1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/memory.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   */
7  
8  /*
9   * demand-loading started 01.12.91 - seems it is high on the list of
10   * things wanted, and it should be easy to implement. - Linus
11   */
12  
13  /*
14   * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15   * pages started 02.12.91, seems to work. - Linus.
16   *
17   * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18   * would have taken more than the 6M I have free, but it worked well as
19   * far as I could see.
20   *
21   * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22   */
23  
24  /*
25   * Real VM (paging to/from disk) started 18.12.91. Much more work and
26   * thought has to go into this. Oh, well..
27   * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28   *		Found it. Everything seems to work now.
29   * 20.12.91  -  Ok, making the swap-device changeable like the root.
30   */
31  
32  /*
33   * 05.04.94  -  Multi-page memory management added for v1.1.
34   *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35   *
36   * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37   *		(Gerhard.Wichert@pdb.siemens.de)
38   *
39   * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40   */
41  
42  #include <linux/kernel_stat.h>
43  #include <linux/mm.h>
44  #include <linux/sched/mm.h>
45  #include <linux/sched/coredump.h>
46  #include <linux/sched/numa_balancing.h>
47  #include <linux/sched/task.h>
48  #include <linux/hugetlb.h>
49  #include <linux/mman.h>
50  #include <linux/swap.h>
51  #include <linux/highmem.h>
52  #include <linux/pagemap.h>
53  #include <linux/memremap.h>
54  #include <linux/ksm.h>
55  #include <linux/rmap.h>
56  #include <linux/export.h>
57  #include <linux/delayacct.h>
58  #include <linux/init.h>
59  #include <linux/pfn_t.h>
60  #include <linux/writeback.h>
61  #include <linux/memcontrol.h>
62  #include <linux/mmu_notifier.h>
63  #include <linux/swapops.h>
64  #include <linux/elf.h>
65  #include <linux/gfp.h>
66  #include <linux/migrate.h>
67  #include <linux/string.h>
68  #include <linux/debugfs.h>
69  #include <linux/userfaultfd_k.h>
70  #include <linux/dax.h>
71  #include <linux/oom.h>
72  #include <linux/numa.h>
73  #include <linux/perf_event.h>
74  #include <linux/ptrace.h>
75  #include <linux/vmalloc.h>
76  
77  #include <trace/events/kmem.h>
78  
79  #include <asm/io.h>
80  #include <asm/mmu_context.h>
81  #include <asm/pgalloc.h>
82  #include <linux/uaccess.h>
83  #include <asm/tlb.h>
84  #include <asm/tlbflush.h>
85  
86  #include "pgalloc-track.h"
87  #include "internal.h"
88  
89  #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90  #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91  #endif
92  
93  #ifndef CONFIG_NUMA
94  unsigned long max_mapnr;
95  EXPORT_SYMBOL(max_mapnr);
96  
97  struct page *mem_map;
98  EXPORT_SYMBOL(mem_map);
99  #endif
100  
101  /*
102   * A number of key systems in x86 including ioremap() rely on the assumption
103   * that high_memory defines the upper bound on direct map memory, then end
104   * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105   * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106   * and ZONE_HIGHMEM.
107   */
108  void *high_memory;
109  EXPORT_SYMBOL(high_memory);
110  
111  /*
112   * Randomize the address space (stacks, mmaps, brk, etc.).
113   *
114   * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115   *   as ancient (libc5 based) binaries can segfault. )
116   */
117  int randomize_va_space __read_mostly =
118  #ifdef CONFIG_COMPAT_BRK
119  					1;
120  #else
121  					2;
122  #endif
123  
124  #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)125  static inline bool arch_faults_on_old_pte(void)
126  {
127  	/*
128  	 * Those arches which don't have hw access flag feature need to
129  	 * implement their own helper. By default, "true" means pagefault
130  	 * will be hit on old pte.
131  	 */
132  	return true;
133  }
134  #endif
135  
136  #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)137  static inline bool arch_wants_old_prefaulted_pte(void)
138  {
139  	/*
140  	 * Transitioning a PTE from 'old' to 'young' can be expensive on
141  	 * some architectures, even if it's performed in hardware. By
142  	 * default, "false" means prefaulted entries will be 'young'.
143  	 */
144  	return false;
145  }
146  #endif
147  
disable_randmaps(char * s)148  static int __init disable_randmaps(char *s)
149  {
150  	randomize_va_space = 0;
151  	return 1;
152  }
153  __setup("norandmaps", disable_randmaps);
154  
155  unsigned long zero_pfn __read_mostly;
156  EXPORT_SYMBOL(zero_pfn);
157  
158  unsigned long highest_memmap_pfn __read_mostly;
159  
160  /*
161   * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162   */
init_zero_pfn(void)163  static int __init init_zero_pfn(void)
164  {
165  	zero_pfn = page_to_pfn(ZERO_PAGE(0));
166  	return 0;
167  }
168  early_initcall(init_zero_pfn);
169  
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)170  void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171  {
172  	trace_rss_stat(mm, member, count);
173  }
174  
175  #if defined(SPLIT_RSS_COUNTING)
176  
sync_mm_rss(struct mm_struct * mm)177  void sync_mm_rss(struct mm_struct *mm)
178  {
179  	int i;
180  
181  	for (i = 0; i < NR_MM_COUNTERS; i++) {
182  		if (current->rss_stat.count[i]) {
183  			add_mm_counter(mm, i, current->rss_stat.count[i]);
184  			current->rss_stat.count[i] = 0;
185  		}
186  	}
187  	current->rss_stat.events = 0;
188  }
189  
add_mm_counter_fast(struct mm_struct * mm,int member,int val)190  static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191  {
192  	struct task_struct *task = current;
193  
194  	if (likely(task->mm == mm))
195  		task->rss_stat.count[member] += val;
196  	else
197  		add_mm_counter(mm, member, val);
198  }
199  #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200  #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201  
202  /* sync counter once per 64 page faults */
203  #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)204  static void check_sync_rss_stat(struct task_struct *task)
205  {
206  	if (unlikely(task != current))
207  		return;
208  	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209  		sync_mm_rss(task->mm);
210  }
211  #else /* SPLIT_RSS_COUNTING */
212  
213  #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214  #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215  
check_sync_rss_stat(struct task_struct * task)216  static void check_sync_rss_stat(struct task_struct *task)
217  {
218  }
219  
220  #endif /* SPLIT_RSS_COUNTING */
221  
222  /*
223   * Note: this doesn't free the actual pages themselves. That
224   * has been handled earlier when unmapping all the memory regions.
225   */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)226  static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227  			   unsigned long addr)
228  {
229  	pgtable_t token = pmd_pgtable(*pmd);
230  	pmd_clear(pmd);
231  	pte_free_tlb(tlb, token, addr);
232  	mm_dec_nr_ptes(tlb->mm);
233  }
234  
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)235  static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236  				unsigned long addr, unsigned long end,
237  				unsigned long floor, unsigned long ceiling)
238  {
239  	pmd_t *pmd;
240  	unsigned long next;
241  	unsigned long start;
242  
243  	start = addr;
244  	pmd = pmd_offset(pud, addr);
245  	do {
246  		next = pmd_addr_end(addr, end);
247  		if (pmd_none_or_clear_bad(pmd))
248  			continue;
249  		free_pte_range(tlb, pmd, addr);
250  	} while (pmd++, addr = next, addr != end);
251  
252  	start &= PUD_MASK;
253  	if (start < floor)
254  		return;
255  	if (ceiling) {
256  		ceiling &= PUD_MASK;
257  		if (!ceiling)
258  			return;
259  	}
260  	if (end - 1 > ceiling - 1)
261  		return;
262  
263  	pmd = pmd_offset(pud, start);
264  	pud_clear(pud);
265  	pmd_free_tlb(tlb, pmd, start);
266  	mm_dec_nr_pmds(tlb->mm);
267  }
268  
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)269  static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270  				unsigned long addr, unsigned long end,
271  				unsigned long floor, unsigned long ceiling)
272  {
273  	pud_t *pud;
274  	unsigned long next;
275  	unsigned long start;
276  
277  	start = addr;
278  	pud = pud_offset(p4d, addr);
279  	do {
280  		next = pud_addr_end(addr, end);
281  		if (pud_none_or_clear_bad(pud))
282  			continue;
283  		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284  	} while (pud++, addr = next, addr != end);
285  
286  	start &= P4D_MASK;
287  	if (start < floor)
288  		return;
289  	if (ceiling) {
290  		ceiling &= P4D_MASK;
291  		if (!ceiling)
292  			return;
293  	}
294  	if (end - 1 > ceiling - 1)
295  		return;
296  
297  	pud = pud_offset(p4d, start);
298  	p4d_clear(p4d);
299  	pud_free_tlb(tlb, pud, start);
300  	mm_dec_nr_puds(tlb->mm);
301  }
302  
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303  static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304  				unsigned long addr, unsigned long end,
305  				unsigned long floor, unsigned long ceiling)
306  {
307  	p4d_t *p4d;
308  	unsigned long next;
309  	unsigned long start;
310  
311  	start = addr;
312  	p4d = p4d_offset(pgd, addr);
313  	do {
314  		next = p4d_addr_end(addr, end);
315  		if (p4d_none_or_clear_bad(p4d))
316  			continue;
317  		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318  	} while (p4d++, addr = next, addr != end);
319  
320  	start &= PGDIR_MASK;
321  	if (start < floor)
322  		return;
323  	if (ceiling) {
324  		ceiling &= PGDIR_MASK;
325  		if (!ceiling)
326  			return;
327  	}
328  	if (end - 1 > ceiling - 1)
329  		return;
330  
331  	p4d = p4d_offset(pgd, start);
332  	pgd_clear(pgd);
333  	p4d_free_tlb(tlb, p4d, start);
334  }
335  
336  /*
337   * This function frees user-level page tables of a process.
338   */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)339  void free_pgd_range(struct mmu_gather *tlb,
340  			unsigned long addr, unsigned long end,
341  			unsigned long floor, unsigned long ceiling)
342  {
343  	pgd_t *pgd;
344  	unsigned long next;
345  
346  	/*
347  	 * The next few lines have given us lots of grief...
348  	 *
349  	 * Why are we testing PMD* at this top level?  Because often
350  	 * there will be no work to do at all, and we'd prefer not to
351  	 * go all the way down to the bottom just to discover that.
352  	 *
353  	 * Why all these "- 1"s?  Because 0 represents both the bottom
354  	 * of the address space and the top of it (using -1 for the
355  	 * top wouldn't help much: the masks would do the wrong thing).
356  	 * The rule is that addr 0 and floor 0 refer to the bottom of
357  	 * the address space, but end 0 and ceiling 0 refer to the top
358  	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359  	 * that end 0 case should be mythical).
360  	 *
361  	 * Wherever addr is brought up or ceiling brought down, we must
362  	 * be careful to reject "the opposite 0" before it confuses the
363  	 * subsequent tests.  But what about where end is brought down
364  	 * by PMD_SIZE below? no, end can't go down to 0 there.
365  	 *
366  	 * Whereas we round start (addr) and ceiling down, by different
367  	 * masks at different levels, in order to test whether a table
368  	 * now has no other vmas using it, so can be freed, we don't
369  	 * bother to round floor or end up - the tests don't need that.
370  	 */
371  
372  	addr &= PMD_MASK;
373  	if (addr < floor) {
374  		addr += PMD_SIZE;
375  		if (!addr)
376  			return;
377  	}
378  	if (ceiling) {
379  		ceiling &= PMD_MASK;
380  		if (!ceiling)
381  			return;
382  	}
383  	if (end - 1 > ceiling - 1)
384  		end -= PMD_SIZE;
385  	if (addr > end - 1)
386  		return;
387  	/*
388  	 * We add page table cache pages with PAGE_SIZE,
389  	 * (see pte_free_tlb()), flush the tlb if we need
390  	 */
391  	tlb_change_page_size(tlb, PAGE_SIZE);
392  	pgd = pgd_offset(tlb->mm, addr);
393  	do {
394  		next = pgd_addr_end(addr, end);
395  		if (pgd_none_or_clear_bad(pgd))
396  			continue;
397  		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398  	} while (pgd++, addr = next, addr != end);
399  }
400  
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)401  void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402  		unsigned long floor, unsigned long ceiling)
403  {
404  	while (vma) {
405  		struct vm_area_struct *next = vma->vm_next;
406  		unsigned long addr = vma->vm_start;
407  
408  		/*
409  		 * Hide vma from rmap and truncate_pagecache before freeing
410  		 * pgtables
411  		 */
412  		unlink_anon_vmas(vma);
413  		unlink_file_vma(vma);
414  
415  		if (is_vm_hugetlb_page(vma)) {
416  			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417  				floor, next ? next->vm_start : ceiling);
418  		} else {
419  			/*
420  			 * Optimization: gather nearby vmas into one call down
421  			 */
422  			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423  			       && !is_vm_hugetlb_page(next)) {
424  				vma = next;
425  				next = vma->vm_next;
426  				unlink_anon_vmas(vma);
427  				unlink_file_vma(vma);
428  			}
429  			free_pgd_range(tlb, addr, vma->vm_end,
430  				floor, next ? next->vm_start : ceiling);
431  		}
432  		vma = next;
433  	}
434  }
435  
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)436  int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437  {
438  	spinlock_t *ptl;
439  	pgtable_t new = pte_alloc_one(mm);
440  	if (!new)
441  		return -ENOMEM;
442  
443  	/*
444  	 * Ensure all pte setup (eg. pte page lock and page clearing) are
445  	 * visible before the pte is made visible to other CPUs by being
446  	 * put into page tables.
447  	 *
448  	 * The other side of the story is the pointer chasing in the page
449  	 * table walking code (when walking the page table without locking;
450  	 * ie. most of the time). Fortunately, these data accesses consist
451  	 * of a chain of data-dependent loads, meaning most CPUs (alpha
452  	 * being the notable exception) will already guarantee loads are
453  	 * seen in-order. See the alpha page table accessors for the
454  	 * smp_rmb() barriers in page table walking code.
455  	 */
456  	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457  
458  	ptl = pmd_lock(mm, pmd);
459  	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460  		mm_inc_nr_ptes(mm);
461  		pmd_populate(mm, pmd, new);
462  		new = NULL;
463  	}
464  	spin_unlock(ptl);
465  	if (new)
466  		pte_free(mm, new);
467  	return 0;
468  }
469  
__pte_alloc_kernel(pmd_t * pmd)470  int __pte_alloc_kernel(pmd_t *pmd)
471  {
472  	pte_t *new = pte_alloc_one_kernel(&init_mm);
473  	if (!new)
474  		return -ENOMEM;
475  
476  	smp_wmb(); /* See comment in __pte_alloc */
477  
478  	spin_lock(&init_mm.page_table_lock);
479  	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
480  		pmd_populate_kernel(&init_mm, pmd, new);
481  		new = NULL;
482  	}
483  	spin_unlock(&init_mm.page_table_lock);
484  	if (new)
485  		pte_free_kernel(&init_mm, new);
486  	return 0;
487  }
488  
init_rss_vec(int * rss)489  static inline void init_rss_vec(int *rss)
490  {
491  	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492  }
493  
add_mm_rss_vec(struct mm_struct * mm,int * rss)494  static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495  {
496  	int i;
497  
498  	if (current->mm == mm)
499  		sync_mm_rss(mm);
500  	for (i = 0; i < NR_MM_COUNTERS; i++)
501  		if (rss[i])
502  			add_mm_counter(mm, i, rss[i]);
503  }
504  
505  /*
506   * This function is called to print an error when a bad pte
507   * is found. For example, we might have a PFN-mapped pte in
508   * a region that doesn't allow it.
509   *
510   * The calling function must still handle the error.
511   */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)512  static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513  			  pte_t pte, struct page *page)
514  {
515  	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516  	p4d_t *p4d = p4d_offset(pgd, addr);
517  	pud_t *pud = pud_offset(p4d, addr);
518  	pmd_t *pmd = pmd_offset(pud, addr);
519  	struct address_space *mapping;
520  	pgoff_t index;
521  	static unsigned long resume;
522  	static unsigned long nr_shown;
523  	static unsigned long nr_unshown;
524  
525  	/*
526  	 * Allow a burst of 60 reports, then keep quiet for that minute;
527  	 * or allow a steady drip of one report per second.
528  	 */
529  	if (nr_shown == 60) {
530  		if (time_before(jiffies, resume)) {
531  			nr_unshown++;
532  			return;
533  		}
534  		if (nr_unshown) {
535  			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536  				 nr_unshown);
537  			nr_unshown = 0;
538  		}
539  		nr_shown = 0;
540  	}
541  	if (nr_shown++ == 0)
542  		resume = jiffies + 60 * HZ;
543  
544  	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545  	index = linear_page_index(vma, addr);
546  
547  	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548  		 current->comm,
549  		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550  	if (page)
551  		dump_page(page, "bad pte");
552  	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553  		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554  	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555  		 vma->vm_file,
556  		 vma->vm_ops ? vma->vm_ops->fault : NULL,
557  		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558  		 mapping ? mapping->a_ops->readpage : NULL);
559  	dump_stack();
560  	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561  }
562  
563  /*
564   * vm_normal_page -- This function gets the "struct page" associated with a pte.
565   *
566   * "Special" mappings do not wish to be associated with a "struct page" (either
567   * it doesn't exist, or it exists but they don't want to touch it). In this
568   * case, NULL is returned here. "Normal" mappings do have a struct page.
569   *
570   * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571   * pte bit, in which case this function is trivial. Secondly, an architecture
572   * may not have a spare pte bit, which requires a more complicated scheme,
573   * described below.
574   *
575   * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576   * special mapping (even if there are underlying and valid "struct pages").
577   * COWed pages of a VM_PFNMAP are always normal.
578   *
579   * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580   * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581   * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582   * mapping will always honor the rule
583   *
584   *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585   *
586   * And for normal mappings this is false.
587   *
588   * This restricts such mappings to be a linear translation from virtual address
589   * to pfn. To get around this restriction, we allow arbitrary mappings so long
590   * as the vma is not a COW mapping; in that case, we know that all ptes are
591   * special (because none can have been COWed).
592   *
593   *
594   * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595   *
596   * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597   * page" backing, however the difference is that _all_ pages with a struct
598   * page (that is, those where pfn_valid is true) are refcounted and considered
599   * normal pages by the VM. The disadvantage is that pages are refcounted
600   * (which can be slower and simply not an option for some PFNMAP users). The
601   * advantage is that we don't have to follow the strict linearity rule of
602   * PFNMAP mappings in order to support COWable mappings.
603   *
604   */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)605  struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606  			    pte_t pte)
607  {
608  	unsigned long pfn = pte_pfn(pte);
609  
610  	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611  		if (likely(!pte_special(pte)))
612  			goto check_pfn;
613  		if (vma->vm_ops && vma->vm_ops->find_special_page)
614  			return vma->vm_ops->find_special_page(vma, addr);
615  		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616  			return NULL;
617  		if (is_zero_pfn(pfn))
618  			return NULL;
619  		if (pte_devmap(pte))
620  			return NULL;
621  
622  		print_bad_pte(vma, addr, pte, NULL);
623  		return NULL;
624  	}
625  
626  	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627  
628  	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629  		if (vma->vm_flags & VM_MIXEDMAP) {
630  			if (!pfn_valid(pfn))
631  				return NULL;
632  			goto out;
633  		} else {
634  			unsigned long off;
635  			off = (addr - vma->vm_start) >> PAGE_SHIFT;
636  			if (pfn == vma->vm_pgoff + off)
637  				return NULL;
638  			if (!is_cow_mapping(vma->vm_flags))
639  				return NULL;
640  		}
641  	}
642  
643  	if (is_zero_pfn(pfn))
644  		return NULL;
645  
646  check_pfn:
647  	if (unlikely(pfn > highest_memmap_pfn)) {
648  		print_bad_pte(vma, addr, pte, NULL);
649  		return NULL;
650  	}
651  
652  	/*
653  	 * NOTE! We still have PageReserved() pages in the page tables.
654  	 * eg. VDSO mappings can cause them to exist.
655  	 */
656  out:
657  	return pfn_to_page(pfn);
658  }
659  
660  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)661  struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662  				pmd_t pmd)
663  {
664  	unsigned long pfn = pmd_pfn(pmd);
665  
666  	/*
667  	 * There is no pmd_special() but there may be special pmds, e.g.
668  	 * in a direct-access (dax) mapping, so let's just replicate the
669  	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670  	 */
671  	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672  		if (vma->vm_flags & VM_MIXEDMAP) {
673  			if (!pfn_valid(pfn))
674  				return NULL;
675  			goto out;
676  		} else {
677  			unsigned long off;
678  			off = (addr - vma->vm_start) >> PAGE_SHIFT;
679  			if (pfn == vma->vm_pgoff + off)
680  				return NULL;
681  			if (!is_cow_mapping(vma->vm_flags))
682  				return NULL;
683  		}
684  	}
685  
686  	if (pmd_devmap(pmd))
687  		return NULL;
688  	if (is_huge_zero_pmd(pmd))
689  		return NULL;
690  	if (unlikely(pfn > highest_memmap_pfn))
691  		return NULL;
692  
693  	/*
694  	 * NOTE! We still have PageReserved() pages in the page tables.
695  	 * eg. VDSO mappings can cause them to exist.
