1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4 * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
5 */
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/io.h>
12 #include <linux/iopoll.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/of_gpio.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/platform_device.h>
22 #include <linux/reset.h>
23 #include <linux/sizes.h>
24 #include <linux/spi/spi-mem.h>
25
26 #define QSPI_CR 0x00
27 #define CR_EN BIT(0)
28 #define CR_ABORT BIT(1)
29 #define CR_DMAEN BIT(2)
30 #define CR_TCEN BIT(3)
31 #define CR_SSHIFT BIT(4)
32 #define CR_DFM BIT(6)
33 #define CR_FSEL BIT(7)
34 #define CR_FTHRES_SHIFT 8
35 #define CR_TEIE BIT(16)
36 #define CR_TCIE BIT(17)
37 #define CR_FTIE BIT(18)
38 #define CR_SMIE BIT(19)
39 #define CR_TOIE BIT(20)
40 #define CR_APMS BIT(22)
41 #define CR_PRESC_MASK GENMASK(31, 24)
42
43 #define QSPI_DCR 0x04
44 #define DCR_FSIZE_MASK GENMASK(20, 16)
45
46 #define QSPI_SR 0x08
47 #define SR_TEF BIT(0)
48 #define SR_TCF BIT(1)
49 #define SR_FTF BIT(2)
50 #define SR_SMF BIT(3)
51 #define SR_TOF BIT(4)
52 #define SR_BUSY BIT(5)
53 #define SR_FLEVEL_MASK GENMASK(13, 8)
54
55 #define QSPI_FCR 0x0c
56 #define FCR_CTEF BIT(0)
57 #define FCR_CTCF BIT(1)
58 #define FCR_CSMF BIT(3)
59
60 #define QSPI_DLR 0x10
61
62 #define QSPI_CCR 0x14
63 #define CCR_INST_MASK GENMASK(7, 0)
64 #define CCR_IMODE_MASK GENMASK(9, 8)
65 #define CCR_ADMODE_MASK GENMASK(11, 10)
66 #define CCR_ADSIZE_MASK GENMASK(13, 12)
67 #define CCR_DCYC_MASK GENMASK(22, 18)
68 #define CCR_DMODE_MASK GENMASK(25, 24)
69 #define CCR_FMODE_MASK GENMASK(27, 26)
70 #define CCR_FMODE_INDW (0U << 26)
71 #define CCR_FMODE_INDR (1U << 26)
72 #define CCR_FMODE_APM (2U << 26)
73 #define CCR_FMODE_MM (3U << 26)
74 #define CCR_BUSWIDTH_0 0x0
75 #define CCR_BUSWIDTH_1 0x1
76 #define CCR_BUSWIDTH_2 0x2
77 #define CCR_BUSWIDTH_4 0x3
78
79 #define QSPI_AR 0x18
80 #define QSPI_ABR 0x1c
81 #define QSPI_DR 0x20
82 #define QSPI_PSMKR 0x24
83 #define QSPI_PSMAR 0x28
84 #define QSPI_PIR 0x2c
85 #define QSPI_LPTR 0x30
86
87 #define STM32_QSPI_MAX_MMAP_SZ SZ_256M
88 #define STM32_QSPI_MAX_NORCHIP 2
89
90 #define STM32_FIFO_TIMEOUT_US 30000
91 #define STM32_BUSY_TIMEOUT_US 100000
92 #define STM32_ABT_TIMEOUT_US 100000
93 #define STM32_COMP_TIMEOUT_MS 1000
94 #define STM32_AUTOSUSPEND_DELAY -1
95
96 struct stm32_qspi_flash {
97 u32 cs;
98 u32 presc;
99 };
100
101 struct stm32_qspi {
102 struct device *dev;
103 struct spi_controller *ctrl;
104 phys_addr_t phys_base;
105 void __iomem *io_base;
106 void __iomem *mm_base;
107 resource_size_t mm_size;
108 struct clk *clk;
109 u32 clk_rate;
110 struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
111 struct completion data_completion;
112 struct completion match_completion;
113 u32 fmode;
114
115 struct dma_chan *dma_chtx;
116 struct dma_chan *dma_chrx;
117 struct completion dma_completion;
118
119 u32 cr_reg;
120 u32 dcr_reg;
121 unsigned long status_timeout;
122
123 /*
124 * to protect device configuration, could be different between
125 * 2 flash access (bk1, bk2)
126 */
127 struct mutex lock;
128 };
129
stm32_qspi_irq(int irq,void * dev_id)130 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
131 {
132 struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
133 u32 cr, sr;
134
135 cr = readl_relaxed(qspi->io_base + QSPI_CR);
136 sr = readl_relaxed(qspi->io_base + QSPI_SR);
137
138 if (cr & CR_SMIE && sr & SR_SMF) {
139 /* disable irq */
140 cr &= ~CR_SMIE;
141 writel_relaxed(cr, qspi->io_base + QSPI_CR);
142 complete(&qspi->match_completion);
143
144 return IRQ_HANDLED;
