961 */
8962 dst_reg->u32_min_value = 0;
8963 dst_reg->u32_max_value = U32_MAX;
8964
8965 __mark_reg64_unbounded(dst_reg);
8966 __update_reg32_bounds(dst_reg);
8967 }
8968
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8969 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8970 struct bpf_reg_state *src_reg)
8971 {
8972 u64 umin_val = src_reg->umin_value;
8973
8974 /* Upon reaching here, src_known is true and umax_val is equal
8975 * to umin_val.
8976 */
8977 dst_reg->smin_value >>= umin_val;
8978 dst_reg->smax_value >>= umin_val;
8979
8980 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8981
8982 /* blow away the dst_reg umin_value/umax_value and rely on
8983 * dst_reg var_off to refine the result.
8984 */
8985 dst_reg->umin_value = 0;
8986 dst_reg->umax_value = U64_MAX;
8987
8988 /* Its not easy to operate on alu32 bounds here because it depends
8989 * on bits being shifted in from upper 32-bits. Take easy way out
8990 * and mark unbounded so we can recalculate later from tnum.
8991 */
8992 __mark_reg32_unbounded(dst_reg);
8993 __update_reg_bounds(dst_reg);
8994 }
8995
8996 /* WARNING: This function does calculations on 64-bit values, but the actual
8997 * execution may occur on 32-bit values. Therefore, things like bitshifts
8998 * need extra checks in the 32-bit case.
8999 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)9000 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
9001 struct bpf_insn *insn,
9002 struct bpf_reg_state *dst_reg,
9003 struct bpf_reg_state src_reg)
9004 {
9005 struct bpf_reg_state *regs = cur_regs(env);
9006 u8 opcode = BPF_OP(insn->code);
9007 bool src_known;
9008 s64 smin_val, smax_val;
9009 u64 umin_val, umax_val;
9010 s32 s32_min_val, s32_max_val;
9011 u32 u32_min_val, u32_max_val;
9012 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
9013 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
9014 int ret;
9015
9016 smin_val = src_reg.smin_value;
9017 smax_val = src_reg.smax_value;
9018 umin_val = src_reg.umin_value;
9019 umax_val = src_reg.umax_value;
9020
9021 s32_min_val = src_reg.s32_min_value;
9022 s32_max_val = src_reg.s32_max_value;
9023 u32_min_val = src_reg.u32_min_value;
9024 u32_max_val = src_reg.u32_max_value;
9025
9026 if (alu32) {
9027 src_known = tnum_subreg_is_const(src_reg.var_off);
9028 if ((src_known &&
9029 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
9030 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
9031 /* Taint dst register if offset had invalid bounds
9032 * derived from e.g. dead branches.
9033 */
9034 __mark_reg_unknown(env, dst_reg);
9035 return 0;
9036 }
9037 } else {
9038 src_known = tnum_is_const(src_reg.var_off);
9039 if ((src_known &&
9040 (smin_val != smax_val || umin_val != umax_val)) ||
9041 smin_val > smax_val || umin_val > umax_val) {
9042 /* Taint dst register if offset had invalid bounds
9043 * derived from e.g. dead branches.
9044 */
9045 __mark_reg_unknown(env, dst_reg);
9046 return 0;
9047 }
9048 }
9049
9050 if (!src_known &&
9051 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
9052 __mark_reg_unknown(env, dst_reg);
9053 return 0;
9054 }
9055
9056 if (sanitize_needed(opcode)) {
9057 ret = sanitize_val_alu(env, insn);
9058 if (ret < 0)
9059 return sanitize_err(env, insn, ret, NULL, NULL);
9060 }
9061
9062 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9063 * There are two classes of instructions: The first class we track both
9064 * alu32 and alu64 sign/unsigned bounds independently this provides the
9065 * greatest amount of precision when alu operations are mixed with jmp32
9066 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9067 * and BPF_OR. This is possible because these ops have fairly easy to
9068 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9069 * See alu32 verifier tests for examples. The second class of
9070 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9071 * with regards to tracking sign/unsigned bounds because the bits may
9072 * cross subreg boundaries in the alu64 case. When this happens we mark
9073 * the reg unbounded in the subreg bound space and use the resulting
9074 * tnum to calculate an approximation of the sign/unsigned bounds.
9075 */
9076 switch (opcode) {
9077 case BPF_ADD:
9078 scalar32_min_max_add(dst_reg, &src_reg);
9079 scalar_min_max_add(dst_reg, &src_reg);
9080 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
9081 break;
9082 case BPF_SUB:
9083 scalar32_min_max_sub(dst_reg, &src_reg);
9084 scalar_min_max_sub(dst_reg, &src_reg);
9085 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
9086 break;
9087 case BPF_MUL:
9088 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9089 scalar32_min_max_mul(dst_reg, &src_reg);
9090 scalar_min_max_mul(dst_reg, &src_reg);
9091 break;
9092 case BPF_AND:
9093 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9094 scalar32_min_max_and(dst_reg, &src_reg);
9095 scalar_min_max_and(dst_reg, &src_reg);
9096 break;
9097 case BPF_OR:
9098 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9099 scalar32_min_max_or(dst_reg, &src_reg);
9100 scalar_min_max_or(dst_reg, &src_reg);
9101 break;
9102 case BPF_XOR:
9103 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9104 scalar32_min_max_xor(dst_reg, &src_reg);
9105 scalar_min_max_xor(dst_reg, &src_reg);
9106 break;
9107 case BPF_LSH:
9108 if (umax_val >= insn_bitness) {
9109 /* Shifts greater than 31 or 63 are undefined.
9110 * This includes shifts by a negative number.
9111 */
9112 mark_reg_unknown(env, regs, insn->dst_reg);
9113 break;
9114 }
9115 if (alu32)
9116 scalar32_min_max_lsh(dst_reg, &src_reg);
9117 else
9118 scalar_min_max_lsh(dst_reg, &src_reg);
9119 break;
9120 case BPF_RSH:
9121 if (umax_val >= insn_bitness) {
9122 /* Shifts greater than 31 or 63 are undefined.
9123 * This includes shifts by a negative number.
9124 */
9125 mark_reg_unknown(env, regs, insn->dst_reg);
9126 break;
9127 }
9128 if (alu32)
9129 scalar32_min_max_rsh(dst_reg, &src_reg);
9130 else
9131 scalar_min_max_rsh(dst_reg, &src_reg);
9132 break;
9133 case BPF_ARSH:
9134 if (umax_val >= insn_bitness) {
9135 /* Shifts greater than 31 or 63 are undefined.
9136 * This includes shifts by a negative number.
9137 */
9138 mark_reg_unknown(env, regs, insn->dst_reg);
9139 break;
9140 }
9141 if (alu32)
9142 scalar32_min_max_arsh(dst_reg, &src_reg);
9143 else
9144 scalar_min_max_arsh(dst_reg, &src_reg);
9145 break;
9146 default:
9147 mark_reg_unknown(env, regs, insn->dst_reg);
9148 break;
9149 }
9150
9151 /* ALU32 ops are zero extended into 64bit register */
9152 if (alu32)
9153 zext_32_to_64(dst_reg);
9154 reg_bounds_sync(dst_reg);
9155 return 0;
9156 }
9157
9158 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9159 * and var_off.
9160 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)9161 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9162 struct bpf_insn *insn)
9163 {
9164 struct bpf_verifier_state *vstate = env->cur_state;
9165 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9166 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9167 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9168 u8 opcode = BPF_OP(insn->code);
9169 int err;
9170
9171 dst_reg = ®s[insn->dst_reg];
9172 src_reg = NULL;
9173 if (dst_reg->type != SCALAR_VALUE)
9174 ptr_reg = dst_reg;
9175 else
9176 /* Make sure ID is cleared otherwise dst_reg min/max could be
9177 * incorrectly propagated into other registers by find_equal_scalars()
9178 */
9179 dst_reg->id = 0;
9180 if (BPF_SRC(insn->code) == BPF_X) {
9181 src_reg = ®s[insn->src_reg];
9182 if (src_reg->type != SCALAR_VALUE) {
9183 if (dst_reg->type != SCALAR_VALUE) {
9184 /* Combining two pointers by any ALU op yields
9185 * an arbitrary scalar. Disallow all math except
9186 * pointer subtraction
9187 */
9188 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9189 mark_reg_unknown(env, regs, insn->dst_reg);
9190 return 0;
9191 }
9192 verbose(env, "R%d pointer %s pointer prohibited\n",
9193 insn->dst_reg,
9194 bpf_alu_string[opcode >> 4]);
9195 return -EACCES;
9196 } else {
9197 /* scalar += pointer
9198 * This is legal, but we have to reverse our
9199 * src/dest handling in computing the range
9200 */
9201 err = mark_chain_precision(env, insn->dst_reg);
9202 if (err)
9203 return err;
9204 return adjust_ptr_min_max_vals(env, insn,
9205 src_reg, dst_reg);
9206 }
9207 } else if (ptr_reg) {
9208 /* pointer += scalar */
9209 err = mark_chain_precision(env, insn->src_reg);
9210 if (err)
9211 return err;
9212 return adjust_ptr_min_max_vals(env, insn,
9213 dst_reg, src_reg);
9214 }
9215 } else {
9216 /* Pretend the src is a reg with a known value, since we only
9217 * need to be able to read from this state.
9218 */
9219 off_reg.type = SCALAR_VALUE;
9220 __mark_reg_known(&off_reg, insn->imm);
9221 src_reg = &off_reg;
9222 if (ptr_reg) /* pointer += K */
9223 return adjust_ptr_min_max_vals(env, insn,
9224 ptr_reg, src_reg);
9225 }
9226
9227 /* Got here implies adding two SCALAR_VALUEs */
9228 if (WARN_ON_ONCE(ptr_reg)) {
9229 print_verifier_state(env, state, true);
9230 verbose(env, "verifier internal error: unexpected ptr_reg\n");
9231 return -EINVAL;
9232 }
9233 if (WARN_ON(!src_reg)) {
9234 print_verifier_state(env, state, true);
9235 verbose(env, "verifier internal error: no src_reg\n");
9236 return -EINVAL;
9237 }
9238 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9239 }
9240
9241 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)9242 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9243 {
9244 struct bpf_reg_state *regs = cur_regs(env);
9245 u8 opcode = BPF_OP(insn->code);
9246 int err;
9247
9248 if (opcode == BPF_END || opcode == BPF_NEG) {
9249 if (opcode == BPF_NEG) {
9250 if (BPF_SRC(insn->code) != BPF_K ||
9251 insn->src_reg != BPF_REG_0 ||
9252 insn->off != 0 || insn->imm != 0) {
9253 verbose(env, "BPF_NEG uses reserved fields\n");
9254 return -EINVAL;
9255 }
9256 } else {
9257 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9258 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9259 BPF_CLASS(insn->code) == BPF_ALU64) {
9260 verbose(env, "BPF_END uses reserved fields\n");
9261 return -EINVAL;
9262 }
9263 }
9264
9265 /* check src operand */
9266 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9267 if (err)
9268 return err;
9269
9270 if (is_pointer_value(env, insn->dst_reg)) {
9271 verbose(env, "R%d pointer arithmetic prohibited\n",
9272 insn->dst_reg);
9273 return -EACCES;
9274 }
9275
9276 /* check dest operand */
9277 err = check_reg_arg(env, insn->dst_reg, DST_OP);
9278 if (err)
9279 return err;
9280
9281 } else if (opcode == BPF_MOV) {
9282
9283 if (BPF_SRC(insn->code) == BPF_X) {
9284 if (insn->imm != 0 || insn->off != 0) {
9285 verbose(env, "BPF_MOV uses reserved fields\n");
9286 return -EINVAL;
9287 }
9288
9289 /* check src operand */
9290 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9291 if (err)
9292 return err;
9293 } else {
9294 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9295 verbose(env, "BPF_MOV uses reserved fields\n");
9296 return -EINVAL;
9297 }
9298 }
9299
9300 /* check dest operand, mark as required later */
9301 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9302 if (err)
9303 return err;
9304
9305 if (BPF_SRC(insn->code) == BPF_X) {
9306 struct bpf_reg_state *src_reg = regs + insn->src_reg;
9307 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9308
9309 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9310 /* case: R1 = R2
9311 * copy register state to dest reg
9312 */
9313 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9314 /* Assign src and dst registers the same ID
9315 * that will be used by find_equal_scalars()
9316 * to propagate min/max range.
9317 */
9318 src_reg->id = ++env->id_gen;
9319 *dst_reg = *src_reg;
9320 dst_reg->live |= REG_LIVE_WRITTEN;
9321 dst_reg->subreg_def = DEF_NOT_SUBREG;
9322 } else {
9323 /* R1 = (u32) R2 */
9324 if (is_pointer_value(env, insn->src_reg)) {
9325 verbose(env,
9326 "R%d partial copy of pointer\n",
9327 insn->src_reg);
9328 return -EACCES;
9329 } else if (src_reg->type == SCALAR_VALUE) {
9330 *dst_reg = *src_reg;
9331 /* Make sure ID is cleared otherwise
9332 * dst_reg min/max could be incorrectly
9333 * propagated into src_reg by find_equal_scalars()
9334 */
9335 dst_reg->id = 0;
9336 dst_reg->live |= REG_LIVE_WRITTEN;
9337 dst_reg->subreg_def = env->insn_idx + 1;
9338 } else {
9339 mark_reg_unknown(env, regs,
9340 insn->dst_reg);
9341 }
9342 zext_32_to_64(dst_reg);
9343 reg_bounds_sync(dst_reg);
9344 }
9345 } else {
9346 /* case: R = imm
9347 * remember the value we stored into this reg
9348 */
9349 /* clear any state __mark_reg_known doesn't set */
9350 mark_reg_unknown(env, regs, insn->dst_reg);
9351 regs[insn->dst_reg].type = SCALAR_VALUE;
9352 if (BPF_CLASS(insn->code) == BPF_ALU64) {
9353 __mark_reg_known(regs + insn->dst_reg,
9354 insn->imm);
9355 } else {
9356 __mark_reg_known(regs + insn->dst_reg,
9357 (u32)insn->imm);
9358 }
9359 }
9360
9361 } else if (opcode > BPF_END) {
9362 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9363 return -EINVAL;
9364
9365 } else { /* all other ALU ops: and, sub, xor, add, ... */
9366
9367 if (BPF_SRC(insn->code) == BPF_X) {
9368 if (insn->imm != 0 || insn->off != 0) {
9369 verbose(env, "BPF_ALU uses reserved fields\n");
9370 return -EINVAL;
9371 }
9372 /* check src1 operand */
9373 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9374 if (err)
9375 return err;
9376 } else {
9377 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9378 verbose(env, "BPF_ALU uses reserved fields\n");
9379 return -EINVAL;
9380 }
9381 }
9382
9383 /* check src2 operand */
9384 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9385 if (err)
9386 return err;
9387
9388 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9389 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9390 verbose(env, "div by zero\n");
9391 return -EINVAL;
9392 }
9393
9394 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9395 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9396 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9397
9398 if (insn->imm < 0 || insn->imm >= size) {
9399 verbose(env, "invalid shift %d\n", insn->imm);
9400 return -EINVAL;
9401 }
9402 }
9403
9404 /* check dest operand */
9405 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9406 if (err)
9407 return err;
9408
9409 return adjust_reg_min_max_vals(env, insn);
9410 }
9411
9412 return 0;
9413 }
9414
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)9415 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9416 struct bpf_reg_state *dst_reg,
9417 enum bpf_reg_type type,
9418 bool range_right_open)
9419 {
9420 struct bpf_func_state *state;
9421 struct bpf_reg_state *reg;
9422 int new_range;
9423
9424 if (dst_reg->off < 0 ||
9425 (dst_reg->off == 0 && range_right_open))
9426 /* This doesn't give us any range */
9427 return;
9428
9429 if (dst_reg->umax_value > MAX_PACKET_OFF ||
9430 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9431 /* Risk of overflow. For instance, ptr + (1<<63) may be less
9432 * than pkt_end, but that's because it's also less than pkt.
9433 */
9434 return;
9435
9436 new_range = dst_reg->off;
9437 if (range_right_open)
9438 new_range++;
9439
9440 /* Examples for register markings:
9441 *
9442 * pkt_data in dst register:
9443 *
9444 * r2 = r3;
9445 * r2 += 8;
9446 * if (r2 > pkt_end) goto <handle exception>
9447 * <access okay>
9448 *
9449 * r2 = r3;
9450 * r2 += 8;
9451 * if (r2 < pkt_end) goto <access okay>
9452 * <handle exception>
9453 *
9454 * Where:
9455 * r2 == dst_reg, pkt_end == src_reg
9456 * r2=pkt(id=n,off=8,r=0)
9457 * r3=pkt(id=n,off=0,r=0)
9458 *
9459 * pkt_data in src register:
9460 *
9461 * r2 = r3;
9462 * r2 += 8;
9463 * if (pkt_end >= r2) goto <access okay>
9464 * <handle exception>
9465 *
9466 * r2 = r3;
9467 * r2 += 8;
9468 * if (pkt_end <= r2) goto <handle exception>
9469 * <access okay>
9470 *
9471 * Where:
9472 * pkt_end == dst_reg, r2 == src_reg
9473 * r2=pkt(id=n,off=8,r=0)
9474 * r3=pkt(id=n,off=0,r=0)
9475 *
9476 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9477 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9478 * and [r3, r3 + 8-1) respectively is safe to access depending on
9479 * the check.
9480 */
9481
9482 /* If our ids match, then we must have the same max_value. And we
9483 * don't care about the other reg's fixed offset, since if it's too big
9484 * the range won't allow anything.
9485 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9486 */
9487 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9488 if (reg->type == type && reg->id == dst_reg->id)
9489 /* keep the maximum range already checked */
9490 reg->range = max(reg->range, new_range);
9491 }));
9492 }
9493
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)9494 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9495 {
9496 struct tnum subreg = tnum_subreg(reg->var_off);
9497 s32 sval = (s32)val;
9498
9499 switch (opcode) {
9500 case BPF_JEQ:
9501 if (tnum_is_const(subreg))
9502 return !!tnum_equals_const(subreg, val);
9503 break;
9504 case BPF_JNE:
9505 if (tnum_is_const(subreg))
9506 return !tnum_equals_const(subreg, val);
9507 break;
9508 case BPF_JSET:
9509 if ((~subreg.mask & subreg.value) & val)
9510 return 1;
9511 if (!((subreg.mask | subreg.value) & val))
9512 return 0;
9513 break;
9514 case BPF_JGT:
9515 if (reg->u32_min_value > val)
9516 return 1;
9517 else if (reg->u32_max_value <= val)
9518 return 0;
9519 break;
9520 case BPF_JSGT:
9521 if (reg->s32_min_value > sval)
9522 return 1;
9523 else if (reg->s32_max_value <= sval)
9524 return 0;
9525 break;
9526 case BPF_JLT:
9527 if (reg->u32_max_value < val)
9528 return 1;
9529 else if (reg->u32_min_value >= val)
9530 return 0;
9531 break;
9532 case BPF_JSLT:
9533 if (reg->s32_max_value < sval)
9534 return 1;
9535 else if (reg->s32_min_value >= sval)
9536 return 0;
9537 break;
9538 case BPF_JGE:
9539 if (reg->u32_min_value >= val)
9540 return 1;
9541 else if (reg->u32_max_value < val)
9542 return 0;
9543 break;
9544 case BPF_JSGE:
9545 if (reg->s32_min_value >= sval)
9546 return 1;
9547 else if (reg->s32_max_value < sval)
9548 return 0;
9549 break;
9550 case BPF_JLE:
9551 if (reg->u32_max_value <= val)
9552 return 1;
9553 else if (reg->u32_min_value > val)
9554 return 0;
9555 break;
9556 case BPF_JSLE:
9557 if (reg->s32_max_value <= sval)
9558 return 1;
9559 else if (reg->s32_min_value > sval)
9560 return 0;
9561 break;
9562 }
9563
9564 return -1;
9565 }
9566
9567
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)9568 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9569 {
9570 s64 sval = (s64)val;
9571
9572 switch (opcode) {
9573 case BPF_JEQ:
9574 if (tnum_is_const(reg->var_off))
9575 return !!tnum_equals_const(reg->var_off, val);
9576 break;
9577 case BPF_JNE:
9578 if (tnum_is_const(reg->var_off))
9579 return !tnum_equals_const(reg->var_off, val);
9580 break;
9581 case BPF_JSET:
9582 if ((~reg->var_off.mask & reg->var_off.value) & val)
9583 return 1;
9584 if (!((reg->var_off.mask | reg->var_off.value) & val))
9585 return 0;
9586 break;
9587 case BPF_JGT:
9588 if (reg->umin_value > val)
9589 return 1;
9590 else if (reg->umax_value <= val)
9591 return 0;
9592 break;
9593 case BPF_JSGT:
9594 if (reg->smin_value > sval)
9595 return 1;
9596 else if (reg->smax_value <= sval)
9597 return 0;
9598 break;
9599 case BPF_JLT:
9600 if (reg->umax_value < val)
9601 return 1;
9602 else if (reg->umin_value >= val)
9603 return 0;
9604 break;
9605 case BPF_JSLT:
9606 if (reg->smax_value < sval)
9607 return 1;
9608 else if (reg->smin_value >= sval)
9609 return 0;
9610 break;
9611 case BPF_JGE:
9612 if (reg->umin_value >= val)
9613 return 1;
9614 else if (reg->umax_value < val)
9615 return 0;
9616 break;
9617 case BPF_JSGE:
9618 if (reg->smin_value >= sval)
9619 return 1;
9620 else if (reg->smax_value < sval)
9621 return 0;
9622 break;
9623 case BPF_JLE:
9624 if (reg->umax_value <= val)
9625 return 1;
9626 else if (reg->umin_value > val)
9627 return 0;
9628 break;
9629 case BPF_JSLE:
9630 if (reg->smax_value <= sval)
9631 return 1;
9632 else if (reg->smin_value > sval)
9633 return 0;
9634 break;
9635 }
9636
9637 return -1;
9638 }
9639
9640 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9641 * and return:
9642 * 1 - branch will be taken and "goto target" will be executed
9643 * 0 - branch will not be taken and fall-through to next insn
9644 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9645 * range [0,10]
9646 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)9647 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9648 bool is_jmp32)
9649 {
9650 if (__is_pointer_value(false, reg)) {
9651 if (!reg_type_not_null(reg->type))
9652 return -1;
9653
9654 /* If pointer is valid tests against zero will fail so we can
9655 * use this to direct branch taken.
9656 */
9657 if (val != 0)
9658 return -1;
9659
9660 switch (opcode) {
9661 case BPF_JEQ:
9662 return 0;
9663 case BPF_JNE:
9664 return 1;
9665 default:
9666 return -1;
9667 }
9668 }
9669
9670 if (is_jmp32)
9671 return is_branch32_taken(reg, val, opcode);
9672 return is_branch64_taken(reg, val, opcode);
9673 }
9674
flip_opcode(u32 opcode)9675 static int flip_opcode(u32 opcode)
9676 {
9677 /* How can we transform "a <op> b" into "b <op> a"? */
9678 static const u8 opcode_flip[16] = {
9679 /* these stay the same */
9680 [BPF_JEQ >> 4] = BPF_JEQ,
9681 [BPF_JNE >> 4] = BPF_JNE,
9682 [BPF_JSET >> 4] = BPF_JSET,
9683 /* these swap "lesser" and "greater" (L and G in the opcodes) */
9684 [BPF_JGE >> 4] = BPF_JLE,
9685 [BPF_JGT >> 4] = BPF_JLT,
9686 [BPF_JLE >> 4] = BPF_JGE,
9687 [BPF_JLT >> 4] = BPF_JGT,
9688 [BPF_JSGE >> 4] = BPF_JSLE,
9689 [BPF_JSGT >> 4] = BPF_JSLT,
9690 [BPF_JSLE >> 4] = BPF_JSGE,
9691 [BPF_JSLT >> 4] = BPF_JSGT
9692 };
9693 return opcode_flip[opcode >> 4];
9694 }
9695
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)9696 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9697 struct bpf_reg_state *src_reg,
9698 u8 opcode)
9699 {
9700 struct bpf_reg_state *pkt;
9701
9702 if (src_reg->type == PTR_TO_PACKET_END) {
9703 pkt = dst_reg;
9704 } else if (dst_reg->type == PTR_TO_PACKET_END) {
9705 pkt = src_reg;
9706 opcode = flip_opcode(opcode);
9707 } else {
9708 return -1;
9709 }
9710
9711 if (pkt->range >= 0)
9712 return -1;
9713
9714 switch (opcode) {
9715 case BPF_JLE:
9716 /* pkt <= pkt_end */
9717 fallthrough;
9718 case BPF_JGT:
9719 /* pkt > pkt_end */
9720 if (pkt->range == BEYOND_PKT_END)
9721 /* pkt has at last one extra byte beyond pkt_end */
9722 return opcode == BPF_JGT;
9723 break;
9724 case BPF_JLT:
9725 /* pkt < pkt_end */
9726 fallthrough;
9727 case BPF_JGE:
9728 /* pkt >= pkt_end */
9729 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9730 return opcode == BPF_JGE;
9731 break;
9732 }
9733 return -1;
9734 }
9735
9736 /* Adjusts the register min/max values in the case that the dst_reg is the
9737 * variable register that we are working on, and src_reg is a constant or we're
9738 * simply doing a BPF_K check.
9739 * In JEQ/JNE cases we also adjust the var_off values.
9740 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)9741 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9742 struct bpf_reg_state *false_reg,
9743 u64 val, u32 val32,
9744 u8 opcode, bool is_jmp32)
9745 {
9746 struct tnum false_32off = tnum_subreg(false_reg->var_off);
9747 struct tnum false_64off = false_reg->var_off;
9748 struct tnum true_32off = tnum_subreg(true_reg->var_off);
9749 struct tnum true_64off = true_reg->var_off;
9750 s64 sval = (s64)val;
9751 s32 sval32 = (s32)val32;
9752
9753 /* If the dst_reg is a pointer, we can't learn anything about its
9754 * variable offset from the compare (unless src_reg were a pointer into
9755 * the same object, but we don't bother with that.