696  	 */
697  out:
698  	return pfn_to_page(pfn);
699  }
700  #endif
701  
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)702  static void restore_exclusive_pte(struct vm_area_struct *vma,
703  				  struct page *page, unsigned long address,
704  				  pte_t *ptep)
705  {
706  	pte_t pte;
707  	swp_entry_t entry;
708  
709  	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
710  	if (pte_swp_soft_dirty(*ptep))
711  		pte = pte_mksoft_dirty(pte);
712  
713  	entry = pte_to_swp_entry(*ptep);
714  	if (pte_swp_uffd_wp(*ptep))
715  		pte = pte_mkuffd_wp(pte);
716  	else if (is_writable_device_exclusive_entry(entry))
717  		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
718  
719  	set_pte_at(vma->vm_mm, address, ptep, pte);
720  
721  	/*
722  	 * No need to take a page reference as one was already
723  	 * created when the swap entry was made.
724  	 */
725  	if (PageAnon(page))
726  		page_add_anon_rmap(page, vma, address, false);
727  	else
728  		/*
729  		 * Currently device exclusive access only supports anonymous
730  		 * memory so the entry shouldn't point to a filebacked page.
731  		 */
732  		WARN_ON_ONCE(!PageAnon(page));
733  
734  	if (vma->vm_flags & VM_LOCKED)
735  		mlock_vma_page(page);
736  
737  	/*
738  	 * No need to invalidate - it was non-present before. However
739  	 * secondary CPUs may have mappings that need invalidating.
740  	 */
741  	update_mmu_cache(vma, address, ptep);
742  }
743  
744  /*
745   * Tries to restore an exclusive pte if the page lock can be acquired without
746   * sleeping.
747   */
748  static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)749  try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
750  			unsigned long addr)
751  {
752  	swp_entry_t entry = pte_to_swp_entry(*src_pte);
753  	struct page *page = pfn_swap_entry_to_page(entry);
754  
755  	if (trylock_page(page)) {
756  		restore_exclusive_pte(vma, page, addr, src_pte);
757  		unlock_page(page);
758  		return 0;
759  	}
760  
761  	return -EBUSY;
762  }
763  
764  /*
765   * copy one vm_area from one task to the other. Assumes the page tables
766   * already present in the new task to be cleared in the whole range
767   * covered by this vma.
768   */
769  
770  static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)771  copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
772  		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
773  		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
774  {
775  	unsigned long vm_flags = dst_vma->vm_flags;
776  	pte_t pte = *src_pte;
777  	struct page *page;
778  	swp_entry_t entry = pte_to_swp_entry(pte);
779  
780  	if (likely(!non_swap_entry(entry))) {
781  		if (swap_duplicate(entry) < 0)
782  			return -EIO;
783  
784  		/* make sure dst_mm is on swapoff's mmlist. */
785  		if (unlikely(list_empty(&dst_mm->mmlist))) {
786  			spin_lock(&mmlist_lock);
787  			if (list_empty(&dst_mm->mmlist))
788  				list_add(&dst_mm->mmlist,
789  						&src_mm->mmlist);
790  			spin_unlock(&mmlist_lock);
791  		}
792  		rss[MM_SWAPENTS]++;
793  	} else if (is_migration_entry(entry)) {
794  		page = pfn_swap_entry_to_page(entry);
795  
796  		rss[mm_counter(page)]++;
797  
798  		if (is_writable_migration_entry(entry) &&
799  				is_cow_mapping(vm_flags)) {
800  			/*
801  			 * COW mappings require pages in both
802  			 * parent and child to be set to read.
803  			 */
804  			entry = make_readable_migration_entry(
805  							swp_offset(entry));
806  			pte = swp_entry_to_pte(entry);
807  			if (pte_swp_soft_dirty(*src_pte))
808  				pte = pte_swp_mksoft_dirty(pte);
809  			if (pte_swp_uffd_wp(*src_pte))
810  				pte = pte_swp_mkuffd_wp(pte);
811  			set_pte_at(src_mm, addr, src_pte, pte);
812  		}
813  	} else if (is_device_private_entry(entry)) {
814  		page = pfn_swap_entry_to_page(entry);
815  
816  		/*
817  		 * Update rss count even for unaddressable pages, as
818  		 * they should treated just like normal pages in this
819  		 * respect.
820  		 *
821  		 * We will likely want to have some new rss counters
822  		 * for unaddressable pages, at some point. But for now
823  		 * keep things as they are.
824  		 */
825  		get_page(page);
826  		rss[mm_counter(page)]++;
827  		page_dup_rmap(page, false);
828  
829  		/*
830  		 * We do not preserve soft-dirty information, because so
831  		 * far, checkpoint/restore is the only feature that
832  		 * requires that. And checkpoint/restore does not work
833  		 * when a device driver is involved (you cannot easily
834  		 * save and restore device driver state).
835  		 */
836  		if (is_writable_device_private_entry(entry) &&
837  		    is_cow_mapping(vm_flags)) {
838  			entry = make_readable_device_private_entry(
839  							swp_offset(entry));
840  			pte = swp_entry_to_pte(entry);
841  			if (pte_swp_uffd_wp(*src_pte))
842  				pte = pte_swp_mkuffd_wp(pte);
843  			set_pte_at(src_mm, addr, src_pte, pte);
844  		}
845  	} else if (is_device_exclusive_entry(entry)) {
846  		/*
847  		 * Make device exclusive entries present by restoring the
848  		 * original entry then copying as for a present pte. Device
849  		 * exclusive entries currently only support private writable
850  		 * (ie. COW) mappings.
851  		 */
852  		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
853  		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
854  			return -EBUSY;
855  		return -ENOENT;
856  	}
857  	if (!userfaultfd_wp(dst_vma))
858  		pte = pte_swp_clear_uffd_wp(pte);
859  	set_pte_at(dst_mm, addr, dst_pte, pte);
860  	return 0;
861  }
862  
863  /*
864   * Copy a present and normal page if necessary.
865   *
866   * NOTE! The usual case is that this doesn't need to do
867   * anything, and can just return a positive value. That
868   * will let the caller know that it can just increase
869   * the page refcount and re-use the pte the traditional
870   * way.
871   *
872   * But _if_ we need to copy it because it needs to be
873   * pinned in the parent (and the child should get its own
874   * copy rather than just a reference to the same page),
875   * we'll do that here and return zero to let the caller
876   * know we're done.
877   *
878   * And if we need a pre-allocated page but don't yet have
879   * one, return a negative error to let the preallocation
880   * code know so that it can do so outside the page table
881   * lock.
882   */
883  static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)884  copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
885  		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
886  		  struct page **prealloc, pte_t pte, struct page *page)
887  {
888  	struct page *new_page;
889  
890  	/*
891  	 * What we want to do is to check whether this page may
892  	 * have been pinned by the parent process.  If so,
893  	 * instead of wrprotect the pte on both sides, we copy
894  	 * the page immediately so that we'll always guarantee
895  	 * the pinned page won't be randomly replaced in the
896  	 * future.
897  	 *
898  	 * The page pinning checks are just "has this mm ever
899  	 * seen pinning", along with the (inexact) check of
900  	 * the page count. That might give false positives for
901  	 * for pinning, but it will work correctly.
902  	 */
903  	if (likely(!page_needs_cow_for_dma(src_vma, page)))
904  		return 1;
905  
906  	new_page = *prealloc;
907  	if (!new_page)
908  		return -EAGAIN;
909  
910  	/*
911  	 * We have a prealloc page, all good!  Take it
912  	 * over and copy the page & arm it.
913  	 */
914  	*prealloc = NULL;
915  	copy_user_highpage(new_page, page, addr, src_vma);
916  	__SetPageUptodate(new_page);
917  	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
918  	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
919  	rss[mm_counter(new_page)]++;
920  
921  	/* All done, just insert the new page copy in the child */
922  	pte = mk_pte(new_page, dst_vma->vm_page_prot);
923  	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
924  	if (userfaultfd_pte_wp(dst_vma, *src_pte))
925  		/* Uffd-wp needs to be delivered to dest pte as well */
926  		pte = pte_wrprotect(pte_mkuffd_wp(pte));
927  	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928  	return 0;
929  }
930  
931  /*
932   * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
933   * is required to copy this pte.
934   */
935  static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)936  copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937  		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
938  		 struct page **prealloc)
939  {
940  	struct mm_struct *src_mm = src_vma->vm_mm;
941  	unsigned long vm_flags = src_vma->vm_flags;
942  	pte_t pte = *src_pte;
943  	struct page *page;
944  
945  	page = vm_normal_page(src_vma, addr, pte);
946  	if (page) {
947  		int retval;
948  
949  		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950  					   addr, rss, prealloc, pte, page);
951  		if (retval <= 0)
952  			return retval;
953  
954  		get_page(page);
955  		page_dup_rmap(page, false);
956  		rss[mm_counter(page)]++;
957  	}
958  
959  	/*
960  	 * If it's a COW mapping, write protect it both
961  	 * in the parent and the child
962  	 */
963  	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964  		ptep_set_wrprotect(src_mm, addr, src_pte);
965  		pte = pte_wrprotect(pte);
966  	}
967  
968  	/*
969  	 * If it's a shared mapping, mark it clean in
970  	 * the child
971  	 */
972  	if (vm_flags & VM_SHARED)
973  		pte = pte_mkclean(pte);
974  	pte = pte_mkold(pte);
975  
976  	if (!userfaultfd_wp(dst_vma))
977  		pte = pte_clear_uffd_wp(pte);
978  
979  	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
980  	return 0;
981  }
982  
983  static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)984  page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
985  		   unsigned long addr)
986  {
987  	struct page *new_page;
988  
989  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
990  	if (!new_page)
991  		return NULL;
992  
993  	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
994  		put_page(new_page);
995  		return NULL;
996  	}
997  	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
998  
999  	return new_page;
1000  }
1001  
1002  static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1003  copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004  	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005  	       unsigned long end)
1006  {
1007  	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008  	struct mm_struct *src_mm = src_vma->vm_mm;
1009  	pte_t *orig_src_pte, *orig_dst_pte;
1010  	pte_t *src_pte, *dst_pte;
1011  	spinlock_t *src_ptl, *dst_ptl;
1012  	int progress, ret = 0;
1013  	int rss[NR_MM_COUNTERS];
1014  	swp_entry_t entry = (swp_entry_t){0};
1015  	struct page *prealloc = NULL;
1016  
1017  again:
1018  	progress = 0;
1019  	init_rss_vec(rss);
1020  
1021  	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022  	if (!dst_pte) {
1023  		ret = -ENOMEM;
1024  		goto out;
1025  	}
1026  	src_pte = pte_offset_map(src_pmd, addr);
1027  	src_ptl = pte_lockptr(src_mm, src_pmd);
1028  	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029  	orig_src_pte = src_pte;
1030  	orig_dst_pte = dst_pte;
1031  	arch_enter_lazy_mmu_mode();
1032  
1033  	do {
1034  		/*
1035  		 * We are holding two locks at this point - either of them
1036  		 * could generate latencies in another task on another CPU.
1037  		 */
1038  		if (progress >= 32) {
1039  			progress = 0;
1040  			if (need_resched() ||
1041  			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042  				break;
1043  		}
1044  		if (pte_none(*src_pte)) {
1045  			progress++;
1046  			continue;
1047  		}
1048  		if (unlikely(!pte_present(*src_pte))) {
1049  			ret = copy_nonpresent_pte(dst_mm, src_mm,
1050  						  dst_pte, src_pte,
1051  						  dst_vma, src_vma,
1052  						  addr, rss);
1053  			if (ret == -EIO) {
1054  				entry = pte_to_swp_entry(*src_pte);
1055  				break;
1056  			} else if (ret == -EBUSY) {
1057  				break;
1058  			} else if (!ret) {
1059  				progress += 8;
1060  				continue;
1061  			}
1062  
1063  			/*
1064  			 * Device exclusive entry restored, continue by copying
1065  			 * the now present pte.
1066  			 */
1067  			WARN_ON_ONCE(ret != -ENOENT);
1068  		}
1069  		/* copy_present_pte() will clear `*prealloc' if consumed */
1070  		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071  				       addr, rss, &prealloc);
1072  		/*
1073  		 * If we need a pre-allocated page for this pte, drop the
1074  		 * locks, allocate, and try again.
1075  		 */
1076  		if (unlikely(ret == -EAGAIN))
1077  			break;
1078  		if (unlikely(prealloc)) {
1079  			/*
1080  			 * pre-alloc page cannot be reused by next time so as
1081  			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082  			 * will allocate page according to address).  This
1083  			 * could only happen if one pinned pte changed.
1084  			 */
1085  			put_page(prealloc);
1086  			prealloc = NULL;
1087  		}
1088  		progress += 8;
1089  	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090  
1091  	arch_leave_lazy_mmu_mode();
1092  	spin_unlock(src_ptl);
1093  	pte_unmap(orig_src_pte);
1094  	add_mm_rss_vec(dst_mm, rss);
1095  	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096  	cond_resched();
1097  
1098  	if (ret == -EIO) {
1099  		VM_WARN_ON_ONCE(!entry.val);
1100  		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101  			ret = -ENOMEM;
1102  			goto out;
1103  		}
1104  		entry.val = 0;
1105  	} else if (ret == -EBUSY) {
1106  		goto out;
1107  	} else if (ret ==  -EAGAIN) {
1108  		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109  		if (!prealloc)
1110  			return -ENOMEM;
1111  	} else if (ret) {
1112  		VM_WARN_ON_ONCE(1);
1113  	}
1114  
1115  	/* We've captured and resolved the error. Reset, try again. */
1116  	ret = 0;
1117  
1118  	if (addr != end)
1119  		goto again;
1120  out:
1121  	if (unlikely(prealloc))
1122  		put_page(prealloc);
1123  	return ret;
1124  }
1125  
1126  static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1127  copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128  	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129  	       unsigned long end)
1130  {
1131  	struct mm_struct *dst_mm = dst_vma->vm_mm;
1132  	struct mm_struct *src_mm = src_vma->vm_mm;
1133  	pmd_t *src_pmd, *dst_pmd;
1134  	unsigned long next;
1135  
1136  	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137  	if (!dst_pmd)
1138  		return -ENOMEM;
1139  	src_pmd = pmd_offset(src_pud, addr);
1140  	do {
1141  		next = pmd_addr_end(addr, end);
1142  		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143  			|| pmd_devmap(*src_pmd)) {
1144  			int err;
1145  			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146  			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147  					    addr, dst_vma, src_vma);
1148  			if (err == -ENOMEM)
1149  				return -ENOMEM;
1150  			if (!err)
1151  				continue;
1152  			/* fall through */
1153  		}
1154  		if (pmd_none_or_clear_bad(src_pmd))
1155  			continue;
1156  		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157  				   addr, next))
1158  			return -ENOMEM;
1159  	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160  	return 0;
1161  }
1162  
1163  static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1164  copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165  	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166  	       unsigned long end)
1167  {
1168  	struct mm_struct *dst_mm = dst_vma->vm_mm;
1169  	struct mm_struct *src_mm = src_vma->vm_mm;
1170  	pud_t *src_pud, *dst_pud;
1171  	unsigned long next;
1172  
1173  	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174  	if (!dst_pud)
1175  		return -ENOMEM;
1176  	src_pud = pud_offset(src_p4d, addr);
1177  	do {
1178  		next = pud_addr_end(addr, end);
1179  		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180  			int err;
1181  
1182  			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183  			err = copy_huge_pud(dst_mm, src_mm,
1184  					    dst_pud, src_pud, addr, src_vma);
1185  			if (err == -ENOMEM)
1186  				return -ENOMEM;
1187  			if (!err)
1188  				continue;
1189  			/* fall through */
1190  		}
1191  		if (pud_none_or_clear_bad(src_pud))
1192  			continue;
1193  		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194  				   addr, next))
1195  			return -ENOMEM;
1196  	} while (dst_pud++, src_pud++, addr = next, addr != end);
1197  	return 0;
1198  }
1199  
1200  static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1201  copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202  	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203  	       unsigned long end)
1204  {
1205  	struct mm_struct *dst_mm = dst_vma->vm_mm;
1206  	p4d_t *src_p4d, *dst_p4d;
1207  	unsigned long next;
1208  
1209  	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210  	if (!dst_p4d)
1211  		return -ENOMEM;
1212  	src_p4d = p4d_offset(src_pgd, addr);
1213  	do {
1214  		next = p4d_addr_end(addr, end);
1215  		if (p4d_none_or_clear_bad(src_p4d))
1216  			continue;
1217  		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218  				   addr, next))
1219  			return -ENOMEM;
1220  	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221  	return 0;
1222  }
1223  
1224  int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1225  copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226  {
1227  	pgd_t *src_pgd, *dst_pgd;
1228  	unsigned long next;
1229  	unsigned long addr = src_vma->vm_start;
1230  	unsigned long end = src_vma->vm_end;
1231  	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232  	struct mm_struct *src_mm = src_vma->vm_mm;
1233  	struct mmu_notifier_range range;
1234  	bool is_cow;
1235  	int ret;
1236  
1237  	/*
1238  	 * Don't copy ptes where a page fault will fill them correctly.
1239  	 * Fork becomes much lighter when there are big shared or private
1240  	 * readonly mappings. The tradeoff is that copy_page_range is more
1241  	 * efficient than faulting.
1242  	 */
1243  	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244  	    !src_vma->anon_vma)
1245  		return 0;
1246  
1247  	if (is_vm_hugetlb_page(src_vma))
1248  		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249  
1250  	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251  		/*
1252  		 * We do not free on error cases below as remove_vma
1253  		 * gets called on error from higher level routine
1254  		 */
1255  		ret = track_pfn_copy(src_vma);
1256  		if (ret)
1257  			return ret;
1258  	}
1259  
1260  	/*
1261  	 * We need to invalidate the secondary MMU mappings only when
1262  	 * there could be a permission downgrade on the ptes of the
1263  	 * parent mm. And a permission downgrade will only happen if
1264  	 * is_cow_mapping() returns true.
1265  	 */
1266  	is_cow = is_cow_mapping(src_vma->vm_flags);
1267  
1268  	if (is_cow) {
1269  		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270  					0, src_vma, src_mm, addr, end);
1271  		mmu_notifier_invalidate_range_start(&range);
1272  		/*
1273  		 * Disabling preemption is not needed for the write side, as
1274  		 * the read side doesn't spin, but goes to the mmap_lock.
1275  		 *
1276  		 * Use the raw variant of the seqcount_t write API to avoid
1277  		 * lockdep complaining about preemptibility.
1278  		 */
1279  		mmap_assert_write_locked(src_mm);
1280  		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281  	}
1282  
1283  	ret = 0;
1284  	dst_pgd = pgd_offset(dst_mm, addr);
1285  	src_pgd = pgd_offset(src_mm, addr);
1286  	do {
1287  		next = pgd_addr_end(addr, end);
1288  		if (pgd_none_or_clear_bad(src_pgd))
1289  			continue;
1290  		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291  					    addr, next))) {
1292  			ret = -ENOMEM;
1293  			break;
1294  		}
1295  	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296  
1297  	if (is_cow) {
1298  		raw_write_seqcount_end(&src_mm->write_protect_seq);
1299  		mmu_notifier_invalidate_range_end(&range);
1300  	}
1301  	return ret;
1302  }
1303  
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1304  static unsigned long zap_pte_range(struct mmu_gather *tlb,
1305  				struct vm_area_struct *vma, pmd_t *pmd,
1306  				unsigned long addr, unsigned long end,
1307  				struct zap_details *details)
1308  {
1309  	struct mm_struct *mm = tlb->mm;
1310  	int force_flush = 0;
1311  	int rss[NR_MM_COUNTERS];
1312  	spinlock_t *ptl;
1313  	pte_t *start_pte;
1314  	pte_t *pte;
1315  	swp_entry_t entry;
1316  
1317  	tlb_change_page_size(tlb, PAGE_SIZE);
1318  again:
1319  	init_rss_vec(rss);
1320  	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321  	pte = start_pte;
1322  	flush_tlb_batched_pending(mm);
1323  	arch_enter_lazy_mmu_mode();
1324  	do {
1325  		pte_t ptent = *pte;
1326  		if (pte_none(ptent))
1327  			continue;
1328  
1329  		if (need_resched())
1330  			break;
1331  
1332  		if (pte_present(ptent)) {
1333  			struct page *page;
1334  
1335  			page = vm_normal_page(vma, addr, ptent);
1336  			if (unlikely(details) && page) {
1337  				/*
1338  				 * unmap_shared_mapping_pages() wants to
1339  				 * invalidate cache without truncating:
1340  				 * unmap shared but keep private pages.
1341  				 */
1342  				if (details->check_mapping &&
1343  				    details->check_mapping != page_rmapping(page))
1344  					continue;
1345  			}
1346  			ptent = ptep_get_and_clear_full(mm, addr, pte,
1347  							tlb->fullmm);
1348  			tlb_remove_tlb_entry(tlb, pte, addr);
1349  			if (unlikely(!page))
1350  				continue;
1351  
1352  			if (!PageAnon(page)) {
1353  				if (pte_dirty(ptent)) {
1354  					force_flush = 1;
1355  					set_page_dirty(page);
1356  				}
1357  				if (pte_young(ptent) &&
1358  				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1359  					mark_page_accessed(page);
1360  			}
1361  			rss[mm_counter(page)]--;
1362  			page_remove_rmap(page, false);
1363  			if (unlikely(page_mapcount(page) < 0))
1364  				print_bad_pte(vma, addr, ptent, page);
1365  			if (unlikely(__tlb_remove_page(tlb, page))) {
1366  				force_flush = 1;
1367  				addr += PAGE_SIZE;
1368  				break;
1369  			}
1370  			continue;
1371  		}
1372  
1373  		entry = pte_to_swp_entry(ptent);
1374  		if (is_device_private_entry(entry) ||
1375  		    is_device_exclusive_entry(entry)) {
1376  			struct page *page = pfn_swap_entry_to_page(entry);
1377  
1378  			if (unlikely(details && details->check_mapping)) {
1379  				/*
1380  				 * unmap_shared_mapping_pages() wants to
1381  				 * invalidate cache without truncating:
1382  				 * unmap shared but keep private pages.