145 }
146
147 if (sr & (SR_TEF | SR_TCF)) {
148 /* disable irq */
149 cr &= ~CR_TCIE & ~CR_TEIE;
150 writel_relaxed(cr, qspi->io_base + QSPI_CR);
151 complete(&qspi->data_completion);
152 }
153
154 return IRQ_HANDLED;
155 }
156
stm32_qspi_read_fifo(u8 * val,void __iomem * addr)157 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
158 {
159 *val = readb_relaxed(addr);
160 }
161
stm32_qspi_write_fifo(u8 * val,void __iomem * addr)162 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
163 {
164 writeb_relaxed(*val, addr);
165 }
166
stm32_qspi_tx_poll(struct stm32_qspi * qspi,const struct spi_mem_op * op)167 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
168 const struct spi_mem_op *op)
169 {
170 void (*tx_fifo)(u8 *val, void __iomem *addr);
171 u32 len = op->data.nbytes, sr;
172 u8 *buf;
173 int ret;
174
175 if (op->data.dir == SPI_MEM_DATA_IN) {
176 tx_fifo = stm32_qspi_read_fifo;
177 buf = op->data.buf.in;
178
179 } else {
180 tx_fifo = stm32_qspi_write_fifo;
181 buf = (u8 *)op->data.buf.out;
182 }
183
184 while (len--) {
185 ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
186 sr, (sr & SR_FTF), 1,
187 STM32_FIFO_TIMEOUT_US);
188 if (ret) {
189 dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
190 len, sr);
191 return ret;
192 }
193 tx_fifo(buf++, qspi->io_base + QSPI_DR);
194 }
195
196 return 0;
197 }
198
stm32_qspi_tx_mm(struct stm32_qspi * qspi,const struct spi_mem_op * op)199 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
200 const struct spi_mem_op *op)
201 {
202 memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
203 op->data.nbytes);
204 return 0;
205 }
206
stm32_qspi_dma_callback(void * arg)207 static void stm32_qspi_dma_callback(void *arg)
208 {
209 struct completion *dma_completion = arg;
210
211 complete(dma_completion);
212 }
213
stm32_qspi_tx_dma(struct stm32_qspi * qspi,const struct spi_mem_op * op)214 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi,
215 const struct spi_mem_op *op)
216 {
217 struct dma_async_tx_descriptor *desc;
218 enum dma_transfer_direction dma_dir;
219 struct dma_chan *dma_ch;
220 struct sg_table sgt;
221 dma_cookie_t cookie;
222 u32 cr, t_out;
223 int err;
224
225 if (op->data.dir == SPI_MEM_DATA_IN) {
226 dma_dir = DMA_DEV_TO_MEM;
227 dma_ch = qspi->dma_chrx;
228 } else {
229 dma_dir = DMA_MEM_TO_DEV;
230 dma_ch = qspi->dma_chtx;
231 }
232
233 /*
234 * spi_map_buf return -EINVAL if the buffer is not DMA-able
235 * (DMA-able: in vmalloc | kmap | virt_addr_valid)
236 */
237 err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt);
238 if (err)
239 return err;
240
241 desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
242 dma_dir, DMA_PREP_INTERRUPT);
243 if (!desc) {
244 err = -ENOMEM;
245 goto out_unmap;
246 }
247
248 cr = readl_relaxed(qspi->io_base + QSPI_CR);
249
250 reinit_completion(&qspi->dma_completion);
251 desc->callback = stm32_qspi_dma_callback;
252 desc->callback_param = &qspi->dma_completion;
253 cookie = dmaengine_submit(desc);
254 err = dma_submit_error(cookie);
255 if (err)
256 goto out;
257
258 dma_async_issue_pending(dma_ch);
259
260 writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR);
261
262 t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
263 if (!wait_for_completion_timeout(&qspi->dma_completion,
264 msecs_to_jiffies(t_out)))
265 err = -ETIMEDOUT;
266
267 if (err)
268 dmaengine_terminate_all(dma_ch);
269
270 out:
271 writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR);
272 out_unmap:
273 spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt);
274
275 return err;
276 }
277