9756 * Since false_reg and true_reg have the same type by construction, we
9757 * only need to check one of them for pointerness.
9758 */
9759 if (__is_pointer_value(false, false_reg))
9760 return;
9761
9762 switch (opcode) {
9763 /* JEQ/JNE comparison doesn't change the register equivalence.
9764 *
9765 * r1 = r2;
9766 * if (r1 == 42) goto label;
9767 * ...
9768 * label: // here both r1 and r2 are known to be 42.
9769 *
9770 * Hence when marking register as known preserve it's ID.
9771 */
9772 case BPF_JEQ:
9773 if (is_jmp32) {
9774 __mark_reg32_known(true_reg, val32);
9775 true_32off = tnum_subreg(true_reg->var_off);
9776 } else {
9777 ___mark_reg_known(true_reg, val);
9778 true_64off = true_reg->var_off;
9779 }
9780 break;
9781 case BPF_JNE:
9782 if (is_jmp32) {
9783 __mark_reg32_known(false_reg, val32);
9784 false_32off = tnum_subreg(false_reg->var_off);
9785 } else {
9786 ___mark_reg_known(false_reg, val);
9787 false_64off = false_reg->var_off;
9788 }
9789 break;
9790 case BPF_JSET:
9791 if (is_jmp32) {
9792 false_32off = tnum_and(false_32off, tnum_const(~val32));
9793 if (is_power_of_2(val32))
9794 true_32off = tnum_or(true_32off,
9795 tnum_const(val32));
9796 } else {
9797 false_64off = tnum_and(false_64off, tnum_const(~val));
9798 if (is_power_of_2(val))
9799 true_64off = tnum_or(true_64off,
9800 tnum_const(val));
9801 }
9802 break;
9803 case BPF_JGE:
9804 case BPF_JGT:
9805 {
9806 if (is_jmp32) {
9807 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
9808 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9809
9810 false_reg->u32_max_value = min(false_reg->u32_max_value,
9811 false_umax);
9812 true_reg->u32_min_value = max(true_reg->u32_min_value,
9813 true_umin);
9814 } else {
9815 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
9816 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9817
9818 false_reg->umax_value = min(false_reg->umax_value, false_umax);
9819 true_reg->umin_value = max(true_reg->umin_value, true_umin);
9820 }
9821 break;
9822 }
9823 case BPF_JSGE:
9824 case BPF_JSGT:
9825 {
9826 if (is_jmp32) {
9827 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
9828 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9829
9830 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9831 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9832 } else {
9833 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
9834 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9835
9836 false_reg->smax_value = min(false_reg->smax_value, false_smax);
9837 true_reg->smin_value = max(true_reg->smin_value, true_smin);
9838 }
9839 break;
9840 }
9841 case BPF_JLE:
9842 case BPF_JLT:
9843 {
9844 if (is_jmp32) {
9845 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
9846 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9847
9848 false_reg->u32_min_value = max(false_reg->u32_min_value,
9849 false_umin);
9850 true_reg->u32_max_value = min(true_reg->u32_max_value,
9851 true_umax);
9852 } else {
9853 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
9854 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9855
9856 false_reg->umin_value = max(false_reg->umin_value, false_umin);
9857 true_reg->umax_value = min(true_reg->umax_value, true_umax);
9858 }
9859 break;
9860 }
9861 case BPF_JSLE:
9862 case BPF_JSLT:
9863 {
9864 if (is_jmp32) {
9865 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
9866 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9867
9868 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9869 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9870 } else {
9871 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
9872 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9873
9874 false_reg->smin_value = max(false_reg->smin_value, false_smin);
9875 true_reg->smax_value = min(true_reg->smax_value, true_smax);
9876 }
9877 break;
9878 }
9879 default:
9880 return;
9881 }
9882
9883 if (is_jmp32) {
9884 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9885 tnum_subreg(false_32off));
9886 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9887 tnum_subreg(true_32off));
9888 __reg_combine_32_into_64(false_reg);
9889 __reg_combine_32_into_64(true_reg);
9890 } else {
9891 false_reg->var_off = false_64off;
9892 true_reg->var_off = true_64off;
9893 __reg_combine_64_into_32(false_reg);
9894 __reg_combine_64_into_32(true_reg);
9895 }
9896 }
9897
9898 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9899 * the variable reg.
9900 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)9901 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9902 struct bpf_reg_state *false_reg,
9903 u64 val, u32 val32,
9904 u8 opcode, bool is_jmp32)
9905 {
9906 opcode = flip_opcode(opcode);
9907 /* This uses zero as "not present in table"; luckily the zero opcode,
9908 * BPF_JA, can't get here.
9909 */
9910 if (opcode)
9911 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9912 }
9913
9914 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)9915 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9916 struct bpf_reg_state *dst_reg)
9917 {
9918 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9919 dst_reg->umin_value);
9920 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9921 dst_reg->umax_value);
9922 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9923 dst_reg->smin_value);
9924 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9925 dst_reg->smax_value);
9926 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9927 dst_reg->var_off);
9928 reg_bounds_sync(src_reg);
9929 reg_bounds_sync(dst_reg);
9930 }
9931
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)9932 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9933 struct bpf_reg_state *true_dst,
9934 struct bpf_reg_state *false_src,
9935 struct bpf_reg_state *false_dst,
9936 u8 opcode)
9937 {
9938 switch (opcode) {
9939 case BPF_JEQ:
9940 __reg_combine_min_max(true_src, true_dst);
9941 break;
9942 case BPF_JNE:
9943 __reg_combine_min_max(false_src, false_dst);
9944 break;
9945 }
9946 }
9947
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)9948 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9949 struct bpf_reg_state *reg, u32 id,
9950 bool is_null)
9951 {
9952 if (type_may_be_null(reg->type) && reg->id == id &&
9953 !WARN_ON_ONCE(!reg->id)) {
9954 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9955 !tnum_equals_const(reg->var_off, 0) ||
9956 reg->off)) {
9957 /* Old offset (both fixed and variable parts) should
9958 * have been known-zero, because we don't allow pointer
9959 * arithmetic on pointers that might be NULL. If we
9960 * see this happening, don't convert the register.
9961 */
9962 return;
9963 }
9964 if (is_null) {
9965 reg->type = SCALAR_VALUE;
9966 /* We don't need id and ref_obj_id from this point
9967 * onwards anymore, thus we should better reset it,
9968 * so that state pruning has chances to take effect.
9969 */
9970 reg->id = 0;
9971 reg->ref_obj_id = 0;
9972
9973 return;
9974 }
9975
9976 mark_ptr_not_null_reg(reg);
9977
9978 if (!reg_may_point_to_spin_lock(reg)) {
9979 /* For not-NULL ptr, reg->ref_obj_id will be reset
9980 * in release_reference().
9981 *
9982 * reg->id is still used by spin_lock ptr. Other
9983 * than spin_lock ptr type, reg->id can be reset.
9984 */
9985 reg->id = 0;
9986 }
9987 }
9988 }
9989
9990 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9991 * be folded together at some point.
9992 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)9993 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9994 bool is_null)
9995 {
9996 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9997 struct bpf_reg_state *regs = state->regs, *reg;
9998 u32 ref_obj_id = regs[regno].ref_obj_id;
9999 u32 id = regs[regno].id;
10000
10001 if (ref_obj_id && ref_obj_id == id && is_null)
10002 /* regs[regno] is in the " == NULL" branch.
10003 * No one could have freed the reference state before
10004 * doing the NULL check.
10005 */
10006 WARN_ON_ONCE(release_reference_state(state, id));
10007
10008 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10009 mark_ptr_or_null_reg(state, reg, id, is_null);
10010 }));
10011 }
10012
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)10013 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
10014 struct bpf_reg_state *dst_reg,
10015 struct bpf_reg_state *src_reg,
10016 struct bpf_verifier_state *this_branch,
10017 struct bpf_verifier_state *other_branch)
10018 {
10019 if (BPF_SRC(insn->code) != BPF_X)
10020 return false;
10021
10022 /* Pointers are always 64-bit. */
10023 if (BPF_CLASS(insn->code) == BPF_JMP32)
10024 return false;
10025
10026 switch (BPF_OP(insn->code)) {
10027 case BPF_JGT:
10028 if ((dst_reg->type == PTR_TO_PACKET &&
10029 src_reg->type == PTR_TO_PACKET_END) ||
10030 (dst_reg->type == PTR_TO_PACKET_META &&
10031 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10032 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
10033 find_good_pkt_pointers(this_branch, dst_reg,
10034 dst_reg->type, false);
10035 mark_pkt_end(other_branch, insn->dst_reg, true);
10036 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10037 src_reg->type == PTR_TO_PACKET) ||
10038 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10039 src_reg->type == PTR_TO_PACKET_META)) {
10040 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
10041 find_good_pkt_pointers(other_branch, src_reg,
10042 src_reg->type, true);
10043 mark_pkt_end(this_branch, insn->src_reg, false);
10044 } else {
10045 return false;
10046 }
10047 break;
10048 case BPF_JLT:
10049 if ((dst_reg->type == PTR_TO_PACKET &&
10050 src_reg->type == PTR_TO_PACKET_END) ||
10051 (dst_reg->type == PTR_TO_PACKET_META &&
10052 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10053 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10054 find_good_pkt_pointers(other_branch, dst_reg,
10055 dst_reg->type, true);
10056 mark_pkt_end(this_branch, insn->dst_reg, false);
10057 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10058 src_reg->type == PTR_TO_PACKET) ||
10059 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10060 src_reg->type == PTR_TO_PACKET_META)) {
10061 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
10062 find_good_pkt_pointers(this_branch, src_reg,
10063 src_reg->type, false);
10064 mark_pkt_end(other_branch, insn->src_reg, true);
10065 } else {
10066 return false;
10067 }
10068 break;
10069 case BPF_JGE:
10070 if ((dst_reg->type == PTR_TO_PACKET &&
10071 src_reg->type == PTR_TO_PACKET_END) ||
10072 (dst_reg->type == PTR_TO_PACKET_META &&
10073 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10074 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10075 find_good_pkt_pointers(this_branch, dst_reg,
10076 dst_reg->type, true);
10077 mark_pkt_end(other_branch, insn->dst_reg, false);
10078 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10079 src_reg->type == PTR_TO_PACKET) ||
10080 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10081 src_reg->type == PTR_TO_PACKET_META)) {
10082 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10083 find_good_pkt_pointers(other_branch, src_reg,
10084 src_reg->type, false);
10085 mark_pkt_end(this_branch, insn->src_reg, true);
10086 } else {
10087 return false;
10088 }
10089 break;
10090 case BPF_JLE:
10091 if ((dst_reg->type == PTR_TO_PACKET &&
10092 src_reg->type == PTR_TO_PACKET_END) ||
10093 (dst_reg->type == PTR_TO_PACKET_META &&
10094 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10095 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10096 find_good_pkt_pointers(other_branch, dst_reg,
10097 dst_reg->type, false);
10098 mark_pkt_end(this_branch, insn->dst_reg, true);
10099 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
10100 src_reg->type == PTR_TO_PACKET) ||
10101 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10102 src_reg->type == PTR_TO_PACKET_META)) {
10103 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10104 find_good_pkt_pointers(this_branch, src_reg,
10105 src_reg->type, true);
10106 mark_pkt_end(other_branch, insn->src_reg, false);
10107 } else {
10108 return false;
10109 }
10110 break;
10111 default:
10112 return false;
10113 }
10114
10115 return true;
10116 }
10117
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)10118 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10119 struct bpf_reg_state *known_reg)
10120 {
10121 struct bpf_func_state *state;
10122 struct bpf_reg_state *reg;
10123
10124 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10125 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10126 *reg = *known_reg;
10127 }));
10128 }
10129
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10130 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10131 struct bpf_insn *insn, int *insn_idx)
10132 {
10133 struct bpf_verifier_state *this_branch = env->cur_state;
10134 struct bpf_verifier_state *other_branch;
10135 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10136 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10137 u8 opcode = BPF_OP(insn->code);
10138 bool is_jmp32;
10139 int pred = -1;
10140 int err;
10141
10142 /* Only conditional jumps are expected to reach here. */
10143 if (opcode == BPF_JA || opcode > BPF_JSLE) {
10144 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10145 return -EINVAL;
10146 }
10147
10148 if (BPF_SRC(insn->code) == BPF_X) {
10149 if (insn->imm != 0) {
10150 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10151 return -EINVAL;
10152 }
10153
10154 /* check src1 operand */
10155 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10156 if (err)
10157 return err;
10158
10159 if (is_pointer_value(env, insn->src_reg)) {
10160 verbose(env, "R%d pointer comparison prohibited\n",
10161 insn->src_reg);
10162 return -EACCES;
10163 }
10164 src_reg = ®s[insn->src_reg];
10165 } else {
10166 if (insn->src_reg != BPF_REG_0) {
10167 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10168 return -EINVAL;
10169 }
10170 }
10171
10172 /* check src2 operand */
10173 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10174 if (err)
10175 return err;
10176
10177 dst_reg = ®s[insn->dst_reg];
10178 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10179
10180 if (BPF_SRC(insn->code) == BPF_K) {
10181 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10182 } else if (src_reg->type == SCALAR_VALUE &&
10183 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10184 pred = is_branch_taken(dst_reg,
10185 tnum_subreg(src_reg->var_off).value,
10186 opcode,
10187 is_jmp32);
10188 } else if (src_reg->type == SCALAR_VALUE &&
10189 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10190 pred = is_branch_taken(dst_reg,
10191 src_reg->var_off.value,
10192 opcode,
10193 is_jmp32);
10194 } else if (reg_is_pkt_pointer_any(dst_reg) &&
10195 reg_is_pkt_pointer_any(src_reg) &&
10196 !is_jmp32) {
10197 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10198 }
10199
10200 if (pred >= 0) {
10201 /* If we get here with a dst_reg pointer type it is because
10202 * above is_branch_taken() special cased the 0 comparison.
10203 */
10204 if (!__is_pointer_value(false, dst_reg))
10205 err = mark_chain_precision(env, insn->dst_reg);
10206 if (BPF_SRC(insn->code) == BPF_X && !err &&
10207 !__is_pointer_value(false, src_reg))
10208 err = mark_chain_precision(env, insn->src_reg);
10209 if (err)
10210 return err;
10211 }
10212
10213 if (pred == 1) {
10214 /* Only follow the goto, ignore fall-through. If needed, push
10215 * the fall-through branch for simulation under speculative
10216 * execution.
10217 */
10218 if (!env->bypass_spec_v1 &&
10219 !sanitize_speculative_path(env, insn, *insn_idx + 1,
10220 *insn_idx))
10221 return -EFAULT;
10222 *insn_idx += insn->off;
10223 return 0;
10224 } else if (pred == 0) {
10225 /* Only follow the fall-through branch, since that's where the
10226 * program will go. If needed, push the goto branch for
10227 * simulation under speculative execution.
10228 */
10229 if (!env->bypass_spec_v1 &&
10230 !sanitize_speculative_path(env, insn,
10231 *insn_idx + insn->off + 1,
10232 *insn_idx))
10233 return -EFAULT;
10234 return 0;
10235 }
10236
10237 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10238 false);
10239 if (!other_branch)
10240 return -EFAULT;
10241 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10242
10243 /* detect if we are comparing against a constant value so we can adjust
10244 * our min/max values for our dst register.
10245 * this is only legit if both are scalars (or pointers to the same
10246 * object, I suppose, but we don't support that right now), because
10247 * otherwise the different base pointers mean the offsets aren't
10248 * comparable.
10249 */
10250 if (BPF_SRC(insn->code) == BPF_X) {
10251 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
10252
10253 if (dst_reg->type == SCALAR_VALUE &&
10254 src_reg->type == SCALAR_VALUE) {
10255 if (tnum_is_const(src_reg->var_off) ||
10256 (is_jmp32 &&
10257 tnum_is_const(tnum_subreg(src_reg->var_off))))
10258 reg_set_min_max(&other_branch_regs[insn->dst_reg],
10259 dst_reg,
10260 src_reg->var_off.value,
10261 tnum_subreg(src_reg->var_off).value,
10262 opcode, is_jmp32);
10263 else if (tnum_is_const(dst_reg->var_off) ||
10264 (is_jmp32 &&
10265 tnum_is_const(tnum_subreg(dst_reg->var_off))))
10266 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10267 src_reg,
10268 dst_reg->var_off.value,
10269 tnum_subreg(dst_reg->var_off).value,
10270 opcode, is_jmp32);
10271 else if (!is_jmp32 &&
10272 (opcode == BPF_JEQ || opcode == BPF_JNE))
10273 /* Comparing for equality, we can combine knowledge */
10274 reg_combine_min_max(&other_branch_regs[insn->src_reg],
10275 &other_branch_regs[insn->dst_reg],
10276 src_reg, dst_reg, opcode);
10277 if (src_reg->id &&
10278 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10279 find_equal_scalars(this_branch, src_reg);
10280 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10281 }
10282
10283 }
10284 } else if (dst_reg->type == SCALAR_VALUE) {
10285 reg_set_min_max(&other_branch_regs[insn->dst_reg],
10286 dst_reg, insn->imm, (u32)insn->imm,
10287 opcode, is_jmp32);
10288 }
10289
10290 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10291 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10292 find_equal_scalars(this_branch, dst_reg);
10293 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10294 }
10295
10296 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10297 * NOTE: these optimizations below are related with pointer comparison
10298 * which will never be JMP32.
10299 */
10300 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10301 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10302 type_may_be_null(dst_reg->type)) {
10303 /* Mark all identical registers in each branch as either
10304 * safe or unknown depending R == 0 or R != 0 conditional.
10305 */
10306 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10307 opcode == BPF_JNE);
10308 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10309 opcode == BPF_JEQ);
10310 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
10311 this_branch, other_branch) &&
10312 is_pointer_value(env, insn->dst_reg)) {
10313 verbose(env, "R%d pointer comparison prohibited\n",
10314 insn->dst_reg);
10315 return -EACCES;
10316 }
10317 if (env->log.level & BPF_LOG_LEVEL)
10318 print_insn_state(env, this_branch->frame[this_branch->curframe]);
10319 return 0;
10320 }
10321
10322 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)10323 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10324 {
10325 struct bpf_insn_aux_data *aux = cur_aux(env);
10326 struct bpf_reg_state *regs = cur_regs(env);
10327 struct bpf_reg_state *dst_reg;
10328 struct bpf_map *map;
10329 int err;
10330
10331 if (BPF_SIZE(insn->code) != BPF_DW) {
10332 verbose(env, "invalid BPF_LD_IMM insn\n");
10333 return -EINVAL;
10334 }
10335 if (insn->off != 0) {
10336 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10337 return -EINVAL;
10338 }
10339
10340 err = check_reg_arg(env, insn->dst_reg, DST_OP);
10341 if (err)
10342 return err;
10343
10344 dst_reg = ®s[insn->dst_reg];
10345 if (insn->src_reg == 0) {
10346 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10347
10348 dst_reg->type = SCALAR_VALUE;
10349 __mark_reg_known(®s[insn->dst_reg], imm);
10350 return 0;
10351 }
10352
10353 /* All special src_reg cases are listed below. From this point onwards
10354 * we either succeed and assign a corresponding dst_reg->type after
10355 * zeroing the offset, or fail and reject the program.
10356 */
10357 mark_reg_known_zero(env, regs, insn->dst_reg);
10358
10359 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10360 dst_reg->type = aux->btf_var.reg_type;
10361 switch (base_type(dst_reg->type)) {
10362 case PTR_TO_MEM:
10363 dst_reg->mem_size = aux->btf_var.mem_size;
10364 break;
10365 case PTR_TO_BTF_ID:
10366 dst_reg->btf = aux->btf_var.btf;
10367 dst_reg->btf_id = aux->btf_var.btf_id;
10368 break;
10369 default:
10370 verbose(env, "bpf verifier is misconfigured\n");
10371 return -EFAULT;
10372 }
10373 return 0;
10374 }
10375
10376 if (insn->src_reg == BPF_PSEUDO_FUNC) {
10377 struct bpf_prog_aux *aux = env->prog->aux;
10378 u32 subprogno = find_subprog(env,
10379 env->insn_idx + insn->imm + 1);
10380
10381 if (!aux->func_info) {
10382 verbose(env, "missing btf func_info\n");
10383 return -EINVAL;
10384 }
10385 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10386 verbose(env, "callback function not static\n");
10387 return -EINVAL;
10388 }
10389
10390 dst_reg->type = PTR_TO_FUNC;
10391 dst_reg->subprogno = subprogno;
10392 return 0;
10393 }
10394
10395 map = env->used_maps[aux->map_index];
10396 dst_reg->map_ptr = map;
10397
10398 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10399 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10400 dst_reg->type = PTR_TO_MAP_VALUE;
10401 dst_reg->off = aux->map_off;
10402 if (map_value_has_spin_lock(map))
10403 dst_reg->id = ++env->id_gen;
10404 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10405 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10406 dst_reg->type = CONST_PTR_TO_MAP;
10407 } else {
10408 verbose(env, "bpf verifier is misconfigured\n");
10409 return -EINVAL;
10410 }
10411
10412 return 0;
10413 }
10414
may_access_skb(enum bpf_prog_type type)10415 static bool may_access_skb(enum bpf_prog_type type)
10416 {
10417 switch (type) {
10418 case BPF_PROG_TYPE_SOCKET_FILTER:
10419 case BPF_PROG_TYPE_SCHED_CLS:
10420 case BPF_PROG_TYPE_SCHED_ACT:
10421 return true;
10422 default:
10423 return false;
10424 }
10425 }
10426
10427 /* verify safety of LD_ABS|LD_IND instructions:
10428 * - they can only appear in the programs where ctx == skb
10429 * - since they are wrappers of function calls, they scratch R1-R5 registers,
10430 * preserve R6-R9, and store return value into R0
10431 *
10432 * Implicit input:
10433 * ctx == skb == R6 == CTX
10434 *
10435 * Explicit input:
10436 * SRC == any register
10437 * IMM == 32-bit immediate
10438 *
10439 * Output:
10440 * R0 - 8/16/32-bit skb data converted to cpu endianness
10441 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)10442 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10443 {
10444 struct bpf_reg_state *regs = cur_regs(env);
10445 static const int ctx_reg = BPF_REG_6;
10446 u8 mode = BPF_MODE(insn->code);
10447 int i, err;
10448
10449 if (!may_access_skb(resolve_prog_type(env->prog))) {
10450 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10451 return -EINVAL;
10452 }
10453
10454 if (!env->ops->gen_ld_abs) {
10455 verbose(env, "bpf verifier is misconfigured\n");
10456 return -EINVAL;
10457 }
10458
10459 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10460 BPF_SIZE(insn->code) == BPF_DW ||
10461 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10462 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10463 return -EINVAL;
10464 }
10465
10466 /* check whether implicit source operand (register R6) is readable */
10467 err = check_reg_arg(env, ctx_reg, SRC_OP);
10468 if (err)
10469 return err;
10470
10471 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10472 * gen_ld_abs() may terminate the program at runtime, leading to
10473 * reference leak.
10474 */
10475 err = check_reference_leak(env);
10476 if (err) {
10477 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10478 return err;
10479 }
10480
10481 if (env->cur_state->active_spin_lock) {
10482 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10483 return -EINVAL;
10484 }
10485
10486 if (regs[ctx_reg].type != PTR_TO_CTX) {
10487 verbose(env,
10488 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10489 return -EINVAL;
10490 }
10491
10492 if (mode == BPF_IND) {
10493 /* check explicit source operand */
10494 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10495 if (err)
10496 return err;
10497 }
10498
10499 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
10500 if (err < 0)
10501 return err;
10502
10503 /* reset caller saved regs to unreadable */
10504 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10505 mark_reg_not_init(env, regs, caller_saved[i]);
10506 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10507 }
10508
10509 /* mark destination R0 register as readable, since it contains
10510 * the value fetched from the packet.
10511 * Already marked as written above.
10512 */
10513 mark_reg_unknown(env, regs, BPF_REG_0);
10514 /* ld_abs load up to 32-bit skb data. */
10515 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10516 return 0;
10517 }
10518
check_return_code(struct bpf_verifier_env * env)10519 static int check_return_code(struct bpf_verifier_env *env)
10520 {
10521 struct tnum enforce_attach_type_range = tnum_unknown;
10522 const struct bpf_prog *prog = env->prog;
10523 struct bpf_reg_state *reg;
10524 struct tnum range = tnum_range(0, 1);
10525 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10526 int err;
10527 struct bpf_func_state *frame = env->cur_state->frame[0];
10528 const bool is_subprog = frame->subprogno;
10529
10530 /* LSM and struct_ops func-ptr's return type could be "void" */
10531 if (!is_subprog) {
10532 switch (prog_type) {
10533 case BPF_PROG_TYPE_LSM:
10534 if (prog->expected_attach_type == BPF_LSM_CGROUP)
10535 /* See below, can be 0 or 0-1 depending on hook. */
10536 break;
10537 fallthrough;
10538 case BPF_PROG_TYPE_STRUCT_OPS:
10539 if (!prog->aux->attach_func_proto->type)
10540 return 0;
10541 break;
10542 default:
10543 break;
10544 }
10545 }
10546
10547 /* eBPF calling convention is such that R0 is used
10548 * to return the value from eBPF program.