1383  				 */
1384  				if (details->check_mapping !=
1385  				    page_rmapping(page))
1386  					continue;
1387  			}
1388  
1389  			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390  			rss[mm_counter(page)]--;
1391  
1392  			if (is_device_private_entry(entry))
1393  				page_remove_rmap(page, false);
1394  
1395  			put_page(page);
1396  			continue;
1397  		}
1398  
1399  		/* If details->check_mapping, we leave swap entries. */
1400  		if (unlikely(details))
1401  			continue;
1402  
1403  		if (!non_swap_entry(entry))
1404  			rss[MM_SWAPENTS]--;
1405  		else if (is_migration_entry(entry)) {
1406  			struct page *page;
1407  
1408  			page = pfn_swap_entry_to_page(entry);
1409  			rss[mm_counter(page)]--;
1410  		}
1411  		if (unlikely(!free_swap_and_cache(entry)))
1412  			print_bad_pte(vma, addr, ptent, NULL);
1413  		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1414  	} while (pte++, addr += PAGE_SIZE, addr != end);
1415  
1416  	add_mm_rss_vec(mm, rss);
1417  	arch_leave_lazy_mmu_mode();
1418  
1419  	/* Do the actual TLB flush before dropping ptl */
1420  	if (force_flush)
1421  		tlb_flush_mmu_tlbonly(tlb);
1422  	pte_unmap_unlock(start_pte, ptl);
1423  
1424  	/*
1425  	 * If we forced a TLB flush (either due to running out of
1426  	 * batch buffers or because we needed to flush dirty TLB
1427  	 * entries before releasing the ptl), free the batched
1428  	 * memory too. Restart if we didn't do everything.
1429  	 */
1430  	if (force_flush) {
1431  		force_flush = 0;
1432  		tlb_flush_mmu(tlb);
1433  	}
1434  
1435  	if (addr != end) {
1436  		cond_resched();
1437  		goto again;
1438  	}
1439  
1440  	return addr;
1441  }
1442  
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1443  static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1444  				struct vm_area_struct *vma, pud_t *pud,
1445  				unsigned long addr, unsigned long end,
1446  				struct zap_details *details)
1447  {
1448  	pmd_t *pmd;
1449  	unsigned long next;
1450  
1451  	pmd = pmd_offset(pud, addr);
1452  	do {
1453  		next = pmd_addr_end(addr, end);
1454  		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1455  			if (next - addr != HPAGE_PMD_SIZE)
1456  				__split_huge_pmd(vma, pmd, addr, false, NULL);
1457  			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1458  				goto next;
1459  			/* fall through */
1460  		} else if (details && details->single_page &&
1461  			   PageTransCompound(details->single_page) &&
1462  			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463  			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464  			/*
1465  			 * Take and drop THP pmd lock so that we cannot return
1466  			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467  			 * but not yet decremented compound_mapcount().
1468  			 */
1469  			spin_unlock(ptl);
1470  		}
1471  
1472  		/*
1473  		 * Here there can be other concurrent MADV_DONTNEED or
1474  		 * trans huge page faults running, and if the pmd is
1475  		 * none or trans huge it can change under us. This is
1476  		 * because MADV_DONTNEED holds the mmap_lock in read
1477  		 * mode.
1478  		 */
1479  		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480  			goto next;
1481  		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1482  next:
1483  		cond_resched();
1484  	} while (pmd++, addr = next, addr != end);
1485  
1486  	return addr;
1487  }
1488  
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1489  static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1490  				struct vm_area_struct *vma, p4d_t *p4d,
1491  				unsigned long addr, unsigned long end,
1492  				struct zap_details *details)
1493  {
1494  	pud_t *pud;
1495  	unsigned long next;
1496  
1497  	pud = pud_offset(p4d, addr);
1498  	do {
1499  		next = pud_addr_end(addr, end);
1500  		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501  			if (next - addr != HPAGE_PUD_SIZE) {
1502  				mmap_assert_locked(tlb->mm);
1503  				split_huge_pud(vma, pud, addr);
1504  			} else if (zap_huge_pud(tlb, vma, pud, addr))
1505  				goto next;
1506  			/* fall through */
1507  		}
1508  		if (pud_none_or_clear_bad(pud))
1509  			continue;
1510  		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1511  next:
1512  		cond_resched();
1513  	} while (pud++, addr = next, addr != end);
1514  
1515  	return addr;
1516  }
1517  
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1518  static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519  				struct vm_area_struct *vma, pgd_t *pgd,
1520  				unsigned long addr, unsigned long end,
1521  				struct zap_details *details)
1522  {
1523  	p4d_t *p4d;
1524  	unsigned long next;
1525  
1526  	p4d = p4d_offset(pgd, addr);
1527  	do {
1528  		next = p4d_addr_end(addr, end);
1529  		if (p4d_none_or_clear_bad(p4d))
1530  			continue;
1531  		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532  	} while (p4d++, addr = next, addr != end);
1533  
1534  	return addr;
1535  }
1536  
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1537  void unmap_page_range(struct mmu_gather *tlb,
1538  			     struct vm_area_struct *vma,
1539  			     unsigned long addr, unsigned long end,
1540  			     struct zap_details *details)
1541  {
1542  	pgd_t *pgd;
1543  	unsigned long next;
1544  
1545  	BUG_ON(addr >= end);
1546  	tlb_start_vma(tlb, vma);
1547  	pgd = pgd_offset(vma->vm_mm, addr);
1548  	do {
1549  		next = pgd_addr_end(addr, end);
1550  		if (pgd_none_or_clear_bad(pgd))
1551  			continue;
1552  		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1553  	} while (pgd++, addr = next, addr != end);
1554  	tlb_end_vma(tlb, vma);
1555  }
1556  
1557  
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1558  static void unmap_single_vma(struct mmu_gather *tlb,
1559  		struct vm_area_struct *vma, unsigned long start_addr,
1560  		unsigned long end_addr,
1561  		struct zap_details *details)
1562  {
1563  	unsigned long start = max(vma->vm_start, start_addr);
1564  	unsigned long end;
1565  
1566  	if (start >= vma->vm_end)
1567  		return;
1568  	end = min(vma->vm_end, end_addr);
1569  	if (end <= vma->vm_start)
1570  		return;
1571  
1572  	if (vma->vm_file)
1573  		uprobe_munmap(vma, start, end);
1574  
1575  	if (unlikely(vma->vm_flags & VM_PFNMAP))
1576  		untrack_pfn(vma, 0, 0);
1577  
1578  	if (start != end) {
1579  		if (unlikely(is_vm_hugetlb_page(vma))) {
1580  			/*
1581  			 * It is undesirable to test vma->vm_file as it
1582  			 * should be non-null for valid hugetlb area.
1583  			 * However, vm_file will be NULL in the error
1584  			 * cleanup path of mmap_region. When
1585  			 * hugetlbfs ->mmap method fails,
1586  			 * mmap_region() nullifies vma->vm_file
1587  			 * before calling this function to clean up.
1588  			 * Since no pte has actually been setup, it is
1589  			 * safe to do nothing in this case.
1590  			 */
1591  			if (vma->vm_file) {
1592  				i_mmap_lock_write(vma->vm_file->f_mapping);
1593  				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1594  				i_mmap_unlock_write(vma->vm_file->f_mapping);
1595  			}
1596  		} else
1597  			unmap_page_range(tlb, vma, start, end, details);
1598  	}
1599  }
1600  
1601  /**
1602   * unmap_vmas - unmap a range of memory covered by a list of vma's
1603   * @tlb: address of the caller's struct mmu_gather
1604   * @vma: the starting vma
1605   * @start_addr: virtual address at which to start unmapping
1606   * @end_addr: virtual address at which to end unmapping
1607   *
1608   * Unmap all pages in the vma list.
1609   *
1610   * Only addresses between `start' and `end' will be unmapped.
1611   *
1612   * The VMA list must be sorted in ascending virtual address order.
1613   *
1614   * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615   * range after unmap_vmas() returns.  So the only responsibility here is to
1616   * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617   * drops the lock and schedules.
1618   */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1619  void unmap_vmas(struct mmu_gather *tlb,
1620  		struct vm_area_struct *vma, unsigned long start_addr,
1621  		unsigned long end_addr)
1622  {
1623  	struct mmu_notifier_range range;
1624  
1625  	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626  				start_addr, end_addr);
1627  	mmu_notifier_invalidate_range_start(&range);
1628  	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1629  		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1630  	mmu_notifier_invalidate_range_end(&range);
1631  }
1632  
1633  /**
1634   * zap_page_range - remove user pages in a given range
1635   * @vma: vm_area_struct holding the applicable pages
1636   * @start: starting address of pages to zap
1637   * @size: number of bytes to zap
1638   *
1639   * Caller must protect the VMA list
1640   */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1641  void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1642  		unsigned long size)
1643  {
1644  	struct mmu_notifier_range range;
1645  	struct mmu_gather tlb;
1646  
1647  	lru_add_drain();
1648  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1649  				start, start + size);
1650  	tlb_gather_mmu(&tlb, vma->vm_mm);
1651  	update_hiwater_rss(vma->vm_mm);
1652  	mmu_notifier_invalidate_range_start(&range);
1653  	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654  		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655  	mmu_notifier_invalidate_range_end(&range);
1656  	tlb_finish_mmu(&tlb);
1657  }
1658  
1659  /**
1660   * zap_page_range_single - remove user pages in a given range
1661   * @vma: vm_area_struct holding the applicable pages
1662   * @address: starting address of pages to zap
1663   * @size: number of bytes to zap
1664   * @details: details of shared cache invalidation
1665   *
1666   * The range must fit into one VMA.
1667   */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1668  static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1669  		unsigned long size, struct zap_details *details)
1670  {
1671  	struct mmu_notifier_range range;
1672  	struct mmu_gather tlb;
1673  
1674  	lru_add_drain();
1675  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1676  				address, address + size);
1677  	tlb_gather_mmu(&tlb, vma->vm_mm);
1678  	update_hiwater_rss(vma->vm_mm);
1679  	mmu_notifier_invalidate_range_start(&range);
1680  	unmap_single_vma(&tlb, vma, address, range.end, details);
1681  	mmu_notifier_invalidate_range_end(&range);
1682  	tlb_finish_mmu(&tlb);
1683  }
1684  
1685  /**
1686   * zap_vma_ptes - remove ptes mapping the vma
1687   * @vma: vm_area_struct holding ptes to be zapped
1688   * @address: starting address of pages to zap
1689   * @size: number of bytes to zap
1690   *
1691   * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1692   *
1693   * The entire address range must be fully contained within the vma.
1694   *
1695   */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1696  void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1697  		unsigned long size)
1698  {
1699  	if (address < vma->vm_start || address + size > vma->vm_end ||
1700  	    		!(vma->vm_flags & VM_PFNMAP))
1701  		return;
1702  
1703  	zap_page_range_single(vma, address, size, NULL);
1704  }
1705  EXPORT_SYMBOL_GPL(zap_vma_ptes);
1706  
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1707  static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1708  {
1709  	pgd_t *pgd;
1710  	p4d_t *p4d;
1711  	pud_t *pud;
1712  	pmd_t *pmd;
1713  
1714  	pgd = pgd_offset(mm, addr);
1715  	p4d = p4d_alloc(mm, pgd, addr);
1716  	if (!p4d)
1717  		return NULL;
1718  	pud = pud_alloc(mm, p4d, addr);
1719  	if (!pud)
1720  		return NULL;
1721  	pmd = pmd_alloc(mm, pud, addr);
1722  	if (!pmd)
1723  		return NULL;
1724  
1725  	VM_BUG_ON(pmd_trans_huge(*pmd));
1726  	return pmd;
1727  }
1728  
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1729  pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730  			spinlock_t **ptl)
1731  {
1732  	pmd_t *pmd = walk_to_pmd(mm, addr);
1733  
1734  	if (!pmd)
1735  		return NULL;
1736  	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1737  }
1738  
validate_page_before_insert(struct page * page)1739  static int validate_page_before_insert(struct page *page)
1740  {
1741  	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1742  		return -EINVAL;
1743  	flush_dcache_page(page);
1744  	return 0;
1745  }
1746  
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1747  static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1748  			unsigned long addr, struct page *page, pgprot_t prot)
1749  {
1750  	if (!pte_none(*pte))
1751  		return -EBUSY;
1752  	/* Ok, finally just insert the thing.. */
1753  	get_page(page);
1754  	inc_mm_counter_fast(mm, mm_counter_file(page));
1755  	page_add_file_rmap(page, false);
1756  	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1757  	return 0;
1758  }
1759  
1760  /*
1761   * This is the old fallback for page remapping.
1762   *
1763   * For historical reasons, it only allows reserved pages. Only
1764   * old drivers should use this, and they needed to mark their
1765   * pages reserved for the old functions anyway.
1766   */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1767  static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1768  			struct page *page, pgprot_t prot)
1769  {
1770  	struct mm_struct *mm = vma->vm_mm;
1771  	int retval;
1772  	pte_t *pte;
1773  	spinlock_t *ptl;
1774  
1775  	retval = validate_page_before_insert(page);
1776  	if (retval)
1777  		goto out;
1778  	retval = -ENOMEM;
1779  	pte = get_locked_pte(mm, addr, &ptl);
1780  	if (!pte)
1781  		goto out;
1782  	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1783  	pte_unmap_unlock(pte, ptl);
1784  out:
1785  	return retval;
1786  }
1787  
1788  #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1789  static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1790  			unsigned long addr, struct page *page, pgprot_t prot)
1791  {
1792  	int err;
1793  
1794  	if (!page_count(page))
1795  		return -EINVAL;
1796  	err = validate_page_before_insert(page);
1797  	if (err)
1798  		return err;
1799  	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1800  }
1801  
1802  /* insert_pages() amortizes the cost of spinlock operations
1803   * when inserting pages in a loop. Arch *must* define pte_index.
1804   */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1805  static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1806  			struct page **pages, unsigned long *num, pgprot_t prot)
1807  {
1808  	pmd_t *pmd = NULL;
1809  	pte_t *start_pte, *pte;
1810  	spinlock_t *pte_lock;
1811  	struct mm_struct *const mm = vma->vm_mm;
1812  	unsigned long curr_page_idx = 0;
1813  	unsigned long remaining_pages_total = *num;
1814  	unsigned long pages_to_write_in_pmd;
1815  	int ret;
1816  more:
1817  	ret = -EFAULT;
1818  	pmd = walk_to_pmd(mm, addr);
1819  	if (!pmd)
1820  		goto out;
1821  
1822  	pages_to_write_in_pmd = min_t(unsigned long,
1823  		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1824  
1825  	/* Allocate the PTE if necessary; takes PMD lock once only. */
1826  	ret = -ENOMEM;
1827  	if (pte_alloc(mm, pmd))
1828  		goto out;
1829  
1830  	while (pages_to_write_in_pmd) {
1831  		int pte_idx = 0;
1832  		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1833  
1834  		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1835  		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1836  			int err = insert_page_in_batch_locked(mm, pte,
1837  				addr, pages[curr_page_idx], prot);
1838  			if (unlikely(err)) {
1839  				pte_unmap_unlock(start_pte, pte_lock);
1840  				ret = err;
1841  				remaining_pages_total -= pte_idx;
1842  				goto out;
1843  			}
1844  			addr += PAGE_SIZE;
1845  			++curr_page_idx;
1846  		}
1847  		pte_unmap_unlock(start_pte, pte_lock);
1848  		pages_to_write_in_pmd -= batch_size;
1849  		remaining_pages_total -= batch_size;
1850  	}
1851  	if (remaining_pages_total)
1852  		goto more;
1853  	ret = 0;
1854  out:
1855  	*num = remaining_pages_total;
1856  	return ret;
1857  }
1858  #endif  /* ifdef pte_index */
1859  
1860  /**
1861   * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1862   * @vma: user vma to map to
1863   * @addr: target start user address of these pages
1864   * @pages: source kernel pages
1865   * @num: in: number of pages to map. out: number of pages that were *not*
1866   * mapped. (0 means all pages were successfully mapped).
1867   *
1868   * Preferred over vm_insert_page() when inserting multiple pages.
1869   *
1870   * In case of error, we may have mapped a subset of the provided
1871   * pages. It is the caller's responsibility to account for this case.
1872   *
1873   * The same restrictions apply as in vm_insert_page().
1874   */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1875  int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1876  			struct page **pages, unsigned long *num)
1877  {
1878  #ifdef pte_index
1879  	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1880  
1881  	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1882  		return -EFAULT;
1883  	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1884  		BUG_ON(mmap_read_trylock(vma->vm_mm));
1885  		BUG_ON(vma->vm_flags & VM_PFNMAP);
1886  		vma->vm_flags |= VM_MIXEDMAP;
1887  	}
1888  	/* Defer page refcount checking till we're about to map that page. */
1889  	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1890  #else
1891  	unsigned long idx = 0, pgcount = *num;
1892  	int err = -EINVAL;
1893  
1894  	for (; idx < pgcount; ++idx) {
1895  		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1896  		if (err)
1897  			break;
1898  	}
1899  	*num = pgcount - idx;
1900  	return err;
1901  #endif  /* ifdef pte_index */
1902  }
1903  EXPORT_SYMBOL(vm_insert_pages);
1904  
1905  /**
1906   * vm_insert_page - insert single page into user vma
1907   * @vma: user vma to map to
1908   * @addr: target user address of this page
1909   * @page: source kernel page
1910   *
1911   * This allows drivers to insert individual pages they've allocated
1912   * into a user vma.
1913   *
1914   * The page has to be a nice clean _individual_ kernel allocation.
1915   * If you allocate a compound page, you need to have marked it as
1916   * such (__GFP_COMP), or manually just split the page up yourself
1917   * (see split_page()).
1918   *
1919   * NOTE! Traditionally this was done with "remap_pfn_range()" which
1920   * took an arbitrary page protection parameter. This doesn't allow
1921   * that. Your vma protection will have to be set up correctly, which
1922   * means that if you want a shared writable mapping, you'd better
1923   * ask for a shared writable mapping!
1924   *
1925   * The page does not need to be reserved.
1926   *
1927   * Usually this function is called from f_op->mmap() handler
1928   * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1929   * Caller must set VM_MIXEDMAP on vma if it wants to call this
1930   * function from other places, for example from page-fault handler.
1931   *
1932   * Return: %0 on success, negative error code otherwise.
1933   */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1934  int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1935  			struct page *page)
1936  {
1937  	if (addr < vma->vm_start || addr >= vma->vm_end)
1938  		return -EFAULT;
1939  	if (!page_count(page))
1940  		return -EINVAL;
1941  	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942  		BUG_ON(mmap_read_trylock(vma->vm_mm));
1943  		BUG_ON(vma->vm_flags & VM_PFNMAP);
1944  		vma->vm_flags |= VM_MIXEDMAP;
1945  	}
1946  	return insert_page(vma, addr, page, vma->vm_page_prot);
1947  }
1948  EXPORT_SYMBOL(vm_insert_page);
1949  
1950  /*
1951   * __vm_map_pages - maps range of kernel pages into user vma
1952   * @vma: user vma to map to
1953   * @pages: pointer to array of source kernel pages
1954   * @num: number of pages in page array
1955   * @offset: user's requested vm_pgoff
1956   *
1957   * This allows drivers to map range of kernel pages into a user vma.
1958   *
1959   * Return: 0 on success and error code otherwise.
1960   */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1961  static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1962  				unsigned long num, unsigned long offset)
1963  {
1964  	unsigned long count = vma_pages(vma);
1965  	unsigned long uaddr = vma->vm_start;
1966  	int ret, i;
1967  
1968  	/* Fail if the user requested offset is beyond the end of the object */
1969  	if (offset >= num)
1970  		return -ENXIO;
1971  
1972  	/* Fail if the user requested size exceeds available object size */
1973  	if (count > num - offset)
1974  		return -ENXIO;
1975  
1976  	for (i = 0; i < count; i++) {
1977  		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1978  		if (ret < 0)
1979  			return ret;
1980  		uaddr += PAGE_SIZE;
1981  	}
1982  
1983  	return 0;
1984  }
1985  
1986  /**
1987   * vm_map_pages - maps range of kernel pages starts with non zero offset
1988   * @vma: user vma to map to
1989   * @pages: pointer to array of source kernel pages
1990   * @num: number of pages in page array
1991   *
1992   * Maps an object consisting of @num pages, catering for the user's
1993   * requested vm_pgoff
1994   *
1995   * If we fail to insert any page into the vma, the function will return
1996   * immediately leaving any previously inserted pages present.  Callers
1997   * from the mmap handler may immediately return the error as their caller
1998   * will destroy the vma, removing any successfully inserted pages. Other
1999   * callers should make their own arrangements for calling unmap_region().
2000   *
2001   * Context: Process context. Called by mmap handlers.