stm32_qspi_tx(struct stm32_qspi * qspi,const struct spi_mem_op * op)278 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
279 {
280 if (!op->data.nbytes)
281 return 0;
282
283 if (qspi->fmode == CCR_FMODE_MM)
284 return stm32_qspi_tx_mm(qspi, op);
285 else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) ||
286 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) &&
287 op->data.nbytes > 4)
288 if (!stm32_qspi_tx_dma(qspi, op))
289 return 0;
290
291 return stm32_qspi_tx_poll(qspi, op);
292 }
293
stm32_qspi_wait_nobusy(struct stm32_qspi * qspi)294 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
295 {
296 u32 sr;
297
298 return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
299 !(sr & SR_BUSY), 1,
300 STM32_BUSY_TIMEOUT_US);
301 }
302
stm32_qspi_wait_cmd(struct stm32_qspi * qspi)303 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
304 {
305 u32 cr, sr;
306 int err = 0;
307
308 if ((readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) ||
309 qspi->fmode == CCR_FMODE_APM)
310 goto out;
311
312 reinit_completion(&qspi->data_completion);
313 cr = readl_relaxed(qspi->io_base + QSPI_CR);
314 writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
315
316 if (!wait_for_completion_timeout(&qspi->data_completion,
317 msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) {
318 err = -ETIMEDOUT;
319 } else {
320 sr = readl_relaxed(qspi->io_base + QSPI_SR);
321 if (sr & SR_TEF)
322 err = -EIO;
323 }
324
325 out:
326 /* clear flags */
327 writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
328 if (!err)
329 err = stm32_qspi_wait_nobusy(qspi);
330
331 return err;
332 }
333
stm32_qspi_wait_poll_status(struct stm32_qspi * qspi)334 static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi)
335 {
336 u32 cr;
337
338 reinit_completion(&qspi->match_completion);
339 cr = readl_relaxed(qspi->io_base + QSPI_CR);
340 writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR);
341
342 if (!wait_for_completion_timeout(&qspi->match_completion,
343 msecs_to_jiffies(qspi->status_timeout)))
344 return -ETIMEDOUT;
345
346 writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR);
347
348 return 0;
349 }
350
stm32_qspi_get_mode(u8 buswidth)351 static int stm32_qspi_get_mode(u8 buswidth)
352 {
353 if (buswidth == 4)
354 return CCR_BUSWIDTH_4;
355
356 return buswidth;
357 }
358
stm32_qspi_send(struct spi_device * spi,const struct spi_mem_op * op)359 static int stm32_qspi_send(struct spi_device *spi, const struct spi_mem_op *op)
360 {
361 struct stm32_qspi *qspi = spi_controller_get_devdata(spi->master);
362 struct stm32_qspi_flash *flash = &qspi->flash[spi->chip_select];
363 u32 ccr, cr;
364 int timeout, err = 0, err_poll_status = 0;
365
366 dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
367 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
368 op->dummy.buswidth, op->data.buswidth,
369 op->addr.val, op->data.nbytes);
370
371 cr = readl_relaxed(qspi->io_base + QSPI_CR);
372 cr &= ~CR_PRESC_MASK & ~CR_FSEL;
373 cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
374 cr |= FIELD_PREP(CR_FSEL, flash->cs);
375 writel_relaxed(cr, qspi->io_base + QSPI_CR);
376
377 if (op->data.nbytes)
378 writel_relaxed(op->data.nbytes - 1,
379 qspi->io_base + QSPI_DLR);
380
381 ccr = qspi->fmode;
382 ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
383 ccr |= FIELD_PREP(CCR_IMODE_MASK,
384 stm32_qspi_get_mode(op->cmd.buswidth));
385
386 if (op->addr.nbytes) {
387 ccr |= FIELD_PREP(CCR_ADMODE_MASK,
388 stm32_qspi_get_mode(op->addr.buswidth));
389 ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
390 }
391