10549 * Make sure that it's readable at this time
10550 * of bpf_exit, which means that program wrote
10551 * something into it earlier
10552 */
10553 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10554 if (err)
10555 return err;
10556
10557 if (is_pointer_value(env, BPF_REG_0)) {
10558 verbose(env, "R0 leaks addr as return value\n");
10559 return -EACCES;
10560 }
10561
10562 reg = cur_regs(env) + BPF_REG_0;
10563
10564 if (frame->in_async_callback_fn) {
10565 /* enforce return zero from async callbacks like timer */
10566 if (reg->type != SCALAR_VALUE) {
10567 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10568 reg_type_str(env, reg->type));
10569 return -EINVAL;
10570 }
10571
10572 if (!tnum_in(tnum_const(0), reg->var_off)) {
10573 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10574 return -EINVAL;
10575 }
10576 return 0;
10577 }
10578
10579 if (is_subprog) {
10580 if (reg->type != SCALAR_VALUE) {
10581 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10582 reg_type_str(env, reg->type));
10583 return -EINVAL;
10584 }
10585 return 0;
10586 }
10587
10588 switch (prog_type) {
10589 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10590 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10591 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10592 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10593 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10594 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10595 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10596 range = tnum_range(1, 1);
10597 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10598 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10599 range = tnum_range(0, 3);
10600 break;
10601 case BPF_PROG_TYPE_CGROUP_SKB:
10602 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10603 range = tnum_range(0, 3);
10604 enforce_attach_type_range = tnum_range(2, 3);
10605 }
10606 break;
10607 case BPF_PROG_TYPE_CGROUP_SOCK:
10608 case BPF_PROG_TYPE_SOCK_OPS:
10609 case BPF_PROG_TYPE_CGROUP_DEVICE:
10610 case BPF_PROG_TYPE_CGROUP_SYSCTL:
10611 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10612 break;
10613 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10614 if (!env->prog->aux->attach_btf_id)
10615 return 0;
10616 range = tnum_const(0);
10617 break;
10618 case BPF_PROG_TYPE_TRACING:
10619 switch (env->prog->expected_attach_type) {
10620 case BPF_TRACE_FENTRY:
10621 case BPF_TRACE_FEXIT:
10622 range = tnum_const(0);
10623 break;
10624 case BPF_TRACE_RAW_TP:
10625 case BPF_MODIFY_RETURN:
10626 return 0;
10627 case BPF_TRACE_ITER:
10628 break;
10629 default:
10630 return -ENOTSUPP;
10631 }
10632 break;
10633 case BPF_PROG_TYPE_SK_LOOKUP:
10634 range = tnum_range(SK_DROP, SK_PASS);
10635 break;
10636
10637 case BPF_PROG_TYPE_LSM:
10638 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10639 /* Regular BPF_PROG_TYPE_LSM programs can return
10640 * any value.
10641 */
10642 return 0;
10643 }
10644 if (!env->prog->aux->attach_func_proto->type) {
10645 /* Make sure programs that attach to void
10646 * hooks don't try to modify return value.
10647 */
10648 range = tnum_range(1, 1);
10649 }
10650 break;
10651
10652 case BPF_PROG_TYPE_EXT:
10653 /* freplace program can return anything as its return value
10654 * depends on the to-be-replaced kernel func or bpf program.
10655 */
10656 default:
10657 return 0;
10658 }
10659
10660 if (reg->type != SCALAR_VALUE) {
10661 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10662 reg_type_str(env, reg->type));
10663 return -EINVAL;
10664 }
10665
10666 if (!tnum_in(range, reg->var_off)) {
10667 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10668 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10669 prog_type == BPF_PROG_TYPE_LSM &&
10670 !prog->aux->attach_func_proto->type)
10671 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10672 return -EINVAL;
10673 }
10674
10675 if (!tnum_is_unknown(enforce_attach_type_range) &&
10676 tnum_in(enforce_attach_type_range, reg->var_off))
10677 env->prog->enforce_expected_attach_type = 1;
10678 return 0;
10679 }
10680
10681 /* non-recursive DFS pseudo code
10682 * 1 procedure DFS-iterative(G,v):
10683 * 2 label v as discovered
10684 * 3 let S be a stack
10685 * 4 S.push(v)
10686 * 5 while S is not empty
10687 * 6 t <- S.pop()
10688 * 7 if t is what we're looking for:
10689 * 8 return t
10690 * 9 for all edges e in G.adjacentEdges(t) do
10691 * 10 if edge e is already labelled
10692 * 11 continue with the next edge
10693 * 12 w <- G.adjacentVertex(t,e)
10694 * 13 if vertex w is not discovered and not explored
10695 * 14 label e as tree-edge
10696 * 15 label w as discovered
10697 * 16 S.push(w)
10698 * 17 continue at 5
10699 * 18 else if vertex w is discovered
10700 * 19 label e as back-edge
10701 * 20 else
10702 * 21 // vertex w is explored
10703 * 22 label e as forward- or cross-edge
10704 * 23 label t as explored
10705 * 24 S.pop()
10706 *
10707 * convention:
10708 * 0x10 - discovered
10709 * 0x11 - discovered and fall-through edge labelled
10710 * 0x12 - discovered and fall-through and branch edges labelled
10711 * 0x20 - explored
10712 */
10713
10714 enum {
10715 DISCOVERED = 0x10,
10716 EXPLORED = 0x20,
10717 FALLTHROUGH = 1,
10718 BRANCH = 2,
10719 };
10720
state_htab_size(struct bpf_verifier_env * env)10721 static u32 state_htab_size(struct bpf_verifier_env *env)
10722 {
10723 return env->prog->len;
10724 }
10725
explored_state(struct bpf_verifier_env * env,int idx)10726 static struct bpf_verifier_state_list **explored_state(
10727 struct bpf_verifier_env *env,
10728 int idx)
10729 {
10730 struct bpf_verifier_state *cur = env->cur_state;
10731 struct bpf_func_state *state = cur->frame[cur->curframe];
10732
10733 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10734 }
10735
init_explored_state(struct bpf_verifier_env * env,int idx)10736 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10737 {
10738 env->insn_aux_data[idx].prune_point = true;
10739 }
10740
10741 enum {
10742 DONE_EXPLORING = 0,
10743 KEEP_EXPLORING = 1,
10744 };
10745
10746 /* t, w, e - match pseudo-code above:
10747 * t - index of current instruction
10748 * w - next instruction
10749 * e - edge
10750 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)10751 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10752 bool loop_ok)
10753 {
10754 int *insn_stack = env->cfg.insn_stack;
10755 int *insn_state = env->cfg.insn_state;
10756
10757 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10758 return DONE_EXPLORING;
10759
10760 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10761 return DONE_EXPLORING;
10762
10763 if (w < 0 || w >= env->prog->len) {
10764 verbose_linfo(env, t, "%d: ", t);
10765 verbose(env, "jump out of range from insn %d to %d\n", t, w);
10766 return -EINVAL;
10767 }
10768
10769 if (e == BRANCH)
10770 /* mark branch target for state pruning */
10771 init_explored_state(env, w);
10772
10773 if (insn_state[w] == 0) {
10774 /* tree-edge */
10775 insn_state[t] = DISCOVERED | e;
10776 insn_state[w] = DISCOVERED;
10777 if (env->cfg.cur_stack >= env->prog->len)
10778 return -E2BIG;
10779 insn_stack[env->cfg.cur_stack++] = w;
10780 return KEEP_EXPLORING;
10781 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10782 if (loop_ok && env->bpf_capable)
10783 return DONE_EXPLORING;
10784 verbose_linfo(env, t, "%d: ", t);
10785 verbose_linfo(env, w, "%d: ", w);
10786 verbose(env, "back-edge from insn %d to %d\n", t, w);
10787 return -EINVAL;
10788 } else if (insn_state[w] == EXPLORED) {
10789 /* forward- or cross-edge */
10790 insn_state[t] = DISCOVERED | e;
10791 } else {
10792 verbose(env, "insn state internal bug\n");
10793 return -EFAULT;
10794 }
10795 return DONE_EXPLORING;
10796 }
10797
visit_func_call_insn(int t,int insn_cnt,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)10798 static int visit_func_call_insn(int t, int insn_cnt,
10799 struct bpf_insn *insns,
10800 struct bpf_verifier_env *env,
10801 bool visit_callee)
10802 {
10803 int ret;
10804
10805 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10806 if (ret)
10807 return ret;
10808
10809 if (t + 1 < insn_cnt)
10810 init_explored_state(env, t + 1);
10811 if (visit_callee) {
10812 init_explored_state(env, t);
10813 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10814 /* It's ok to allow recursion from CFG point of
10815 * view. __check_func_call() will do the actual
10816 * check.
10817 */
10818 bpf_pseudo_func(insns + t));
10819 }
10820 return ret;
10821 }
10822
10823 /* Visits the instruction at index t and returns one of the following:
10824 * < 0 - an error occurred
10825 * DONE_EXPLORING - the instruction was fully explored
10826 * KEEP_EXPLORING - there is still work to be done before it is fully explored
10827 */
visit_insn(int t,int insn_cnt,struct bpf_verifier_env * env)10828 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10829 {
10830 struct bpf_insn *insns = env->prog->insnsi;
10831 int ret;
10832
10833 if (bpf_pseudo_func(insns + t))
10834 return visit_func_call_insn(t, insn_cnt, insns, env, true);
10835
10836 /* All non-branch instructions have a single fall-through edge. */
10837 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10838 BPF_CLASS(insns[t].code) != BPF_JMP32)
10839 return push_insn(t, t + 1, FALLTHROUGH, env, false);
10840
10841 switch (BPF_OP(insns[t].code)) {
10842 case BPF_EXIT:
10843 return DONE_EXPLORING;
10844
10845 case BPF_CALL:
10846 if (insns[t].imm == BPF_FUNC_timer_set_callback)
10847 /* Mark this call insn to trigger is_state_visited() check
10848 * before call itself is processed by __check_func_call().
10849 * Otherwise new async state will be pushed for further
10850 * exploration.
10851 */
10852 init_explored_state(env, t);
10853 return visit_func_call_insn(t, insn_cnt, insns, env,
10854 insns[t].src_reg == BPF_PSEUDO_CALL);
10855
10856 case BPF_JA:
10857 if (BPF_SRC(insns[t].code) != BPF_K)
10858 return -EINVAL;
10859
10860 /* unconditional jump with single edge */
10861 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10862 true);
10863 if (ret)
10864 return ret;
10865
10866 /* unconditional jmp is not a good pruning point,
10867 * but it's marked, since backtracking needs
10868 * to record jmp history in is_state_visited().
10869 */
10870 init_explored_state(env, t + insns[t].off + 1);
10871 /* tell verifier to check for equivalent states
10872 * after every call and jump
10873 */
10874 if (t + 1 < insn_cnt)
10875 init_explored_state(env, t + 1);
10876
10877 return ret;
10878
10879 default:
10880 /* conditional jump with two edges */
10881 init_explored_state(env, t);
10882 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10883 if (ret)
10884 return ret;
10885
10886 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10887 }
10888 }
10889
10890 /* non-recursive depth-first-search to detect loops in BPF program
10891 * loop == back-edge in directed graph
10892 */
check_cfg(struct bpf_verifier_env * env)10893 static int check_cfg(struct bpf_verifier_env *env)
10894 {
10895 int insn_cnt = env->prog->len;
10896 int *insn_stack, *insn_state;
10897 int ret = 0;
10898 int i;
10899
10900 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10901 if (!insn_state)
10902 return -ENOMEM;
10903
10904 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10905 if (!insn_stack) {
10906 kvfree(insn_state);
10907 return -ENOMEM;
10908 }
10909
10910 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10911 insn_stack[0] = 0; /* 0 is the first instruction */
10912 env->cfg.cur_stack = 1;
10913
10914 while (env->cfg.cur_stack > 0) {
10915 int t = insn_stack[env->cfg.cur_stack - 1];
10916
10917 ret = visit_insn(t, insn_cnt, env);
10918 switch (ret) {
10919 case DONE_EXPLORING:
10920 insn_state[t] = EXPLORED;
10921 env->cfg.cur_stack--;
10922 break;
10923 case KEEP_EXPLORING:
10924 break;
10925 default:
10926 if (ret > 0) {
10927 verbose(env, "visit_insn internal bug\n");
10928 ret = -EFAULT;
10929 }
10930 goto err_free;
10931 }
10932 }
10933
10934 if (env->cfg.cur_stack < 0) {
10935 verbose(env, "pop stack internal bug\n");
10936 ret = -EFAULT;
10937 goto err_free;
10938 }
10939
10940 for (i = 0; i < insn_cnt; i++) {
10941 if (insn_state[i] != EXPLORED) {
10942 verbose(env, "unreachable insn %d\n", i);
10943 ret = -EINVAL;
10944 goto err_free;
10945 }
10946 }
10947 ret = 0; /* cfg looks good */
10948
10949 err_free:
10950 kvfree(insn_state);
10951 kvfree(insn_stack);
10952 env->cfg.insn_state = env->cfg.insn_stack = NULL;
10953 return ret;
10954 }
10955
check_abnormal_return(struct bpf_verifier_env * env)10956 static int check_abnormal_return(struct bpf_verifier_env *env)
10957 {
10958 int i;
10959
10960 for (i = 1; i < env->subprog_cnt; i++) {
10961 if (env->subprog_info[i].has_ld_abs) {
10962 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10963 return -EINVAL;
10964 }
10965 if (env->subprog_info[i].has_tail_call) {
10966 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10967 return -EINVAL;
10968 }
10969 }
10970 return 0;
10971 }
10972
10973 /* The minimum supported BTF func info size */
10974 #define MIN_BPF_FUNCINFO_SIZE 8
10975 #define MAX_FUNCINFO_REC_SIZE 252
10976
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)10977 static int check_btf_func(struct bpf_verifier_env *env,
10978 const union bpf_attr *attr,
10979 bpfptr_t uattr)
10980 {
10981 const struct btf_type *type, *func_proto, *ret_type;
10982 u32 i, nfuncs, urec_size, min_size;
10983 u32 krec_size = sizeof(struct bpf_func_info);
10984 struct bpf_func_info *krecord;
10985 struct bpf_func_info_aux *info_aux = NULL;
10986 struct bpf_prog *prog;
10987 const struct btf *btf;
10988 bpfptr_t urecord;
10989 u32 prev_offset = 0;
10990 bool scalar_return;
10991 int ret = -ENOMEM;
10992
10993 nfuncs = attr->func_info_cnt;
10994 if (!nfuncs) {
10995 if (check_abnormal_return(env))
10996 return -EINVAL;
10997 return 0;
10998 }
10999
11000 if (nfuncs != env->subprog_cnt) {
11001 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
11002 return -EINVAL;
11003 }
11004
11005 urec_size = attr->func_info_rec_size;
11006 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
11007 urec_size > MAX_FUNCINFO_REC_SIZE ||
11008 urec_size % sizeof(u32)) {
11009 verbose(env, "invalid func info rec size %u\n", urec_size);
11010 return -EINVAL;
11011 }
11012
11013 prog = env->prog;
11014 btf = prog->aux->btf;
11015
11016 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
11017 min_size = min_t(u32, krec_size, urec_size);
11018
11019 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
11020 if (!krecord)
11021 return -ENOMEM;
11022 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
11023 if (!info_aux)
11024 goto err_free;
11025
11026 for (i = 0; i < nfuncs; i++) {
11027 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
11028 if (ret) {
11029 if (ret == -E2BIG) {
11030 verbose(env, "nonzero tailing record in func info");
11031 /* set the size kernel expects so loader can zero
11032 * out the rest of the record.
11033 */
11034 if (copy_to_bpfptr_offset(uattr,
11035 offsetof(union bpf_attr, func_info_rec_size),
11036 &min_size, sizeof(min_size)))
11037 ret = -EFAULT;
11038 }
11039 goto err_free;
11040 }
11041
11042 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
11043 ret = -EFAULT;
11044 goto err_free;
11045 }
11046
11047 /* check insn_off */
11048 ret = -EINVAL;
11049 if (i == 0) {
11050 if (krecord[i].insn_off) {
11051 verbose(env,
11052 "nonzero insn_off %u for the first func info record",
11053 krecord[i].insn_off);
11054 goto err_free;
11055 }
11056 } else if (krecord[i].insn_off <= prev_offset) {
11057 verbose(env,
11058 "same or smaller insn offset (%u) than previous func info record (%u)",
11059 krecord[i].insn_off, prev_offset);
11060 goto err_free;
11061 }
11062
11063 if (env->subprog_info[i].start != krecord[i].insn_off) {
11064 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
11065 goto err_free;
11066 }
11067
11068 /* check type_id */
11069 type = btf_type_by_id(btf, krecord[i].type_id);
11070 if (!type || !btf_type_is_func(type)) {
11071 verbose(env, "invalid type id %d in func info",
11072 krecord[i].type_id);
11073 goto err_free;
11074 }
11075 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
11076
11077 func_proto = btf_type_by_id(btf, type->type);
11078 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11079 /* btf_func_check() already verified it during BTF load */
11080 goto err_free;
11081 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11082 scalar_return =
11083 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
11084 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11085 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11086 goto err_free;
11087 }
11088 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11089 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11090 goto err_free;
11091 }
11092
11093 prev_offset = krecord[i].insn_off;
11094 bpfptr_add(&urecord, urec_size);
11095 }
11096
11097 prog->aux->func_info = krecord;
11098 prog->aux->func_info_cnt = nfuncs;
11099 prog->aux->func_info_aux = info_aux;
11100 return 0;
11101
11102 err_free:
11103 kvfree(krecord);
11104 kfree(info_aux);
11105 return ret;
11106 }
11107
adjust_btf_func(struct bpf_verifier_env * env)11108 static void adjust_btf_func(struct bpf_verifier_env *env)
11109 {
11110 struct bpf_prog_aux *aux = env->prog->aux;
11111 int i;
11112
11113 if (!aux->func_info)
11114 return;
11115
11116 for (i = 0; i < env->subprog_cnt; i++)
11117 aux->func_info[i].insn_off = env->subprog_info[i].start;
11118 }
11119
11120 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
11121 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
11122
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11123 static int check_btf_line(struct bpf_verifier_env *env,
11124 const union bpf_attr *attr,
11125 bpfptr_t uattr)
11126 {
11127 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11128 struct bpf_subprog_info *sub;
11129 struct bpf_line_info *linfo;
11130 struct bpf_prog *prog;
11131 const struct btf *btf;
11132 bpfptr_t ulinfo;
11133 int err;
11134
11135 nr_linfo = attr->line_info_cnt;
11136 if (!nr_linfo)
11137 return 0;
11138 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11139 return -EINVAL;
11140
11141 rec_size = attr->line_info_rec_size;
11142 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11143 rec_size > MAX_LINEINFO_REC_SIZE ||
11144 rec_size & (sizeof(u32) - 1))
11145 return -EINVAL;
11146
11147 /* Need to zero it in case the userspace may
11148 * pass in a smaller bpf_line_info object.
11149 */
11150 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11151 GFP_KERNEL | __GFP_NOWARN);
11152 if (!linfo)
11153 return -ENOMEM;
11154
11155 prog = env->prog;
11156 btf = prog->aux->btf;
11157
11158 s = 0;
11159 sub = env->subprog_info;
11160 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11161 expected_size = sizeof(struct bpf_line_info);
11162 ncopy = min_t(u32, expected_size, rec_size);
11163 for (i = 0; i < nr_linfo; i++) {
11164 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11165 if (err) {
11166 if (err == -E2BIG) {
11167 verbose(env, "nonzero tailing record in line_info");
11168 if (copy_to_bpfptr_offset(uattr,
11169 offsetof(union bpf_attr, line_info_rec_size),
11170 &expected_size, sizeof(expected_size)))
11171 err = -EFAULT;
11172 }
11173 goto err_free;
11174 }
11175
11176 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11177 err = -EFAULT;
11178 goto err_free;
11179 }
11180
11181 /*
11182 * Check insn_off to ensure
11183 * 1) strictly increasing AND
11184 * 2) bounded by prog->len
11185 *
11186 * The linfo[0].insn_off == 0 check logically falls into
11187 * the later "missing bpf_line_info for func..." case
11188 * because the first linfo[0].insn_off must be the
11189 * first sub also and the first sub must have
11190 * subprog_info[0].start == 0.
11191 */
11192 if ((i && linfo[i].insn_off <= prev_offset) ||
11193 linfo[i].insn_off >= prog->len) {
11194 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11195 i, linfo[i].insn_off, prev_offset,
11196 prog->len);
11197 err = -EINVAL;
11198 goto err_free;
11199 }
11200
11201 if (!prog->insnsi[linfo[i].insn_off].code) {
11202 verbose(env,
11203 "Invalid insn code at line_info[%u].insn_off\n",
11204 i);
11205 err = -EINVAL;
11206 goto err_free;
11207 }
11208
11209 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11210 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11211 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11212 err = -EINVAL;
11213 goto err_free;
11214 }
11215
11216 if (s != env->subprog_cnt) {
11217 if (linfo[i].insn_off == sub[s].start) {
11218 sub[s].linfo_idx = i;
11219 s++;
11220 } else if (sub[s].start < linfo[i].insn_off) {
11221 verbose(env, "missing bpf_line_info for func#%u\n", s);
11222 err = -EINVAL;
11223 goto err_free;
11224 }
11225 }
11226
11227 prev_offset = linfo[i].insn_off;
11228 bpfptr_add(&ulinfo, rec_size);
11229 }
11230
11231 if (s != env->subprog_cnt) {
11232 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11233 env->subprog_cnt - s, s);
11234 err = -EINVAL;
11235 goto err_free;
11236 }
11237
11238 prog->aux->linfo = linfo;
11239 prog->aux->nr_linfo = nr_linfo;
11240
11241 return 0;
11242
11243 err_free:
11244 kvfree(linfo);
11245 return err;
11246 }
11247
11248 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
11249 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
11250
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11251 static int check_core_relo(struct bpf_verifier_env *env,
11252 const union bpf_attr *attr,
11253 bpfptr_t uattr)
11254 {
11255 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11256 struct bpf_core_relo core_relo = {};
11257 struct bpf_prog *prog = env->prog;
11258 const struct btf *btf = prog->aux->btf;
11259 struct bpf_core_ctx ctx = {
11260 .log = &env->log,
11261 .btf = btf,
11262 };
11263 bpfptr_t u_core_relo;
11264 int err;
11265
11266 nr_core_relo = attr->core_relo_cnt;
11267 if (!nr_core_relo)
11268 return 0;
11269 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11270 return -EINVAL;
11271
11272 rec_size = attr->core_relo_rec_size;
11273 if (rec_size < MIN_CORE_RELO_SIZE ||
11274 rec_size > MAX_CORE_RELO_SIZE ||
11275 rec_size % sizeof(u32))
11276 return -EINVAL;
11277
11278 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11279 expected_size = sizeof(struct bpf_core_relo);
11280 ncopy = min_t(u32, expected_size, rec_size);
11281
11282 /* Unlike func_info and line_info, copy and apply each CO-RE
11283 * relocation record one at a time.
11284 */
11285 for (i = 0; i < nr_core_relo; i++) {
11286 /* future proofing when sizeof(bpf_core_relo) changes */
11287 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11288 if (err) {
11289 if (err == -E2BIG) {
11290 verbose(env, "nonzero tailing record in core_relo");
11291 if (copy_to_bpfptr_offset(uattr,
11292 offsetof(union bpf_attr, core_relo_rec_size),
11293 &expected_size, sizeof(expected_size)))
11294 err = -EFAULT;
11295 }
11296 break;
11297 }
11298
11299 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11300 err = -EFAULT;
11301 break;
11302 }
11303
11304 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11305 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11306 i, core_relo.insn_off, prog->len);
11307 err = -EINVAL;
11308 break;
11309 }
11310
11311 err = bpf_core_apply(&ctx, &core_relo, i,
11312 &prog->insnsi[core_relo.insn_off / 8]);
11313 if (err)
11314 break;
11315 bpfptr_add(&u_core_relo, rec_size);
11316 }
11317 return err;
11318 }
11319
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11320 static int check_btf_info(struct bpf_verifier_env *env,
11321 const union bpf_attr *attr,
11322 bpfptr_t uattr)
11323 {
11324 struct btf *btf;
11325 int err;
11326
11327 if (!attr->func_info_cnt && !attr->line_info_cnt) {
11328 if (check_abnormal_return(env))
11329 return -EINVAL;
11330 return 0;
11331 }
11332
11333 btf = btf_get_by_fd(attr->prog_btf_fd);
11334 if (IS_ERR(btf))
11335 return PTR_ERR(btf);
11336 if (btf_is_kernel(btf)) {
11337 btf_put(btf);
11338 return -EACCES;
11339 }
11340 env->prog->aux->btf = btf;
11341
11342 err = check_btf_func(env, attr, uattr);
11343 if (err)
11344 return err;
11345
11346 err = check_btf_line(env, attr, uattr);
11347 if (err)
11348 return err;
11349
11350 err = check_core_relo(env, attr, uattr);
11351 if (err)
11352 return err;
11353
11354 return 0;
11355 }
11356
11357 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)11358 static bool range_within(struct bpf_reg_state *old,
11359 struct bpf_reg_state *cur)
11360 {
11361 return old->umin_value <= cur->umin_value &&
11362 old->umax_value >= cur->umax_value &&
11363 old->smin_value <= cur->smin_value &&
11364 old->smax_value >= cur->smax_value &&
11365 old->u32_min_value <= cur->u32_min_value &&
11366 old->u32_max_value >= cur->u32_max_value &&
11367 old->s32_min_value <= cur->s32_min_value &&
11368 old->s32_max_value >= cur->s32_max_value;
11369 }
11370
11371 /* If in the old state two registers had the same id, then they need to have
11372 * the same id in the new state as well. But that id could be different from
11373 * the old state, so we need to track the mapping from old to new ids.
11374 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11375 * regs with old id 5 must also have new id 9 for the new state to be safe. But
11376 * regs with a different old id could still have new id 9, we don't care about
11377 * that.
11378 * So we look through our idmap to see if this old id has been seen before. If
11379 * so, we require the new id to match; otherwise, we add the id pair to the map.