2002   * Return: 0 on success and error code otherwise.
2003   */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2004  int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005  				unsigned long num)
2006  {
2007  	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2008  }
2009  EXPORT_SYMBOL(vm_map_pages);
2010  
2011  /**
2012   * vm_map_pages_zero - map range of kernel pages starts with zero offset
2013   * @vma: user vma to map to
2014   * @pages: pointer to array of source kernel pages
2015   * @num: number of pages in page array
2016   *
2017   * Similar to vm_map_pages(), except that it explicitly sets the offset
2018   * to 0. This function is intended for the drivers that did not consider
2019   * vm_pgoff.
2020   *
2021   * Context: Process context. Called by mmap handlers.
2022   * Return: 0 on success and error code otherwise.
2023   */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2024  int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2025  				unsigned long num)
2026  {
2027  	return __vm_map_pages(vma, pages, num, 0);
2028  }
2029  EXPORT_SYMBOL(vm_map_pages_zero);
2030  
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2031  static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2032  			pfn_t pfn, pgprot_t prot, bool mkwrite)
2033  {
2034  	struct mm_struct *mm = vma->vm_mm;
2035  	pte_t *pte, entry;
2036  	spinlock_t *ptl;
2037  
2038  	pte = get_locked_pte(mm, addr, &ptl);
2039  	if (!pte)
2040  		return VM_FAULT_OOM;
2041  	if (!pte_none(*pte)) {
2042  		if (mkwrite) {
2043  			/*
2044  			 * For read faults on private mappings the PFN passed
2045  			 * in may not match the PFN we have mapped if the
2046  			 * mapped PFN is a writeable COW page.  In the mkwrite
2047  			 * case we are creating a writable PTE for a shared
2048  			 * mapping and we expect the PFNs to match. If they
2049  			 * don't match, we are likely racing with block
2050  			 * allocation and mapping invalidation so just skip the
2051  			 * update.
2052  			 */
2053  			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2054  				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2055  				goto out_unlock;
2056  			}
2057  			entry = pte_mkyoung(*pte);
2058  			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059  			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2060  				update_mmu_cache(vma, addr, pte);
2061  		}
2062  		goto out_unlock;
2063  	}
2064  
2065  	/* Ok, finally just insert the thing.. */
2066  	if (pfn_t_devmap(pfn))
2067  		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2068  	else
2069  		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2070  
2071  	if (mkwrite) {
2072  		entry = pte_mkyoung(entry);
2073  		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074  	}
2075  
2076  	set_pte_at(mm, addr, pte, entry);
2077  	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2078  
2079  out_unlock:
2080  	pte_unmap_unlock(pte, ptl);
2081  	return VM_FAULT_NOPAGE;
2082  }
2083  
2084  /**
2085   * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2086   * @vma: user vma to map to
2087   * @addr: target user address of this page
2088   * @pfn: source kernel pfn
2089   * @pgprot: pgprot flags for the inserted page
2090   *
2091   * This is exactly like vmf_insert_pfn(), except that it allows drivers
2092   * to override pgprot on a per-page basis.
2093   *
2094   * This only makes sense for IO mappings, and it makes no sense for
2095   * COW mappings.  In general, using multiple vmas is preferable;
2096   * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2097   * impractical.
2098   *
2099   * See vmf_insert_mixed_prot() for a discussion of the implication of using
2100   * a value of @pgprot different from that of @vma->vm_page_prot.
2101   *
2102   * Context: Process context.  May allocate using %GFP_KERNEL.
2103   * Return: vm_fault_t value.
2104   */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2105  vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2106  			unsigned long pfn, pgprot_t pgprot)
2107  {
2108  	/*
2109  	 * Technically, architectures with pte_special can avoid all these
2110  	 * restrictions (same for remap_pfn_range).  However we would like
2111  	 * consistency in testing and feature parity among all, so we should
2112  	 * try to keep these invariants in place for everybody.
2113  	 */
2114  	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2115  	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2116  						(VM_PFNMAP|VM_MIXEDMAP));
2117  	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2118  	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2119  
2120  	if (addr < vma->vm_start || addr >= vma->vm_end)
2121  		return VM_FAULT_SIGBUS;
2122  
2123  	if (!pfn_modify_allowed(pfn, pgprot))
2124  		return VM_FAULT_SIGBUS;
2125  
2126  	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2127  
2128  	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2129  			false);
2130  }
2131  EXPORT_SYMBOL(vmf_insert_pfn_prot);
2132  
2133  /**
2134   * vmf_insert_pfn - insert single pfn into user vma
2135   * @vma: user vma to map to
2136   * @addr: target user address of this page
2137   * @pfn: source kernel pfn
2138   *
2139   * Similar to vm_insert_page, this allows drivers to insert individual pages
2140   * they've allocated into a user vma. Same comments apply.
2141   *
2142   * This function should only be called from a vm_ops->fault handler, and
2143   * in that case the handler should return the result of this function.
2144   *
2145   * vma cannot be a COW mapping.
2146   *
2147   * As this is called only for pages that do not currently exist, we
2148   * do not need to flush old virtual caches or the TLB.
2149   *
2150   * Context: Process context.  May allocate using %GFP_KERNEL.
2151   * Return: vm_fault_t value.
2152   */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2153  vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154  			unsigned long pfn)
2155  {
2156  	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2157  }
2158  EXPORT_SYMBOL(vmf_insert_pfn);
2159  
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2160  static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2161  {
2162  	/* these checks mirror the abort conditions in vm_normal_page */
2163  	if (vma->vm_flags & VM_MIXEDMAP)
2164  		return true;
2165  	if (pfn_t_devmap(pfn))
2166  		return true;
2167  	if (pfn_t_special(pfn))
2168  		return true;
2169  	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2170  		return true;
2171  	return false;
2172  }
2173  
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2174  static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2175  		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2176  		bool mkwrite)
2177  {
2178  	int err;
2179  
2180  	BUG_ON(!vm_mixed_ok(vma, pfn));
2181  
2182  	if (addr < vma->vm_start || addr >= vma->vm_end)
2183  		return VM_FAULT_SIGBUS;
2184  
2185  	track_pfn_insert(vma, &pgprot, pfn);
2186  
2187  	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2188  		return VM_FAULT_SIGBUS;
2189  
2190  	/*
2191  	 * If we don't have pte special, then we have to use the pfn_valid()
2192  	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2193  	 * refcount the page if pfn_valid is true (hence insert_page rather
2194  	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2195  	 * without pte special, it would there be refcounted as a normal page.
2196  	 */
2197  	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2198  	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2199  		struct page *page;
2200  
2201  		/*
2202  		 * At this point we are committed to insert_page()
2203  		 * regardless of whether the caller specified flags that
2204  		 * result in pfn_t_has_page() == false.
2205  		 */
2206  		page = pfn_to_page(pfn_t_to_pfn(pfn));
2207  		err = insert_page(vma, addr, page, pgprot);
2208  	} else {
2209  		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2210  	}
2211  
2212  	if (err == -ENOMEM)
2213  		return VM_FAULT_OOM;
2214  	if (err < 0 && err != -EBUSY)
2215  		return VM_FAULT_SIGBUS;
2216  
2217  	return VM_FAULT_NOPAGE;
2218  }
2219  
2220  /**
2221   * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2222   * @vma: user vma to map to
2223   * @addr: target user address of this page
2224   * @pfn: source kernel pfn
2225   * @pgprot: pgprot flags for the inserted page
2226   *
2227   * This is exactly like vmf_insert_mixed(), except that it allows drivers
2228   * to override pgprot on a per-page basis.
2229   *
2230   * Typically this function should be used by drivers to set caching- and
2231   * encryption bits different than those of @vma->vm_page_prot, because
2232   * the caching- or encryption mode may not be known at mmap() time.
2233   * This is ok as long as @vma->vm_page_prot is not used by the core vm
2234   * to set caching and encryption bits for those vmas (except for COW pages).
2235   * This is ensured by core vm only modifying these page table entries using
2236   * functions that don't touch caching- or encryption bits, using pte_modify()
2237   * if needed. (See for example mprotect()).
2238   * Also when new page-table entries are created, this is only done using the
2239   * fault() callback, and never using the value of vma->vm_page_prot,
2240   * except for page-table entries that point to anonymous pages as the result
2241   * of COW.
2242   *
2243   * Context: Process context.  May allocate using %GFP_KERNEL.
2244   * Return: vm_fault_t value.
2245   */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2246  vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2247  				 pfn_t pfn, pgprot_t pgprot)
2248  {
2249  	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2250  }
2251  EXPORT_SYMBOL(vmf_insert_mixed_prot);
2252  
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2253  vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254  		pfn_t pfn)
2255  {
2256  	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2257  }
2258  EXPORT_SYMBOL(vmf_insert_mixed);
2259  
2260  /*
2261   *  If the insertion of PTE failed because someone else already added a
2262   *  different entry in the mean time, we treat that as success as we assume
2263   *  the same entry was actually inserted.
2264   */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2265  vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2266  		unsigned long addr, pfn_t pfn)
2267  {
2268  	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2269  }
2270  EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2271  
2272  /*
2273   * maps a range of physical memory into the requested pages. the old
2274   * mappings are removed. any references to nonexistent pages results
2275   * in null mappings (currently treated as "copy-on-access")
2276   */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2277  static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2278  			unsigned long addr, unsigned long end,
2279  			unsigned long pfn, pgprot_t prot)
2280  {
2281  	pte_t *pte, *mapped_pte;
2282  	spinlock_t *ptl;
2283  	int err = 0;
2284  
2285  	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2286  	if (!pte)
2287  		return -ENOMEM;
2288  	arch_enter_lazy_mmu_mode();
2289  	do {
2290  		BUG_ON(!pte_none(*pte));
2291  		if (!pfn_modify_allowed(pfn, prot)) {
2292  			err = -EACCES;
2293  			break;
2294  		}
2295  		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2296  		pfn++;
2297  	} while (pte++, addr += PAGE_SIZE, addr != end);
2298  	arch_leave_lazy_mmu_mode();
2299  	pte_unmap_unlock(mapped_pte, ptl);
2300  	return err;
2301  }
2302  
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2303  static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304  			unsigned long addr, unsigned long end,
2305  			unsigned long pfn, pgprot_t prot)
2306  {
2307  	pmd_t *pmd;
2308  	unsigned long next;
2309  	int err;
2310  
2311  	pfn -= addr >> PAGE_SHIFT;
2312  	pmd = pmd_alloc(mm, pud, addr);
2313  	if (!pmd)
2314  		return -ENOMEM;
2315  	VM_BUG_ON(pmd_trans_huge(*pmd));
2316  	do {
2317  		next = pmd_addr_end(addr, end);
2318  		err = remap_pte_range(mm, pmd, addr, next,
2319  				pfn + (addr >> PAGE_SHIFT), prot);
2320  		if (err)
2321  			return err;
2322  	} while (pmd++, addr = next, addr != end);
2323  	return 0;
2324  }
2325  
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2326  static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2327  			unsigned long addr, unsigned long end,
2328  			unsigned long pfn, pgprot_t prot)
2329  {
2330  	pud_t *pud;
2331  	unsigned long next;
2332  	int err;
2333  
2334  	pfn -= addr >> PAGE_SHIFT;
2335  	pud = pud_alloc(mm, p4d, addr);
2336  	if (!pud)
2337  		return -ENOMEM;
2338  	do {
2339  		next = pud_addr_end(addr, end);
2340  		err = remap_pmd_range(mm, pud, addr, next,
2341  				pfn + (addr >> PAGE_SHIFT), prot);
2342  		if (err)
2343  			return err;
2344  	} while (pud++, addr = next, addr != end);
2345  	return 0;
2346  }
2347  
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2348  static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2349  			unsigned long addr, unsigned long end,
2350  			unsigned long pfn, pgprot_t prot)
2351  {
2352  	p4d_t *p4d;
2353  	unsigned long next;
2354  	int err;
2355  
2356  	pfn -= addr >> PAGE_SHIFT;
2357  	p4d = p4d_alloc(mm, pgd, addr);
2358  	if (!p4d)
2359  		return -ENOMEM;
2360  	do {
2361  		next = p4d_addr_end(addr, end);
2362  		err = remap_pud_range(mm, p4d, addr, next,
2363  				pfn + (addr >> PAGE_SHIFT), prot);
2364  		if (err)
2365  			return err;
2366  	} while (p4d++, addr = next, addr != end);
2367  	return 0;
2368  }
2369  
2370  /*
2371   * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2372   * must have pre-validated the caching bits of the pgprot_t.
2373   */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2374  int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2375  		unsigned long pfn, unsigned long size, pgprot_t prot)
2376  {
2377  	pgd_t *pgd;
2378  	unsigned long next;
2379  	unsigned long end = addr + PAGE_ALIGN(size);
2380  	struct mm_struct *mm = vma->vm_mm;
2381  	int err;
2382  
2383  	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2384  		return -EINVAL;
2385  
2386  	/*
2387  	 * Physically remapped pages are special. Tell the
2388  	 * rest of the world about it:
2389  	 *   VM_IO tells people not to look at these pages
2390  	 *	(accesses can have side effects).
2391  	 *   VM_PFNMAP tells the core MM that the base pages are just
2392  	 *	raw PFN mappings, and do not have a "struct page" associated
2393  	 *	with them.
2394  	 *   VM_DONTEXPAND
2395  	 *      Disable vma merging and expanding with mremap().
2396  	 *   VM_DONTDUMP
2397  	 *      Omit vma from core dump, even when VM_IO turned off.
2398  	 *
2399  	 * There's a horrible special case to handle copy-on-write
2400  	 * behaviour that some programs depend on. We mark the "original"
2401  	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2402  	 * See vm_normal_page() for details.
2403  	 */
2404  	if (is_cow_mapping(vma->vm_flags)) {
2405  		if (addr != vma->vm_start || end != vma->vm_end)
2406  			return -EINVAL;
2407  		vma->vm_pgoff = pfn;
2408  	}
2409  
2410  	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2411  
2412  	BUG_ON(addr >= end);
2413  	pfn -= addr >> PAGE_SHIFT;
2414  	pgd = pgd_offset(mm, addr);
2415  	flush_cache_range(vma, addr, end);
2416  	do {
2417  		next = pgd_addr_end(addr, end);
2418  		err = remap_p4d_range(mm, pgd, addr, next,
2419  				pfn + (addr >> PAGE_SHIFT), prot);
2420  		if (err)
2421  			return err;
2422  	} while (pgd++, addr = next, addr != end);
2423  
2424  	return 0;
2425  }
2426  
2427  /**
2428   * remap_pfn_range - remap kernel memory to userspace
2429   * @vma: user vma to map to
2430   * @addr: target page aligned user address to start at
2431   * @pfn: page frame number of kernel physical memory address
2432   * @size: size of mapping area
2433   * @prot: page protection flags for this mapping
2434   *
2435   * Note: this is only safe if the mm semaphore is held when called.
2436   *
2437   * Return: %0 on success, negative error code otherwise.
2438   */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2439  int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2440  		    unsigned long pfn, unsigned long size, pgprot_t prot)
2441  {
2442  	int err;
2443  
2444  	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2445  	if (err)
2446  		return -EINVAL;
2447  
2448  	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2449  	if (err)
2450  		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2451  	return err;
2452  }
2453  EXPORT_SYMBOL(remap_pfn_range);
2454  
2455  /**
2456   * vm_iomap_memory - remap memory to userspace
2457   * @vma: user vma to map to
2458   * @start: start of the physical memory to be mapped
2459   * @len: size of area
2460   *
2461   * This is a simplified io_remap_pfn_range() for common driver use. The
2462   * driver just needs to give us the physical memory range to be mapped,
2463   * we'll figure out the rest from the vma information.
2464   *
2465   * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466   * whatever write-combining details or similar.
2467   *
2468   * Return: %0 on success, negative error code otherwise.
2469   */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2470  int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471  {
2472  	unsigned long vm_len, pfn, pages;
2473  
2474  	/* Check that the physical memory area passed in looks valid */
2475  	if (start + len < start)
2476  		return -EINVAL;
2477  	/*
2478  	 * You *really* shouldn't map things that aren't page-aligned,
2479  	 * but we've historically allowed it because IO memory might
2480  	 * just have smaller alignment.
2481  	 */
2482  	len += start & ~PAGE_MASK;
2483  	pfn = start >> PAGE_SHIFT;
2484  	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485  	if (pfn + pages < pfn)
2486  		return -EINVAL;
2487  
2488  	/* We start the mapping 'vm_pgoff' pages into the area */
2489  	if (vma->vm_pgoff > pages)
2490  		return -EINVAL;
2491  	pfn += vma->vm_pgoff;
2492  	pages -= vma->vm_pgoff;
2493  
2494  	/* Can we fit all of the mapping? */
2495  	vm_len = vma->vm_end - vma->vm_start;
2496  	if (vm_len >> PAGE_SHIFT > pages)
2497  		return -EINVAL;
2498  
2499  	/* Ok, let it rip */
2500  	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501  }
2502  EXPORT_SYMBOL(vm_iomap_memory);
2503  
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2504  static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505  				     unsigned long addr, unsigned long end,
2506  				     pte_fn_t fn, void *data, bool create,
2507  				     pgtbl_mod_mask *mask)
2508  {
2509  	pte_t *pte, *mapped_pte;
2510  	int err = 0;
2511  	spinlock_t *ptl;
2512  
2513  	if (create) {
2514  		mapped_pte = pte = (mm == &init_mm) ?
2515  			pte_alloc_kernel_track(pmd, addr, mask) :
2516  			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517  		if (!pte)
2518  			return -ENOMEM;
2519  	} else {
2520  		mapped_pte = pte = (mm == &init_mm) ?
2521  			pte_offset_kernel(pmd, addr) :
2522  			pte_offset_map_lock(mm, pmd, addr, &ptl);
2523  	}
2524  
2525  	BUG_ON(pmd_huge(*pmd));
2526  
2527  	arch_enter_lazy_mmu_mode();
2528  
2529  	if (fn) {
2530  		do {
2531  			if (create || !pte_none(*pte)) {
2532  				err = fn(pte++, addr, data);
2533  				if (err)
2534  					break;
2535  			}
2536  		} while (addr += PAGE_SIZE, addr != end);
2537  	}
2538  	*mask |= PGTBL_PTE_MODIFIED;
2539  
2540  	arch_leave_lazy_mmu_mode();
2541  
2542  	if (mm != &init_mm)
2543  		pte_unmap_unlock(mapped_pte, ptl);
2544  	return err;
2545  }
2546  
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2547  static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548  				     unsigned long addr, unsigned long end,
2549  				     pte_fn_t fn, void *data, bool create,
2550  				     pgtbl_mod_mask *mask)
2551  {
2552  	pmd_t *pmd;
2553  	unsigned long next;
2554  	int err = 0;
2555  
2556  	BUG_ON(pud_huge(*pud));
2557  
2558  	if (create) {
2559  		pmd = pmd_alloc_track(mm, pud, addr, mask);
2560  		if (!pmd)
2561  			return -ENOMEM;
2562  	} else {
2563  		pmd = pmd_offset(pud, addr);
2564  	}
2565  	do {
2566  		next = pmd_addr_end(addr, end);
2567  		if (pmd_none(*pmd) && !create)
2568  			continue;
2569  		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2570  			return -EINVAL;
2571  		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2572  			if (!create)
2573  				continue;
2574  			pmd_clear_bad(pmd);
2575  		}
2576  		err = apply_to_pte_range(mm, pmd, addr, next,
2577  					 fn, data, create, mask);
2578  		if (err)
2579  			break;
2580  	} while (pmd++, addr = next, addr != end);
2581  
2582  	return err;
2583  }
2584  
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2585  static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2586  				     unsigned long addr, unsigned long end,
2587  				     pte_fn_t fn, void *data, bool create,
2588  				     pgtbl_mod_mask *mask)
2589  {
2590  	pud_t *pud;
2591  	unsigned long next;
2592  	int err = 0;
2593  
2594  	if (create) {
2595  		pud = pud_alloc_track(mm, p4d, addr, mask);
2596  		if (!pud)
2597  			return -ENOMEM;
2598  	} else {
2599  		pud = pud_offset(p4d, addr);
2600  	}
2601  	do {
2602  		next = pud_addr_end(addr, end);
2603  		if (pud_none(*pud) && !create)
2604  			continue;
2605  		if (WARN_ON_ONCE(pud_leaf(*pud)))
2606  			return -EINVAL;
2607  		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2608  			if (!create)
2609  				continue;
2610  			pud_clear_bad(pud);
2611  		}
2612  		err = apply_to_pmd_range(mm, pud, addr, next,
2613  					 fn, data, create, mask);
2614  		if (err)
2615  			break;
2616  	} while (pud++, addr = next, addr != end);
2617  
2618  	return err;
2619  }
2620  
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2621  static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2622  				     unsigned long addr, unsigned long end,
2623  				     pte_fn_t fn, void *data, bool create,
2624  				     pgtbl_mod_mask *mask)
2625  {
2626  	p4d_t *p4d;
2627  	unsigned long next;
2628  	int err = 0;
2629  
2630  	if (create) {
2631  		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2632  		if (!p4d)
2633  			return -ENOMEM;
2634  	} else {
2635  		p4d = p4d_offset(pgd, addr);
2636  	}
2637  	do {
2638  		next = p4d_addr_end(addr, end);
2639  		if (p4d_none(*p4d) && !create)
2640  			continue;
2641  		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2642  			return -EINVAL;
2643  		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2644  			if (!create)
2645  				continue;
2646  			p4d_clear_bad(p4d);
2647  		}
2648  		err = apply_to_pud_range(mm, p4d, addr, next,
2649  					 fn, data, create, mask);
2650  		if (err)
2651  			break;
2652  	} while (p4d++, addr = next, addr != end);
2653  
2654  	return err;
2655  }
2656  
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2657  static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2658  				 unsigned long size, pte_fn_t fn,
2659  				 void *data, bool create)
2660  {
2661  	pgd_t *pgd;
2662  	unsigned long start = addr, next;
2663  	unsigned long end = addr + size;
2664  	pgtbl_mod_mask mask = 0;
2665  	int err = 0;
2666  
2667  	if (WARN_ON(addr >= end))
2668  		return -EINVAL;
2669  
2670  	pgd = pgd_offset(mm, addr);
2671  	do {
2672  		next = pgd_addr_end(addr, end);
2673  		if (pgd_none(*pgd) && !create)
2674  			continue;
2675  		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2676  			return -EINVAL;
2677  		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2678  			if (!create)
2679  				continue;
2680  			pgd_clear_bad(pgd);
2681  		}
2682  		err = apply_to_p4d_range(mm, pgd, addr, next,
2683  					 fn, data, create, &mask);
2684  		if (err)
2685  			break;
2686  	} while (pgd++, addr = next, addr != end);
2687  
2688  	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2689  		arch_sync_kernel_mappings(start, start + size);
2690  
2691  	return err;
2692  }
2693  
2694  /*
2695   * Scan a region of virtual memory, filling in page tables as necessary
2696   * and calling a provided function on each leaf page table.