392 if (op->dummy.nbytes)
393 ccr |= FIELD_PREP(CCR_DCYC_MASK,
394 op->dummy.nbytes * 8 / op->dummy.buswidth);
395
396 if (op->data.nbytes) {
397 ccr |= FIELD_PREP(CCR_DMODE_MASK,
398 stm32_qspi_get_mode(op->data.buswidth));
399 }
400
401 writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
402
403 if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
404 writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
405
406 if (qspi->fmode == CCR_FMODE_APM)
407 err_poll_status = stm32_qspi_wait_poll_status(qspi);
408
409 err = stm32_qspi_tx(qspi, op);
410
411 /*
412 * Abort in:
413 * -error case
414 * -read memory map: prefetching must be stopped if we read the last
415 * byte of device (device size - fifo size). like device size is not
416 * knows, the prefetching is always stop.
417 */
418 if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM)
419 goto abort;
420
421 /* wait end of tx in indirect mode */
422 err = stm32_qspi_wait_cmd(qspi);
423 if (err)
424 goto abort;
425
426 return 0;
427
428 abort:
429 cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
430 writel_relaxed(cr, qspi->io_base + QSPI_CR);
431
432 /* wait clear of abort bit by hw */
433 timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
434 cr, !(cr & CR_ABORT), 1,
435 STM32_ABT_TIMEOUT_US);
436
437 writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR);
438
439 if (err || err_poll_status || timeout)
440 dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n",
441 __func__, err, err_poll_status, timeout);
442
443 return err;
444 }
445
stm32_qspi_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_rate_us,unsigned long timeout_ms)446 static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op,
447 u16 mask, u16 match,
448 unsigned long initial_delay_us,
449 unsigned long polling_rate_us,
450 unsigned long timeout_ms)
451 {
452 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
453 int ret;
454
455 if (!spi_mem_supports_op(mem, op))
456 return -EOPNOTSUPP;
457
458 ret = pm_runtime_resume_and_get(qspi->dev);
459 if (ret < 0)
460 return ret;
461
462 mutex_lock(&qspi->lock);
463
464 writel_relaxed(mask, qspi->io_base + QSPI_PSMKR);
465 writel_relaxed(match, qspi->io_base + QSPI_PSMAR);
466 qspi->fmode = CCR_FMODE_APM;
467 qspi->status_timeout = timeout_ms;
468
469 ret = stm32_qspi_send(mem->spi, op);
470 mutex_unlock(&qspi->lock);
471
472 pm_runtime_mark_last_busy(qspi->dev);
473 pm_runtime_put_autosuspend(qspi->dev);
474
475 return ret;
476 }
477
stm32_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)478 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
479 {
480 struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
481 int ret;
482
483 ret = pm_runtime_resume_and_get(qspi->dev);
484 if (ret < 0)
485 return ret;
486
487 mutex_lock(&qspi->lock);
488 if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
489 qspi->fmode = CCR_FMODE_INDR;
490 else
491 qspi->fmode = CCR_FMODE_INDW;
492
493 ret = stm32_qspi_send(mem->spi, op);
494 mutex_unlock(&qspi->lock);
495
496 pm_runtime_mark_last_busy(qspi->dev);
497 pm_runtime_put_autosuspend(qspi->dev);
498
499 return ret;
500 }
501
stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc * desc)502 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc)
503 {
504 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
505
506 if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
507 return -EOPNOTSUPP;
508
509 /* should never happen, as mm_base == null is an error probe exit condition */
510 if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
511 return -EOPNOTSUPP;
512
513 if (!qspi->mm_size)