11380 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)11381 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11382 {
11383 unsigned int i;
11384
11385 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11386 if (!idmap[i].old) {
11387 /* Reached an empty slot; haven't seen this id before */
11388 idmap[i].old = old_id;
11389 idmap[i].cur = cur_id;
11390 return true;
11391 }
11392 if (idmap[i].old == old_id)
11393 return idmap[i].cur == cur_id;
11394 }
11395 /* We ran out of idmap slots, which should be impossible */
11396 WARN_ON_ONCE(1);
11397 return false;
11398 }
11399
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)11400 static void clean_func_state(struct bpf_verifier_env *env,
11401 struct bpf_func_state *st)
11402 {
11403 enum bpf_reg_liveness live;
11404 int i, j;
11405
11406 for (i = 0; i < BPF_REG_FP; i++) {
11407 live = st->regs[i].live;
11408 /* liveness must not touch this register anymore */
11409 st->regs[i].live |= REG_LIVE_DONE;
11410 if (!(live & REG_LIVE_READ))
11411 /* since the register is unused, clear its state
11412 * to make further comparison simpler
11413 */
11414 __mark_reg_not_init(env, &st->regs[i]);
11415 }
11416
11417 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11418 live = st->stack[i].spilled_ptr.live;
11419 /* liveness must not touch this stack slot anymore */
11420 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11421 if (!(live & REG_LIVE_READ)) {
11422 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11423 for (j = 0; j < BPF_REG_SIZE; j++)
11424 st->stack[i].slot_type[j] = STACK_INVALID;
11425 }
11426 }
11427 }
11428
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)11429 static void clean_verifier_state(struct bpf_verifier_env *env,
11430 struct bpf_verifier_state *st)
11431 {
11432 int i;
11433
11434 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11435 /* all regs in this state in all frames were already marked */
11436 return;
11437
11438 for (i = 0; i <= st->curframe; i++)
11439 clean_func_state(env, st->frame[i]);
11440 }
11441
11442 /* the parentage chains form a tree.
11443 * the verifier states are added to state lists at given insn and
11444 * pushed into state stack for future exploration.
11445 * when the verifier reaches bpf_exit insn some of the verifer states
11446 * stored in the state lists have their final liveness state already,
11447 * but a lot of states will get revised from liveness point of view when
11448 * the verifier explores other branches.
11449 * Example:
11450 * 1: r0 = 1
11451 * 2: if r1 == 100 goto pc+1
11452 * 3: r0 = 2
11453 * 4: exit
11454 * when the verifier reaches exit insn the register r0 in the state list of
11455 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11456 * of insn 2 and goes exploring further. At the insn 4 it will walk the
11457 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11458 *
11459 * Since the verifier pushes the branch states as it sees them while exploring
11460 * the program the condition of walking the branch instruction for the second
11461 * time means that all states below this branch were already explored and
11462 * their final liveness marks are already propagated.
11463 * Hence when the verifier completes the search of state list in is_state_visited()
11464 * we can call this clean_live_states() function to mark all liveness states
11465 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11466 * will not be used.
11467 * This function also clears the registers and stack for states that !READ
11468 * to simplify state merging.
11469 *
11470 * Important note here that walking the same branch instruction in the callee
11471 * doesn't meant that the states are DONE. The verifier has to compare
11472 * the callsites
11473 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)11474 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11475 struct bpf_verifier_state *cur)
11476 {
11477 struct bpf_verifier_state_list *sl;
11478 int i;
11479
11480 sl = *explored_state(env, insn);
11481 while (sl) {
11482 if (sl->state.branches)
11483 goto next;
11484 if (sl->state.insn_idx != insn ||
11485 sl->state.curframe != cur->curframe)
11486 goto next;
11487 for (i = 0; i <= cur->curframe; i++)
11488 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11489 goto next;
11490 clean_verifier_state(env, &sl->state);
11491 next:
11492 sl = sl->next;
11493 }
11494 }
11495
11496 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)11497 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11498 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11499 {
11500 bool equal;
11501
11502 if (!(rold->live & REG_LIVE_READ))
11503 /* explored state didn't use this */
11504 return true;
11505
11506 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11507
11508 if (rold->type == PTR_TO_STACK)
11509 /* two stack pointers are equal only if they're pointing to
11510 * the same stack frame, since fp-8 in foo != fp-8 in bar
11511 */
11512 return equal && rold->frameno == rcur->frameno;
11513
11514 if (equal)
11515 return true;
11516
11517 if (rold->type == NOT_INIT)
11518 /* explored state can't have used this */
11519 return true;
11520 if (rcur->type == NOT_INIT)
11521 return false;
11522 switch (base_type(rold->type)) {
11523 case SCALAR_VALUE:
11524 if (env->explore_alu_limits)
11525 return false;
11526 if (rcur->type == SCALAR_VALUE) {
11527 if (!rold->precise && !rcur->precise)
11528 return true;
11529 /* new val must satisfy old val knowledge */
11530 return range_within(rold, rcur) &&
11531 tnum_in(rold->var_off, rcur->var_off);
11532 } else {
11533 /* We're trying to use a pointer in place of a scalar.
11534 * Even if the scalar was unbounded, this could lead to
11535 * pointer leaks because scalars are allowed to leak
11536 * while pointers are not. We could make this safe in
11537 * special cases if root is calling us, but it's
11538 * probably not worth the hassle.
11539 */
11540 return false;
11541 }
11542 case PTR_TO_MAP_KEY:
11543 case PTR_TO_MAP_VALUE:
11544 /* a PTR_TO_MAP_VALUE could be safe to use as a
11545 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11546 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11547 * checked, doing so could have affected others with the same
11548 * id, and we can't check for that because we lost the id when
11549 * we converted to a PTR_TO_MAP_VALUE.
11550 */
11551 if (type_may_be_null(rold->type)) {
11552 if (!type_may_be_null(rcur->type))
11553 return false;
11554 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11555 return false;
11556 /* Check our ids match any regs they're supposed to */
11557 return check_ids(rold->id, rcur->id, idmap);
11558 }
11559
11560 /* If the new min/max/var_off satisfy the old ones and
11561 * everything else matches, we are OK.
11562 * 'id' is not compared, since it's only used for maps with
11563 * bpf_spin_lock inside map element and in such cases if
11564 * the rest of the prog is valid for one map element then
11565 * it's valid for all map elements regardless of the key
11566 * used in bpf_map_lookup()
11567 */
11568 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11569 range_within(rold, rcur) &&
11570 tnum_in(rold->var_off, rcur->var_off);
11571 case PTR_TO_PACKET_META:
11572 case PTR_TO_PACKET:
11573 if (rcur->type != rold->type)
11574 return false;
11575 /* We must have at least as much range as the old ptr
11576 * did, so that any accesses which were safe before are
11577 * still safe. This is true even if old range < old off,
11578 * since someone could have accessed through (ptr - k), or
11579 * even done ptr -= k in a register, to get a safe access.
11580 */
11581 if (rold->range > rcur->range)
11582 return false;
11583 /* If the offsets don't match, we can't trust our alignment;
11584 * nor can we be sure that we won't fall out of range.
11585 */
11586 if (rold->off != rcur->off)
11587 return false;
11588 /* id relations must be preserved */
11589 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11590 return false;
11591 /* new val must satisfy old val knowledge */
11592 return range_within(rold, rcur) &&
11593 tnum_in(rold->var_off, rcur->var_off);
11594 case PTR_TO_CTX:
11595 case CONST_PTR_TO_MAP:
11596 case PTR_TO_PACKET_END:
11597 case PTR_TO_FLOW_KEYS:
11598 case PTR_TO_SOCKET:
11599 case PTR_TO_SOCK_COMMON:
11600 case PTR_TO_TCP_SOCK:
11601 case PTR_TO_XDP_SOCK:
11602 /* Only valid matches are exact, which memcmp() above
11603 * would have accepted
11604 */
11605 default:
11606 /* Don't know what's going on, just say it's not safe */
11607 return false;
11608 }
11609
11610 /* Shouldn't get here; if we do, say it's not safe */
11611 WARN_ON_ONCE(1);
11612 return false;
11613 }
11614
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)11615 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11616 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11617 {
11618 int i, spi;
11619
11620 /* walk slots of the explored stack and ignore any additional
11621 * slots in the current stack, since explored(safe) state
11622 * didn't use them
11623 */
11624 for (i = 0; i < old->allocated_stack; i++) {
11625 spi = i / BPF_REG_SIZE;
11626
11627 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11628 i += BPF_REG_SIZE - 1;
11629 /* explored state didn't use this */
11630 continue;
11631 }
11632
11633 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11634 continue;
11635
11636 /* explored stack has more populated slots than current stack
11637 * and these slots were used
11638 */
11639 if (i >= cur->allocated_stack)
11640 return false;
11641
11642 /* if old state was safe with misc data in the stack
11643 * it will be safe with zero-initialized stack.
11644 * The opposite is not true
11645 */
11646 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11647 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11648 continue;
11649 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11650 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11651 /* Ex: old explored (safe) state has STACK_SPILL in
11652 * this stack slot, but current has STACK_MISC ->
11653 * this verifier states are not equivalent,
11654 * return false to continue verification of this path
11655 */
11656 return false;
11657 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11658 continue;
11659 if (!is_spilled_reg(&old->stack[spi]))
11660 continue;
11661 if (!regsafe(env, &old->stack[spi].spilled_ptr,
11662 &cur->stack[spi].spilled_ptr, idmap))
11663 /* when explored and current stack slot are both storing
11664 * spilled registers, check that stored pointers types
11665 * are the same as well.
11666 * Ex: explored safe path could have stored
11667 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11668 * but current path has stored:
11669 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11670 * such verifier states are not equivalent.
11671 * return false to continue verification of this path
11672 */
11673 return false;
11674 }
11675 return true;
11676 }
11677
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)11678 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11679 {
11680 if (old->acquired_refs != cur->acquired_refs)
11681 return false;
11682 return !memcmp(old->refs, cur->refs,
11683 sizeof(*old->refs) * old->acquired_refs);
11684 }
11685
11686 /* compare two verifier states
11687 *
11688 * all states stored in state_list are known to be valid, since
11689 * verifier reached 'bpf_exit' instruction through them
11690 *
11691 * this function is called when verifier exploring different branches of
11692 * execution popped from the state stack. If it sees an old state that has
11693 * more strict register state and more strict stack state then this execution
11694 * branch doesn't need to be explored further, since verifier already
11695 * concluded that more strict state leads to valid finish.
11696 *
11697 * Therefore two states are equivalent if register state is more conservative
11698 * and explored stack state is more conservative than the current one.
11699 * Example:
11700 * explored current
11701 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11702 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11703 *
11704 * In other words if current stack state (one being explored) has more
11705 * valid slots than old one that already passed validation, it means
11706 * the verifier can stop exploring and conclude that current state is valid too
11707 *
11708 * Similarly with registers. If explored state has register type as invalid
11709 * whereas register type in current state is meaningful, it means that
11710 * the current state will reach 'bpf_exit' instruction safely
11711 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)11712 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11713 struct bpf_func_state *cur)
11714 {
11715 int i;
11716
11717 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11718 for (i = 0; i < MAX_BPF_REG; i++)
11719 if (!regsafe(env, &old->regs[i], &cur->regs[i],
11720 env->idmap_scratch))
11721 return false;
11722
11723 if (!stacksafe(env, old, cur, env->idmap_scratch))
11724 return false;
11725
11726 if (!refsafe(old, cur))
11727 return false;
11728
11729 return true;
11730 }
11731
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)11732 static bool states_equal(struct bpf_verifier_env *env,
11733 struct bpf_verifier_state *old,
11734 struct bpf_verifier_state *cur)
11735 {
11736 int i;
11737
11738 if (old->curframe != cur->curframe)
11739 return false;
11740
11741 /* Verification state from speculative execution simulation
11742 * must never prune a non-speculative execution one.
11743 */
11744 if (old->speculative && !cur->speculative)
11745 return false;
11746
11747 if (old->active_spin_lock != cur->active_spin_lock)
11748 return false;
11749
11750 /* for states to be equal callsites have to be the same
11751 * and all frame states need to be equivalent
11752 */
11753 for (i = 0; i <= old->curframe; i++) {
11754 if (old->frame[i]->callsite != cur->frame[i]->callsite)
11755 return false;
11756 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11757 return false;
11758 }
11759 return true;
11760 }
11761
11762 /* Return 0 if no propagation happened. Return negative error code if error
11763 * happened. Otherwise, return the propagated bit.
11764 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)11765 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11766 struct bpf_reg_state *reg,
11767 struct bpf_reg_state *parent_reg)
11768 {
11769 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11770 u8 flag = reg->live & REG_LIVE_READ;
11771 int err;
11772
11773 /* When comes here, read flags of PARENT_REG or REG could be any of
11774 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11775 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11776 */
11777 if (parent_flag == REG_LIVE_READ64 ||
11778 /* Or if there is no read flag from REG. */
11779 !flag ||
11780 /* Or if the read flag from REG is the same as PARENT_REG. */
11781 parent_flag == flag)
11782 return 0;
11783
11784 err = mark_reg_read(env, reg, parent_reg, flag);
11785 if (err)
11786 return err;
11787
11788 return flag;
11789 }
11790
11791 /* A write screens off any subsequent reads; but write marks come from the
11792 * straight-line code between a state and its parent. When we arrive at an
11793 * equivalent state (jump target or such) we didn't arrive by the straight-line
11794 * code, so read marks in the state must propagate to the parent regardless
11795 * of the state's write marks. That's what 'parent == state->parent' comparison
11796 * in mark_reg_read() is for.
11797 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)11798 static int propagate_liveness(struct bpf_verifier_env *env,
11799 const struct bpf_verifier_state *vstate,
11800 struct bpf_verifier_state *vparent)
11801 {
11802 struct bpf_reg_state *state_reg, *parent_reg;
11803 struct bpf_func_state *state, *parent;
11804 int i, frame, err = 0;
11805
11806 if (vparent->curframe != vstate->curframe) {
11807 WARN(1, "propagate_live: parent frame %d current frame %d\n",
11808 vparent->curframe, vstate->curframe);
11809 return -EFAULT;
11810 }
11811 /* Propagate read liveness of registers... */
11812 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11813 for (frame = 0; frame <= vstate->curframe; frame++) {
11814 parent = vparent->frame[frame];
11815 state = vstate->frame[frame];
11816 parent_reg = parent->regs;
11817 state_reg = state->regs;
11818 /* We don't need to worry about FP liveness, it's read-only */
11819 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11820 err = propagate_liveness_reg(env, &state_reg[i],
11821 &parent_reg[i]);
11822 if (err < 0)
11823 return err;
11824 if (err == REG_LIVE_READ64)
11825 mark_insn_zext(env, &parent_reg[i]);
11826 }
11827
11828 /* Propagate stack slots. */
11829 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11830 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11831 parent_reg = &parent->stack[i].spilled_ptr;
11832 state_reg = &state->stack[i].spilled_ptr;
11833 err = propagate_liveness_reg(env, state_reg,
11834 parent_reg);
11835 if (err < 0)
11836 return err;
11837 }
11838 }
11839 return 0;
11840 }
11841
11842 /* find precise scalars in the previous equivalent state and
11843 * propagate them into the current state
11844 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)11845 static int propagate_precision(struct bpf_verifier_env *env,
11846 const struct bpf_verifier_state *old)
11847 {
11848 struct bpf_reg_state *state_reg;
11849 struct bpf_func_state *state;
11850 int i, err = 0;
11851
11852 state = old->frame[old->curframe];
11853 state_reg = state->regs;
11854 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11855 if (state_reg->type != SCALAR_VALUE ||
11856 !state_reg->precise)
11857 continue;
11858 if (env->log.level & BPF_LOG_LEVEL2)
11859 verbose(env, "propagating r%d\n", i);
11860 err = mark_chain_precision(env, i);
11861 if (err < 0)
11862 return err;
11863 }
11864
11865 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11866 if (!is_spilled_reg(&state->stack[i]))
11867 continue;
11868 state_reg = &state->stack[i].spilled_ptr;
11869 if (state_reg->type != SCALAR_VALUE ||
11870 !state_reg->precise)
11871 continue;
11872 if (env->log.level & BPF_LOG_LEVEL2)
11873 verbose(env, "propagating fp%d\n",
11874 (-i - 1) * BPF_REG_SIZE);
11875 err = mark_chain_precision_stack(env, i);
11876 if (err < 0)
11877 return err;
11878 }
11879 return 0;
11880 }
11881
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)11882 static bool states_maybe_looping(struct bpf_verifier_state *old,
11883 struct bpf_verifier_state *cur)
11884 {
11885 struct bpf_func_state *fold, *fcur;
11886 int i, fr = cur->curframe;
11887
11888 if (old->curframe != fr)
11889 return false;
11890
11891 fold = old->frame[fr];
11892 fcur = cur->frame[fr];
11893 for (i = 0; i < MAX_BPF_REG; i++)
11894 if (memcmp(&fold->regs[i], &fcur->regs[i],
11895 offsetof(struct bpf_reg_state, parent)))
11896 return false;
11897 return true;
11898 }
11899
11900
is_state_visited(struct bpf_verifier_env * env,int insn_idx)11901 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11902 {
11903 struct bpf_verifier_state_list *new_sl;
11904 struct bpf_verifier_state_list *sl, **pprev;
11905 struct bpf_verifier_state *cur = env->cur_state, *new;
11906 int i, j, err, states_cnt = 0;
11907 bool add_new_state = env->test_state_freq ? true : false;
11908
11909 cur->last_insn_idx = env->prev_insn_idx;
11910 if (!env->insn_aux_data[insn_idx].prune_point)
11911 /* this 'insn_idx' instruction wasn't marked, so we will not
11912 * be doing state search here
11913 */
11914 return 0;
11915
11916 /* bpf progs typically have pruning point every 4 instructions
11917 * http://vger.kernel.org/bpfconf2019.html#session-1
11918 * Do not add new state for future pruning if the verifier hasn't seen
11919 * at least 2 jumps and at least 8 instructions.
11920 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11921 * In tests that amounts to up to 50% reduction into total verifier
11922 * memory consumption and 20% verifier time speedup.
11923 */
11924 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11925 env->insn_processed - env->prev_insn_processed >= 8)
11926 add_new_state = true;
11927
11928 pprev = explored_state(env, insn_idx);
11929 sl = *pprev;
11930
11931 clean_live_states(env, insn_idx, cur);
11932
11933 while (sl) {
11934 states_cnt++;
11935 if (sl->state.insn_idx != insn_idx)
11936 goto next;
11937
11938 if (sl->state.branches) {
11939 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11940
11941 if (frame->in_async_callback_fn &&
11942 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11943 /* Different async_entry_cnt means that the verifier is
11944 * processing another entry into async callback.
11945 * Seeing the same state is not an indication of infinite
11946 * loop or infinite recursion.
11947 * But finding the same state doesn't mean that it's safe
11948 * to stop processing the current state. The previous state
11949 * hasn't yet reached bpf_exit, since state.branches > 0.
11950 * Checking in_async_callback_fn alone is not enough either.
11951 * Since the verifier still needs to catch infinite loops
11952 * inside async callbacks.
11953 */
11954 } else if (states_maybe_looping(&sl->state, cur) &&
11955 states_equal(env, &sl->state, cur)) {
11956 verbose_linfo(env, insn_idx, "; ");
11957 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11958 return -EINVAL;
11959 }
11960 /* if the verifier is processing a loop, avoid adding new state
11961 * too often, since different loop iterations have distinct
11962 * states and may not help future pruning.
11963 * This threshold shouldn't be too low to make sure that
11964 * a loop with large bound will be rejected quickly.
11965 * The most abusive loop will be:
11966 * r1 += 1
11967 * if r1 < 1000000 goto pc-2
11968 * 1M insn_procssed limit / 100 == 10k peak states.
11969 * This threshold shouldn't be too high either, since states
11970 * at the end of the loop are likely to be useful in pruning.
11971 */
11972 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11973 env->insn_processed - env->prev_insn_processed < 100)
11974 add_new_state = false;
11975 goto miss;
11976 }
11977 if (states_equal(env, &sl->state, cur)) {
11978 sl->hit_cnt++;
11979 /* reached equivalent register/stack state,
11980 * prune the search.
11981 * Registers read by the continuation are read by us.
11982 * If we have any write marks in env->cur_state, they
11983 * will prevent corresponding reads in the continuation
11984 * from reaching our parent (an explored_state). Our
11985 * own state will get the read marks recorded, but
11986 * they'll be immediately forgotten as we're pruning
11987 * this state and will pop a new one.
11988 */
11989 err = propagate_liveness(env, &sl->state, cur);
11990
11991 /* if previous state reached the exit with precision and
11992 * current state is equivalent to it (except precsion marks)
11993 * the precision needs to be propagated back in
11994 * the current state.
11995 */
11996 err = err ? : push_jmp_history(env, cur);
11997 err = err ? : propagate_precision(env, &sl->state);
11998 if (err)
11999 return err;
12000 return 1;
12001 }
12002 miss:
12003 /* when new state is not going to be added do not increase miss count.
12004 * Otherwise several loop iterations will remove the state
12005 * recorded earlier. The goal of these heuristics is to have
12006 * states from some iterations of the loop (some in the beginning
12007 * and some at the end) to help pruning.
12008 */
12009 if (add_new_state)
12010 sl->miss_cnt++;
12011 /* heuristic to determine whether this state is beneficial
12012 * to keep checking from state equivalence point of view.
12013 * Higher numbers increase max_states_per_insn and verification time,
12014 * but do not meaningfully decrease insn_processed.
12015 */
12016 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
12017 /* the state is unlikely to be useful. Remove it to
12018 * speed up verification
12019 */
12020 *pprev = sl->next;
12021 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
12022 u32 br = sl->state.branches;
12023
12024 WARN_ONCE(br,
12025 "BUG live_done but branches_to_explore %d\n",
12026 br);
12027 free_verifier_state(&sl->state, false);
12028 kfree(sl);
12029 env->peak_states--;
12030 } else {
12031 /* cannot free this state, since parentage chain may
12032 * walk it later. Add it for free_list instead to
12033 * be freed at the end of verification
12034 */
12035 sl->next = env->free_list;
12036 env->free_list = sl;
12037 }
12038 sl = *pprev;
12039 continue;
12040 }
12041 next:
12042 pprev = &sl->next;
12043 sl = *pprev;
12044 }
12045
12046 if (env->max_states_per_insn < states_cnt)
12047 env->max_states_per_insn = states_cnt;
12048
12049 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
12050 return push_jmp_history(env, cur);
12051
12052 if (!add_new_state)
12053 return push_jmp_history(env, cur);
12054
12055 /* There were no equivalent states, remember the current one.
12056 * Technically the current state is not proven to be safe yet,
12057 * but it will either reach outer most bpf_exit (which means it's safe)
12058 * or it will be rejected. When there are no loops the verifier won't be
12059 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
12060 * again on the way to bpf_exit.
12061 * When looping the sl->state.branches will be > 0 and this state
12062 * will not be considered for equivalence until branches == 0.
12063 */
12064 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
12065 if (!new_sl)
12066 return -ENOMEM;
12067 env->total_states++;
12068 env->peak_states++;
12069 env->prev_jmps_processed = env->jmps_processed;
12070 env->prev_insn_processed = env->insn_processed;
12071
12072 /* add new state to the head of linked list */
12073 new = &new_sl->state;
12074 err = copy_verifier_state(new, cur);
12075 if (err) {
12076 free_verifier_state(new, false);
12077 kfree(new_sl);
12078 return err;
12079 }
12080 new->insn_idx = insn_idx;
12081 WARN_ONCE(new->branches != 1,
12082 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
12083
12084 cur->parent = new;
12085 cur->first_insn_idx = insn_idx;
12086 clear_jmp_history(cur);
12087 new_sl->next = *explored_state(env, insn_idx);
12088 *explored_state(env, insn_idx) = new_sl;
12089 /* connect new state to parentage chain. Current frame needs all
12090 * registers connected. Only r6 - r9 of the callers are alive (pushed
12091 * to the stack implicitly by JITs) so in callers' frames connect just
12092 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12093 * the state of the call instruction (with WRITTEN set), and r0 comes
12094 * from callee with its full parentage chain, anyway.
12095 */
12096 /* clear write marks in current state: the writes we did are not writes
12097 * our child did, so they don't screen off its reads from us.
12098 * (There are no read marks in current state, because reads always mark
12099 * their parent and current state never has children yet. Only
12100 * explored_states can get read marks.)
12101 */
12102 for (j = 0; j <= cur->curframe; j++) {
12103 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12104 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12105 for (i = 0; i < BPF_REG_FP; i++)
12106 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12107 }
12108
12109 /* all stack frames are accessible from callee, clear them all */
12110 for (j = 0; j <= cur->curframe; j++) {
12111 struct bpf_func_state *frame = cur->frame[j];
12112 struct bpf_func_state *newframe = new->frame[j];
12113
12114 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12115 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12116 frame->stack[i].spilled_ptr.parent =
12117 &newframe->stack[i].spilled_ptr;
12118 }
12119 }
12120 return 0;
12121 }
12122
12123 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)12124 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12125 {
12126 switch (base_type(type)) {
12127 case PTR_TO_CTX:
12128 case PTR_TO_SOCKET:
12129 case PTR_TO_SOCK_COMMON:
12130 case PTR_TO_TCP_SOCK:
12131 case PTR_TO_XDP_SOCK:
12132 case PTR_TO_BTF_ID:
12133 return false;
12134 default:
12135 return true;
12136 }
12137 }
12138
12139 /* If an instruction was previously used with particular pointer types, then we
12140 * need to be careful to avoid cases such as the below, where it may be ok
12141 * for one branch accessing the pointer, but not ok for the other branch:
12142 *
12143 * R1 = sock_ptr
12144 * goto X;
12145 * ...
12146 * R1 = some_other_valid_ptr;
12147 * goto X;
12148 * ...