2697   */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2698  int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2699  			unsigned long size, pte_fn_t fn, void *data)
2700  {
2701  	return __apply_to_page_range(mm, addr, size, fn, data, true);
2702  }
2703  EXPORT_SYMBOL_GPL(apply_to_page_range);
2704  
2705  /*
2706   * Scan a region of virtual memory, calling a provided function on
2707   * each leaf page table where it exists.
2708   *
2709   * Unlike apply_to_page_range, this does _not_ fill in page tables
2710   * where they are absent.
2711   */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2712  int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2713  				 unsigned long size, pte_fn_t fn, void *data)
2714  {
2715  	return __apply_to_page_range(mm, addr, size, fn, data, false);
2716  }
2717  EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2718  
2719  /*
2720   * handle_pte_fault chooses page fault handler according to an entry which was
2721   * read non-atomically.  Before making any commitment, on those architectures
2722   * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2723   * parts, do_swap_page must check under lock before unmapping the pte and
2724   * proceeding (but do_wp_page is only called after already making such a check;
2725   * and do_anonymous_page can safely check later on).
2726   */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2727  static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2728  				pte_t *page_table, pte_t orig_pte)
2729  {
2730  	int same = 1;
2731  #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2732  	if (sizeof(pte_t) > sizeof(unsigned long)) {
2733  		spinlock_t *ptl = pte_lockptr(mm, pmd);
2734  		spin_lock(ptl);
2735  		same = pte_same(*page_table, orig_pte);
2736  		spin_unlock(ptl);
2737  	}
2738  #endif
2739  	pte_unmap(page_table);
2740  	return same;
2741  }
2742  
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2743  static inline bool cow_user_page(struct page *dst, struct page *src,
2744  				 struct vm_fault *vmf)
2745  {
2746  	bool ret;
2747  	void *kaddr;
2748  	void __user *uaddr;
2749  	bool locked = false;
2750  	struct vm_area_struct *vma = vmf->vma;
2751  	struct mm_struct *mm = vma->vm_mm;
2752  	unsigned long addr = vmf->address;
2753  
2754  	if (likely(src)) {
2755  		copy_user_highpage(dst, src, addr, vma);
2756  		return true;
2757  	}
2758  
2759  	/*
2760  	 * If the source page was a PFN mapping, we don't have
2761  	 * a "struct page" for it. We do a best-effort copy by
2762  	 * just copying from the original user address. If that
2763  	 * fails, we just zero-fill it. Live with it.
2764  	 */
2765  	kaddr = kmap_atomic(dst);
2766  	uaddr = (void __user *)(addr & PAGE_MASK);
2767  
2768  	/*
2769  	 * On architectures with software "accessed" bits, we would
2770  	 * take a double page fault, so mark it accessed here.
2771  	 */
2772  	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2773  		pte_t entry;
2774  
2775  		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2776  		locked = true;
2777  		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2778  			/*
2779  			 * Other thread has already handled the fault
2780  			 * and update local tlb only
2781  			 */
2782  			update_mmu_tlb(vma, addr, vmf->pte);
2783  			ret = false;
2784  			goto pte_unlock;
2785  		}
2786  
2787  		entry = pte_mkyoung(vmf->orig_pte);
2788  		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2789  			update_mmu_cache(vma, addr, vmf->pte);
2790  	}
2791  
2792  	/*
2793  	 * This really shouldn't fail, because the page is there
2794  	 * in the page tables. But it might just be unreadable,
2795  	 * in which case we just give up and fill the result with
2796  	 * zeroes.
2797  	 */
2798  	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2799  		if (locked)
2800  			goto warn;
2801  
2802  		/* Re-validate under PTL if the page is still mapped */
2803  		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2804  		locked = true;
2805  		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2806  			/* The PTE changed under us, update local tlb */
2807  			update_mmu_tlb(vma, addr, vmf->pte);
2808  			ret = false;
2809  			goto pte_unlock;
2810  		}
2811  
2812  		/*
2813  		 * The same page can be mapped back since last copy attempt.
2814  		 * Try to copy again under PTL.
2815  		 */
2816  		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2817  			/*
2818  			 * Give a warn in case there can be some obscure
2819  			 * use-case
2820  			 */
2821  warn:
2822  			WARN_ON_ONCE(1);
2823  			clear_page(kaddr);
2824  		}
2825  	}
2826  
2827  	ret = true;
2828  
2829  pte_unlock:
2830  	if (locked)
2831  		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832  	kunmap_atomic(kaddr);
2833  	flush_dcache_page(dst);
2834  
2835  	return ret;
2836  }
2837  
__get_fault_gfp_mask(struct vm_area_struct * vma)2838  static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2839  {
2840  	struct file *vm_file = vma->vm_file;
2841  
2842  	if (vm_file)
2843  		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2844  
2845  	/*
2846  	 * Special mappings (e.g. VDSO) do not have any file so fake
2847  	 * a default GFP_KERNEL for them.
2848  	 */
2849  	return GFP_KERNEL;
2850  }
2851  
2852  /*
2853   * Notify the address space that the page is about to become writable so that
2854   * it can prohibit this or wait for the page to get into an appropriate state.
2855   *
2856   * We do this without the lock held, so that it can sleep if it needs to.
2857   */
do_page_mkwrite(struct vm_fault * vmf)2858  static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2859  {
2860  	vm_fault_t ret;
2861  	struct page *page = vmf->page;
2862  	unsigned int old_flags = vmf->flags;
2863  
2864  	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2865  
2866  	if (vmf->vma->vm_file &&
2867  	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2868  		return VM_FAULT_SIGBUS;
2869  
2870  	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2871  	/* Restore original flags so that caller is not surprised */
2872  	vmf->flags = old_flags;
2873  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2874  		return ret;
2875  	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2876  		lock_page(page);
2877  		if (!page->mapping) {
2878  			unlock_page(page);
2879  			return 0; /* retry */
2880  		}
2881  		ret |= VM_FAULT_LOCKED;
2882  	} else
2883  		VM_BUG_ON_PAGE(!PageLocked(page), page);
2884  	return ret;
2885  }
2886  
2887  /*
2888   * Handle dirtying of a page in shared file mapping on a write fault.
2889   *
2890   * The function expects the page to be locked and unlocks it.
2891   */
fault_dirty_shared_page(struct vm_fault * vmf)2892  static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2893  {
2894  	struct vm_area_struct *vma = vmf->vma;
2895  	struct address_space *mapping;
2896  	struct page *page = vmf->page;
2897  	bool dirtied;
2898  	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2899  
2900  	dirtied = set_page_dirty(page);
2901  	VM_BUG_ON_PAGE(PageAnon(page), page);
2902  	/*
2903  	 * Take a local copy of the address_space - page.mapping may be zeroed
2904  	 * by truncate after unlock_page().   The address_space itself remains
2905  	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2906  	 * release semantics to prevent the compiler from undoing this copying.
2907  	 */
2908  	mapping = page_rmapping(page);
2909  	unlock_page(page);
2910  
2911  	if (!page_mkwrite)
2912  		file_update_time(vma->vm_file);
2913  
2914  	/*
2915  	 * Throttle page dirtying rate down to writeback speed.
2916  	 *
2917  	 * mapping may be NULL here because some device drivers do not
2918  	 * set page.mapping but still dirty their pages
2919  	 *
2920  	 * Drop the mmap_lock before waiting on IO, if we can. The file
2921  	 * is pinning the mapping, as per above.
2922  	 */
2923  	if ((dirtied || page_mkwrite) && mapping) {
2924  		struct file *fpin;
2925  
2926  		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2927  		balance_dirty_pages_ratelimited(mapping);
2928  		if (fpin) {
2929  			fput(fpin);
2930  			return VM_FAULT_RETRY;
2931  		}
2932  	}
2933  
2934  	return 0;
2935  }
2936  
2937  /*
2938   * Handle write page faults for pages that can be reused in the current vma
2939   *
2940   * This can happen either due to the mapping being with the VM_SHARED flag,
2941   * or due to us being the last reference standing to the page. In either
2942   * case, all we need to do here is to mark the page as writable and update
2943   * any related book-keeping.
2944   */
wp_page_reuse(struct vm_fault * vmf)2945  static inline void wp_page_reuse(struct vm_fault *vmf)
2946  	__releases(vmf->ptl)
2947  {
2948  	struct vm_area_struct *vma = vmf->vma;
2949  	struct page *page = vmf->page;
2950  	pte_t entry;
2951  	/*
2952  	 * Clear the pages cpupid information as the existing
2953  	 * information potentially belongs to a now completely
2954  	 * unrelated process.
2955  	 */
2956  	if (page)
2957  		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2958  
2959  	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2960  	entry = pte_mkyoung(vmf->orig_pte);
2961  	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2962  	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2963  		update_mmu_cache(vma, vmf->address, vmf->pte);
2964  	pte_unmap_unlock(vmf->pte, vmf->ptl);
2965  	count_vm_event(PGREUSE);
2966  }
2967  
2968  /*
2969   * Handle the case of a page which we actually need to copy to a new page.
2970   *
2971   * Called with mmap_lock locked and the old page referenced, but
2972   * without the ptl held.
2973   *
2974   * High level logic flow:
2975   *
2976   * - Allocate a page, copy the content of the old page to the new one.
2977   * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2978   * - Take the PTL. If the pte changed, bail out and release the allocated page
2979   * - If the pte is still the way we remember it, update the page table and all
2980   *   relevant references. This includes dropping the reference the page-table
2981   *   held to the old page, as well as updating the rmap.
2982   * - In any case, unlock the PTL and drop the reference we took to the old page.
2983   */
wp_page_copy(struct vm_fault * vmf)2984  static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2985  {
2986  	struct vm_area_struct *vma = vmf->vma;
2987  	struct mm_struct *mm = vma->vm_mm;
2988  	struct page *old_page = vmf->page;
2989  	struct page *new_page = NULL;
2990  	pte_t entry;
2991  	int page_copied = 0;
2992  	struct mmu_notifier_range range;
2993  
2994  	if (unlikely(anon_vma_prepare(vma)))
2995  		goto oom;
2996  
2997  	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2998  		new_page = alloc_zeroed_user_highpage_movable(vma,
2999  							      vmf->address);
3000  		if (!new_page)
3001  			goto oom;
3002  	} else {
3003  		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3004  				vmf->address);
3005  		if (!new_page)
3006  			goto oom;
3007  
3008  		if (!cow_user_page(new_page, old_page, vmf)) {
3009  			/*
3010  			 * COW failed, if the fault was solved by other,
3011  			 * it's fine. If not, userspace would re-fault on
3012  			 * the same address and we will handle the fault
3013  			 * from the second attempt.
3014  			 */
3015  			put_page(new_page);
3016  			if (old_page)
3017  				put_page(old_page);
3018  			return 0;
3019  		}
3020  	}
3021  
3022  	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3023  		goto oom_free_new;
3024  	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3025  
3026  	__SetPageUptodate(new_page);
3027  
3028  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3029  				vmf->address & PAGE_MASK,
3030  				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3031  	mmu_notifier_invalidate_range_start(&range);
3032  
3033  	/*
3034  	 * Re-check the pte - we dropped the lock
3035  	 */
3036  	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3037  	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3038  		if (old_page) {
3039  			if (!PageAnon(old_page)) {
3040  				dec_mm_counter_fast(mm,
3041  						mm_counter_file(old_page));
3042  				inc_mm_counter_fast(mm, MM_ANONPAGES);
3043  			}
3044  		} else {
3045  			inc_mm_counter_fast(mm, MM_ANONPAGES);
3046  		}
3047  		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3048  		entry = mk_pte(new_page, vma->vm_page_prot);
3049  		entry = pte_sw_mkyoung(entry);
3050  		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3051  
3052  		/*
3053  		 * Clear the pte entry and flush it first, before updating the
3054  		 * pte with the new entry, to keep TLBs on different CPUs in
3055  		 * sync. This code used to set the new PTE then flush TLBs, but
3056  		 * that left a window where the new PTE could be loaded into
3057  		 * some TLBs while the old PTE remains in others.
3058  		 */
3059  		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3060  		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3061  		lru_cache_add_inactive_or_unevictable(new_page, vma);
3062  		/*
3063  		 * We call the notify macro here because, when using secondary
3064  		 * mmu page tables (such as kvm shadow page tables), we want the
3065  		 * new page to be mapped directly into the secondary page table.
3066  		 */
3067  		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3068  		update_mmu_cache(vma, vmf->address, vmf->pte);
3069  		if (old_page) {
3070  			/*
3071  			 * Only after switching the pte to the new page may
3072  			 * we remove the mapcount here. Otherwise another
3073  			 * process may come and find the rmap count decremented
3074  			 * before the pte is switched to the new page, and
3075  			 * "reuse" the old page writing into it while our pte
3076  			 * here still points into it and can be read by other
3077  			 * threads.
3078  			 *
3079  			 * The critical issue is to order this
3080  			 * page_remove_rmap with the ptp_clear_flush above.
3081  			 * Those stores are ordered by (if nothing else,)
3082  			 * the barrier present in the atomic_add_negative
3083  			 * in page_remove_rmap.
3084  			 *
3085  			 * Then the TLB flush in ptep_clear_flush ensures that
3086  			 * no process can access the old page before the
3087  			 * decremented mapcount is visible. And the old page
3088  			 * cannot be reused until after the decremented
3089  			 * mapcount is visible. So transitively, TLBs to
3090  			 * old page will be flushed before it can be reused.
3091  			 */
3092  			page_remove_rmap(old_page, false);
3093  		}
3094  
3095  		/* Free the old page.. */
3096  		new_page = old_page;
3097  		page_copied = 1;
3098  	} else {
3099  		update_mmu_tlb(vma, vmf->address, vmf->pte);
3100  	}
3101  
3102  	if (new_page)
3103  		put_page(new_page);
3104  
3105  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3106  	/*
3107  	 * No need to double call mmu_notifier->invalidate_range() callback as
3108  	 * the above ptep_clear_flush_notify() did already call it.
3109  	 */
3110  	mmu_notifier_invalidate_range_only_end(&range);
3111  	if (old_page) {
3112  		/*
3113  		 * Don't let another task, with possibly unlocked vma,
3114  		 * keep the mlocked page.
3115  		 */
3116  		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3117  			lock_page(old_page);	/* LRU manipulation */
3118  			if (PageMlocked(old_page))
3119  				munlock_vma_page(old_page);
3120  			unlock_page(old_page);
3121  		}
3122  		if (page_copied)
3123  			free_swap_cache(old_page);
3124  		put_page(old_page);
3125  	}
3126  	return page_copied ? VM_FAULT_WRITE : 0;
3127  oom_free_new:
3128  	put_page(new_page);
3129  oom:
3130  	if (old_page)
3131  		put_page(old_page);
3132  	return VM_FAULT_OOM;
3133  }
3134  
3135  /**
3136   * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3137   *			  writeable once the page is prepared
3138   *
3139   * @vmf: structure describing the fault
3140   *
3141   * This function handles all that is needed to finish a write page fault in a
3142   * shared mapping due to PTE being read-only once the mapped page is prepared.
3143   * It handles locking of PTE and modifying it.
3144   *
3145   * The function expects the page to be locked or other protection against
3146   * concurrent faults / writeback (such as DAX radix tree locks).
3147   *
3148   * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3149   * we acquired PTE lock.
3150   */
finish_mkwrite_fault(struct vm_fault * vmf)3151  vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3152  {
3153  	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3154  	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3155  				       &vmf->ptl);
3156  	/*
3157  	 * We might have raced with another page fault while we released the
3158  	 * pte_offset_map_lock.
3159  	 */
3160  	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3161  		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3162  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3163  		return VM_FAULT_NOPAGE;
3164  	}
3165  	wp_page_reuse(vmf);
3166  	return 0;
3167  }
3168  
3169  /*
3170   * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3171   * mapping
3172   */
wp_pfn_shared(struct vm_fault * vmf)3173  static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3174  {
3175  	struct vm_area_struct *vma = vmf->vma;
3176  
3177  	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3178  		vm_fault_t ret;
3179  
3180  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3181  		vmf->flags |= FAULT_FLAG_MKWRITE;
3182  		ret = vma->vm_ops->pfn_mkwrite(vmf);
3183  		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3184  			return ret;
3185  		return finish_mkwrite_fault(vmf);
3186  	}
3187  	wp_page_reuse(vmf);
3188  	return VM_FAULT_WRITE;
3189  }
3190  
wp_page_shared(struct vm_fault * vmf)3191  static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3192  	__releases(vmf->ptl)
3193  {
3194  	struct vm_area_struct *vma = vmf->vma;
3195  	vm_fault_t ret = VM_FAULT_WRITE;
3196  
3197  	get_page(vmf->page);
3198  
3199  	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3200  		vm_fault_t tmp;
3201  
3202  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3203  		tmp = do_page_mkwrite(vmf);
3204  		if (unlikely(!tmp || (tmp &
3205  				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3206  			put_page(vmf->page);
3207  			return tmp;
3208  		}
3209  		tmp = finish_mkwrite_fault(vmf);
3210  		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3211  			unlock_page(vmf->page);
3212  			put_page(vmf->page);
3213  			return tmp;
3214  		}
3215  	} else {
3216  		wp_page_reuse(vmf);
3217  		lock_page(vmf->page);
3218  	}
3219  	ret |= fault_dirty_shared_page(vmf);
3220  	put_page(vmf->page);
3221  
3222  	return ret;
3223  }
3224  
3225  /*
3226   * This routine handles present pages, when users try to write
3227   * to a shared page. It is done by copying the page to a new address
3228   * and decrementing the shared-page counter for the old page.
3229   *
3230   * Note that this routine assumes that the protection checks have been
3231   * done by the caller (the low-level page fault routine in most cases).
3232   * Thus we can safely just mark it writable once we've done any necessary
3233   * COW.
3234   *
3235   * We also mark the page dirty at this point even though the page will
3236   * change only once the write actually happens. This avoids a few races,
3237   * and potentially makes it more efficient.
3238   *
3239   * We enter with non-exclusive mmap_lock (to exclude vma changes,
3240   * but allow concurrent faults), with pte both mapped and locked.
3241   * We return with mmap_lock still held, but pte unmapped and unlocked.
3242   */
do_wp_page(struct vm_fault * vmf)3243  static vm_fault_t do_wp_page(struct vm_fault *vmf)
3244  	__releases(vmf->ptl)
3245  {
3246  	struct vm_area_struct *vma = vmf->vma;
3247  
3248  	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3249  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3250  		return handle_userfault(vmf, VM_UFFD_WP);
3251  	}
3252  
3253  	/*
3254  	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3255  	 * is flushed in this case before copying.
3256  	 */
3257  	if (unlikely(userfaultfd_wp(vmf->vma) &&
3258  		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3259  		flush_tlb_page(vmf->vma, vmf->address);
3260  
3261  	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3262  	if (!vmf->page) {
3263  		/*
3264  		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3265  		 * VM_PFNMAP VMA.
3266  		 *
3267  		 * We should not cow pages in a shared writeable mapping.
3268  		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3269  		 */
3270  		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3271  				     (VM_WRITE|VM_SHARED))
3272  			return wp_pfn_shared(vmf);
3273  
3274  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275  		return wp_page_copy(vmf);
3276  	}
3277  
3278  	/*
3279  	 * Take out anonymous pages first, anonymous shared vmas are
3280  	 * not dirty accountable.
3281  	 */
3282  	if (PageAnon(vmf->page)) {
3283  		struct page *page = vmf->page;
3284  
3285  		/* PageKsm() doesn't necessarily raise the page refcount */
3286  		if (PageKsm(page) || page_count(page) != 1)
3287  			goto copy;
3288  		if (!trylock_page(page))
3289  			goto copy;
3290  		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3291  			unlock_page(page);
3292  			goto copy;
3293  		}
3294  		/*
3295  		 * Ok, we've got the only map reference, and the only
3296  		 * page count reference, and the page is locked,
3297  		 * it's dark out, and we're wearing sunglasses. Hit it.