514 return -EOPNOTSUPP;
515
516 return 0;
517 }
518
stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)519 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc,
520 u64 offs, size_t len, void *buf)
521 {
522 struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
523 struct spi_mem_op op;
524 u32 addr_max;
525 int ret;
526
527 ret = pm_runtime_resume_and_get(qspi->dev);
528 if (ret < 0)
529 return ret;
530
531 mutex_lock(&qspi->lock);
532 /* make a local copy of desc op_tmpl and complete dirmap rdesc
533 * spi_mem_op template with offs, len and *buf in order to get
534 * all needed transfer information into struct spi_mem_op
535 */
536 memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
537 dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
538
539 op.data.nbytes = len;
540 op.addr.val = desc->info.offset + offs;
541 op.data.buf.in = buf;
542
543 addr_max = op.addr.val + op.data.nbytes + 1;
544 if (addr_max < qspi->mm_size && op.addr.buswidth)
545 qspi->fmode = CCR_FMODE_MM;
546 else
547 qspi->fmode = CCR_FMODE_INDR;
548
549 ret = stm32_qspi_send(desc->mem->spi, &op);
550 mutex_unlock(&qspi->lock);
551
552 pm_runtime_mark_last_busy(qspi->dev);
553 pm_runtime_put_autosuspend(qspi->dev);
554
555 return ret ?: len;
556 }
557
stm32_qspi_transfer_one_message(struct spi_controller * ctrl,struct spi_message * msg)558 static int stm32_qspi_transfer_one_message(struct spi_controller *ctrl,
559 struct spi_message *msg)
560 {
561 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
562 struct spi_transfer *transfer;
563 struct spi_device *spi = msg->spi;
564 struct spi_mem_op op;
565 int ret = 0;
566
567 if (!spi->cs_gpiod)
568 return -EOPNOTSUPP;
569
570 ret = pm_runtime_resume_and_get(qspi->dev);
571 if (ret < 0)
572 return ret;
573
574 mutex_lock(&qspi->lock);
575
576 gpiod_set_value_cansleep(spi->cs_gpiod, true);
577
578 list_for_each_entry(transfer, &msg->transfers, transfer_list) {
579 u8 dummy_bytes = 0;
580
581 memset(&op, 0, sizeof(op));
582
583 dev_dbg(qspi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n",
584 transfer->tx_buf, transfer->tx_nbits,
585 transfer->rx_buf, transfer->rx_nbits,
586 transfer->len, transfer->dummy_data);
587
588 /*
589 * QSPI hardware supports dummy bytes transfer.
590 * If current transfer is dummy byte, merge it with the next
591 * transfer in order to take into account QSPI block constraint
592 */
593 if (transfer->dummy_data) {
594 op.dummy.buswidth = transfer->tx_nbits;
595 op.dummy.nbytes = transfer->len;
596 dummy_bytes = transfer->len;
597
598 /* if happens, means that message is not correctly built */
599 if (list_is_last(&transfer->transfer_list, &msg->transfers)) {
600 ret = -EINVAL;
601 goto end_of_transfer;
602 }
603
604 transfer = list_next_entry(transfer, transfer_list);
605 }
606
607 op.data.nbytes = transfer->len;
608
609 if (transfer->rx_buf) {
610 qspi->fmode = CCR_FMODE_INDR;
611 op.data.buswidth = transfer->rx_nbits;
612 op.data.dir = SPI_MEM_DATA_IN;
613 op.data.buf.in = transfer->rx_buf;
614 } else {
615 qspi->fmode = CCR_FMODE_INDW;
616 op.data.buswidth = transfer->tx_nbits;
617 op.data.dir = SPI_MEM_DATA_OUT;
618 op.data.buf.out = transfer->tx_buf;
619 }
620
621 ret = stm32_qspi_send(spi, &op);
622 if (ret)
623 goto end_of_transfer;
624
625 msg->actual_length += transfer->len + dummy_bytes;
626 }
627
628 end_of_transfer:
629 gpiod_set_value_cansleep(spi->cs_gpiod, false);
630
631 mutex_unlock(&qspi->lock);
632
633 msg->status = ret;
634 spi_finalize_current_message(ctrl);
635
636 pm_runtime_mark_last_busy(qspi->dev);
637 pm_runtime_put_autosuspend(qspi->dev);