12149 * R2 = *(u32 *)(R1 + 0);
12150 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)12151 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12152 {
12153 return src != prev && (!reg_type_mismatch_ok(src) ||
12154 !reg_type_mismatch_ok(prev));
12155 }
12156
do_check(struct bpf_verifier_env * env)12157 static int do_check(struct bpf_verifier_env *env)
12158 {
12159 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12160 struct bpf_verifier_state *state = env->cur_state;
12161 struct bpf_insn *insns = env->prog->insnsi;
12162 struct bpf_reg_state *regs;
12163 int insn_cnt = env->prog->len;
12164 bool do_print_state = false;
12165 int prev_insn_idx = -1;
12166
12167 for (;;) {
12168 struct bpf_insn *insn;
12169 u8 class;
12170 int err;
12171
12172 env->prev_insn_idx = prev_insn_idx;
12173 if (env->insn_idx >= insn_cnt) {
12174 verbose(env, "invalid insn idx %d insn_cnt %d\n",
12175 env->insn_idx, insn_cnt);
12176 return -EFAULT;
12177 }
12178
12179 insn = &insns[env->insn_idx];
12180 class = BPF_CLASS(insn->code);
12181
12182 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12183 verbose(env,
12184 "BPF program is too large. Processed %d insn\n",
12185 env->insn_processed);
12186 return -E2BIG;
12187 }
12188
12189 err = is_state_visited(env, env->insn_idx);
12190 if (err < 0)
12191 return err;
12192 if (err == 1) {
12193 /* found equivalent state, can prune the search */
12194 if (env->log.level & BPF_LOG_LEVEL) {
12195 if (do_print_state)
12196 verbose(env, "\nfrom %d to %d%s: safe\n",
12197 env->prev_insn_idx, env->insn_idx,
12198 env->cur_state->speculative ?
12199 " (speculative execution)" : "");
12200 else
12201 verbose(env, "%d: safe\n", env->insn_idx);
12202 }
12203 goto process_bpf_exit;
12204 }
12205
12206 if (signal_pending(current))
12207 return -EAGAIN;
12208
12209 if (need_resched())
12210 cond_resched();
12211
12212 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12213 verbose(env, "\nfrom %d to %d%s:",
12214 env->prev_insn_idx, env->insn_idx,
12215 env->cur_state->speculative ?
12216 " (speculative execution)" : "");
12217 print_verifier_state(env, state->frame[state->curframe], true);
12218 do_print_state = false;
12219 }
12220
12221 if (env->log.level & BPF_LOG_LEVEL) {
12222 const struct bpf_insn_cbs cbs = {
12223 .cb_call = disasm_kfunc_name,
12224 .cb_print = verbose,
12225 .private_data = env,
12226 };
12227
12228 if (verifier_state_scratched(env))
12229 print_insn_state(env, state->frame[state->curframe]);
12230
12231 verbose_linfo(env, env->insn_idx, "; ");
12232 env->prev_log_len = env->log.len_used;
12233 verbose(env, "%d: ", env->insn_idx);
12234 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12235 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12236 env->prev_log_len = env->log.len_used;
12237 }
12238
12239 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12240 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12241 env->prev_insn_idx);
12242 if (err)
12243 return err;
12244 }
12245
12246 regs = cur_regs(env);
12247 sanitize_mark_insn_seen(env);
12248 prev_insn_idx = env->insn_idx;
12249
12250 if (class == BPF_ALU || class == BPF_ALU64) {
12251 err = check_alu_op(env, insn);
12252 if (err)
12253 return err;
12254
12255 } else if (class == BPF_LDX) {
12256 enum bpf_reg_type *prev_src_type, src_reg_type;
12257
12258 /* check for reserved fields is already done */
12259
12260 /* check src operand */
12261 err = check_reg_arg(env, insn->src_reg, SRC_OP);
12262 if (err)
12263 return err;
12264
12265 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12266 if (err)
12267 return err;
12268
12269 src_reg_type = regs[insn->src_reg].type;
12270
12271 /* check that memory (src_reg + off) is readable,
12272 * the state of dst_reg will be updated by this func
12273 */
12274 err = check_mem_access(env, env->insn_idx, insn->src_reg,
12275 insn->off, BPF_SIZE(insn->code),
12276 BPF_READ, insn->dst_reg, false);
12277 if (err)
12278 return err;
12279
12280 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12281
12282 if (*prev_src_type == NOT_INIT) {
12283 /* saw a valid insn
12284 * dst_reg = *(u32 *)(src_reg + off)
12285 * save type to validate intersecting paths
12286 */
12287 *prev_src_type = src_reg_type;
12288
12289 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12290 /* ABuser program is trying to use the same insn
12291 * dst_reg = *(u32*) (src_reg + off)
12292 * with different pointer types:
12293 * src_reg == ctx in one branch and
12294 * src_reg == stack|map in some other branch.
12295 * Reject it.
12296 */
12297 verbose(env, "same insn cannot be used with different pointers\n");
12298 return -EINVAL;
12299 }
12300
12301 } else if (class == BPF_STX) {
12302 enum bpf_reg_type *prev_dst_type, dst_reg_type;
12303
12304 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12305 err = check_atomic(env, env->insn_idx, insn);
12306 if (err)
12307 return err;
12308 env->insn_idx++;
12309 continue;
12310 }
12311
12312 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12313 verbose(env, "BPF_STX uses reserved fields\n");
12314 return -EINVAL;
12315 }
12316
12317 /* check src1 operand */
12318 err = check_reg_arg(env, insn->src_reg, SRC_OP);
12319 if (err)
12320 return err;
12321 /* check src2 operand */
12322 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12323 if (err)
12324 return err;
12325
12326 dst_reg_type = regs[insn->dst_reg].type;
12327
12328 /* check that memory (dst_reg + off) is writeable */
12329 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12330 insn->off, BPF_SIZE(insn->code),
12331 BPF_WRITE, insn->src_reg, false);
12332 if (err)
12333 return err;
12334
12335 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12336
12337 if (*prev_dst_type == NOT_INIT) {
12338 *prev_dst_type = dst_reg_type;
12339 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12340 verbose(env, "same insn cannot be used with different pointers\n");
12341 return -EINVAL;
12342 }
12343
12344 } else if (class == BPF_ST) {
12345 if (BPF_MODE(insn->code) != BPF_MEM ||
12346 insn->src_reg != BPF_REG_0) {
12347 verbose(env, "BPF_ST uses reserved fields\n");
12348 return -EINVAL;
12349 }
12350 /* check src operand */
12351 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12352 if (err)
12353 return err;
12354
12355 if (is_ctx_reg(env, insn->dst_reg)) {
12356 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12357 insn->dst_reg,
12358 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12359 return -EACCES;
12360 }
12361
12362 /* check that memory (dst_reg + off) is writeable */
12363 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12364 insn->off, BPF_SIZE(insn->code),
12365 BPF_WRITE, -1, false);
12366 if (err)
12367 return err;
12368
12369 } else if (class == BPF_JMP || class == BPF_JMP32) {
12370 u8 opcode = BPF_OP(insn->code);
12371
12372 env->jmps_processed++;
12373 if (opcode == BPF_CALL) {
12374 if (BPF_SRC(insn->code) != BPF_K ||
12375 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12376 && insn->off != 0) ||
12377 (insn->src_reg != BPF_REG_0 &&
12378 insn->src_reg != BPF_PSEUDO_CALL &&
12379 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12380 insn->dst_reg != BPF_REG_0 ||
12381 class == BPF_JMP32) {
12382 verbose(env, "BPF_CALL uses reserved fields\n");
12383 return -EINVAL;
12384 }
12385
12386 if (env->cur_state->active_spin_lock &&
12387 (insn->src_reg == BPF_PSEUDO_CALL ||
12388 insn->imm != BPF_FUNC_spin_unlock)) {
12389 verbose(env, "function calls are not allowed while holding a lock\n");
12390 return -EINVAL;
12391 }
12392 if (insn->src_reg == BPF_PSEUDO_CALL)
12393 err = check_func_call(env, insn, &env->insn_idx);
12394 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12395 err = check_kfunc_call(env, insn, &env->insn_idx);
12396 else
12397 err = check_helper_call(env, insn, &env->insn_idx);
12398 if (err)
12399 return err;
12400 } else if (opcode == BPF_JA) {
12401 if (BPF_SRC(insn->code) != BPF_K ||
12402 insn->imm != 0 ||
12403 insn->src_reg != BPF_REG_0 ||
12404 insn->dst_reg != BPF_REG_0 ||
12405 class == BPF_JMP32) {
12406 verbose(env, "BPF_JA uses reserved fields\n");
12407 return -EINVAL;
12408 }
12409
12410 env->insn_idx += insn->off + 1;
12411 continue;
12412
12413 } else if (opcode == BPF_EXIT) {
12414 if (BPF_SRC(insn->code) != BPF_K ||
12415 insn->imm != 0 ||
12416 insn->src_reg != BPF_REG_0 ||
12417 insn->dst_reg != BPF_REG_0 ||
12418 class == BPF_JMP32) {
12419 verbose(env, "BPF_EXIT uses reserved fields\n");
12420 return -EINVAL;
12421 }
12422
12423 if (env->cur_state->active_spin_lock) {
12424 verbose(env, "bpf_spin_unlock is missing\n");
12425 return -EINVAL;
12426 }
12427
12428 /* We must do check_reference_leak here before
12429 * prepare_func_exit to handle the case when
12430 * state->curframe > 0, it may be a callback
12431 * function, for which reference_state must
12432 * match caller reference state when it exits.
12433 */
12434 err = check_reference_leak(env);
12435 if (err)
12436 return err;
12437
12438 if (state->curframe) {
12439 /* exit from nested function */
12440 err = prepare_func_exit(env, &env->insn_idx);
12441 if (err)
12442 return err;
12443 do_print_state = true;
12444 continue;
12445 }
12446
12447 err = check_return_code(env);
12448 if (err)
12449 return err;
12450 process_bpf_exit:
12451 mark_verifier_state_scratched(env);
12452 update_branch_counts(env, env->cur_state);
12453 err = pop_stack(env, &prev_insn_idx,
12454 &env->insn_idx, pop_log);
12455 if (err < 0) {
12456 if (err != -ENOENT)
12457 return err;
12458 break;
12459 } else {
12460 do_print_state = true;
12461 continue;
12462 }
12463 } else {
12464 err = check_cond_jmp_op(env, insn, &env->insn_idx);
12465 if (err)
12466 return err;
12467 }
12468 } else if (class == BPF_LD) {
12469 u8 mode = BPF_MODE(insn->code);
12470
12471 if (mode == BPF_ABS || mode == BPF_IND) {
12472 err = check_ld_abs(env, insn);
12473 if (err)
12474 return err;
12475
12476 } else if (mode == BPF_IMM) {
12477 err = check_ld_imm(env, insn);
12478 if (err)
12479 return err;
12480
12481 env->insn_idx++;
12482 sanitize_mark_insn_seen(env);
12483 } else {
12484 verbose(env, "invalid BPF_LD mode\n");
12485 return -EINVAL;
12486 }
12487 } else {
12488 verbose(env, "unknown insn class %d\n", class);
12489 return -EINVAL;
12490 }
12491
12492 env->insn_idx++;
12493 }
12494
12495 return 0;
12496 }
12497
find_btf_percpu_datasec(struct btf * btf)12498 static int find_btf_percpu_datasec(struct btf *btf)
12499 {
12500 const struct btf_type *t;
12501 const char *tname;
12502 int i, n;
12503
12504 /*
12505 * Both vmlinux and module each have their own ".data..percpu"
12506 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12507 * types to look at only module's own BTF types.
12508 */
12509 n = btf_nr_types(btf);
12510 if (btf_is_module(btf))
12511 i = btf_nr_types(btf_vmlinux);
12512 else
12513 i = 1;
12514
12515 for(; i < n; i++) {
12516 t = btf_type_by_id(btf, i);
12517 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12518 continue;
12519
12520 tname = btf_name_by_offset(btf, t->name_off);
12521 if (!strcmp(tname, ".data..percpu"))
12522 return i;
12523 }
12524
12525 return -ENOENT;
12526 }
12527
12528 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)12529 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12530 struct bpf_insn *insn,
12531 struct bpf_insn_aux_data *aux)
12532 {
12533 const struct btf_var_secinfo *vsi;
12534 const struct btf_type *datasec;
12535 struct btf_mod_pair *btf_mod;
12536 const struct btf_type *t;
12537 const char *sym_name;
12538 bool percpu = false;
12539 u32 type, id = insn->imm;
12540 struct btf *btf;
12541 s32 datasec_id;
12542 u64 addr;
12543 int i, btf_fd, err;
12544
12545 btf_fd = insn[1].imm;
12546 if (btf_fd) {
12547 btf = btf_get_by_fd(btf_fd);
12548 if (IS_ERR(btf)) {
12549 verbose(env, "invalid module BTF object FD specified.\n");
12550 return -EINVAL;
12551 }
12552 } else {
12553 if (!btf_vmlinux) {
12554 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12555 return -EINVAL;
12556 }
12557 btf = btf_vmlinux;
12558 btf_get(btf);
12559 }
12560
12561 t = btf_type_by_id(btf, id);
12562 if (!t) {
12563 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12564 err = -ENOENT;
12565 goto err_put;
12566 }
12567
12568 if (!btf_type_is_var(t)) {
12569 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12570 err = -EINVAL;
12571 goto err_put;
12572 }
12573
12574 sym_name = btf_name_by_offset(btf, t->name_off);
12575 addr = kallsyms_lookup_name(sym_name);
12576 if (!addr) {
12577 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12578 sym_name);
12579 err = -ENOENT;
12580 goto err_put;
12581 }
12582
12583 datasec_id = find_btf_percpu_datasec(btf);
12584 if (datasec_id > 0) {
12585 datasec = btf_type_by_id(btf, datasec_id);
12586 for_each_vsi(i, datasec, vsi) {
12587 if (vsi->type == id) {
12588 percpu = true;
12589 break;
12590 }
12591 }
12592 }
12593
12594 insn[0].imm = (u32)addr;
12595 insn[1].imm = addr >> 32;
12596
12597 type = t->type;
12598 t = btf_type_skip_modifiers(btf, type, NULL);
12599 if (percpu) {
12600 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12601 aux->btf_var.btf = btf;
12602 aux->btf_var.btf_id = type;
12603 } else if (!btf_type_is_struct(t)) {
12604 const struct btf_type *ret;
12605 const char *tname;
12606 u32 tsize;
12607
12608 /* resolve the type size of ksym. */
12609 ret = btf_resolve_size(btf, t, &tsize);
12610 if (IS_ERR(ret)) {
12611 tname = btf_name_by_offset(btf, t->name_off);
12612 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12613 tname, PTR_ERR(ret));
12614 err = -EINVAL;
12615 goto err_put;
12616 }
12617 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12618 aux->btf_var.mem_size = tsize;
12619 } else {
12620 aux->btf_var.reg_type = PTR_TO_BTF_ID;
12621 aux->btf_var.btf = btf;
12622 aux->btf_var.btf_id = type;
12623 }
12624
12625 /* check whether we recorded this BTF (and maybe module) already */
12626 for (i = 0; i < env->used_btf_cnt; i++) {
12627 if (env->used_btfs[i].btf == btf) {
12628 btf_put(btf);
12629 return 0;
12630 }
12631 }
12632
12633 if (env->used_btf_cnt >= MAX_USED_BTFS) {
12634 err = -E2BIG;
12635 goto err_put;
12636 }
12637
12638 btf_mod = &env->used_btfs[env->used_btf_cnt];
12639 btf_mod->btf = btf;
12640 btf_mod->module = NULL;
12641
12642 /* if we reference variables from kernel module, bump its refcount */
12643 if (btf_is_module(btf)) {
12644 btf_mod->module = btf_try_get_module(btf);
12645 if (!btf_mod->module) {
12646 err = -ENXIO;
12647 goto err_put;
12648 }
12649 }
12650
12651 env->used_btf_cnt++;
12652
12653 return 0;
12654 err_put:
12655 btf_put(btf);
12656 return err;
12657 }
12658
is_tracing_prog_type(enum bpf_prog_type type)12659 static bool is_tracing_prog_type(enum bpf_prog_type type)
12660 {
12661 switch (type) {
12662 case BPF_PROG_TYPE_KPROBE:
12663 case BPF_PROG_TYPE_TRACEPOINT:
12664 case BPF_PROG_TYPE_PERF_EVENT:
12665 case BPF_PROG_TYPE_RAW_TRACEPOINT:
12666 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12667 return true;
12668 default:
12669 return false;
12670 }
12671 }
12672
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)12673 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12674 struct bpf_map *map,
12675 struct bpf_prog *prog)
12676
12677 {
12678 enum bpf_prog_type prog_type = resolve_prog_type(prog);
12679
12680 if (map_value_has_spin_lock(map)) {
12681 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12682 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12683 return -EINVAL;
12684 }
12685
12686 if (is_tracing_prog_type(prog_type)) {
12687 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12688 return -EINVAL;
12689 }
12690
12691 if (prog->aux->sleepable) {
12692 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12693 return -EINVAL;
12694 }
12695 }
12696
12697 if (map_value_has_timer(map)) {
12698 if (is_tracing_prog_type(prog_type)) {
12699 verbose(env, "tracing progs cannot use bpf_timer yet\n");
12700 return -EINVAL;
12701 }
12702 }
12703
12704 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12705 !bpf_offload_prog_map_match(prog, map)) {
12706 verbose(env, "offload device mismatch between prog and map\n");
12707 return -EINVAL;
12708 }
12709
12710 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12711 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12712 return -EINVAL;
12713 }
12714
12715 if (prog->aux->sleepable)
12716 switch (map->map_type) {
12717 case BPF_MAP_TYPE_HASH:
12718 case BPF_MAP_TYPE_LRU_HASH:
12719 case BPF_MAP_TYPE_ARRAY:
12720 case BPF_MAP_TYPE_PERCPU_HASH:
12721 case BPF_MAP_TYPE_PERCPU_ARRAY:
12722 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12723 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12724 case BPF_MAP_TYPE_HASH_OF_MAPS:
12725 case BPF_MAP_TYPE_RINGBUF:
12726 case BPF_MAP_TYPE_USER_RINGBUF:
12727 case BPF_MAP_TYPE_INODE_STORAGE:
12728 case BPF_MAP_TYPE_SK_STORAGE:
12729 case BPF_MAP_TYPE_TASK_STORAGE:
12730 break;
12731 default:
12732 verbose(env,
12733 "Sleepable programs can only use array, hash, and ringbuf maps\n");
12734 return -EINVAL;
12735 }
12736
12737 return 0;
12738 }
12739
bpf_map_is_cgroup_storage(struct bpf_map * map)12740 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12741 {
12742 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12743 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12744 }
12745
12746 /* find and rewrite pseudo imm in ld_imm64 instructions:
12747 *
12748 * 1. if it accesses map FD, replace it with actual map pointer.
12749 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12750 *
12751 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12752 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)12753 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12754 {
12755 struct bpf_insn *insn = env->prog->insnsi;
12756 int insn_cnt = env->prog->len;
12757 int i, j, err;
12758
12759 err = bpf_prog_calc_tag(env->prog);
12760 if (err)
12761 return err;
12762
12763 for (i = 0; i < insn_cnt; i++, insn++) {
12764 if (BPF_CLASS(insn->code) == BPF_LDX &&
12765 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12766 verbose(env, "BPF_LDX uses reserved fields\n");
12767 return -EINVAL;
12768 }
12769
12770 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12771 struct bpf_insn_aux_data *aux;
12772 struct bpf_map *map;
12773 struct fd f;
12774 u64 addr;
12775 u32 fd;
12776
12777 if (i == insn_cnt - 1 || insn[1].code != 0 ||
12778 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12779 insn[1].off != 0) {
12780 verbose(env, "invalid bpf_ld_imm64 insn\n");
12781 return -EINVAL;
12782 }
12783
12784 if (insn[0].src_reg == 0)
12785 /* valid generic load 64-bit imm */
12786 goto next_insn;
12787
12788 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12789 aux = &env->insn_aux_data[i];
12790 err = check_pseudo_btf_id(env, insn, aux);
12791 if (err)
12792 return err;
12793 goto next_insn;
12794 }
12795
12796 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12797 aux = &env->insn_aux_data[i];
12798 aux->ptr_type = PTR_TO_FUNC;
12799 goto next_insn;
12800 }
12801
12802 /* In final convert_pseudo_ld_imm64() step, this is
12803 * converted into regular 64-bit imm load insn.
12804 */
12805 switch (insn[0].src_reg) {
12806 case BPF_PSEUDO_MAP_VALUE:
12807 case BPF_PSEUDO_MAP_IDX_VALUE:
12808 break;
12809 case BPF_PSEUDO_MAP_FD:
12810 case BPF_PSEUDO_MAP_IDX:
12811 if (insn[1].imm == 0)
12812 break;
12813 fallthrough;
12814 default:
12815 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12816 return -EINVAL;
12817 }
12818
12819 switch (insn[0].src_reg) {
12820 case BPF_PSEUDO_MAP_IDX_VALUE:
12821 case BPF_PSEUDO_MAP_IDX:
12822 if (bpfptr_is_null(env->fd_array)) {
12823 verbose(env, "fd_idx without fd_array is invalid\n");
12824 return -EPROTO;
12825 }
12826 if (copy_from_bpfptr_offset(&fd, env->fd_array,
12827 insn[0].imm * sizeof(fd),
12828 sizeof(fd)))
12829 return -EFAULT;
12830 break;
12831 default:
12832 fd = insn[0].imm;
12833 break;
12834 }
12835
12836 f = fdget(fd);
12837 map = __bpf_map_get(f);
12838 if (IS_ERR(map)) {
12839 verbose(env, "fd %d is not pointing to valid bpf_map\n",
12840 insn[0].imm);
12841 return PTR_ERR(map);
12842 }
12843
12844 err = check_map_prog_compatibility(env, map, env->prog);
12845 if (err) {
12846 fdput(f);
12847 return err;
12848 }
12849
12850 aux = &env->insn_aux_data[i];
12851 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12852 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12853 addr = (unsigned long)map;
12854 } else {
12855 u32 off = insn[1].imm;
12856
12857 if (off >= BPF_MAX_VAR_OFF) {
12858 verbose(env, "direct value offset of %u is not allowed\n", off);
12859 fdput(f);
12860 return -EINVAL;
12861 }
12862
12863 if (!map->ops->map_direct_value_addr) {
12864 verbose(env, "no direct value access support for this map type\n");
12865 fdput(f);
12866 return -EINVAL;
12867 }
12868
12869 err = map->ops->map_direct_value_addr(map, &addr, off);
12870 if (err) {
12871 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12872 map->value_size, off);
12873 fdput(f);
12874 return err;
12875 }
12876
12877 aux->map_off = off;
12878 addr += off;
12879 }
12880
12881 insn[0].imm = (u32)addr;
12882 insn[1].imm = addr >> 32;
12883
12884 /* check whether we recorded this map already */
12885 for (j = 0; j < env->used_map_cnt; j++) {
12886 if (env->used_maps[j] == map) {
12887 aux->map_index = j;
12888 fdput(f);
12889 goto next_insn;
12890 }
12891 }
12892
12893 if (env->used_map_cnt >= MAX_USED_MAPS) {
12894 fdput(f);
12895 return -E2BIG;
12896 }
12897
12898 /* hold the map. If the program is rejected by verifier,
12899 * the map will be released by release_maps() or it
12900 * will be used by the valid program until it's unloaded
12901 * and all maps are released in free_used_maps()
12902 */
12903 bpf_map_inc(map);
12904
12905 aux->map_index = env->used_map_cnt;
12906 env->used_maps[env->used_map_cnt++] = map;
12907
12908 if (bpf_map_is_cgroup_storage(map) &&
12909 bpf_cgroup_storage_assign(env->prog->aux, map)) {
12910 verbose(env, "only one cgroup storage of each type is allowed\n");
12911 fdput(f);
12912 return -EBUSY;
12913 }
12914
12915 fdput(f);
12916 next_insn:
12917 insn++;
12918 i++;
12919 continue;
12920 }
12921
12922 /* Basic sanity check before we invest more work here. */
12923 if (!bpf_opcode_in_insntable(insn->code)) {
12924 verbose(env, "unknown opcode %02x\n", insn->code);
12925 return -EINVAL;
12926 }
12927 }
12928
12929 /* now all pseudo BPF_LD_IMM64 instructions load valid
12930 * 'struct bpf_map *' into a register instead of user map_fd.
12931 * These pointers will be used later by verifier to validate map access.
12932 */
12933 return 0;
12934 }
12935
12936 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)12937 static void release_maps(struct bpf_verifier_env *env)
12938 {
12939 __bpf_free_used_maps(env->prog->aux, env->used_maps,
12940 env->used_map_cnt);
12941 }
12942
12943 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)12944 static void release_btfs(struct bpf_verifier_env *env)
12945 {
12946 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12947 env->used_btf_cnt);
12948 }
12949
12950 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)12951 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12952 {
12953 struct bpf_insn *insn = env->prog->insnsi;
12954 int insn_cnt = env->prog->len;
12955 int i;
12956
12957 for (i = 0; i < insn_cnt; i++, insn++) {
12958 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12959 continue;
12960 if (insn->src_reg == BPF_PSEUDO_FUNC)
12961 continue;
12962 insn->src_reg = 0;
12963 }
12964 }
12965
12966 /* single env->prog->insni[off] instruction was replaced with the range
12967 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
12968 * [0, off) and [off, end) to new locations, so the patched range stays zero
12969 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)12970 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12971 struct bpf_insn_aux_data *new_data,
12972 struct bpf_prog *new_prog, u32 off, u32 cnt)
12973 {
12974 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12975 struct bpf_insn *insn = new_prog->insnsi;
12976 u32 old_seen = old_data[off].seen;
12977 u32 prog_len;
12978 int i;
12979
12980 /* aux info at OFF always needs adjustment, no matter fast path
12981 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12982 * original insn at old prog.