3298  		 */
3299  		unlock_page(page);
3300  		wp_page_reuse(vmf);
3301  		return VM_FAULT_WRITE;
3302  	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3303  					(VM_WRITE|VM_SHARED))) {
3304  		return wp_page_shared(vmf);
3305  	}
3306  copy:
3307  	/*
3308  	 * Ok, we need to copy. Oh, well..
3309  	 */
3310  	get_page(vmf->page);
3311  
3312  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3313  	return wp_page_copy(vmf);
3314  }
3315  
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3316  static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3317  		unsigned long start_addr, unsigned long end_addr,
3318  		struct zap_details *details)
3319  {
3320  	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3321  }
3322  
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3323  static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3324  					    struct zap_details *details)
3325  {
3326  	struct vm_area_struct *vma;
3327  	pgoff_t vba, vea, zba, zea;
3328  
3329  	vma_interval_tree_foreach(vma, root,
3330  			details->first_index, details->last_index) {
3331  
3332  		vba = vma->vm_pgoff;
3333  		vea = vba + vma_pages(vma) - 1;
3334  		zba = details->first_index;
3335  		if (zba < vba)
3336  			zba = vba;
3337  		zea = details->last_index;
3338  		if (zea > vea)
3339  			zea = vea;
3340  
3341  		unmap_mapping_range_vma(vma,
3342  			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3343  			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3344  				details);
3345  	}
3346  }
3347  
3348  /**
3349   * unmap_mapping_page() - Unmap single page from processes.
3350   * @page: The locked page to be unmapped.
3351   *
3352   * Unmap this page from any userspace process which still has it mmaped.
3353   * Typically, for efficiency, the range of nearby pages has already been
3354   * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3355   * truncation or invalidation holds the lock on a page, it may find that
3356   * the page has been remapped again: and then uses unmap_mapping_page()
3357   * to unmap it finally.
3358   */
unmap_mapping_page(struct page * page)3359  void unmap_mapping_page(struct page *page)
3360  {
3361  	struct address_space *mapping = page->mapping;
3362  	struct zap_details details = { };
3363  
3364  	VM_BUG_ON(!PageLocked(page));
3365  	VM_BUG_ON(PageTail(page));
3366  
3367  	details.check_mapping = mapping;
3368  	details.first_index = page->index;
3369  	details.last_index = page->index + thp_nr_pages(page) - 1;
3370  	details.single_page = page;
3371  
3372  	i_mmap_lock_write(mapping);
3373  	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3374  		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3375  	i_mmap_unlock_write(mapping);
3376  }
3377  
3378  /**
3379   * unmap_mapping_pages() - Unmap pages from processes.
3380   * @mapping: The address space containing pages to be unmapped.
3381   * @start: Index of first page to be unmapped.
3382   * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3383   * @even_cows: Whether to unmap even private COWed pages.
3384   *
3385   * Unmap the pages in this address space from any userspace process which
3386   * has them mmaped.  Generally, you want to remove COWed pages as well when
3387   * a file is being truncated, but not when invalidating pages from the page
3388   * cache.
3389   */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3390  void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3391  		pgoff_t nr, bool even_cows)
3392  {
3393  	struct zap_details details = { };
3394  
3395  	details.check_mapping = even_cows ? NULL : mapping;
3396  	details.first_index = start;
3397  	details.last_index = start + nr - 1;
3398  	if (details.last_index < details.first_index)
3399  		details.last_index = ULONG_MAX;
3400  
3401  	i_mmap_lock_write(mapping);
3402  	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3403  		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3404  	i_mmap_unlock_write(mapping);
3405  }
3406  EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3407  
3408  /**
3409   * unmap_mapping_range - unmap the portion of all mmaps in the specified
3410   * address_space corresponding to the specified byte range in the underlying
3411   * file.
3412   *
3413   * @mapping: the address space containing mmaps to be unmapped.
3414   * @holebegin: byte in first page to unmap, relative to the start of
3415   * the underlying file.  This will be rounded down to a PAGE_SIZE
3416   * boundary.  Note that this is different from truncate_pagecache(), which
3417   * must keep the partial page.  In contrast, we must get rid of
3418   * partial pages.
3419   * @holelen: size of prospective hole in bytes.  This will be rounded
3420   * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3421   * end of the file.
3422   * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3423   * but 0 when invalidating pagecache, don't throw away private data.
3424   */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3425  void unmap_mapping_range(struct address_space *mapping,
3426  		loff_t const holebegin, loff_t const holelen, int even_cows)
3427  {
3428  	pgoff_t hba = holebegin >> PAGE_SHIFT;
3429  	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3430  
3431  	/* Check for overflow. */
3432  	if (sizeof(holelen) > sizeof(hlen)) {
3433  		long long holeend =
3434  			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3435  		if (holeend & ~(long long)ULONG_MAX)
3436  			hlen = ULONG_MAX - hba + 1;
3437  	}
3438  
3439  	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3440  }
3441  EXPORT_SYMBOL(unmap_mapping_range);
3442  
3443  /*
3444   * Restore a potential device exclusive pte to a working pte entry
3445   */
remove_device_exclusive_entry(struct vm_fault * vmf)3446  static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3447  {
3448  	struct page *page = vmf->page;
3449  	struct vm_area_struct *vma = vmf->vma;
3450  	struct mmu_notifier_range range;
3451  
3452  	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3453  		return VM_FAULT_RETRY;
3454  	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3455  				vma->vm_mm, vmf->address & PAGE_MASK,
3456  				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3457  	mmu_notifier_invalidate_range_start(&range);
3458  
3459  	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3460  				&vmf->ptl);
3461  	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3462  		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3463  
3464  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3465  	unlock_page(page);
3466  
3467  	mmu_notifier_invalidate_range_end(&range);
3468  	return 0;
3469  }
3470  
3471  /*
3472   * We enter with non-exclusive mmap_lock (to exclude vma changes,
3473   * but allow concurrent faults), and pte mapped but not yet locked.
3474   * We return with pte unmapped and unlocked.
3475   *
3476   * We return with the mmap_lock locked or unlocked in the same cases
3477   * as does filemap_fault().
3478   */
do_swap_page(struct vm_fault * vmf)3479  vm_fault_t do_swap_page(struct vm_fault *vmf)
3480  {
3481  	struct vm_area_struct *vma = vmf->vma;
3482  	struct page *page = NULL, *swapcache;
3483  	struct swap_info_struct *si = NULL;
3484  	swp_entry_t entry;
3485  	pte_t pte;
3486  	int locked;
3487  	int exclusive = 0;
3488  	vm_fault_t ret = 0;
3489  	void *shadow = NULL;
3490  
3491  	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3492  		goto out;
3493  
3494  	entry = pte_to_swp_entry(vmf->orig_pte);
3495  	if (unlikely(non_swap_entry(entry))) {
3496  		if (is_migration_entry(entry)) {
3497  			migration_entry_wait(vma->vm_mm, vmf->pmd,
3498  					     vmf->address);
3499  		} else if (is_device_exclusive_entry(entry)) {
3500  			vmf->page = pfn_swap_entry_to_page(entry);
3501  			ret = remove_device_exclusive_entry(vmf);
3502  		} else if (is_device_private_entry(entry)) {
3503  			vmf->page = pfn_swap_entry_to_page(entry);
3504  			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3505  		} else if (is_hwpoison_entry(entry)) {
3506  			ret = VM_FAULT_HWPOISON;
3507  		} else {
3508  			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3509  			ret = VM_FAULT_SIGBUS;
3510  		}
3511  		goto out;
3512  	}
3513  
3514  	/* Prevent swapoff from happening to us. */
3515  	si = get_swap_device(entry);
3516  	if (unlikely(!si))
3517  		goto out;
3518  
3519  	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3520  	page = lookup_swap_cache(entry, vma, vmf->address);
3521  	swapcache = page;
3522  
3523  	if (!page) {
3524  		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3525  		    __swap_count(entry) == 1) {
3526  			/* skip swapcache */
3527  			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3528  							vmf->address);
3529  			if (page) {
3530  				__SetPageLocked(page);
3531  				__SetPageSwapBacked(page);
3532  
3533  				if (mem_cgroup_swapin_charge_page(page,
3534  					vma->vm_mm, GFP_KERNEL, entry)) {
3535  					ret = VM_FAULT_OOM;
3536  					goto out_page;
3537  				}
3538  				mem_cgroup_swapin_uncharge_swap(entry);
3539  
3540  				shadow = get_shadow_from_swap_cache(entry);
3541  				if (shadow)
3542  					workingset_refault(page, shadow);
3543  
3544  				lru_cache_add(page);
3545  
3546  				/* To provide entry to swap_readpage() */
3547  				set_page_private(page, entry.val);
3548  				swap_readpage(page, true);
3549  				set_page_private(page, 0);
3550  			}
3551  		} else {
3552  			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3553  						vmf);
3554  			swapcache = page;
3555  		}
3556  
3557  		if (!page) {
3558  			/*
3559  			 * Back out if somebody else faulted in this pte
3560  			 * while we released the pte lock.
3561  			 */
3562  			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3563  					vmf->address, &vmf->ptl);
3564  			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3565  				ret = VM_FAULT_OOM;
3566  			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3567  			goto unlock;
3568  		}
3569  
3570  		/* Had to read the page from swap area: Major fault */
3571  		ret = VM_FAULT_MAJOR;
3572  		count_vm_event(PGMAJFAULT);
3573  		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3574  	} else if (PageHWPoison(page)) {
3575  		/*
3576  		 * hwpoisoned dirty swapcache pages are kept for killing
3577  		 * owner processes (which may be unknown at hwpoison time)
3578  		 */
3579  		ret = VM_FAULT_HWPOISON;
3580  		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3581  		goto out_release;
3582  	}
3583  
3584  	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3585  
3586  	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3587  	if (!locked) {
3588  		ret |= VM_FAULT_RETRY;
3589  		goto out_release;
3590  	}
3591  
3592  	/*
3593  	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3594  	 * release the swapcache from under us.  The page pin, and pte_same
3595  	 * test below, are not enough to exclude that.  Even if it is still
3596  	 * swapcache, we need to check that the page's swap has not changed.
3597  	 */
3598  	if (unlikely((!PageSwapCache(page) ||
3599  			page_private(page) != entry.val)) && swapcache)
3600  		goto out_page;
3601  
3602  	page = ksm_might_need_to_copy(page, vma, vmf->address);
3603  	if (unlikely(!page)) {
3604  		ret = VM_FAULT_OOM;
3605  		page = swapcache;
3606  		goto out_page;
3607  	}
3608  
3609  	cgroup_throttle_swaprate(page, GFP_KERNEL);
3610  
3611  	/*
3612  	 * Back out if somebody else already faulted in this pte.
3613  	 */
3614  	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3615  			&vmf->ptl);
3616  	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3617  		goto out_nomap;
3618  
3619  	if (unlikely(!PageUptodate(page))) {
3620  		ret = VM_FAULT_SIGBUS;
3621  		goto out_nomap;
3622  	}
3623  
3624  	/*
3625  	 * The page isn't present yet, go ahead with the fault.
3626  	 *
3627  	 * Be careful about the sequence of operations here.
3628  	 * To get its accounting right, reuse_swap_page() must be called
3629  	 * while the page is counted on swap but not yet in mapcount i.e.
3630  	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3631  	 * must be called after the swap_free(), or it will never succeed.
3632  	 */
3633  
3634  	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3635  	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3636  	pte = mk_pte(page, vma->vm_page_prot);
3637  	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3638  		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3639  		vmf->flags &= ~FAULT_FLAG_WRITE;
3640  		ret |= VM_FAULT_WRITE;
3641  		exclusive = RMAP_EXCLUSIVE;
3642  	}
3643  	flush_icache_page(vma, page);
3644  	if (pte_swp_soft_dirty(vmf->orig_pte))
3645  		pte = pte_mksoft_dirty(pte);
3646  	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3647  		pte = pte_mkuffd_wp(pte);
3648  		pte = pte_wrprotect(pte);
3649  	}
3650  	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3651  	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3652  	vmf->orig_pte = pte;
3653  
3654  	/* ksm created a completely new copy */
3655  	if (unlikely(page != swapcache && swapcache)) {
3656  		page_add_new_anon_rmap(page, vma, vmf->address, false);
3657  		lru_cache_add_inactive_or_unevictable(page, vma);
3658  	} else {
3659  		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3660  	}
3661  
3662  	swap_free(entry);
3663  	if (mem_cgroup_swap_full(page) ||
3664  	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3665  		try_to_free_swap(page);
3666  	unlock_page(page);
3667  	if (page != swapcache && swapcache) {
3668  		/*
3669  		 * Hold the lock to avoid the swap entry to be reused
3670  		 * until we take the PT lock for the pte_same() check
3671  		 * (to avoid false positives from pte_same). For
3672  		 * further safety release the lock after the swap_free
3673  		 * so that the swap count won't change under a
3674  		 * parallel locked swapcache.
3675  		 */
3676  		unlock_page(swapcache);
3677  		put_page(swapcache);
3678  	}
3679  
3680  	if (vmf->flags & FAULT_FLAG_WRITE) {
3681  		ret |= do_wp_page(vmf);
3682  		if (ret & VM_FAULT_ERROR)
3683  			ret &= VM_FAULT_ERROR;
3684  		goto out;
3685  	}
3686  
3687  	/* No need to invalidate - it was non-present before */
3688  	update_mmu_cache(vma, vmf->address, vmf->pte);
3689  unlock:
3690  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3691  out:
3692  	if (si)
3693  		put_swap_device(si);
3694  	return ret;
3695  out_nomap:
3696  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3697  out_page:
3698  	unlock_page(page);
3699  out_release:
3700  	put_page(page);
3701  	if (page != swapcache && swapcache) {
3702  		unlock_page(swapcache);
3703  		put_page(swapcache);
3704  	}
3705  	if (si)
3706  		put_swap_device(si);
3707  	return ret;
3708  }
3709  
3710  /*
3711   * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712   * but allow concurrent faults), and pte mapped but not yet locked.
3713   * We return with mmap_lock still held, but pte unmapped and unlocked.
3714   */
do_anonymous_page(struct vm_fault * vmf)3715  static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3716  {
3717  	struct vm_area_struct *vma = vmf->vma;
3718  	struct page *page;
3719  	vm_fault_t ret = 0;
3720  	pte_t entry;
3721  
3722  	/* File mapping without ->vm_ops ? */
3723  	if (vma->vm_flags & VM_SHARED)
3724  		return VM_FAULT_SIGBUS;
3725  
3726  	/*
3727  	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3728  	 * pte_offset_map() on pmds where a huge pmd might be created
3729  	 * from a different thread.
3730  	 *
3731  	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3732  	 * parallel threads are excluded by other means.
3733  	 *
3734  	 * Here we only have mmap_read_lock(mm).
3735  	 */
3736  	if (pte_alloc(vma->vm_mm, vmf->pmd))
3737  		return VM_FAULT_OOM;
3738  
3739  	/* See comment in handle_pte_fault() */
3740  	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3741  		return 0;
3742  
3743  	/* Use the zero-page for reads */
3744  	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3745  			!mm_forbids_zeropage(vma->vm_mm)) {
3746  		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3747  						vma->vm_page_prot));
3748  		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3749  				vmf->address, &vmf->ptl);
3750  		if (!pte_none(*vmf->pte)) {
3751  			update_mmu_tlb(vma, vmf->address, vmf->pte);
3752  			goto unlock;
3753  		}
3754  		ret = check_stable_address_space(vma->vm_mm);
3755  		if (ret)
3756  			goto unlock;
3757  		/* Deliver the page fault to userland, check inside PT lock */
3758  		if (userfaultfd_missing(vma)) {
3759  			pte_unmap_unlock(vmf->pte, vmf->ptl);
3760  			return handle_userfault(vmf, VM_UFFD_MISSING);
3761  		}
3762  		goto setpte;
3763  	}
3764  
3765  	/* Allocate our own private page. */
3766  	if (unlikely(anon_vma_prepare(vma)))
3767  		goto oom;
3768  	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3769  	if (!page)
3770  		goto oom;
3771  
3772  	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3773  		goto oom_free_page;
3774  	cgroup_throttle_swaprate(page, GFP_KERNEL);
3775  
3776  	/*
3777  	 * The memory barrier inside __SetPageUptodate makes sure that
3778  	 * preceding stores to the page contents become visible before
3779  	 * the set_pte_at() write.
3780  	 */
3781  	__SetPageUptodate(page);
3782  
3783  	entry = mk_pte(page, vma->vm_page_prot);
3784  	entry = pte_sw_mkyoung(entry);
3785  	if (vma->vm_flags & VM_WRITE)
3786  		entry = pte_mkwrite(pte_mkdirty(entry));
3787  
3788  	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3789  			&vmf->ptl);
3790  	if (!pte_none(*vmf->pte)) {
3791  		update_mmu_cache(vma, vmf->address, vmf->pte);
3792  		goto release;
3793  	}
3794  
3795  	ret = check_stable_address_space(vma->vm_mm);
3796  	if (ret)
3797  		goto release;
3798  
3799  	/* Deliver the page fault to userland, check inside PT lock */
3800  	if (userfaultfd_missing(vma)) {
3801  		pte_unmap_unlock(vmf->pte, vmf->ptl);
3802  		put_page(page);
3803  		return handle_userfault(vmf, VM_UFFD_MISSING);
3804  	}
3805  
3806  	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3807  	page_add_new_anon_rmap(page, vma, vmf->address, false);
3808  	lru_cache_add_inactive_or_unevictable(page, vma);
3809  setpte:
3810  	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3811  
3812  	/* No need to invalidate - it was non-present before */
3813  	update_mmu_cache(vma, vmf->address, vmf->pte);
3814  unlock:
3815  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3816  	return ret;
3817  release:
3818  	put_page(page);
3819  	goto unlock;
3820  oom_free_page:
3821  	put_page(page);
3822  oom:
3823  	return VM_FAULT_OOM;
3824  }
3825  
3826  /*
3827   * The mmap_lock must have been held on entry, and may have been
3828   * released depending on flags and vma->vm_ops->fault() return value.
3829   * See filemap_fault() and __lock_page_retry().
3830   */
__do_fault(struct vm_fault * vmf)3831  static vm_fault_t __do_fault(struct vm_fault *vmf)
3832  {
3833  	struct vm_area_struct *vma = vmf->vma;
3834  	vm_fault_t ret;
3835  
3836  	/*
3837  	 * Preallocate pte before we take page_lock because this might lead to
3838  	 * deadlocks for memcg reclaim which waits for pages under writeback:
3839  	 *				lock_page(A)
3840  	 *				SetPageWriteback(A)
3841  	 *				unlock_page(A)
3842  	 * lock_page(B)
3843  	 *				lock_page(B)
3844  	 * pte_alloc_one
3845  	 *   shrink_page_list
3846  	 *     wait_on_page_writeback(A)
3847  	 *				SetPageWriteback(B)
3848  	 *				unlock_page(B)
3849  	 *				# flush A, B to clear the writeback
3850  	 */
3851  	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3852  		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3853  		if (!vmf->prealloc_pte)
3854  			return VM_FAULT_OOM;
3855  		smp_wmb(); /* See comment in __pte_alloc() */
3856  	}
3857  
3858  	ret = vma->vm_ops->fault(vmf);
3859  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3860  			    VM_FAULT_DONE_COW)))
3861  		return ret;
3862  
3863  	if (unlikely(PageHWPoison(vmf->page))) {
3864  		if (ret & VM_FAULT_LOCKED)
3865  			unlock_page(vmf->page);
3866  		put_page(vmf->page);
3867  		vmf->page = NULL;
3868  		return VM_FAULT_HWPOISON;
3869  	}
3870  
3871  	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3872  		lock_page(vmf->page);
3873  	else
3874  		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3875  
3876  	return ret;
3877  }
3878  
3879  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)3880  static void deposit_prealloc_pte(struct vm_fault *vmf)
3881  {
3882  	struct vm_area_struct *vma = vmf->vma;
3883  
3884  	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3885  	/*
3886  	 * We are going to consume the prealloc table,
3887  	 * count that as nr_ptes.
3888  	 */
3889  	mm_inc_nr_ptes(vma->vm_mm);
3890  	vmf->prealloc_pte = NULL;
3891  }
3892  
do_set_pmd(struct vm_fault * vmf,struct page * page)3893  vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3894  {
3895  	struct vm_area_struct *vma = vmf->vma;
3896  	bool write = vmf->flags & FAULT_FLAG_WRITE;
3897  	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3898  	pmd_t entry;
3899  	int i;
3900  	vm_fault_t ret = VM_FAULT_FALLBACK;
3901  
3902  	if (!transhuge_vma_suitable(vma, haddr))
3903  		return ret;
3904  
3905  	page = compound_head(page);
3906  	if (compound_order(page) != HPAGE_PMD_ORDER)
3907  		return ret;
3908  
3909  	/*
3910  	 * Just backoff if any subpage of a THP is corrupted otherwise
3911  	 * the corrupted page may mapped by PMD silently to escape the
3912  	 * check.  This kind of THP just can be PTE mapped.  Access to
3913  	 * the corrupted subpage should trigger SIGBUS as expected.