638
639 return ret;
640 }
641
stm32_qspi_setup(struct spi_device * spi)642 static int stm32_qspi_setup(struct spi_device *spi)
643 {
644 struct spi_controller *ctrl = spi->master;
645 struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
646 struct stm32_qspi_flash *flash;
647 u32 presc, mode;
648 int ret;
649
650 if (ctrl->busy)
651 return -EBUSY;
652
653 if (!spi->max_speed_hz)
654 return -EINVAL;
655
656 mode = spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL);
657 if ((mode == SPI_TX_OCTAL || mode == SPI_RX_OCTAL) ||
658 ((mode == (SPI_TX_OCTAL | SPI_RX_OCTAL)) &&
659 gpiod_count(qspi->dev, "cs") == -ENOENT)) {
660 dev_err(qspi->dev, "spi-rx-bus-width\\/spi-tx-bus-width\\/cs-gpios\n");
661 dev_err(qspi->dev, "configuration not supported\n");
662
663 return -EINVAL;
664 }
665
666 ret = pm_runtime_resume_and_get(qspi->dev);
667 if (ret < 0)
668 return ret;
669
670 presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
671
672 flash = &qspi->flash[spi->chip_select];
673 flash->cs = spi->chip_select;
674 flash->presc = presc;
675
676 mutex_lock(&qspi->lock);
677 qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN;
678
679 /*
680 * Dual flash mode is only enable in case SPI_TX_OCTAL and SPI_TX_OCTAL
681 * are both set in spi->mode and "cs-gpios" properties is found in DT
682 */
683 if (mode == (SPI_TX_OCTAL | SPI_RX_OCTAL)) {
684 qspi->cr_reg |= CR_DFM;
685 dev_dbg(qspi->dev, "Dual flash mode enable");
686 }
687
688 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
689
690 /* set dcr fsize to max address */
691 qspi->dcr_reg = DCR_FSIZE_MASK;
692 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
693 mutex_unlock(&qspi->lock);
694
695 pm_runtime_mark_last_busy(qspi->dev);
696 pm_runtime_put_autosuspend(qspi->dev);
697
698 return 0;
699 }
700
stm32_qspi_dma_setup(struct stm32_qspi * qspi)701 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi)
702 {
703 struct dma_slave_config dma_cfg;
704 struct device *dev = qspi->dev;
705 int ret = 0;
706
707 memset(&dma_cfg, 0, sizeof(dma_cfg));
708
709 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
710 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
711 dma_cfg.src_addr = qspi->phys_base + QSPI_DR;
712 dma_cfg.dst_addr = qspi->phys_base + QSPI_DR;
713 dma_cfg.src_maxburst = 4;
714 dma_cfg.dst_maxburst = 4;
715
716 qspi->dma_chrx = dma_request_chan(dev, "rx");
717 if (IS_ERR(qspi->dma_chrx)) {
718 ret = PTR_ERR(qspi->dma_chrx);
719 qspi->dma_chrx = NULL;
720 if (ret == -EPROBE_DEFER)
721 goto out;
722 } else {
723 if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) {
724 dev_err(dev, "dma rx config failed\n");
725 dma_release_channel(qspi->dma_chrx);
726 qspi->dma_chrx = NULL;
727 }
728 }
729
730 qspi->dma_chtx = dma_request_chan(dev, "tx");
731 if (IS_ERR(qspi->dma_chtx)) {
732 ret = PTR_ERR(qspi->dma_chtx);
733 qspi->dma_chtx = NULL;
734 } else {
735 if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) {
736 dev_err(dev, "dma tx config failed\n");
737 dma_release_channel(qspi->dma_chtx);
738 qspi->dma_chtx = NULL;
739 }
740 }
741
742 out:
743 init_completion(&qspi->dma_completion);
744
745 if (ret != -EPROBE_DEFER)
746 ret = 0;
747
748 return ret;
749 }
750
stm32_qspi_dma_free(struct stm32_qspi * qspi)751 static void stm32_qspi_dma_free(struct stm32_qspi *qspi)
752 {
753 if (qspi->dma_chtx)
754 dma_release_channel(qspi->dma_chtx);
755 if (qspi->dma_chrx)
756 dma_release_channel(qspi->dma_chrx);
757 }
758
759 /*
760 * no special host constraint, so use default spi_mem_default_supports_op
761 * to check supported mode.