12983 */
12984 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12985
12986 if (cnt == 1)
12987 return;
12988 prog_len = new_prog->len;
12989
12990 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12991 memcpy(new_data + off + cnt - 1, old_data + off,
12992 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12993 for (i = off; i < off + cnt - 1; i++) {
12994 /* Expand insni[off]'s seen count to the patched range. */
12995 new_data[i].seen = old_seen;
12996 new_data[i].zext_dst = insn_has_def32(env, insn + i);
12997 }
12998 env->insn_aux_data = new_data;
12999 vfree(old_data);
13000 }
13001
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)13002 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
13003 {
13004 int i;
13005
13006 if (len == 1)
13007 return;
13008 /* NOTE: fake 'exit' subprog should be updated as well. */
13009 for (i = 0; i <= env->subprog_cnt; i++) {
13010 if (env->subprog_info[i].start <= off)
13011 continue;
13012 env->subprog_info[i].start += len - 1;
13013 }
13014 }
13015
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)13016 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
13017 {
13018 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
13019 int i, sz = prog->aux->size_poke_tab;
13020 struct bpf_jit_poke_descriptor *desc;
13021
13022 for (i = 0; i < sz; i++) {
13023 desc = &tab[i];
13024 if (desc->insn_idx <= off)
13025 continue;
13026 desc->insn_idx += len - 1;
13027 }
13028 }
13029
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)13030 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
13031 const struct bpf_insn *patch, u32 len)
13032 {
13033 struct bpf_prog *new_prog;
13034 struct bpf_insn_aux_data *new_data = NULL;
13035
13036 if (len > 1) {
13037 new_data = vzalloc(array_size(env->prog->len + len - 1,
13038 sizeof(struct bpf_insn_aux_data)));
13039 if (!new_data)
13040 return NULL;
13041 }
13042
13043 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
13044 if (IS_ERR(new_prog)) {
13045 if (PTR_ERR(new_prog) == -ERANGE)
13046 verbose(env,
13047 "insn %d cannot be patched due to 16-bit range\n",
13048 env->insn_aux_data[off].orig_idx);
13049 vfree(new_data);
13050 return NULL;
13051 }
13052 adjust_insn_aux_data(env, new_data, new_prog, off, len);
13053 adjust_subprog_starts(env, off, len);
13054 adjust_poke_descs(new_prog, off, len);
13055 return new_prog;
13056 }
13057
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13058 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13059 u32 off, u32 cnt)
13060 {
13061 int i, j;
13062
13063 /* find first prog starting at or after off (first to remove) */
13064 for (i = 0; i < env->subprog_cnt; i++)
13065 if (env->subprog_info[i].start >= off)
13066 break;
13067 /* find first prog starting at or after off + cnt (first to stay) */
13068 for (j = i; j < env->subprog_cnt; j++)
13069 if (env->subprog_info[j].start >= off + cnt)
13070 break;
13071 /* if j doesn't start exactly at off + cnt, we are just removing
13072 * the front of previous prog
13073 */
13074 if (env->subprog_info[j].start != off + cnt)
13075 j--;
13076
13077 if (j > i) {
13078 struct bpf_prog_aux *aux = env->prog->aux;
13079 int move;
13080
13081 /* move fake 'exit' subprog as well */
13082 move = env->subprog_cnt + 1 - j;
13083
13084 memmove(env->subprog_info + i,
13085 env->subprog_info + j,
13086 sizeof(*env->subprog_info) * move);
13087 env->subprog_cnt -= j - i;
13088
13089 /* remove func_info */
13090 if (aux->func_info) {
13091 move = aux->func_info_cnt - j;
13092
13093 memmove(aux->func_info + i,
13094 aux->func_info + j,
13095 sizeof(*aux->func_info) * move);
13096 aux->func_info_cnt -= j - i;
13097 /* func_info->insn_off is set after all code rewrites,
13098 * in adjust_btf_func() - no need to adjust
13099 */
13100 }
13101 } else {
13102 /* convert i from "first prog to remove" to "first to adjust" */
13103 if (env->subprog_info[i].start == off)
13104 i++;
13105 }
13106
13107 /* update fake 'exit' subprog as well */
13108 for (; i <= env->subprog_cnt; i++)
13109 env->subprog_info[i].start -= cnt;
13110
13111 return 0;
13112 }
13113
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13114 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13115 u32 cnt)
13116 {
13117 struct bpf_prog *prog = env->prog;
13118 u32 i, l_off, l_cnt, nr_linfo;
13119 struct bpf_line_info *linfo;
13120
13121 nr_linfo = prog->aux->nr_linfo;
13122 if (!nr_linfo)
13123 return 0;
13124
13125 linfo = prog->aux->linfo;
13126
13127 /* find first line info to remove, count lines to be removed */
13128 for (i = 0; i < nr_linfo; i++)
13129 if (linfo[i].insn_off >= off)
13130 break;
13131
13132 l_off = i;
13133 l_cnt = 0;
13134 for (; i < nr_linfo; i++)
13135 if (linfo[i].insn_off < off + cnt)
13136 l_cnt++;
13137 else
13138 break;
13139
13140 /* First live insn doesn't match first live linfo, it needs to "inherit"
13141 * last removed linfo. prog is already modified, so prog->len == off
13142 * means no live instructions after (tail of the program was removed).
13143 */
13144 if (prog->len != off && l_cnt &&
13145 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13146 l_cnt--;
13147 linfo[--i].insn_off = off + cnt;
13148 }
13149
13150 /* remove the line info which refer to the removed instructions */
13151 if (l_cnt) {
13152 memmove(linfo + l_off, linfo + i,
13153 sizeof(*linfo) * (nr_linfo - i));
13154
13155 prog->aux->nr_linfo -= l_cnt;
13156 nr_linfo = prog->aux->nr_linfo;
13157 }
13158
13159 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
13160 for (i = l_off; i < nr_linfo; i++)
13161 linfo[i].insn_off -= cnt;
13162
13163 /* fix up all subprogs (incl. 'exit') which start >= off */
13164 for (i = 0; i <= env->subprog_cnt; i++)
13165 if (env->subprog_info[i].linfo_idx > l_off) {
13166 /* program may have started in the removed region but
13167 * may not be fully removed
13168 */
13169 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13170 env->subprog_info[i].linfo_idx -= l_cnt;
13171 else
13172 env->subprog_info[i].linfo_idx = l_off;
13173 }
13174
13175 return 0;
13176 }
13177
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)13178 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13179 {
13180 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13181 unsigned int orig_prog_len = env->prog->len;
13182 int err;
13183
13184 if (bpf_prog_is_dev_bound(env->prog->aux))
13185 bpf_prog_offload_remove_insns(env, off, cnt);
13186
13187 err = bpf_remove_insns(env->prog, off, cnt);
13188 if (err)
13189 return err;
13190
13191 err = adjust_subprog_starts_after_remove(env, off, cnt);
13192 if (err)
13193 return err;
13194
13195 err = bpf_adj_linfo_after_remove(env, off, cnt);
13196 if (err)
13197 return err;
13198
13199 memmove(aux_data + off, aux_data + off + cnt,
13200 sizeof(*aux_data) * (orig_prog_len - off - cnt));
13201
13202 return 0;
13203 }
13204
13205 /* The verifier does more data flow analysis than llvm and will not
13206 * explore branches that are dead at run time. Malicious programs can
13207 * have dead code too. Therefore replace all dead at-run-time code
13208 * with 'ja -1'.
13209 *
13210 * Just nops are not optimal, e.g. if they would sit at the end of the
13211 * program and through another bug we would manage to jump there, then
13212 * we'd execute beyond program memory otherwise. Returning exception
13213 * code also wouldn't work since we can have subprogs where the dead
13214 * code could be located.
13215 */
sanitize_dead_code(struct bpf_verifier_env * env)13216 static void sanitize_dead_code(struct bpf_verifier_env *env)
13217 {
13218 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13219 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13220 struct bpf_insn *insn = env->prog->insnsi;
13221 const int insn_cnt = env->prog->len;
13222 int i;
13223
13224 for (i = 0; i < insn_cnt; i++) {
13225 if (aux_data[i].seen)
13226 continue;
13227 memcpy(insn + i, &trap, sizeof(trap));
13228 aux_data[i].zext_dst = false;
13229 }
13230 }
13231
insn_is_cond_jump(u8 code)13232 static bool insn_is_cond_jump(u8 code)
13233 {
13234 u8 op;
13235
13236 if (BPF_CLASS(code) == BPF_JMP32)
13237 return true;
13238
13239 if (BPF_CLASS(code) != BPF_JMP)
13240 return false;
13241
13242 op = BPF_OP(code);
13243 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13244 }
13245
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)13246 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13247 {
13248 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13249 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13250 struct bpf_insn *insn = env->prog->insnsi;
13251 const int insn_cnt = env->prog->len;
13252 int i;
13253
13254 for (i = 0; i < insn_cnt; i++, insn++) {
13255 if (!insn_is_cond_jump(insn->code))
13256 continue;
13257
13258 if (!aux_data[i + 1].seen)
13259 ja.off = insn->off;
13260 else if (!aux_data[i + 1 + insn->off].seen)
13261 ja.off = 0;
13262 else
13263 continue;
13264
13265 if (bpf_prog_is_dev_bound(env->prog->aux))
13266 bpf_prog_offload_replace_insn(env, i, &ja);
13267
13268 memcpy(insn, &ja, sizeof(ja));
13269 }
13270 }
13271
opt_remove_dead_code(struct bpf_verifier_env * env)13272 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13273 {
13274 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13275 int insn_cnt = env->prog->len;
13276 int i, err;
13277
13278 for (i = 0; i < insn_cnt; i++) {
13279 int j;
13280
13281 j = 0;
13282 while (i + j < insn_cnt && !aux_data[i + j].seen)
13283 j++;
13284 if (!j)
13285 continue;
13286
13287 err = verifier_remove_insns(env, i, j);
13288 if (err)
13289 return err;
13290 insn_cnt = env->prog->len;
13291 }
13292
13293 return 0;
13294 }
13295
opt_remove_nops(struct bpf_verifier_env * env)13296 static int opt_remove_nops(struct bpf_verifier_env *env)
13297 {
13298 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13299 struct bpf_insn *insn = env->prog->insnsi;
13300 int insn_cnt = env->prog->len;
13301 int i, err;
13302
13303 for (i = 0; i < insn_cnt; i++) {
13304 if (memcmp(&insn[i], &ja, sizeof(ja)))
13305 continue;
13306
13307 err = verifier_remove_insns(env, i, 1);
13308 if (err)
13309 return err;
13310 insn_cnt--;
13311 i--;
13312 }
13313
13314 return 0;
13315 }
13316
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)13317 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13318 const union bpf_attr *attr)
13319 {
13320 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13321 struct bpf_insn_aux_data *aux = env->insn_aux_data;
13322 int i, patch_len, delta = 0, len = env->prog->len;
13323 struct bpf_insn *insns = env->prog->insnsi;
13324 struct bpf_prog *new_prog;
13325 bool rnd_hi32;
13326
13327 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13328 zext_patch[1] = BPF_ZEXT_REG(0);
13329 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13330 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13331 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13332 for (i = 0; i < len; i++) {
13333 int adj_idx = i + delta;
13334 struct bpf_insn insn;
13335 int load_reg;
13336
13337 insn = insns[adj_idx];
13338 load_reg = insn_def_regno(&insn);
13339 if (!aux[adj_idx].zext_dst) {
13340 u8 code, class;
13341 u32 imm_rnd;
13342
13343 if (!rnd_hi32)
13344 continue;
13345
13346 code = insn.code;
13347 class = BPF_CLASS(code);
13348 if (load_reg == -1)
13349 continue;
13350
13351 /* NOTE: arg "reg" (the fourth one) is only used for
13352 * BPF_STX + SRC_OP, so it is safe to pass NULL
13353 * here.
13354 */
13355 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13356 if (class == BPF_LD &&
13357 BPF_MODE(code) == BPF_IMM)
13358 i++;
13359 continue;
13360 }
13361
13362 /* ctx load could be transformed into wider load. */
13363 if (class == BPF_LDX &&
13364 aux[adj_idx].ptr_type == PTR_TO_CTX)
13365 continue;
13366
13367 imm_rnd = get_random_u32();
13368 rnd_hi32_patch[0] = insn;
13369 rnd_hi32_patch[1].imm = imm_rnd;
13370 rnd_hi32_patch[3].dst_reg = load_reg;
13371 patch = rnd_hi32_patch;
13372 patch_len = 4;
13373 goto apply_patch_buffer;
13374 }
13375
13376 /* Add in an zero-extend instruction if a) the JIT has requested
13377 * it or b) it's a CMPXCHG.
13378 *
13379 * The latter is because: BPF_CMPXCHG always loads a value into
13380 * R0, therefore always zero-extends. However some archs'
13381 * equivalent instruction only does this load when the
13382 * comparison is successful. This detail of CMPXCHG is
13383 * orthogonal to the general zero-extension behaviour of the
13384 * CPU, so it's treated independently of bpf_jit_needs_zext.
13385 */
13386 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13387 continue;
13388
13389 if (WARN_ON(load_reg == -1)) {
13390 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13391 return -EFAULT;
13392 }
13393
13394 zext_patch[0] = insn;
13395 zext_patch[1].dst_reg = load_reg;
13396 zext_patch[1].src_reg = load_reg;
13397 patch = zext_patch;
13398 patch_len = 2;
13399 apply_patch_buffer:
13400 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13401 if (!new_prog)
13402 return -ENOMEM;
13403 env->prog = new_prog;
13404 insns = new_prog->insnsi;
13405 aux = env->insn_aux_data;
13406 delta += patch_len - 1;
13407 }
13408
13409 return 0;
13410 }
13411
13412 /* convert load instructions that access fields of a context type into a
13413 * sequence of instructions that access fields of the underlying structure:
13414 * struct __sk_buff -> struct sk_buff
13415 * struct bpf_sock_ops -> struct sock
13416 */
convert_ctx_accesses(struct bpf_verifier_env * env)13417 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13418 {
13419 const struct bpf_verifier_ops *ops = env->ops;
13420 int i, cnt, size, ctx_field_size, delta = 0;
13421 const int insn_cnt = env->prog->len;
13422 struct bpf_insn insn_buf[16], *insn;
13423 u32 target_size, size_default, off;
13424 struct bpf_prog *new_prog;
13425 enum bpf_access_type type;
13426 bool is_narrower_load;
13427
13428 if (ops->gen_prologue || env->seen_direct_write) {
13429 if (!ops->gen_prologue) {
13430 verbose(env, "bpf verifier is misconfigured\n");
13431 return -EINVAL;
13432 }
13433 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13434 env->prog);
13435 if (cnt >= ARRAY_SIZE(insn_buf)) {
13436 verbose(env, "bpf verifier is misconfigured\n");
13437 return -EINVAL;
13438 } else if (cnt) {
13439 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13440 if (!new_prog)
13441 return -ENOMEM;
13442
13443 env->prog = new_prog;
13444 delta += cnt - 1;
13445 }
13446 }
13447
13448 if (bpf_prog_is_dev_bound(env->prog->aux))
13449 return 0;
13450
13451 insn = env->prog->insnsi + delta;
13452
13453 for (i = 0; i < insn_cnt; i++, insn++) {
13454 bpf_convert_ctx_access_t convert_ctx_access;
13455 bool ctx_access;
13456
13457 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13458 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13459 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13460 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13461 type = BPF_READ;
13462 ctx_access = true;
13463 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13464 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13465 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13466 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13467 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13468 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13469 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13470 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13471 type = BPF_WRITE;
13472 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13473 } else {
13474 continue;
13475 }
13476
13477 if (type == BPF_WRITE &&
13478 env->insn_aux_data[i + delta].sanitize_stack_spill) {
13479 struct bpf_insn patch[] = {
13480 *insn,
13481 BPF_ST_NOSPEC(),
13482 };
13483
13484 cnt = ARRAY_SIZE(patch);
13485 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13486 if (!new_prog)
13487 return -ENOMEM;
13488
13489 delta += cnt - 1;
13490 env->prog = new_prog;
13491 insn = new_prog->insnsi + i + delta;
13492 continue;
13493 }
13494
13495 if (!ctx_access)
13496 continue;
13497
13498 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13499 case PTR_TO_CTX:
13500 if (!ops->convert_ctx_access)
13501 continue;
13502 convert_ctx_access = ops->convert_ctx_access;
13503 break;
13504 case PTR_TO_SOCKET:
13505 case PTR_TO_SOCK_COMMON:
13506 convert_ctx_access = bpf_sock_convert_ctx_access;
13507 break;
13508 case PTR_TO_TCP_SOCK:
13509 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13510 break;
13511 case PTR_TO_XDP_SOCK:
13512 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13513 break;
13514 case PTR_TO_BTF_ID:
13515 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13516 if (type == BPF_READ) {
13517 insn->code = BPF_LDX | BPF_PROBE_MEM |
13518 BPF_SIZE((insn)->code);
13519 env->prog->aux->num_exentries++;
13520 }
13521 continue;
13522 default:
13523 continue;
13524 }
13525
13526 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13527 size = BPF_LDST_BYTES(insn);
13528
13529 /* If the read access is a narrower load of the field,
13530 * convert to a 4/8-byte load, to minimum program type specific
13531 * convert_ctx_access changes. If conversion is successful,
13532 * we will apply proper mask to the result.
13533 */
13534 is_narrower_load = size < ctx_field_size;
13535 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13536 off = insn->off;
13537 if (is_narrower_load) {
13538 u8 size_code;
13539
13540 if (type == BPF_WRITE) {
13541 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13542 return -EINVAL;
13543 }
13544
13545 size_code = BPF_H;
13546 if (ctx_field_size == 4)
13547 size_code = BPF_W;
13548 else if (ctx_field_size == 8)
13549 size_code = BPF_DW;
13550
13551 insn->off = off & ~(size_default - 1);
13552 insn->code = BPF_LDX | BPF_MEM | size_code;
13553 }
13554
13555 target_size = 0;
13556 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13557 &target_size);
13558 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13559 (ctx_field_size && !target_size)) {
13560 verbose(env, "bpf verifier is misconfigured\n");
13561 return -EINVAL;
13562 }
13563
13564 if (is_narrower_load && size < target_size) {
13565 u8 shift = bpf_ctx_narrow_access_offset(
13566 off, size, size_default) * 8;
13567 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13568 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13569 return -EINVAL;
13570 }
13571 if (ctx_field_size <= 4) {
13572 if (shift)
13573 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13574 insn->dst_reg,
13575 shift);
13576 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13577 (1 << size * 8) - 1);
13578 } else {
13579 if (shift)
13580 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13581 insn->dst_reg,
13582 shift);
13583 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13584 (1ULL << size * 8) - 1);
13585 }
13586 }
13587
13588 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13589 if (!new_prog)
13590 return -ENOMEM;
13591
13592 delta += cnt - 1;
13593
13594 /* keep walking new program and skip insns we just inserted */
13595 env->prog = new_prog;
13596 insn = new_prog->insnsi + i + delta;
13597 }
13598
13599 return 0;
13600 }
13601
jit_subprogs(struct bpf_verifier_env * env)13602 static int jit_subprogs(struct bpf_verifier_env *env)
13603 {
13604 struct bpf_prog *prog = env->prog, **func, *tmp;
13605 int i, j, subprog_start, subprog_end = 0, len, subprog;
13606 struct bpf_map *map_ptr;
13607 struct bpf_insn *insn;
13608 void *old_bpf_func;
13609 int err, num_exentries;
13610
13611 if (env->subprog_cnt <= 1)
13612 return 0;
13613
13614 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13615 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13616 continue;
13617
13618 /* Upon error here we cannot fall back to interpreter but
13619 * need a hard reject of the program. Thus -EFAULT is
13620 * propagated in any case.
13621 */
13622 subprog = find_subprog(env, i + insn->imm + 1);
13623 if (subprog < 0) {
13624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13625 i + insn->imm + 1);
13626 return -EFAULT;
13627 }
13628 /* temporarily remember subprog id inside insn instead of
13629 * aux_data, since next loop will split up all insns into funcs
13630 */
13631 insn->off = subprog;
13632 /* remember original imm in case JIT fails and fallback
13633 * to interpreter will be needed
13634 */
13635 env->insn_aux_data[i].call_imm = insn->imm;
13636 /* point imm to __bpf_call_base+1 from JITs point of view */
13637 insn->imm = 1;
13638 if (bpf_pseudo_func(insn))
13639 /* jit (e.g. x86_64) may emit fewer instructions
13640 * if it learns a u32 imm is the same as a u64 imm.
13641 * Force a non zero here.
13642 */
13643 insn[1].imm = 1;
13644 }
13645
13646 err = bpf_prog_alloc_jited_linfo(prog);
13647 if (err)
13648 goto out_undo_insn;
13649
13650 err = -ENOMEM;
13651 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13652 if (!func)
13653 goto out_undo_insn;
13654
13655 for (i = 0; i < env->subprog_cnt; i++) {
13656 subprog_start = subprog_end;
13657 subprog_end = env->subprog_info[i + 1].start;
13658
13659 len = subprog_end - subprog_start;
13660 /* bpf_prog_run() doesn't call subprogs directly,
13661 * hence main prog stats include the runtime of subprogs.
13662 * subprogs don't have IDs and not reachable via prog_get_next_id
13663 * func[i]->stats will never be accessed and stays NULL
13664 */
13665 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13666 if (!func[i])
13667 goto out_free;
13668 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13669 len * sizeof(struct bpf_insn));
13670 func[i]->type = prog->type;
13671 func[i]->len = len;
13672 if (bpf_prog_calc_tag(func[i]))
13673 goto out_free;
13674 func[i]->is_func = 1;
13675 func[i]->aux->func_idx = i;
13676 /* Below members will be freed only at prog->aux */
13677 func[i]->aux->btf = prog->aux->btf;
13678 func[i]->aux->func_info = prog->aux->func_info;
13679 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13680 func[i]->aux->poke_tab = prog->aux->poke_tab;
13681 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13682
13683 for (j = 0; j < prog->aux->size_poke_tab; j++) {
13684 struct bpf_jit_poke_descriptor *poke;
13685
13686 poke = &prog->aux->poke_tab[j];
13687 if (poke->insn_idx < subprog_end &&
13688 poke->insn_idx >= subprog_start)
13689 poke->aux = func[i]->aux;
13690 }
13691
13692 func[i]->aux->name[0] = 'F';
13693 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13694 func[i]->jit_requested = 1;
13695 func[i]->blinding_requested = prog->blinding_requested;
13696 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13697 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13698 func[i]->aux->linfo = prog->aux->linfo;
13699 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13700 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13701 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13702 num_exentries = 0;
13703 insn = func[i]->insnsi;
13704 for (j = 0; j < func[i]->len; j++, insn++) {
13705 if (BPF_CLASS(insn->code) == BPF_LDX &&
13706 BPF_MODE(insn->code) == BPF_PROBE_MEM)
13707 num_exentries++;
13708 }
13709 func[i]->aux->num_exentries = num_exentries;
13710 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13711 func[i] = bpf_int_jit_compile(func[i]);
13712 if (!func[i]->jited) {
13713 err = -ENOTSUPP;
13714 goto out_free;
13715 }
13716 cond_resched();
13717 }
13718
13719 /* at this point all bpf functions were successfully JITed
13720 * now populate all bpf_calls with correct addresses and
13721 * run last pass of JIT
13722 */
13723 for (i = 0; i < env->subprog_cnt; i++) {
13724 insn = func[i]->insnsi;
13725 for (j = 0; j < func[i]->len; j++, insn++) {
13726 if (bpf_pseudo_func(insn)) {
13727 subprog = insn->off;
13728 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13729 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13730 continue;
13731 }
13732 if (!bpf_pseudo_call(insn))
13733 continue;
13734 subprog = insn->off;
13735 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13736 }
13737
13738 /* we use the aux data to keep a list of the start addresses
13739 * of the JITed images for each function in the program
13740 *
13741 * for some architectures, such as powerpc64, the imm field
13742 * might not be large enough to hold the offset of the start
13743 * address of the callee's JITed image from __bpf_call_base
13744 *
13745 * in such cases, we can lookup the start address of a callee
13746 * by using its subprog id, available from the off field of
13747 * the call instruction, as an index for this list
13748 */
13749 func[i]->aux->func = func;
13750 func[i]->aux->func_cnt = env->subprog_cnt;
13751 }
13752 for (i = 0; i < env->subprog_cnt; i++) {
13753 old_bpf_func = func[i]->bpf_func;
13754 tmp = bpf_int_jit_compile(func[i]);
13755 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13756 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13757 err = -ENOTSUPP;
13758 goto out_free;
13759 }
13760 cond_resched();
13761 }
13762
13763 /* finally lock prog and jit images for all functions and
13764 * populate kallsysm
13765 */
13766 for (i = 0; i < env->subprog_cnt; i++) {
13767 bpf_prog_lock_ro(func[i]);
13768 bpf_prog_kallsyms_add(func[i]);
13769 }
13770
13771 /* Last step: make now unused interpreter insns from main
13772 * prog consistent for later dump requests, so they can
13773 * later look the same as if they were interpreted only.
13774 */
13775 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13776 if (bpf_pseudo_func(insn)) {
13777 insn[0].imm = env->insn_aux_data[i].call_imm;
13778 insn[1].imm = insn->off;
13779 insn->off = 0;
13780 continue;
13781 }
13782 if (!bpf_pseudo_call(insn))
13783 continue;
13784 insn->off = env->insn_aux_data[i].call_imm;
13785 subprog = find_subprog(env, i + insn->off + 1);
13786 insn->imm = subprog;
13787 }
13788
13789 prog->jited = 1;
13790 prog->bpf_func = func[0]->bpf_func;
13791 prog->jited_len = func[0]->jited_len;
13792 prog->aux->func = func;
13793 prog->aux->func_cnt = env->subprog_cnt;
13794 bpf_prog_jit_attempt_done(prog);
13795 return 0;
13796 out_free:
13797 /* We failed JIT'ing, so at this point we need to unregister poke
13798 * descriptors from subprogs, so that kernel is not attempting to
13799 * patch it anymore as we're freeing the subprog JIT memory.