3914  	 */
3915  	if (unlikely(PageHasHWPoisoned(page)))
3916  		return ret;
3917  
3918  	/*
3919  	 * Archs like ppc64 need additional space to store information
3920  	 * related to pte entry. Use the preallocated table for that.
3921  	 */
3922  	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3923  		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3924  		if (!vmf->prealloc_pte)
3925  			return VM_FAULT_OOM;
3926  		smp_wmb(); /* See comment in __pte_alloc() */
3927  	}
3928  
3929  	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3930  	if (unlikely(!pmd_none(*vmf->pmd)))
3931  		goto out;
3932  
3933  	for (i = 0; i < HPAGE_PMD_NR; i++)
3934  		flush_icache_page(vma, page + i);
3935  
3936  	entry = mk_huge_pmd(page, vma->vm_page_prot);
3937  	if (write)
3938  		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3939  
3940  	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3941  	page_add_file_rmap(page, true);
3942  	/*
3943  	 * deposit and withdraw with pmd lock held
3944  	 */
3945  	if (arch_needs_pgtable_deposit())
3946  		deposit_prealloc_pte(vmf);
3947  
3948  	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3949  
3950  	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3951  
3952  	/* fault is handled */
3953  	ret = 0;
3954  	count_vm_event(THP_FILE_MAPPED);
3955  out:
3956  	spin_unlock(vmf->ptl);
3957  	return ret;
3958  }
3959  #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3960  vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3961  {
3962  	return VM_FAULT_FALLBACK;
3963  }
3964  #endif
3965  
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)3966  void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3967  {
3968  	struct vm_area_struct *vma = vmf->vma;
3969  	bool write = vmf->flags & FAULT_FLAG_WRITE;
3970  	bool prefault = vmf->address != addr;
3971  	pte_t entry;
3972  
3973  	flush_icache_page(vma, page);
3974  	entry = mk_pte(page, vma->vm_page_prot);
3975  
3976  	if (prefault && arch_wants_old_prefaulted_pte())
3977  		entry = pte_mkold(entry);
3978  	else
3979  		entry = pte_sw_mkyoung(entry);
3980  
3981  	if (write)
3982  		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3983  	/* copy-on-write page */
3984  	if (write && !(vma->vm_flags & VM_SHARED)) {
3985  		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3986  		page_add_new_anon_rmap(page, vma, addr, false);
3987  		lru_cache_add_inactive_or_unevictable(page, vma);
3988  	} else {
3989  		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3990  		page_add_file_rmap(page, false);
3991  	}
3992  	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3993  }
3994  
3995  /**
3996   * finish_fault - finish page fault once we have prepared the page to fault
3997   *
3998   * @vmf: structure describing the fault
3999   *
4000   * This function handles all that is needed to finish a page fault once the
4001   * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4002   * given page, adds reverse page mapping, handles memcg charges and LRU
4003   * addition.
4004   *
4005   * The function expects the page to be locked and on success it consumes a
4006   * reference of a page being mapped (for the PTE which maps it).
4007   *
4008   * Return: %0 on success, %VM_FAULT_ code in case of error.
4009   */
finish_fault(struct vm_fault * vmf)4010  vm_fault_t finish_fault(struct vm_fault *vmf)
4011  {
4012  	struct vm_area_struct *vma = vmf->vma;
4013  	struct page *page;
4014  	vm_fault_t ret;
4015  
4016  	/* Did we COW the page? */
4017  	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4018  		page = vmf->cow_page;
4019  	else
4020  		page = vmf->page;
4021  
4022  	/*
4023  	 * check even for read faults because we might have lost our CoWed
4024  	 * page
4025  	 */
4026  	if (!(vma->vm_flags & VM_SHARED)) {
4027  		ret = check_stable_address_space(vma->vm_mm);
4028  		if (ret)
4029  			return ret;
4030  	}
4031  
4032  	if (pmd_none(*vmf->pmd)) {
4033  		if (PageTransCompound(page)) {
4034  			ret = do_set_pmd(vmf, page);
4035  			if (ret != VM_FAULT_FALLBACK)
4036  				return ret;
4037  		}
4038  
4039  		if (vmf->prealloc_pte) {
4040  			vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4041  			if (likely(pmd_none(*vmf->pmd))) {
4042  				mm_inc_nr_ptes(vma->vm_mm);
4043  				pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4044  				vmf->prealloc_pte = NULL;
4045  			}
4046  			spin_unlock(vmf->ptl);
4047  		} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4048  			return VM_FAULT_OOM;
4049  		}
4050  	}
4051  
4052  	/* See comment in handle_pte_fault() */
4053  	if (pmd_devmap_trans_unstable(vmf->pmd))
4054  		return 0;
4055  
4056  	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057  				      vmf->address, &vmf->ptl);
4058  	ret = 0;
4059  	/* Re-check under ptl */
4060  	if (likely(pte_none(*vmf->pte)))
4061  		do_set_pte(vmf, page, vmf->address);
4062  	else
4063  		ret = VM_FAULT_NOPAGE;
4064  
4065  	update_mmu_tlb(vma, vmf->address, vmf->pte);
4066  	pte_unmap_unlock(vmf->pte, vmf->ptl);
4067  	return ret;
4068  }
4069  
4070  static unsigned long fault_around_bytes __read_mostly =
4071  	rounddown_pow_of_two(65536);
4072  
4073  #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4074  static int fault_around_bytes_get(void *data, u64 *val)
4075  {
4076  	*val = fault_around_bytes;
4077  	return 0;
4078  }
4079  
4080  /*
4081   * fault_around_bytes must be rounded down to the nearest page order as it's
4082   * what do_fault_around() expects to see.
4083   */
fault_around_bytes_set(void * data,u64 val)4084  static int fault_around_bytes_set(void *data, u64 val)
4085  {
4086  	if (val / PAGE_SIZE > PTRS_PER_PTE)
4087  		return -EINVAL;
4088  	if (val > PAGE_SIZE)
4089  		fault_around_bytes = rounddown_pow_of_two(val);
4090  	else
4091  		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4092  	return 0;
4093  }
4094  DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4095  		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4096  
fault_around_debugfs(void)4097  static int __init fault_around_debugfs(void)
4098  {
4099  	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4100  				   &fault_around_bytes_fops);
4101  	return 0;
4102  }
4103  late_initcall(fault_around_debugfs);
4104  #endif
4105  
4106  /*
4107   * do_fault_around() tries to map few pages around the fault address. The hope
4108   * is that the pages will be needed soon and this will lower the number of
4109   * faults to handle.
4110   *
4111   * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4112   * not ready to be mapped: not up-to-date, locked, etc.
4113   *
4114   * This function is called with the page table lock taken. In the split ptlock
4115   * case the page table lock only protects only those entries which belong to
4116   * the page table corresponding to the fault address.
4117   *
4118   * This function doesn't cross the VMA boundaries, in order to call map_pages()
4119   * only once.
4120   *
4121   * fault_around_bytes defines how many bytes we'll try to map.
4122   * do_fault_around() expects it to be set to a power of two less than or equal
4123   * to PTRS_PER_PTE.
4124   *
4125   * The virtual address of the area that we map is naturally aligned to
4126   * fault_around_bytes rounded down to the machine page size
4127   * (and therefore to page order).  This way it's easier to guarantee
4128   * that we don't cross page table boundaries.
4129   */
do_fault_around(struct vm_fault * vmf)4130  static vm_fault_t do_fault_around(struct vm_fault *vmf)
4131  {
4132  	unsigned long address = vmf->address, nr_pages, mask;
4133  	pgoff_t start_pgoff = vmf->pgoff;
4134  	pgoff_t end_pgoff;
4135  	int off;
4136  
4137  	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4138  	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4139  
4140  	address = max(address & mask, vmf->vma->vm_start);
4141  	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4142  	start_pgoff -= off;
4143  
4144  	/*
4145  	 *  end_pgoff is either the end of the page table, the end of
4146  	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4147  	 */
4148  	end_pgoff = start_pgoff -
4149  		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4150  		PTRS_PER_PTE - 1;
4151  	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4152  			start_pgoff + nr_pages - 1);
4153  
4154  	if (pmd_none(*vmf->pmd)) {
4155  		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4156  		if (!vmf->prealloc_pte)
4157  			return VM_FAULT_OOM;
4158  		smp_wmb(); /* See comment in __pte_alloc() */
4159  	}
4160  
4161  	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4162  }
4163  
do_read_fault(struct vm_fault * vmf)4164  static vm_fault_t do_read_fault(struct vm_fault *vmf)
4165  {
4166  	struct vm_area_struct *vma = vmf->vma;
4167  	vm_fault_t ret = 0;
4168  
4169  	/*
4170  	 * Let's call ->map_pages() first and use ->fault() as fallback
4171  	 * if page by the offset is not ready to be mapped (cold cache or
4172  	 * something).
4173  	 */
4174  	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4175  		if (likely(!userfaultfd_minor(vmf->vma))) {
4176  			ret = do_fault_around(vmf);
4177  			if (ret)
4178  				return ret;
4179  		}
4180  	}
4181  
4182  	ret = __do_fault(vmf);
4183  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4184  		return ret;
4185  
4186  	ret |= finish_fault(vmf);
4187  	unlock_page(vmf->page);
4188  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4189  		put_page(vmf->page);
4190  	return ret;
4191  }
4192  
do_cow_fault(struct vm_fault * vmf)4193  static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4194  {
4195  	struct vm_area_struct *vma = vmf->vma;
4196  	vm_fault_t ret;
4197  
4198  	if (unlikely(anon_vma_prepare(vma)))
4199  		return VM_FAULT_OOM;
4200  
4201  	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4202  	if (!vmf->cow_page)
4203  		return VM_FAULT_OOM;
4204  
4205  	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4206  		put_page(vmf->cow_page);
4207  		return VM_FAULT_OOM;
4208  	}
4209  	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4210  
4211  	ret = __do_fault(vmf);
4212  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4213  		goto uncharge_out;
4214  	if (ret & VM_FAULT_DONE_COW)
4215  		return ret;
4216  
4217  	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4218  	__SetPageUptodate(vmf->cow_page);
4219  
4220  	ret |= finish_fault(vmf);
4221  	unlock_page(vmf->page);
4222  	put_page(vmf->page);
4223  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4224  		goto uncharge_out;
4225  	return ret;
4226  uncharge_out:
4227  	put_page(vmf->cow_page);
4228  	return ret;
4229  }
4230  
do_shared_fault(struct vm_fault * vmf)4231  static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4232  {
4233  	struct vm_area_struct *vma = vmf->vma;
4234  	vm_fault_t ret, tmp;
4235  
4236  	ret = __do_fault(vmf);
4237  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4238  		return ret;
4239  
4240  	/*
4241  	 * Check if the backing address space wants to know that the page is
4242  	 * about to become writable
4243  	 */
4244  	if (vma->vm_ops->page_mkwrite) {
4245  		unlock_page(vmf->page);
4246  		tmp = do_page_mkwrite(vmf);
4247  		if (unlikely(!tmp ||
4248  				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4249  			put_page(vmf->page);
4250  			return tmp;
4251  		}
4252  	}
4253  
4254  	ret |= finish_fault(vmf);
4255  	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4256  					VM_FAULT_RETRY))) {
4257  		unlock_page(vmf->page);
4258  		put_page(vmf->page);
4259  		return ret;
4260  	}
4261  
4262  	ret |= fault_dirty_shared_page(vmf);
4263  	return ret;
4264  }
4265  
4266  /*
4267   * We enter with non-exclusive mmap_lock (to exclude vma changes,
4268   * but allow concurrent faults).
4269   * The mmap_lock may have been released depending on flags and our
4270   * return value.  See filemap_fault() and __lock_page_or_retry().
4271   * If mmap_lock is released, vma may become invalid (for example
4272   * by other thread calling munmap()).
4273   */
do_fault(struct vm_fault * vmf)4274  static vm_fault_t do_fault(struct vm_fault *vmf)
4275  {
4276  	struct vm_area_struct *vma = vmf->vma;
4277  	struct mm_struct *vm_mm = vma->vm_mm;
4278  	vm_fault_t ret;
4279  
4280  	/*
4281  	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4282  	 */
4283  	if (!vma->vm_ops->fault) {
4284  		/*
4285  		 * If we find a migration pmd entry or a none pmd entry, which
4286  		 * should never happen, return SIGBUS
4287  		 */
4288  		if (unlikely(!pmd_present(*vmf->pmd)))
4289  			ret = VM_FAULT_SIGBUS;
4290  		else {
4291  			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4292  						       vmf->pmd,
4293  						       vmf->address,
4294  						       &vmf->ptl);
4295  			/*
4296  			 * Make sure this is not a temporary clearing of pte
4297  			 * by holding ptl and checking again. A R/M/W update
4298  			 * of pte involves: take ptl, clearing the pte so that
4299  			 * we don't have concurrent modification by hardware
4300  			 * followed by an update.
4301  			 */
4302  			if (unlikely(pte_none(*vmf->pte)))
4303  				ret = VM_FAULT_SIGBUS;
4304  			else
4305  				ret = VM_FAULT_NOPAGE;
4306  
4307  			pte_unmap_unlock(vmf->pte, vmf->ptl);
4308  		}
4309  	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4310  		ret = do_read_fault(vmf);
4311  	else if (!(vma->vm_flags & VM_SHARED))
4312  		ret = do_cow_fault(vmf);
4313  	else
4314  		ret = do_shared_fault(vmf);
4315  
4316  	/* preallocated pagetable is unused: free it */
4317  	if (vmf->prealloc_pte) {
4318  		pte_free(vm_mm, vmf->prealloc_pte);
4319  		vmf->prealloc_pte = NULL;
4320  	}
4321  	return ret;
4322  }
4323  
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4324  int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4325  		      unsigned long addr, int page_nid, int *flags)
4326  {
4327  	get_page(page);
4328  
4329  	count_vm_numa_event(NUMA_HINT_FAULTS);
4330  	if (page_nid == numa_node_id()) {
4331  		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4332  		*flags |= TNF_FAULT_LOCAL;
4333  	}
4334  
4335  	return mpol_misplaced(page, vma, addr);
4336  }
4337  
do_numa_page(struct vm_fault * vmf)4338  static vm_fault_t do_numa_page(struct vm_fault *vmf)
4339  {
4340  	struct vm_area_struct *vma = vmf->vma;
4341  	struct page *page = NULL;
4342  	int page_nid = NUMA_NO_NODE;
4343  	int last_cpupid;
4344  	int target_nid;
4345  	pte_t pte, old_pte;
4346  	bool was_writable = pte_savedwrite(vmf->orig_pte);
4347  	int flags = 0;
4348  
4349  	/*
4350  	 * The "pte" at this point cannot be used safely without
4351  	 * validation through pte_unmap_same(). It's of NUMA type but
4352  	 * the pfn may be screwed if the read is non atomic.
4353  	 */
4354  	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4355  	spin_lock(vmf->ptl);
4356  	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4357  		pte_unmap_unlock(vmf->pte, vmf->ptl);
4358  		goto out;
4359  	}
4360  
4361  	/* Get the normal PTE  */
4362  	old_pte = ptep_get(vmf->pte);
4363  	pte = pte_modify(old_pte, vma->vm_page_prot);
4364  
4365  	page = vm_normal_page(vma, vmf->address, pte);
4366  	if (!page)
4367  		goto out_map;
4368  
4369  	/* TODO: handle PTE-mapped THP */
4370  	if (PageCompound(page))
4371  		goto out_map;
4372  
4373  	/*
4374  	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4375  	 * much anyway since they can be in shared cache state. This misses
4376  	 * the case where a mapping is writable but the process never writes
4377  	 * to it but pte_write gets cleared during protection updates and
4378  	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4379  	 * background writeback, dirty balancing and application behaviour.
4380  	 */
4381  	if (!was_writable)
4382  		flags |= TNF_NO_GROUP;
4383  
4384  	/*
4385  	 * Flag if the page is shared between multiple address spaces. This
4386  	 * is later used when determining whether to group tasks together
4387  	 */
4388  	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4389  		flags |= TNF_SHARED;
4390  
4391  	last_cpupid = page_cpupid_last(page);
4392  	page_nid = page_to_nid(page);
4393  	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4394  			&flags);
4395  	if (target_nid == NUMA_NO_NODE) {
4396  		put_page(page);
4397  		goto out_map;
4398  	}
4399  	pte_unmap_unlock(vmf->pte, vmf->ptl);
4400  
4401  	/* Migrate to the requested node */
4402  	if (migrate_misplaced_page(page, vma, target_nid)) {
4403  		page_nid = target_nid;
4404  		flags |= TNF_MIGRATED;
4405  	} else {
4406  		flags |= TNF_MIGRATE_FAIL;
4407  		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4408  		spin_lock(vmf->ptl);
4409  		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4410  			pte_unmap_unlock(vmf->pte, vmf->ptl);
4411  			goto out;
4412  		}
4413  		goto out_map;
4414  	}
4415  
4416  out:
4417  	if (page_nid != NUMA_NO_NODE)
4418  		task_numa_fault(last_cpupid, page_nid, 1, flags);
4419  	return 0;
4420  out_map:
4421  	/*
4422  	 * Make it present again, depending on how arch implements
4423  	 * non-accessible ptes, some can allow access by kernel mode.
4424  	 */
4425  	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4426  	pte = pte_modify(old_pte, vma->vm_page_prot);
4427  	pte = pte_mkyoung(pte);
4428  	if (was_writable)
4429  		pte = pte_mkwrite(pte);
4430  	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4431  	update_mmu_cache(vma, vmf->address, vmf->pte);
4432  	pte_unmap_unlock(vmf->pte, vmf->ptl);
4433  	goto out;
4434  }
4435  
create_huge_pmd(struct vm_fault * vmf)4436  static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4437  {
4438  	if (vma_is_anonymous(vmf->vma))
4439  		return do_huge_pmd_anonymous_page(vmf);
4440  	if (vmf->vma->vm_ops->huge_fault)
4441  		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4442  	return VM_FAULT_FALLBACK;
4443  }
4444  
4445  /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4446  static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4447  {
4448  	if (vma_is_anonymous(vmf->vma)) {
4449  		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4450  			return handle_userfault(vmf, VM_UFFD_WP);
4451  		return do_huge_pmd_wp_page(vmf);
4452  	}
4453  	if (vmf->vma->vm_ops->huge_fault) {
4454  		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4455  
4456  		if (!(ret & VM_FAULT_FALLBACK))
4457  			return ret;
4458  	}
4459  
4460  	/* COW or write-notify handled on pte level: split pmd. */
4461  	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4462  
4463  	return VM_FAULT_FALLBACK;
4464  }
4465  
create_huge_pud(struct vm_fault * vmf)4466  static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4467  {
4468  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4469  	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4470  	/* No support for anonymous transparent PUD pages yet */
4471  	if (vma_is_anonymous(vmf->vma))
4472  		goto split;
4473  	if (vmf->vma->vm_ops->huge_fault) {
4474  		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4475  
4476  		if (!(ret & VM_FAULT_FALLBACK))
4477  			return ret;
4478  	}
4479  split:
4480  	/* COW or write-notify not handled on PUD level: split pud.*/
4481  	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4482  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4483  	return VM_FAULT_FALLBACK;
4484  }
4485  
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4486  static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4487  {
4488  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4489  	/* No support for anonymous transparent PUD pages yet */
4490  	if (vma_is_anonymous(vmf->vma))
4491  		return VM_FAULT_FALLBACK;
4492  	if (vmf->vma->vm_ops->huge_fault)
4493  		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4494  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4495  	return VM_FAULT_FALLBACK;
4496  }
4497  
4498  /*
4499   * These routines also need to handle stuff like marking pages dirty
4500   * and/or accessed for architectures that don't do it in hardware (most
4501   * RISC architectures).  The early dirtying is also good on the i386.
4502   *
4503   * There is also a hook called "update_mmu_cache()" that architectures
4504   * with external mmu caches can use to update those (ie the Sparc or
4505   * PowerPC hashed page tables that act as extended TLBs).
4506   *
4507   * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4508   * concurrent faults).
4509   *
4510   * The mmap_lock may have been released depending on flags and our return value.
4511   * See filemap_fault() and __lock_page_or_retry().
4512   */
handle_pte_fault(struct vm_fault * vmf)4513  static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4514  {
4515  	pte_t entry;
4516  
4517  	if (unlikely(pmd_none(*vmf->pmd))) {
4518  		/*
4519  		 * Leave __pte_alloc() until later: because vm_ops->fault may
4520  		 * want to allocate huge page, and if we expose page table
4521  		 * for an instant, it will be difficult to retract from
4522  		 * concurrent faults and from rmap lookups.
4523  		 */
4524  		vmf->pte = NULL;
4525  	} else {
4526  		/*
4527  		 * If a huge pmd materialized under us just retry later.  Use
4528  		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4529  		 * of pmd_trans_huge() to ensure the pmd didn't become
4530  		 * pmd_trans_huge under us and then back to pmd_none, as a
4531  		 * result of MADV_DONTNEED running immediately after a huge pmd
4532  		 * fault in a different thread of this mm, in turn leading to a
4533  		 * misleading pmd_trans_huge() retval. All we have to ensure is
4534  		 * that it is a regular pmd that we can walk with
4535  		 * pte_offset_map() and we can do that through an atomic read
4536  		 * in C, which is what pmd_trans_unstable() provides.