762 */
763 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
764 .exec_op = stm32_qspi_exec_op,
765 .dirmap_create = stm32_qspi_dirmap_create,
766 .dirmap_read = stm32_qspi_dirmap_read,
767 .poll_status = stm32_qspi_poll_status,
768 };
769
stm32_qspi_probe(struct platform_device * pdev)770 static int stm32_qspi_probe(struct platform_device *pdev)
771 {
772 struct device *dev = &pdev->dev;
773 struct spi_controller *ctrl;
774 struct reset_control *rstc;
775 struct stm32_qspi *qspi;
776 struct resource *res;
777 int ret, irq;
778
779 ctrl = devm_spi_alloc_master(dev, sizeof(*qspi));
780 if (!ctrl)
781 return -ENOMEM;
782
783 qspi = spi_controller_get_devdata(ctrl);
784 qspi->ctrl = ctrl;
785
786 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
787 qspi->io_base = devm_ioremap_resource(dev, res);
788 if (IS_ERR(qspi->io_base))
789 return PTR_ERR(qspi->io_base);
790
791 qspi->phys_base = res->start;
792
793 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
794 qspi->mm_base = devm_ioremap_resource(dev, res);
795 if (IS_ERR(qspi->mm_base))
796 return PTR_ERR(qspi->mm_base);
797
798 qspi->mm_size = resource_size(res);
799 if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ)
800 return -EINVAL;
801
802 irq = platform_get_irq(pdev, 0);
803 if (irq < 0)
804 return irq;
805
806 ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
807 dev_name(dev), qspi);
808 if (ret) {
809 dev_err(dev, "failed to request irq\n");
810 return ret;
811 }
812
813 init_completion(&qspi->data_completion);
814 init_completion(&qspi->match_completion);
815
816 qspi->clk = devm_clk_get(dev, NULL);
817 if (IS_ERR(qspi->clk))
818 return PTR_ERR(qspi->clk);
819
820 qspi->clk_rate = clk_get_rate(qspi->clk);
821 if (!qspi->clk_rate)
822 return -EINVAL;
823
824 ret = clk_prepare_enable(qspi->clk);
825 if (ret) {
826 dev_err(dev, "can not enable the clock\n");
827 return ret;
828 }
829
830 rstc = devm_reset_control_get_exclusive(dev, NULL);
831 if (IS_ERR(rstc)) {
832 ret = PTR_ERR(rstc);
833 if (ret == -EPROBE_DEFER)
834 goto err_clk_disable;
835 } else {
836 reset_control_assert(rstc);
837 udelay(2);
838 reset_control_deassert(rstc);
839 }
840
841 qspi->dev = dev;
842 platform_set_drvdata(pdev, qspi);
843 ret = stm32_qspi_dma_setup(qspi);
844 if (ret)
845 goto err_dma_free;
846
847 mutex_init(&qspi->lock);
848
849 ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL
850 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_OCTAL;
851 ctrl->setup = stm32_qspi_setup;
852 ctrl->bus_num = -1;
853 ctrl->mem_ops = &stm32_qspi_mem_ops;
854 ctrl->use_gpio_descriptors = true;
855 ctrl->transfer_one_message = stm32_qspi_transfer_one_message;
856 ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
857 ctrl->dev.of_node = dev->of_node;
858
859 pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
860 pm_runtime_use_autosuspend(dev);
861 pm_runtime_set_active(dev);
862 pm_runtime_enable(dev);
863 pm_runtime_get_noresume(dev);
864
865 ret = spi_register_master(ctrl);
866 if (ret)
867 goto err_pm_runtime_free;
868
869 pm_runtime_mark_last_busy(dev);
870 pm_runtime_put_autosuspend(dev);
871
872 return 0;
873
874 err_pm_runtime_free:
875 pm_runtime_get_sync(qspi->dev);
876 /* disable qspi */
877 writel_relaxed(0, qspi->io_base + QSPI_CR);
878 mutex_destroy(&qspi->lock);
879 pm_runtime_put_noidle(qspi->dev);
880 pm_runtime_disable(qspi->dev);
881 pm_runtime_set_suspended(qspi->dev);
882 pm_runtime_dont_use_autosuspend(qspi->dev);
883 err_dma_free:
884 stm32_qspi_dma_free(qspi);
885 err_clk_disable:
886 clk_disable_unprepare(qspi->clk);
887
888 return ret;
889 }
890
stm32_qspi_remove(struct platform_device * pdev)891 static int stm32_qspi_remove(struct platform_device *pdev)
892 {
893 struct stm32_qspi *qspi = platform_get_drvdata(pdev);
894
895 pm_runtime_get_sync(qspi->dev);
896 spi_unregister_master(qspi->ctrl);
897 /* disable qspi */
898 writel_relaxed(0, qspi->io_base + QSPI_CR);
899 stm32_qspi_dma_free(qspi);
900 mutex_destroy(&qspi->lock);
901 pm_runtime_put_noidle(qspi->dev);
902 pm_runtime_disable(qspi->dev);
903 pm_runtime_set_suspended(qspi->dev);
904 pm_runtime_dont_use_autosuspend(qspi->dev);
905 clk_disable_unprepare(qspi->clk);
906
907 return 0;
908 }
909
stm32_qspi_runtime_suspend(struct device * dev)910 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
911 {
912 struct stm32_qspi *qspi = dev_get_drvdata(dev);
913
914 clk_disable_unprepare(qspi->clk);
915
916 return 0;
917 }
918
stm32_qspi_runtime_resume(struct device * dev)919 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
920 {
921 struct stm32_qspi *qspi = dev_get_drvdata(dev);
922
923 return clk_prepare_enable(qspi->clk);
924 }
925
stm32_qspi_suspend(struct device * dev)926 static int __maybe_unused stm32_qspi_suspend(struct device *dev)
927 {
928 pinctrl_pm_select_sleep_state(dev);
929
930 return pm_runtime_force_suspend(dev);
931 }
932
stm32_qspi_resume(struct device * dev)933 static int __maybe_unused stm32_qspi_resume(struct device *dev)
934 {
935 struct stm32_qspi *qspi = dev_get_drvdata(dev);
936 int ret;
937
938 ret = pm_runtime_force_resume(dev);
939 if (ret < 0)
940 return ret;
941
942 pinctrl_pm_select_default_state(dev);
943
944 ret = pm_runtime_resume_and_get(dev);
945 if (ret < 0)
946 return ret;
947
948 writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
949 writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
950
951 pm_runtime_mark_last_busy(dev);
952 pm_runtime_put_autosuspend(dev);
953
954 return 0;
955 }
956
957 static const struct dev_pm_ops stm32_qspi_pm_ops = {
958 SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
959 stm32_qspi_runtime_resume, NULL)
960 SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
961 };
962
963 static const struct of_device_id stm32_qspi_match[] = {
964 {.compatible = "st,stm32f469-qspi"},
965 {}
966 };
967 MODULE_DEVICE_TABLE(of, stm32_qspi_match);
968
969 static struct platform_driver stm32_qspi_driver = {
970 .probe = stm32_qspi_probe,
971 .remove = stm32_qspi_remove,
972 .driver = {
973 .name = "stm32-qspi",
974 .of_match_table = stm32_qspi_match,
975 .pm = &stm32_qspi_pm_ops,
976 },
977 };
978 module_platform_driver(stm32_qspi_driver);
979
980 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
981 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
982 MODULE_LICENSE("GPL v2");
983