13800 */
13801 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13802 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13803 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13804 }
13805 /* At this point we're guaranteed that poke descriptors are not
13806 * live anymore. We can just unlink its descriptor table as it's
13807 * released with the main prog.
13808 */
13809 for (i = 0; i < env->subprog_cnt; i++) {
13810 if (!func[i])
13811 continue;
13812 func[i]->aux->poke_tab = NULL;
13813 bpf_jit_free(func[i]);
13814 }
13815 kfree(func);
13816 out_undo_insn:
13817 /* cleanup main prog to be interpreted */
13818 prog->jit_requested = 0;
13819 prog->blinding_requested = 0;
13820 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13821 if (!bpf_pseudo_call(insn))
13822 continue;
13823 insn->off = 0;
13824 insn->imm = env->insn_aux_data[i].call_imm;
13825 }
13826 bpf_prog_jit_attempt_done(prog);
13827 return err;
13828 }
13829
fixup_call_args(struct bpf_verifier_env * env)13830 static int fixup_call_args(struct bpf_verifier_env *env)
13831 {
13832 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13833 struct bpf_prog *prog = env->prog;
13834 struct bpf_insn *insn = prog->insnsi;
13835 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13836 int i, depth;
13837 #endif
13838 int err = 0;
13839
13840 if (env->prog->jit_requested &&
13841 !bpf_prog_is_dev_bound(env->prog->aux)) {
13842 err = jit_subprogs(env);
13843 if (err == 0)
13844 return 0;
13845 if (err == -EFAULT)
13846 return err;
13847 }
13848 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13849 if (has_kfunc_call) {
13850 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13851 return -EINVAL;
13852 }
13853 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13854 /* When JIT fails the progs with bpf2bpf calls and tail_calls
13855 * have to be rejected, since interpreter doesn't support them yet.
13856 */
13857 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13858 return -EINVAL;
13859 }
13860 for (i = 0; i < prog->len; i++, insn++) {
13861 if (bpf_pseudo_func(insn)) {
13862 /* When JIT fails the progs with callback calls
13863 * have to be rejected, since interpreter doesn't support them yet.
13864 */
13865 verbose(env, "callbacks are not allowed in non-JITed programs\n");
13866 return -EINVAL;
13867 }
13868
13869 if (!bpf_pseudo_call(insn))
13870 continue;
13871 depth = get_callee_stack_depth(env, insn, i);
13872 if (depth < 0)
13873 return depth;
13874 bpf_patch_call_args(insn, depth);
13875 }
13876 err = 0;
13877 #endif
13878 return err;
13879 }
13880
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)13881 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13882 struct bpf_insn *insn)
13883 {
13884 const struct bpf_kfunc_desc *desc;
13885
13886 if (!insn->imm) {
13887 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13888 return -EINVAL;
13889 }
13890
13891 /* insn->imm has the btf func_id. Replace it with
13892 * an address (relative to __bpf_base_call).
13893 */
13894 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13895 if (!desc) {
13896 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13897 insn->imm);
13898 return -EFAULT;
13899 }
13900
13901 insn->imm = desc->imm;
13902
13903 return 0;
13904 }
13905
13906 /* Do various post-verification rewrites in a single program pass.
13907 * These rewrites simplify JIT and interpreter implementations.
13908 */
do_misc_fixups(struct bpf_verifier_env * env)13909 static int do_misc_fixups(struct bpf_verifier_env *env)
13910 {
13911 struct bpf_prog *prog = env->prog;
13912 enum bpf_attach_type eatype = prog->expected_attach_type;
13913 enum bpf_prog_type prog_type = resolve_prog_type(prog);
13914 struct bpf_insn *insn = prog->insnsi;
13915 const struct bpf_func_proto *fn;
13916 const int insn_cnt = prog->len;
13917 const struct bpf_map_ops *ops;
13918 struct bpf_insn_aux_data *aux;
13919 struct bpf_insn insn_buf[16];
13920 struct bpf_prog *new_prog;
13921 struct bpf_map *map_ptr;
13922 int i, ret, cnt, delta = 0;
13923
13924 for (i = 0; i < insn_cnt; i++, insn++) {
13925 /* Make divide-by-zero exceptions impossible. */
13926 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13927 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13928 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13929 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13930 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13931 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13932 struct bpf_insn *patchlet;
13933 struct bpf_insn chk_and_div[] = {
13934 /* [R,W]x div 0 -> 0 */
13935 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13936 BPF_JNE | BPF_K, insn->src_reg,
13937 0, 2, 0),
13938 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13939 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13940 *insn,
13941 };
13942 struct bpf_insn chk_and_mod[] = {
13943 /* [R,W]x mod 0 -> [R,W]x */
13944 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13945 BPF_JEQ | BPF_K, insn->src_reg,
13946 0, 1 + (is64 ? 0 : 1), 0),
13947 *insn,
13948 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13949 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13950 };
13951
13952 patchlet = isdiv ? chk_and_div : chk_and_mod;
13953 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13954 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13955
13956 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13957 if (!new_prog)
13958 return -ENOMEM;
13959
13960 delta += cnt - 1;
13961 env->prog = prog = new_prog;
13962 insn = new_prog->insnsi + i + delta;
13963 continue;
13964 }
13965
13966 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13967 if (BPF_CLASS(insn->code) == BPF_LD &&
13968 (BPF_MODE(insn->code) == BPF_ABS ||
13969 BPF_MODE(insn->code) == BPF_IND)) {
13970 cnt = env->ops->gen_ld_abs(insn, insn_buf);
13971 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13972 verbose(env, "bpf verifier is misconfigured\n");
13973 return -EINVAL;
13974 }
13975
13976 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13977 if (!new_prog)
13978 return -ENOMEM;
13979
13980 delta += cnt - 1;
13981 env->prog = prog = new_prog;
13982 insn = new_prog->insnsi + i + delta;
13983 continue;
13984 }
13985
13986 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
13987 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13988 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13989 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13990 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13991 struct bpf_insn *patch = &insn_buf[0];
13992 bool issrc, isneg, isimm;
13993 u32 off_reg;
13994
13995 aux = &env->insn_aux_data[i + delta];
13996 if (!aux->alu_state ||
13997 aux->alu_state == BPF_ALU_NON_POINTER)
13998 continue;
13999
14000 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
14001 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
14002 BPF_ALU_SANITIZE_SRC;
14003 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
14004
14005 off_reg = issrc ? insn->src_reg : insn->dst_reg;
14006 if (isimm) {
14007 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14008 } else {
14009 if (isneg)
14010 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14011 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14012 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
14013 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
14014 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
14015 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
14016 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
14017 }
14018 if (!issrc)
14019 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
14020 insn->src_reg = BPF_REG_AX;
14021 if (isneg)
14022 insn->code = insn->code == code_add ?
14023 code_sub : code_add;
14024 *patch++ = *insn;
14025 if (issrc && isneg && !isimm)
14026 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14027 cnt = patch - insn_buf;
14028
14029 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14030 if (!new_prog)
14031 return -ENOMEM;
14032
14033 delta += cnt - 1;
14034 env->prog = prog = new_prog;
14035 insn = new_prog->insnsi + i + delta;
14036 continue;
14037 }
14038
14039 if (insn->code != (BPF_JMP | BPF_CALL))
14040 continue;
14041 if (insn->src_reg == BPF_PSEUDO_CALL)
14042 continue;
14043 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14044 ret = fixup_kfunc_call(env, insn);
14045 if (ret)
14046 return ret;
14047 continue;
14048 }
14049
14050 if (insn->imm == BPF_FUNC_get_route_realm)
14051 prog->dst_needed = 1;
14052 if (insn->imm == BPF_FUNC_get_prandom_u32)
14053 bpf_user_rnd_init_once();
14054 if (insn->imm == BPF_FUNC_override_return)
14055 prog->kprobe_override = 1;
14056 if (insn->imm == BPF_FUNC_tail_call) {
14057 /* If we tail call into other programs, we
14058 * cannot make any assumptions since they can
14059 * be replaced dynamically during runtime in
14060 * the program array.
14061 */
14062 prog->cb_access = 1;
14063 if (!allow_tail_call_in_subprogs(env))
14064 prog->aux->stack_depth = MAX_BPF_STACK;
14065 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14066
14067 /* mark bpf_tail_call as different opcode to avoid
14068 * conditional branch in the interpreter for every normal
14069 * call and to prevent accidental JITing by JIT compiler
14070 * that doesn't support bpf_tail_call yet
14071 */
14072 insn->imm = 0;
14073 insn->code = BPF_JMP | BPF_TAIL_CALL;
14074
14075 aux = &env->insn_aux_data[i + delta];
14076 if (env->bpf_capable && !prog->blinding_requested &&
14077 prog->jit_requested &&
14078 !bpf_map_key_poisoned(aux) &&
14079 !bpf_map_ptr_poisoned(aux) &&
14080 !bpf_map_ptr_unpriv(aux)) {
14081 struct bpf_jit_poke_descriptor desc = {
14082 .reason = BPF_POKE_REASON_TAIL_CALL,
14083 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14084 .tail_call.key = bpf_map_key_immediate(aux),
14085 .insn_idx = i + delta,
14086 };
14087
14088 ret = bpf_jit_add_poke_descriptor(prog, &desc);
14089 if (ret < 0) {
14090 verbose(env, "adding tail call poke descriptor failed\n");
14091 return ret;
14092 }
14093
14094 insn->imm = ret + 1;
14095 continue;
14096 }
14097
14098 if (!bpf_map_ptr_unpriv(aux))
14099 continue;
14100
14101 /* instead of changing every JIT dealing with tail_call
14102 * emit two extra insns:
14103 * if (index >= max_entries) goto out;
14104 * index &= array->index_mask;
14105 * to avoid out-of-bounds cpu speculation
14106 */
14107 if (bpf_map_ptr_poisoned(aux)) {
14108 verbose(env, "tail_call abusing map_ptr\n");
14109 return -EINVAL;
14110 }
14111
14112 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14113 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14114 map_ptr->max_entries, 2);
14115 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14116 container_of(map_ptr,
14117 struct bpf_array,
14118 map)->index_mask);
14119 insn_buf[2] = *insn;
14120 cnt = 3;
14121 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14122 if (!new_prog)
14123 return -ENOMEM;
14124
14125 delta += cnt - 1;
14126 env->prog = prog = new_prog;
14127 insn = new_prog->insnsi + i + delta;
14128 continue;
14129 }
14130
14131 if (insn->imm == BPF_FUNC_timer_set_callback) {
14132 /* The verifier will process callback_fn as many times as necessary
14133 * with different maps and the register states prepared by
14134 * set_timer_callback_state will be accurate.
14135 *
14136 * The following use case is valid:
14137 * map1 is shared by prog1, prog2, prog3.
14138 * prog1 calls bpf_timer_init for some map1 elements
14139 * prog2 calls bpf_timer_set_callback for some map1 elements.
14140 * Those that were not bpf_timer_init-ed will return -EINVAL.
14141 * prog3 calls bpf_timer_start for some map1 elements.
14142 * Those that were not both bpf_timer_init-ed and
14143 * bpf_timer_set_callback-ed will return -EINVAL.
14144 */
14145 struct bpf_insn ld_addrs[2] = {
14146 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14147 };
14148
14149 insn_buf[0] = ld_addrs[0];
14150 insn_buf[1] = ld_addrs[1];
14151 insn_buf[2] = *insn;
14152 cnt = 3;
14153
14154 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14155 if (!new_prog)
14156 return -ENOMEM;
14157
14158 delta += cnt - 1;
14159 env->prog = prog = new_prog;
14160 insn = new_prog->insnsi + i + delta;
14161 goto patch_call_imm;
14162 }
14163
14164 if (insn->imm == BPF_FUNC_task_storage_get ||
14165 insn->imm == BPF_FUNC_sk_storage_get ||
14166 insn->imm == BPF_FUNC_inode_storage_get) {
14167 if (env->prog->aux->sleepable)
14168 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14169 else
14170 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14171 insn_buf[1] = *insn;
14172 cnt = 2;
14173
14174 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14175 if (!new_prog)
14176 return -ENOMEM;
14177
14178 delta += cnt - 1;
14179 env->prog = prog = new_prog;
14180 insn = new_prog->insnsi + i + delta;
14181 goto patch_call_imm;
14182 }
14183
14184 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14185 * and other inlining handlers are currently limited to 64 bit
14186 * only.
14187 */
14188 if (prog->jit_requested && BITS_PER_LONG == 64 &&
14189 (insn->imm == BPF_FUNC_map_lookup_elem ||
14190 insn->imm == BPF_FUNC_map_update_elem ||
14191 insn->imm == BPF_FUNC_map_delete_elem ||
14192 insn->imm == BPF_FUNC_map_push_elem ||
14193 insn->imm == BPF_FUNC_map_pop_elem ||
14194 insn->imm == BPF_FUNC_map_peek_elem ||
14195 insn->imm == BPF_FUNC_redirect_map ||
14196 insn->imm == BPF_FUNC_for_each_map_elem ||
14197 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14198 aux = &env->insn_aux_data[i + delta];
14199 if (bpf_map_ptr_poisoned(aux))
14200 goto patch_call_imm;
14201
14202 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14203 ops = map_ptr->ops;
14204 if (insn->imm == BPF_FUNC_map_lookup_elem &&
14205 ops->map_gen_lookup) {
14206 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14207 if (cnt == -EOPNOTSUPP)
14208 goto patch_map_ops_generic;
14209 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14210 verbose(env, "bpf verifier is misconfigured\n");
14211 return -EINVAL;
14212 }
14213
14214 new_prog = bpf_patch_insn_data(env, i + delta,
14215 insn_buf, cnt);
14216 if (!new_prog)
14217 return -ENOMEM;
14218
14219 delta += cnt - 1;
14220 env->prog = prog = new_prog;
14221 insn = new_prog->insnsi + i + delta;
14222 continue;
14223 }
14224
14225 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14226 (void *(*)(struct bpf_map *map, void *key))NULL));
14227 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14228 (int (*)(struct bpf_map *map, void *key))NULL));
14229 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14230 (int (*)(struct bpf_map *map, void *key, void *value,
14231 u64 flags))NULL));
14232 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14233 (int (*)(struct bpf_map *map, void *value,
14234 u64 flags))NULL));
14235 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14236 (int (*)(struct bpf_map *map, void *value))NULL));
14237 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14238 (int (*)(struct bpf_map *map, void *value))NULL));
14239 BUILD_BUG_ON(!__same_type(ops->map_redirect,
14240 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14241 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14242 (int (*)(struct bpf_map *map,
14243 bpf_callback_t callback_fn,
14244 void *callback_ctx,
14245 u64 flags))NULL));
14246 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14247 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14248
14249 patch_map_ops_generic:
14250 switch (insn->imm) {
14251 case BPF_FUNC_map_lookup_elem:
14252 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14253 continue;
14254 case BPF_FUNC_map_update_elem:
14255 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14256 continue;
14257 case BPF_FUNC_map_delete_elem:
14258 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14259 continue;
14260 case BPF_FUNC_map_push_elem:
14261 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14262 continue;
14263 case BPF_FUNC_map_pop_elem:
14264 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14265 continue;
14266 case BPF_FUNC_map_peek_elem:
14267 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14268 continue;
14269 case BPF_FUNC_redirect_map:
14270 insn->imm = BPF_CALL_IMM(ops->map_redirect);
14271 continue;
14272 case BPF_FUNC_for_each_map_elem:
14273 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14274 continue;
14275 case BPF_FUNC_map_lookup_percpu_elem:
14276 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14277 continue;
14278 }
14279
14280 goto patch_call_imm;
14281 }
14282
14283 /* Implement bpf_jiffies64 inline. */
14284 if (prog->jit_requested && BITS_PER_LONG == 64 &&
14285 insn->imm == BPF_FUNC_jiffies64) {
14286 struct bpf_insn ld_jiffies_addr[2] = {
14287 BPF_LD_IMM64(BPF_REG_0,
14288 (unsigned long)&jiffies),
14289 };
14290
14291 insn_buf[0] = ld_jiffies_addr[0];
14292 insn_buf[1] = ld_jiffies_addr[1];
14293 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14294 BPF_REG_0, 0);
14295 cnt = 3;
14296
14297 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14298 cnt);
14299 if (!new_prog)
14300 return -ENOMEM;
14301
14302 delta += cnt - 1;
14303 env->prog = prog = new_prog;
14304 insn = new_prog->insnsi + i + delta;
14305 continue;
14306 }
14307
14308 /* Implement bpf_get_func_arg inline. */
14309 if (prog_type == BPF_PROG_TYPE_TRACING &&
14310 insn->imm == BPF_FUNC_get_func_arg) {
14311 /* Load nr_args from ctx - 8 */
14312 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14313 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14314 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14315 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14316 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14317 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14318 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14319 insn_buf[7] = BPF_JMP_A(1);
14320 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14321 cnt = 9;
14322
14323 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14324 if (!new_prog)
14325 return -ENOMEM;
14326
14327 delta += cnt - 1;
14328 env->prog = prog = new_prog;
14329 insn = new_prog->insnsi + i + delta;
14330 continue;
14331 }
14332
14333 /* Implement bpf_get_func_ret inline. */
14334 if (prog_type == BPF_PROG_TYPE_TRACING &&
14335 insn->imm == BPF_FUNC_get_func_ret) {
14336 if (eatype == BPF_TRACE_FEXIT ||
14337 eatype == BPF_MODIFY_RETURN) {
14338 /* Load nr_args from ctx - 8 */
14339 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14340 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14341 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14342 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14343 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14344 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14345 cnt = 6;
14346 } else {
14347 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14348 cnt = 1;
14349 }
14350
14351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14352 if (!new_prog)
14353 return -ENOMEM;
14354
14355 delta += cnt - 1;
14356 env->prog = prog = new_prog;
14357 insn = new_prog->insnsi + i + delta;
14358 continue;
14359 }
14360
14361 /* Implement get_func_arg_cnt inline. */
14362 if (prog_type == BPF_PROG_TYPE_TRACING &&
14363 insn->imm == BPF_FUNC_get_func_arg_cnt) {
14364 /* Load nr_args from ctx - 8 */
14365 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14366
14367 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14368 if (!new_prog)
14369 return -ENOMEM;
14370
14371 env->prog = prog = new_prog;
14372 insn = new_prog->insnsi + i + delta;
14373 continue;
14374 }
14375
14376 /* Implement bpf_get_func_ip inline. */
14377 if (prog_type == BPF_PROG_TYPE_TRACING &&
14378 insn->imm == BPF_FUNC_get_func_ip) {
14379 /* Load IP address from ctx - 16 */
14380 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14381
14382 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14383 if (!new_prog)
14384 return -ENOMEM;
14385
14386 env->prog = prog = new_prog;
14387 insn = new_prog->insnsi + i + delta;
14388 continue;
14389 }
14390
14391 patch_call_imm:
14392 fn = env->ops->get_func_proto(insn->imm, env->prog);
14393 /* all functions that have prototype and verifier allowed
14394 * programs to call them, must be real in-kernel functions
14395 */
14396 if (!fn->func) {
14397 verbose(env,
14398 "kernel subsystem misconfigured func %s#%d\n",
14399 func_id_name(insn->imm), insn->imm);
14400 return -EFAULT;
14401 }
14402 insn->imm = fn->func - __bpf_call_base;
14403 }
14404
14405 /* Since poke tab is now finalized, publish aux to tracker. */
14406 for (i = 0; i < prog->aux->size_poke_tab; i++) {
14407 map_ptr = prog->aux->poke_tab[i].tail_call.map;
14408 if (!map_ptr->ops->map_poke_track ||
14409 !map_ptr->ops->map_poke_untrack ||
14410 !map_ptr->ops->map_poke_run) {
14411 verbose(env, "bpf verifier is misconfigured\n");
14412 return -EINVAL;
14413 }
14414
14415 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14416 if (ret < 0) {
14417 verbose(env, "tracking tail call prog failed\n");
14418 return ret;
14419 }
14420 }
14421
14422 sort_kfunc_descs_by_imm(env->prog);
14423
14424 return 0;
14425 }
14426
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)14427 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14428 int position,
14429 s32 stack_base,
14430 u32 callback_subprogno,
14431 u32 *cnt)
14432 {
14433 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14434 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14435 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14436 int reg_loop_max = BPF_REG_6;
14437 int reg_loop_cnt = BPF_REG_7;
14438 int reg_loop_ctx = BPF_REG_8;
14439
14440 struct bpf_prog *new_prog;
14441 u32 callback_start;
14442 u32 call_insn_offset;
14443 s32 callback_offset;
14444
14445 /* This represents an inlined version of bpf_iter.c:bpf_loop,
14446 * be careful to modify this code in sync.
14447 */
14448 struct bpf_insn insn_buf[] = {
14449 /* Return error and jump to the end of the patch if
14450 * expected number of iterations is too big.
14451 */
14452 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14453 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14454 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14455 /* spill R6, R7, R8 to use these as loop vars */
14456 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14457 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14458 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14459 /* initialize loop vars */
14460 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14461 BPF_MOV32_IMM(reg_loop_cnt, 0),
14462 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14463 /* loop header,
14464 * if reg_loop_cnt >= reg_loop_max skip the loop body
14465 */
14466 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14467 /* callback call,
14468 * correct callback offset would be set after patching
14469 */
14470 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14471 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14472 BPF_CALL_REL(0),
14473 /* increment loop counter */
14474 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14475 /* jump to loop header if callback returned 0 */
14476 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14477 /* return value of bpf_loop,
14478 * set R0 to the number of iterations
14479 */
14480 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14481 /* restore original values of R6, R7, R8 */
14482 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14483 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14484 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14485 };
14486
14487 *cnt = ARRAY_SIZE(insn_buf);
14488 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14489 if (!new_prog)
14490 return new_prog;
14491
14492 /* callback start is known only after patching */
14493 callback_start = env->subprog_info[callback_subprogno].start;
14494 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14495 call_insn_offset = position + 12;
14496 callback_offset = callback_start - call_insn_offset - 1;
14497 new_prog->insnsi[call_insn_offset].imm = callback_offset;
14498
14499 return new_prog;
14500 }
14501
is_bpf_loop_call(struct bpf_insn * insn)14502 static bool is_bpf_loop_call(struct bpf_insn *insn)
14503 {
14504 return insn->code == (BPF_JMP | BPF_CALL) &&
14505 insn->src_reg == 0 &&
14506 insn->imm == BPF_FUNC_loop;
14507 }
14508
14509 /* For all sub-programs in the program (including main) check
14510 * insn_aux_data to see if there are bpf_loop calls that require
14511 * inlining. If such calls are found the calls are replaced with a
14512 * sequence of instructions produced by `inline_bpf_loop` function and
14513 * subprog stack_depth is increased by the size of 3 registers.
14514 * This stack space is used to spill values of the R6, R7, R8. These
14515 * registers are used to store the loop bound, counter and context
14516 * variables.
14517 */
optimize_bpf_loop(struct bpf_verifier_env * env)14518 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14519 {
14520 struct bpf_subprog_info *subprogs = env->subprog_info;
14521 int i, cur_subprog = 0, cnt, delta = 0;
14522 struct bpf_insn *insn = env->prog->insnsi;
14523 int insn_cnt = env->prog->len;
14524 u16 stack_depth = subprogs[cur_subprog].stack_depth;
14525 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14526 u16 stack_depth_extra = 0;
14527
14528 for (i = 0; i < insn_cnt; i++, insn++) {
14529 struct bpf_loop_inline_state *inline_state =
14530 &env->insn_aux_data[i + delta].loop_inline_state;
14531
14532 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14533 struct bpf_prog *new_prog;
14534
14535 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14536 new_prog = inline_bpf_loop(env,
14537 i + delta,
14538 -(stack_depth + stack_depth_extra),
14539 inline_state->callback_subprogno,
14540 &cnt);
14541 if (!new_prog)
14542 return -ENOMEM;
14543
14544 delta += cnt - 1;
14545 env->prog = new_prog;
14546 insn = new_prog->insnsi + i + delta;
14547 }
14548
14549 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14550 subprogs[cur_subprog].stack_depth += stack_depth_extra;
14551 cur_subprog++;
14552 stack_depth = subprogs[cur_subprog].stack_depth;
14553 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14554 stack_depth_extra = 0;
14555 }
14556 }
14557
14558 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14559
14560 return 0;
14561 }
14562
free_states(struct bpf_verifier_env * env)14563 static void free_states(struct bpf_verifier_env *env)
14564 {
14565 struct bpf_verifier_state_list *sl, *sln;
14566 int i;
14567
14568 sl = env->free_list;
14569 while (sl) {
14570 sln = sl->next;
14571 free_verifier_state(&sl->state, false);
14572 kfree(sl);
14573 sl = sln;
14574 }
14575 env->free_list = NULL;
14576
14577 if (!env->explored_states)
14578 return;
14579
14580 for (i = 0; i < state_htab_size(env); i++) {
14581 sl = env->explored_states[i];
14582
14583 while (sl) {
14584 sln = sl->next;
14585 free_verifier_state(&sl->state, false);
14586 kfree(sl);
14587 sl = sln;
14588 }
14589 env->explored_states[i] = NULL;
14590 }
14591 }
14592
do_check_common(struct bpf_verifier_env * env,int subprog)14593 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14594 {
14595 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14596 struct bpf_verifier_state *state;
14597 struct bpf_reg_state *regs;
14598 int ret, i;
14599
14600 env->prev_linfo = NULL;
14601 env->pass_cnt++;
14602
14603 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14604 if (!state)
14605 return -ENOMEM;
14606 state->curframe = 0;
14607 state->speculative = false;
14608 state->branches = 1;
14609 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14610 if (!state->frame[0]) {
14611 kfree(state);
14612 return -ENOMEM;
14613 }
14614 env->cur_state = state;
14615 init_func_state(env, state->frame[0],
14616 BPF_MAIN_FUNC /* callsite */,
14617 0 /* frameno */,
14618 subprog);
14619
14620 regs = state->frame[state->curframe]->regs;
14621 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14622 ret = btf_prepare_func_args(env, subprog, regs);
14623 if (ret)
14624 goto out;
14625 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14626 if (regs[i].type == PTR_TO_CTX)
14627 mark_reg_known_zero(env, regs, i);
14628 else if (regs[i].type == SCALAR_VALUE)
14629 mark_reg_unknown(env, regs, i);
14630 else if (base_type(regs[i].type) == PTR_TO_MEM) {
14631 const u32 mem_size = regs[i].mem_size;
14632
14633 mark_reg_known_zero(env, regs, i);
14634 regs[i].mem_size = mem_size;
14635 regs[i].id = ++env->id_gen;
14636 }
14637 }
14638 } else {
14639 /* 1st arg to a function */
14640 regs[BPF_REG_1].type = PTR_TO_CTX;
14641 mark_reg_known_zero(env, regs, BPF_REG_1);
14642 ret = btf_check_subprog_arg_match(env, subprog, regs);
14643 if (ret == -EFAULT)
14644 /* unlikely verifier bug. abort.
14645 * ret == 0 and ret < 0 are sadly acceptable for
14646 * main() function due to backward compatibility.
14647 * Like socket filter program may be written as:
14648 * int bpf_prog(struct pt_regs *ctx)
14649 * and never dereference that ctx in the program.
14650 * 'struct pt_regs' is a type mismatch for socket
14651 * filter that should be using 'struct __sk_buff'.
14652 */
14653 goto out;
14654 }
14655
14656 ret = do_check(env);
14657 out:
14658 /* check for NULL is necessary, since cur_state can be freed inside
14659 * do_check() under memory pressure.
14660 */
14661 if (env->cur_state) {
14662 free_verifier_state(env->cur_state, true);
14663 env->cur_state = NULL;
14664 }
14665 while (!pop_stack(env, NULL, NULL, false));
14666 if (!ret && pop_log)
14667 bpf_vlog_reset(&env->log, 0);
14668 free_states(env);
14669 return ret;
14670 }
14671
14672 /* Verify all global functions in a BPF program one by one based on their BTF.
14673 * All global functions must pass verification. Otherwise the whole program is rejected.
14674 * Consider:
14675 * int bar(int);
14676 * int foo(int f)
14677 * {
14678 * return bar(f);
14679 * }
14680 * int bar(int b)
14681 * {
14682 * ...
14683 * }
14684 * foo() will be verified first for R1=any_scalar_value. During verification it
14685 * will be assumed that bar() already verified successfully and call to bar()
14686 * from foo() will be checked for type match only. Later bar() will be verified
14687 * independently to check that it's safe for R1=any_scalar_value.
14688 */
do_check_subprogs(struct bpf_verifier_env * env)14689 static int do_check_subprogs(struct bpf_verifier_env *env)
14690 {
14691 struct bpf_prog_aux *aux = env->prog->aux;
14692 int i, ret;
14693
14694 if (!aux->func_info)
14695 return 0;
14696
14697 for (i = 1; i < env->subprog_cnt; i++) {
14698 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14699 continue;
14700 env->insn_idx = env->subprog_info[i].start;
14701 WARN_ON_ONCE(env->insn_idx == 0);
14702 ret = do_check_common(env, i);
14703 if (ret) {
14704 return ret;
14705 } else if (env->log.level & BPF_LOG_LEVEL) {
14706 verbose(env,
14707 "Func#%d is safe for any args that match its prototype\n",
14708 i);
14709 }
14710 }
14711 return 0;
14712 }
14713
do_check_main(struct bpf_verifier_env * env)14714 static int do_check_main(struct bpf_verifier_env *env)
14715 {
14716 int ret;
14717
14718 env->insn_idx = 0;
14719 ret = do_check_common(env, 0);
14720 if (!ret)
14721 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14722 return ret;
14723 }
14724
14725
print_verification_stats(struct bpf_verifier_env * env)14726 static void print_verification_stats(struct bpf_verifier_env *env)
14727 {
14728 int i;
14729
14730 if (env->log.level & BPF_LOG_STATS) {
14731 verbose(env, "verification time %lld usec\n",
14732 div_u64(env->verification_time, 1000));
14733 verbose(env, "stack depth ");
14734 for (i = 0; i < env->subprog_cnt; i++) {
14735 u32 depth = env->subprog_info[i].stack_depth;
14736
14737 verbose(env, "%d", depth);
14738 if (i + 1 < env->subprog_cnt)
14739 verbose(env, "+");
14740 }
14741 verbose(env, "\n");
14742 }
14743 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14744 "total_states %d peak_states %d mark_read %d\n",
14745 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14746 env->max_states_per_insn, env->total_states,
14747 env->peak_states, env->longest_mark_read_walk);
14748 }
14749
check_struct_ops_btf_id(struct bpf_verifier_env * env)14750 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14751 {
14752 const struct btf_type *t, *func_proto;
14753 const struct bpf_struct_ops *st_ops;
14754 const struct btf_member *member;
14755 struct bpf_prog *prog = env->prog;
14756 u32 btf_id, member_idx;
14757 const char *mname;
14758
14759 if (!prog->gpl_compatible) {
14760 verbose(env, "struct ops programs must have a GPL compatible license\n");
14761 return -EINVAL;
14762 }
14763
14764 btf_id = prog->aux->attach_btf_id;
14765 st_ops = bpf_struct_ops_find(btf_id);
14766 if (!st_ops) {
14767 verbose(env, "attach_btf_id %u is not a supported struct\n",
14768 btf_id);
14769 return -ENOTSUPP;
14770 }
14771
14772 t = st_ops->type;
14773 member_idx = prog->expected_attach_type;
14774 if (member_idx >= btf_type_vlen(t)) {
14775 verbose(env, "attach to invalid member idx %u of struct %s\n",
14776 member_idx, st_ops->name);
14777 return -EINVAL;
14778 }
14779
14780 member = &btf_type_member(t)[member_idx];
14781 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14782 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14783 NULL);
14784 if (!func_proto) {
14785 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14786 mname, member_idx, st_ops->name);
14787 return -EINVAL;
14788 }
14789
14790 if (st_ops->check_member) {
14791 int err = st_ops->check_member(t, member);
14792
14793 if (err) {
14794 verbose(env, "attach to unsupported member %s of struct %s\n",
14795 mname, st_ops->name);
14796 return err;
14797 }
14798 }
14799
14800 prog->aux->attach_func_proto = func_proto;
14801 prog->aux->attach_func_name = mname;
14802 env->ops = st_ops->verifier_ops;
14803
14804 return 0;
14805 }
14806 #define SECURITY_PREFIX "security_"
14807
check_attach_modify_return(unsigned long addr,const char * func_name)14808 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14809 {
14810 if (within_error_injection_list(addr) ||
14811 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14812 return 0;
14813
14814 return -EINVAL;
14815 }
14816
14817 /* list of non-sleepable functions that are otherwise on
14818 * ALLOW_ERROR_INJECTION list
14819 */
14820 BTF_SET_START(btf_non_sleepable_error_inject)
14821 /* Three functions below can be called from sleepable and non-sleepable context.
14822 * Assume non-sleepable from bpf safety point of view.
14823 */
BTF_ID(func,__filemap_add_folio)14824 BTF_ID(func, __filemap_add_folio)
14825 BTF_ID(func, should_fail_alloc_page)
14826 BTF_ID(func, should_failslab)
14827 BTF_SET_END(btf_non_sleepable_error_inject)
14828
14829 static int check_non_sleepable_error_inject(u32 btf_id)
14830 {
14831 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14832 }
14833
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)14834 int bpf_check_attach_target(struct bpf_verifier_log *log,
14835 const struct bpf_prog *prog,
14836 const struct bpf_prog *tgt_prog,
14837 u32 btf_id,
14838 struct bpf_attach_target_info *tgt_info)
14839 {
14840 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14841 const char prefix[] = "btf_trace_";
14842 int ret = 0, subprog = -1, i;
14843 const struct btf_type *t;
14844 bool conservative = true;
14845 const char *tname;
14846 struct btf *btf;
14847 long addr = 0;
14848
14849 if (!btf_id) {
14850 bpf_log(log, "Tracing programs must provide btf_id\n");
14851 return -EINVAL;
14852 }
14853 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14854 if (!btf) {
14855 bpf_log(log,
14856 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14857 return -EINVAL;
14858 }
14859 t = btf_type_by_id(btf, btf_id);
14860 if (!t) {
14861 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14862 return -EINVAL;
14863 }
14864 tname = btf_name_by_offset(btf, t->name_off);
14865 if (!tname) {
14866 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14867 return -EINVAL;
14868 }
14869 if (tgt_prog) {
14870 struct bpf_prog_aux *aux = tgt_prog->aux;
14871
14872 for (i = 0; i < aux->func_info_cnt; i++)
14873 if (aux->func_info[i].type_id == btf_id) {
14874 subprog = i;
14875 break;
14876 }
14877 if (subprog == -1) {
14878 bpf_log(log, "Subprog %s doesn't exist\n", tname);
14879 return -EINVAL;
14880 }
14881 conservative = aux->func_info_aux[subprog].unreliable;
14882 if (prog_extension) {
14883 if (conservative) {
14884 bpf_log(log,
14885 "Cannot replace static functions\n");
14886 return -EINVAL;
14887 }
14888 if (!prog->jit_requested) {
14889 bpf_log(log,
14890 "Extension programs should be JITed\n");
14891 return -EINVAL;
14892 }
14893 }
14894 if (!tgt_prog->jited) {
14895 bpf_log(log, "Can attach to only JITed progs\n");
14896 return -EINVAL;
14897 }
14898 if (tgt_prog->type == prog->type) {
14899 /* Cannot fentry/fexit another fentry/fexit program.
14900 * Cannot attach program extension to another extension.
14901 * It's ok to attach fentry/fexit to extension program.
14902 */
14903 bpf_log(log, "Cannot recursively attach\n");
14904 return -EINVAL;
14905 }
14906 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14907 prog_extension &&
14908 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14909 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14910 /* Program extensions can extend all program types
14911 * except fentry/fexit. The reason is the following.
14912 * The fentry/fexit programs are used for performance
14913 * analysis, stats and can be attached to any program
14914 * type except themselves. When extension program is
14915 * replacing XDP function it is necessary to allow
14916 * performance analysis of all functions. Both original
14917 * XDP program and its program extension. Hence
14918 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14919 * allowed. If extending of fentry/fexit was allowed it
14920 * would be possible to create long call chain
14921 * fentry->extension->fentry->extension beyond
14922 * reasonable stack size. Hence extending fentry is not
14923 * allowed.
14924 */
14925 bpf_log(log, "Cannot extend fentry/fexit\n");
14926 return -EINVAL;
14927 }
14928 } else {
14929 if (prog_extension) {
14930 bpf_log(log, "Cannot replace kernel functions\n");
14931 return -EINVAL;
14932 }
14933 }
14934
14935 switch (prog->expected_attach_type) {
14936 case BPF_TRACE_RAW_TP:
14937 if (tgt_prog) {
14938 bpf_log(log,
14939 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14940 return -EINVAL;
14941 }
14942 if (!btf_type_is_typedef(t)) {
14943 bpf_log(log, "attach_btf_id %u is not a typedef\n",
14944 btf_id);
14945 return -EINVAL;
14946 }
14947 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14948 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14949 btf_id, tname);
14950 return -EINVAL;
14951 }
14952 tname += sizeof(prefix) - 1;
14953 t = btf_type_by_id(btf, t->type);
14954 if (!btf_type_is_ptr(t))
14955 /* should never happen in valid vmlinux build */
14956 return -EINVAL;
14957 t = btf_type_by_id(btf, t->type);
14958 if (!btf_type_is_func_proto(t))
14959 /* should never happen in valid vmlinux build */
14960 return -EINVAL;
14961
14962 break;
14963 case BPF_TRACE_ITER:
14964 if (!btf_type_is_func(t)) {
14965 bpf_log(log, "attach_btf_id %u is not a function\n",
14966 btf_id);
14967 return -EINVAL;
14968 }
14969 t = btf_type_by_id(btf, t->type);
14970 if (!btf_type_is_func_proto(t))
14971 return -EINVAL;
14972 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14973 if (ret)
14974 return ret;
14975 break;
14976 default:
14977 if (!prog_extension)
14978 return -EINVAL;
14979 fallthrough;
14980 case BPF_MODIFY_RETURN:
14981 case BPF_LSM_MAC:
14982 case BPF_LSM_CGROUP:
14983 case BPF_TRACE_FENTRY:
14984 case BPF_TRACE_FEXIT:
14985 if (!btf_type_is_func(t)) {
14986 bpf_log(log, "attach_btf_id %u is not a function\n",
14987 btf_id);
14988 return -EINVAL;
14989 }
14990 if (prog_extension &&
14991 btf_check_type_match(log, prog, btf, t))
14992 return -EINVAL;
14993 t = btf_type_by_id(btf, t->type);
14994 if (!btf_type_is_func_proto(t))
14995 return -EINVAL;
14996
14997 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14998 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14999 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
15000 return -EINVAL;
15001
15002 if (tgt_prog && conservative)
15003 t = NULL;
15004
15005 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15006 if (ret < 0)
15007 return ret;
15008
15009 if (tgt_prog) {
15010 if (subprog == 0)
15011 addr = (long) tgt_prog->bpf_func;
15012 else
15013 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
15014 } else {
15015 addr = kallsyms_lookup_name(tname);
15016 if (!addr) {
15017 bpf_log(log,
15018 "The address of function %s cannot be found\n",
15019 tname);
15020 return -ENOENT;
15021 }
15022 }
15023
15024 if (prog->aux->sleepable) {
15025 ret = -EINVAL;
15026 switch (prog->type) {
15027 case BPF_PROG_TYPE_TRACING:
15028 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
15029 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
15030 */
15031 if (!check_non_sleepable_error_inject(btf_id) &&
15032 within_error_injection_list(addr))
15033 ret = 0;
15034 break;
15035 case BPF_PROG_TYPE_LSM:
15036 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
15037 * Only some of them are sleepable.
15038 */
15039 if (bpf_lsm_is_sleepable_hook(btf_id))
15040 ret = 0;
15041 break;
15042 default:
15043 break;
15044 }
15045 if (ret) {
15046 bpf_log(log, "%s is not sleepable\n", tname);
15047 return ret;
15048 }
15049 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15050 if (tgt_prog) {
15051 bpf_log(log, "can't modify return codes of BPF programs\n");
15052 return -EINVAL;
15053 }
15054 ret = check_attach_modify_return(addr, tname);
15055 if (ret) {
15056 bpf_log(log, "%s() is not modifiable\n", tname);
15057 return ret;
15058 }
15059 }
15060
15061 break;
15062 }
15063 tgt_info->tgt_addr = addr;
15064 tgt_info->tgt_name = tname;
15065 tgt_info->tgt_type = t;
15066 return 0;
15067 }
15068
BTF_SET_START(btf_id_deny)15069 BTF_SET_START(btf_id_deny)
15070 BTF_ID_UNUSED
15071 #ifdef CONFIG_SMP
15072 BTF_ID(func, migrate_disable)
15073 BTF_ID(func, migrate_enable)
15074 #endif
15075 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15076 BTF_ID(func, rcu_read_unlock_strict)
15077 #endif
15078 BTF_SET_END(btf_id_deny)
15079
15080 static int check_attach_btf_id(struct bpf_verifier_env *env)
15081 {
15082 struct bpf_prog *prog = env->prog;
15083 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15084 struct bpf_attach_target_info tgt_info = {};
15085 u32 btf_id = prog->aux->attach_btf_id;
15086 struct bpf_trampoline *tr;
15087 int ret;
15088 u64 key;
15089
15090 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15091 if (prog->aux->sleepable)
15092 /* attach_btf_id checked to be zero already */
15093 return 0;
15094 verbose(env, "Syscall programs can only be sleepable\n");
15095 return -EINVAL;
15096 }
15097
15098 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15099 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15100 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15101 return -EINVAL;
15102 }
15103
15104 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15105 return check_struct_ops_btf_id(env);
15106
15107 if (prog->type != BPF_PROG_TYPE_TRACING &&
15108 prog->type != BPF_PROG_TYPE_LSM &&
15109 prog->type != BPF_PROG_TYPE_EXT)
15110 return 0;
15111
15112 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15113 if (ret)
15114 return ret;
15115
15116 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15117 /* to make freplace equivalent to their targets, they need to
15118 * inherit env->ops and expected_attach_type for the rest of the
15119 * verification
15120 */
15121 env->ops = bpf_verifier_ops[tgt_prog->type];
15122 prog->expected_attach_type = tgt_prog->expected_attach_type;
15123 }
15124
15125 /* store info about the attachment target that will be used later */
15126 prog->aux->attach_func_proto = tgt_info.tgt_type;
15127 prog->aux->attach_func_name = tgt_info.tgt_name;
15128
15129 if (tgt_prog) {
15130 prog->aux->saved_dst_prog_type = tgt_prog->type;
15131 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15132 }
15133
15134 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15135 prog->aux->attach_btf_trace = true;
15136 return 0;
15137 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15138 if (!bpf_iter_prog_supported(prog))
15139 return -EINVAL;
15140 return 0;
15141 }
15142
15143 if (prog->type == BPF_PROG_TYPE_LSM) {
15144 ret = bpf_lsm_verify_prog(&env->log, prog);
15145 if (ret < 0)
15146 return ret;
15147 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
15148 btf_id_set_contains(&btf_id_deny, btf_id)) {
15149 return -EINVAL;
15150 }
15151
15152 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15153 tr = bpf_trampoline_get(key, &tgt_info);
15154 if (!tr)
15155 return -ENOMEM;
15156
15157 prog->aux->dst_trampoline = tr;
15158 return 0;
15159 }
15160
bpf_get_btf_vmlinux(void)15161 struct btf *bpf_get_btf_vmlinux(void)
15162 {
15163 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15164 mutex_lock(&bpf_verifier_lock);
15165 if (!btf_vmlinux)
15166 btf_vmlinux = btf_parse_vmlinux();
15167 mutex_unlock(&bpf_verifier_lock);
15168 }
15169 return btf_vmlinux;
15170 }
15171
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr)15172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15173 {
15174 u64 start_time = ktime_get_ns();
15175 struct bpf_verifier_env *env;
15176 struct bpf_verifier_log *log;
15177 int i, len, ret = -EINVAL;
15178 bool is_priv;
15179
15180 /* no program is valid */
15181 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15182 return -EINVAL;
15183
15184 /* 'struct bpf_verifier_env' can be global, but since it's not small,
15185 * allocate/free it every time bpf_check() is called
15186 */
15187 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15188 if (!env)
15189 return -ENOMEM;
15190 log = &env->log;
15191
15192 len = (*prog)->len;
15193 env->insn_aux_data =
15194 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15195 ret = -ENOMEM;
15196 if (!env->insn_aux_data)
15197 goto err_free_env;
15198 for (i = 0; i < len; i++)
15199 env->insn_aux_data[i].orig_idx = i;
15200 env->prog = *prog;
15201 env->ops = bpf_verifier_ops[env->prog->type];
15202 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15203 is_priv = bpf_capable();
15204
15205 bpf_get_btf_vmlinux();
15206
15207 /* grab the mutex to protect few globals used by verifier */
15208 if (!is_priv)
15209 mutex_lock(&bpf_verifier_lock);
15210
15211 if (attr->log_level || attr->log_buf || attr->log_size) {
15212 /* user requested verbose verifier output
15213 * and supplied buffer to store the verification trace
15214 */
15215 log->level = attr->log_level;
15216 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15217 log->len_total = attr->log_size;
15218
15219 /* log attributes have to be sane */
15220 if (!bpf_verifier_log_attr_valid(log)) {
15221 ret = -EINVAL;
15222 goto err_unlock;
15223 }
15224 }
15225
15226 mark_verifier_state_clean(env);
15227
15228 if (IS_ERR(btf_vmlinux)) {
15229 /* Either gcc or pahole or kernel are broken. */
15230 verbose(env, "in-kernel BTF is malformed\n");
15231 ret = PTR_ERR(btf_vmlinux);
15232 goto skip_full_check;
15233 }
15234
15235 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15236 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15237 env->strict_alignment = true;
15238 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15239 env->strict_alignment = false;
15240
15241 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15242 env->allow_uninit_stack = bpf_allow_uninit_stack();
15243 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15244 env->bypass_spec_v1 = bpf_bypass_spec_v1();
15245 env->bypass_spec_v4 = bpf_bypass_spec_v4();
15246 env->bpf_capable = bpf_capable();
15247
15248 if (is_priv)
15249 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15250
15251 env->explored_states = kvcalloc(state_htab_size(env),
15252 sizeof(struct bpf_verifier_state_list *),
15253 GFP_USER);
15254 ret = -ENOMEM;
15255 if (!env->explored_states)
15256 goto skip_full_check;
15257
15258 ret = add_subprog_and_kfunc(env);
15259 if (ret < 0)
15260 goto skip_full_check;
15261
15262 ret = check_subprogs(env);
15263 if (ret < 0)
15264 goto skip_full_check;
15265
15266 ret = check_btf_info(env, attr, uattr);
15267 if (ret < 0)
15268 goto skip_full_check;
15269
15270 ret = check_attach_btf_id(env);
15271 if (ret)
15272 goto skip_full_check;
15273
15274 ret = resolve_pseudo_ldimm64(env);
15275 if (ret < 0)
15276 goto skip_full_check;
15277
15278 if (bpf_prog_is_dev_bound(env->prog->aux)) {
15279 ret = bpf_prog_offload_verifier_prep(env->prog);
15280 if (ret)
15281 goto skip_full_check;
15282 }
15283
15284 ret = check_cfg(env);
15285 if (ret < 0)
15286 goto skip_full_check;
15287
15288 ret = do_check_subprogs(env);
15289 ret = ret ?: do_check_main(env);
15290
15291 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15292 ret = bpf_prog_offload_finalize(env);
15293
15294 skip_full_check:
15295 kvfree(env->explored_states);
15296
15297 if (ret == 0)
15298 ret = check_max_stack_depth(env);
15299
15300 /* instruction rewrites happen after this point */
15301 if (ret == 0)
15302 ret = optimize_bpf_loop(env);
15303
15304 if (is_priv) {
15305 if (ret == 0)
15306 opt_hard_wire_dead_code_branches(env);
15307 if (ret == 0)
15308 ret = opt_remove_dead_code(env);
15309 if (ret == 0)
15310 ret = opt_remove_nops(env);
15311 } else {
15312 if (ret == 0)
15313 sanitize_dead_code(env);
15314 }
15315
15316 if (ret == 0)
15317 /* program is valid, convert *(u32*)(ctx + off) accesses */
15318 ret = convert_ctx_accesses(env);
15319
15320 if (ret == 0)
15321 ret = do_misc_fixups(env);
15322
15323 /* do 32-bit optimization after insn patching has done so those patched
15324 * insns could be handled correctly.
15325 */
15326 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15327 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15328 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15329 : false;
15330 }
15331
15332 if (ret == 0)
15333 ret = fixup_call_args(env);
15334
15335 env->verification_time = ktime_get_ns() - start_time;
15336 print_verification_stats(env);
15337 env->prog->aux->verified_insns = env->insn_processed;
15338
15339 if (log->level && bpf_verifier_log_full(log))
15340 ret = -ENOSPC;
15341 if (log->level && !log->ubuf) {
15342 ret = -EFAULT;
15343 goto err_release_maps;
15344 }
15345
15346 if (ret)
15347 goto err_release_maps;
15348
15349 if (env->used_map_cnt) {
15350 /* if program passed verifier, update used_maps in bpf_prog_info */
15351 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15352 sizeof(env->used_maps[0]),
15353 GFP_KERNEL);
15354
15355 if (!env->prog->aux->used_maps) {
15356 ret = -ENOMEM;
15357 goto err_release_maps;
15358 }
15359
15360 memcpy(env->prog->aux->used_maps, env->used_maps,
15361 sizeof(env->used_maps[0]) * env->used_map_cnt);
15362 env->prog->aux->used_map_cnt = env->used_map_cnt;
15363 }
15364 if (env->used_btf_cnt) {
15365 /* if program passed verifier, update used_btfs in bpf_prog_aux */
15366 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15367 sizeof(env->used_btfs[0]),
15368 GFP_KERNEL);
15369 if (!env->prog->aux->used_btfs) {
15370 ret = -ENOMEM;
15371 goto err_release_maps;
15372 }
15373
15374 memcpy(env->prog->aux->used_btfs, env->used_btfs,
15375 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15376 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15377 }
15378 if (env->used_map_cnt || env->used_btf_cnt) {
15379 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
15380 * bpf_ld_imm64 instructions
15381 */
15382 convert_pseudo_ld_imm64(env);
15383 }
15384
15385 adjust_btf_func(env);
15386
15387 err_release_maps:
15388 if (!env->prog->aux->used_maps)
15389 /* if we didn't copy map pointers into bpf_prog_info, release
15390 * them now. Otherwise free_used_maps() will release them.
15391 */
15392 release_maps(env);
15393 if (!env->prog->aux->used_btfs)
15394 release_btfs(env);
15395
15396 /* extension progs temporarily inherit the attach_type of their targets
15397 for verification purposes, so set it back to zero before returning
15398 */
15399 if (env->prog->type == BPF_PROG_TYPE_EXT)
15400 env->prog->expected_attach_type = 0;
15401
15402 *prog = env->prog;
15403 err_unlock:
15404 if (!is_priv)
15405 mutex_unlock(&bpf_verifier_lock);
15406 vfree(env->insn_aux_data);
15407 err_free_env:
15408 kfree(env);
15409 return ret;
15410 }
15411