4537  		 */
4538  		if (pmd_devmap_trans_unstable(vmf->pmd))
4539  			return 0;
4540  		/*
4541  		 * A regular pmd is established and it can't morph into a huge
4542  		 * pmd from under us anymore at this point because we hold the
4543  		 * mmap_lock read mode and khugepaged takes it in write mode.
4544  		 * So now it's safe to run pte_offset_map().
4545  		 */
4546  		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4547  		vmf->orig_pte = *vmf->pte;
4548  
4549  		/*
4550  		 * some architectures can have larger ptes than wordsize,
4551  		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4552  		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4553  		 * accesses.  The code below just needs a consistent view
4554  		 * for the ifs and we later double check anyway with the
4555  		 * ptl lock held. So here a barrier will do.
4556  		 */
4557  		barrier();
4558  		if (pte_none(vmf->orig_pte)) {
4559  			pte_unmap(vmf->pte);
4560  			vmf->pte = NULL;
4561  		}
4562  	}
4563  
4564  	if (!vmf->pte) {
4565  		if (vma_is_anonymous(vmf->vma))
4566  			return do_anonymous_page(vmf);
4567  		else
4568  			return do_fault(vmf);
4569  	}
4570  
4571  	if (!pte_present(vmf->orig_pte))
4572  		return do_swap_page(vmf);
4573  
4574  	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4575  		return do_numa_page(vmf);
4576  
4577  	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4578  	spin_lock(vmf->ptl);
4579  	entry = vmf->orig_pte;
4580  	if (unlikely(!pte_same(*vmf->pte, entry))) {
4581  		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4582  		goto unlock;
4583  	}
4584  	if (vmf->flags & FAULT_FLAG_WRITE) {
4585  		if (!pte_write(entry))
4586  			return do_wp_page(vmf);
4587  		entry = pte_mkdirty(entry);
4588  	}
4589  	entry = pte_mkyoung(entry);
4590  	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4591  				vmf->flags & FAULT_FLAG_WRITE)) {
4592  		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4593  	} else {
4594  		/* Skip spurious TLB flush for retried page fault */
4595  		if (vmf->flags & FAULT_FLAG_TRIED)
4596  			goto unlock;
4597  		/*
4598  		 * This is needed only for protection faults but the arch code
4599  		 * is not yet telling us if this is a protection fault or not.
4600  		 * This still avoids useless tlb flushes for .text page faults
4601  		 * with threads.
4602  		 */
4603  		if (vmf->flags & FAULT_FLAG_WRITE)
4604  			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4605  	}
4606  unlock:
4607  	pte_unmap_unlock(vmf->pte, vmf->ptl);
4608  	return 0;
4609  }
4610  
4611  /*
4612   * By the time we get here, we already hold the mm semaphore
4613   *
4614   * The mmap_lock may have been released depending on flags and our
4615   * return value.  See filemap_fault() and __lock_page_or_retry().
4616   */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4617  static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4618  		unsigned long address, unsigned int flags)
4619  {
4620  	struct vm_fault vmf = {
4621  		.vma = vma,
4622  		.address = address & PAGE_MASK,
4623  		.flags = flags,
4624  		.pgoff = linear_page_index(vma, address),
4625  		.gfp_mask = __get_fault_gfp_mask(vma),
4626  	};
4627  	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4628  	struct mm_struct *mm = vma->vm_mm;
4629  	pgd_t *pgd;
4630  	p4d_t *p4d;
4631  	vm_fault_t ret;
4632  
4633  	pgd = pgd_offset(mm, address);
4634  	p4d = p4d_alloc(mm, pgd, address);
4635  	if (!p4d)
4636  		return VM_FAULT_OOM;
4637  
4638  	vmf.pud = pud_alloc(mm, p4d, address);
4639  	if (!vmf.pud)
4640  		return VM_FAULT_OOM;
4641  retry_pud:
4642  	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4643  		ret = create_huge_pud(&vmf);
4644  		if (!(ret & VM_FAULT_FALLBACK))
4645  			return ret;
4646  	} else {
4647  		pud_t orig_pud = *vmf.pud;
4648  
4649  		barrier();
4650  		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4651  
4652  			/* NUMA case for anonymous PUDs would go here */
4653  
4654  			if (dirty && !pud_write(orig_pud)) {
4655  				ret = wp_huge_pud(&vmf, orig_pud);
4656  				if (!(ret & VM_FAULT_FALLBACK))
4657  					return ret;
4658  			} else {
4659  				huge_pud_set_accessed(&vmf, orig_pud);
4660  				return 0;
4661  			}
4662  		}
4663  	}
4664  
4665  	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4666  	if (!vmf.pmd)
4667  		return VM_FAULT_OOM;
4668  
4669  	/* Huge pud page fault raced with pmd_alloc? */
4670  	if (pud_trans_unstable(vmf.pud))
4671  		goto retry_pud;
4672  
4673  	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4674  		ret = create_huge_pmd(&vmf);
4675  		if (!(ret & VM_FAULT_FALLBACK))
4676  			return ret;
4677  	} else {
4678  		vmf.orig_pmd = *vmf.pmd;
4679  
4680  		barrier();
4681  		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4682  			VM_BUG_ON(thp_migration_supported() &&
4683  					  !is_pmd_migration_entry(vmf.orig_pmd));
4684  			if (is_pmd_migration_entry(vmf.orig_pmd))
4685  				pmd_migration_entry_wait(mm, vmf.pmd);
4686  			return 0;
4687  		}
4688  		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4689  			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4690  				return do_huge_pmd_numa_page(&vmf);
4691  
4692  			if (dirty && !pmd_write(vmf.orig_pmd)) {
4693  				ret = wp_huge_pmd(&vmf);
4694  				if (!(ret & VM_FAULT_FALLBACK))
4695  					return ret;
4696  			} else {
4697  				huge_pmd_set_accessed(&vmf);
4698  				return 0;
4699  			}
4700  		}
4701  	}
4702  
4703  	return handle_pte_fault(&vmf);
4704  }
4705  
4706  /**
4707   * mm_account_fault - Do page fault accounting
4708   *
4709   * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4710   *        of perf event counters, but we'll still do the per-task accounting to
4711   *        the task who triggered this page fault.
4712   * @address: the faulted address.
4713   * @flags: the fault flags.
4714   * @ret: the fault retcode.
4715   *
4716   * This will take care of most of the page fault accounting.  Meanwhile, it
4717   * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4718   * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4719   * still be in per-arch page fault handlers at the entry of page fault.
4720   */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4721  static inline void mm_account_fault(struct pt_regs *regs,
4722  				    unsigned long address, unsigned int flags,
4723  				    vm_fault_t ret)
4724  {
4725  	bool major;
4726  
4727  	/*
4728  	 * We don't do accounting for some specific faults:
4729  	 *
4730  	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4731  	 *   includes arch_vma_access_permitted() failing before reaching here.
4732  	 *   So this is not a "this many hardware page faults" counter.  We
4733  	 *   should use the hw profiling for that.
4734  	 *
4735  	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4736  	 *   once they're completed.
4737  	 */
4738  	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4739  		return;
4740  
4741  	/*
4742  	 * We define the fault as a major fault when the final successful fault
4743  	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4744  	 * handle it immediately previously).
4745  	 */
4746  	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4747  
4748  	if (major)
4749  		current->maj_flt++;
4750  	else
4751  		current->min_flt++;
4752  
4753  	/*
4754  	 * If the fault is done for GUP, regs will be NULL.  We only do the
4755  	 * accounting for the per thread fault counters who triggered the
4756  	 * fault, and we skip the perf event updates.
4757  	 */
4758  	if (!regs)
4759  		return;
4760  
4761  	if (major)
4762  		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4763  	else
4764  		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4765  }
4766  
4767  /*
4768   * By the time we get here, we already hold the mm semaphore
4769   *
4770   * The mmap_lock may have been released depending on flags and our
4771   * return value.  See filemap_fault() and __lock_page_or_retry().
4772   */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)4773  vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4774  			   unsigned int flags, struct pt_regs *regs)
4775  {
4776  	vm_fault_t ret;
4777  
4778  	__set_current_state(TASK_RUNNING);
4779  
4780  	count_vm_event(PGFAULT);
4781  	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4782  
4783  	/* do counter updates before entering really critical section. */
4784  	check_sync_rss_stat(current);
4785  
4786  	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4787  					    flags & FAULT_FLAG_INSTRUCTION,
4788  					    flags & FAULT_FLAG_REMOTE))
4789  		return VM_FAULT_SIGSEGV;
4790  
4791  	/*
4792  	 * Enable the memcg OOM handling for faults triggered in user
4793  	 * space.  Kernel faults are handled more gracefully.
4794  	 */
4795  	if (flags & FAULT_FLAG_USER)
4796  		mem_cgroup_enter_user_fault();
4797  
4798  	if (unlikely(is_vm_hugetlb_page(vma)))
4799  		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4800  	else
4801  		ret = __handle_mm_fault(vma, address, flags);
4802  
4803  	if (flags & FAULT_FLAG_USER) {
4804  		mem_cgroup_exit_user_fault();
4805  		/*
4806  		 * The task may have entered a memcg OOM situation but
4807  		 * if the allocation error was handled gracefully (no
4808  		 * VM_FAULT_OOM), there is no need to kill anything.
4809  		 * Just clean up the OOM state peacefully.
4810  		 */
4811  		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4812  			mem_cgroup_oom_synchronize(false);
4813  	}
4814  
4815  	mm_account_fault(regs, address, flags, ret);
4816  
4817  	return ret;
4818  }
4819  EXPORT_SYMBOL_GPL(handle_mm_fault);
4820  
4821  #ifndef __PAGETABLE_P4D_FOLDED
4822  /*
4823   * Allocate p4d page table.
4824   * We've already handled the fast-path in-line.
4825   */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4826  int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4827  {
4828  	p4d_t *new = p4d_alloc_one(mm, address);
4829  	if (!new)
4830  		return -ENOMEM;
4831  
4832  	smp_wmb(); /* See comment in __pte_alloc */
4833  
4834  	spin_lock(&mm->page_table_lock);
4835  	if (pgd_present(*pgd))		/* Another has populated it */
4836  		p4d_free(mm, new);
4837  	else
4838  		pgd_populate(mm, pgd, new);
4839  	spin_unlock(&mm->page_table_lock);
4840  	return 0;
4841  }
4842  #endif /* __PAGETABLE_P4D_FOLDED */
4843  
4844  #ifndef __PAGETABLE_PUD_FOLDED
4845  /*
4846   * Allocate page upper directory.
4847   * We've already handled the fast-path in-line.
4848   */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4849  int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4850  {
4851  	pud_t *new = pud_alloc_one(mm, address);
4852  	if (!new)
4853  		return -ENOMEM;
4854  
4855  	smp_wmb(); /* See comment in __pte_alloc */
4856  
4857  	spin_lock(&mm->page_table_lock);
4858  	if (!p4d_present(*p4d)) {
4859  		mm_inc_nr_puds(mm);
4860  		p4d_populate(mm, p4d, new);
4861  	} else	/* Another has populated it */
4862  		pud_free(mm, new);
4863  	spin_unlock(&mm->page_table_lock);
4864  	return 0;
4865  }
4866  #endif /* __PAGETABLE_PUD_FOLDED */
4867  
4868  #ifndef __PAGETABLE_PMD_FOLDED
4869  /*
4870   * Allocate page middle directory.
4871   * We've already handled the fast-path in-line.
4872   */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4873  int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4874  {
4875  	spinlock_t *ptl;
4876  	pmd_t *new = pmd_alloc_one(mm, address);
4877  	if (!new)
4878  		return -ENOMEM;
4879  
4880  	smp_wmb(); /* See comment in __pte_alloc */
4881  
4882  	ptl = pud_lock(mm, pud);
4883  	if (!pud_present(*pud)) {
4884  		mm_inc_nr_pmds(mm);
4885  		pud_populate(mm, pud, new);
4886  	} else	/* Another has populated it */
4887  		pmd_free(mm, new);
4888  	spin_unlock(ptl);
4889  	return 0;
4890  }
4891  #endif /* __PAGETABLE_PMD_FOLDED */
4892  
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4893  int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4894  			  struct mmu_notifier_range *range, pte_t **ptepp,
4895  			  pmd_t **pmdpp, spinlock_t **ptlp)
4896  {
4897  	pgd_t *pgd;
4898  	p4d_t *p4d;
4899  	pud_t *pud;
4900  	pmd_t *pmd;
4901  	pte_t *ptep;
4902  
4903  	pgd = pgd_offset(mm, address);
4904  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4905  		goto out;
4906  
4907  	p4d = p4d_offset(pgd, address);
4908  	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4909  		goto out;
4910  
4911  	pud = pud_offset(p4d, address);
4912  	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4913  		goto out;
4914  
4915  	pmd = pmd_offset(pud, address);
4916  	VM_BUG_ON(pmd_trans_huge(*pmd));
4917  
4918  	if (pmd_huge(*pmd)) {
4919  		if (!pmdpp)
4920  			goto out;
4921  
4922  		if (range) {
4923  			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4924  						NULL, mm, address & PMD_MASK,
4925  						(address & PMD_MASK) + PMD_SIZE);
4926  			mmu_notifier_invalidate_range_start(range);
4927  		}
4928  		*ptlp = pmd_lock(mm, pmd);
4929  		if (pmd_huge(*pmd)) {
4930  			*pmdpp = pmd;
4931  			return 0;
4932  		}
4933  		spin_unlock(*ptlp);
4934  		if (range)
4935  			mmu_notifier_invalidate_range_end(range);
4936  	}
4937  
4938  	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4939  		goto out;
4940  
4941  	if (range) {
4942  		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4943  					address & PAGE_MASK,
4944  					(address & PAGE_MASK) + PAGE_SIZE);
4945  		mmu_notifier_invalidate_range_start(range);
4946  	}
4947  	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4948  	if (!pte_present(*ptep))
4949  		goto unlock;
4950  	*ptepp = ptep;
4951  	return 0;
4952  unlock:
4953  	pte_unmap_unlock(ptep, *ptlp);
4954  	if (range)
4955  		mmu_notifier_invalidate_range_end(range);
4956  out:
4957  	return -EINVAL;
4958  }
4959  
4960  /**
4961   * follow_pte - look up PTE at a user virtual address
4962   * @mm: the mm_struct of the target address space
4963   * @address: user virtual address
4964   * @ptepp: location to store found PTE
4965   * @ptlp: location to store the lock for the PTE
4966   *
4967   * On a successful return, the pointer to the PTE is stored in @ptepp;
4968   * the corresponding lock is taken and its location is stored in @ptlp.
4969   * The contents of the PTE are only stable until @ptlp is released;
4970   * any further use, if any, must be protected against invalidation
4971   * with MMU notifiers.
4972   *
4973   * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4974   * should be taken for read.
4975   *
4976   * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4977   * it is not a good general-purpose API.
4978   *
4979   * Return: zero on success, -ve otherwise.
4980   */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4981  int follow_pte(struct mm_struct *mm, unsigned long address,
4982  	       pte_t **ptepp, spinlock_t **ptlp)
4983  {
4984  	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4985  }
4986  EXPORT_SYMBOL_GPL(follow_pte);
4987  
4988  /**
4989   * follow_pfn - look up PFN at a user virtual address
4990   * @vma: memory mapping
4991   * @address: user virtual address
4992   * @pfn: location to store found PFN
4993   *
4994   * Only IO mappings and raw PFN mappings are allowed.
4995   *
4996   * This function does not allow the caller to read the permissions
4997   * of the PTE.  Do not use it.
4998   *
4999   * Return: zero and the pfn at @pfn on success, -ve otherwise.
5000   */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5001  int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5002  	unsigned long *pfn)
5003  {
5004  	int ret = -EINVAL;
5005  	spinlock_t *ptl;
5006  	pte_t *ptep;
5007  
5008  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5009  		return ret;
5010  
5011  	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5012  	if (ret)
5013  		return ret;
5014  	*pfn = pte_pfn(*ptep);
5015  	pte_unmap_unlock(ptep, ptl);
5016  	return 0;
5017  }
5018  EXPORT_SYMBOL(follow_pfn);
5019  
5020  #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5021  int follow_phys(struct vm_area_struct *vma,
5022  		unsigned long address, unsigned int flags,
5023  		unsigned long *prot, resource_size_t *phys)
5024  {
5025  	int ret = -EINVAL;
5026  	pte_t *ptep, pte;
5027  	spinlock_t *ptl;
5028  
5029  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5030  		goto out;
5031  
5032  	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5033  		goto out;
5034  	pte = *ptep;
5035  
5036  	if ((flags & FOLL_WRITE) && !pte_write(pte))
5037  		goto unlock;
5038  
5039  	*prot = pgprot_val(pte_pgprot(pte));
5040  	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5041  
5042  	ret = 0;
5043  unlock:
5044  	pte_unmap_unlock(ptep, ptl);
5045  out:
5046  	return ret;
5047  }
5048  
5049  /**
5050   * generic_access_phys - generic implementation for iomem mmap access
5051   * @vma: the vma to access
5052   * @addr: userspace address, not relative offset within @vma
5053   * @buf: buffer to read/write
5054   * @len: length of transfer
5055   * @write: set to FOLL_WRITE when writing, otherwise reading
5056   *
5057   * This is a generic implementation for &vm_operations_struct.access for an
5058   * iomem mapping. This callback is used by access_process_vm() when the @vma is
5059   * not page based.
5060   */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5061  int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5062  			void *buf, int len, int write)
5063  {
5064  	resource_size_t phys_addr;
5065  	unsigned long prot = 0;
5066  	void __iomem *maddr;
5067  	pte_t *ptep, pte;
5068  	spinlock_t *ptl;
5069  	int offset = offset_in_page(addr);
5070  	int ret = -EINVAL;
5071  
5072  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5073  		return -EINVAL;
5074  
5075  retry:
5076  	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5077  		return -EINVAL;
5078  	pte = *ptep;
5079  	pte_unmap_unlock(ptep, ptl);
5080  
5081  	prot = pgprot_val(pte_pgprot(pte));
5082  	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5083  
5084  	if ((write & FOLL_WRITE) && !pte_write(pte))
5085  		return -EINVAL;
5086  
5087  	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5088  	if (!maddr)
5089  		return -ENOMEM;
5090  
5091  	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5092  		goto out_unmap;
5093  
5094  	if (!pte_same(pte, *ptep)) {
5095  		pte_unmap_unlock(ptep, ptl);
5096  		iounmap(maddr);
5097  
5098  		goto retry;
5099  	}
5100  
5101  	if (write)
5102  		memcpy_toio(maddr + offset, buf, len);
5103  	else
5104  		memcpy_fromio(buf, maddr + offset, len);
5105  	ret = len;
5106  	pte_unmap_unlock(ptep, ptl);
5107  out_unmap:
5108  	iounmap(maddr);
5109  
5110  	return ret;
5111  }
5112  EXPORT_SYMBOL_GPL(generic_access_phys);
5113  #endif
5114  
5115  /*
5116   * Access another process' address space as given in mm.
5117   */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5118  int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5119  		       int len, unsigned int gup_flags)
5120  {
5121  	struct vm_area_struct *vma;
5122  	void *old_buf = buf;
5123  	int write = gup_flags & FOLL_WRITE;
5124  
5125  	if (mmap_read_lock_killable(mm))
5126  		return 0;
5127  
5128  	/* ignore errors, just check how much was successfully transferred */
5129  	while (len) {
5130  		int bytes, ret, offset;
5131  		void *maddr;
5132  		struct page *page = NULL;
5133  
5134  		ret = get_user_pages_remote(mm, addr, 1,
5135  				gup_flags, &page, &vma, NULL);
5136  		if (ret <= 0) {
5137  #ifndef CONFIG_HAVE_IOREMAP_PROT
5138  			break;
5139  #else
5140  			/*
5141  			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5142  			 * we can access using slightly different code.
5143  			 */
5144  			vma = vma_lookup(mm, addr);
5145  			if (!vma)
5146  				break;
5147  			if (vma->vm_ops && vma->vm_ops->access)
5148  				ret = vma->vm_ops->access(vma, addr, buf,
5149  							  len, write);
5150  			if (ret <= 0)
5151  				break;
5152  			bytes = ret;
5153  #endif
5154  		} else {
5155  			bytes = len;
5156  			offset = addr & (PAGE_SIZE-1);
5157  			if (bytes > PAGE_SIZE-offset)
5158  				bytes = PAGE_SIZE-offset;
5159  
5160  			maddr = kmap(page);
5161  			if (write) {
5162  				copy_to_user_page(vma, page, addr,
5163  						  maddr + offset, buf, bytes);
5164  				set_page_dirty_lock(page);
5165  			} else {
5166  				copy_from_user_page(vma, page, addr,
5167  						    buf, maddr + offset, bytes);
5168  			}
5169  			kunmap(page);
5170  			put_page(page);
5171  		}
5172  		len -= bytes;
5173  		buf += bytes;
5174  		addr += bytes;
5175  	}
5176  	mmap_read_unlock(mm);
5177  
5178  	return buf - old_buf;
5179  }
5180  
5181  /**
5182   * access_remote_vm - access another process' address space
5183   * @mm:		the mm_struct of the target address space
5184   * @addr:	start address to access
5185   * @buf:	source or destination buffer
5186   * @len:	number of bytes to transfer
5187   * @gup_flags:	flags modifying lookup behaviour
5188   *
5189   * The caller must hold a reference on @mm.
5190   *
5191   * Return: number of bytes copied from source to destination.
5192   */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5193  int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5194  		void *buf, int len, unsigned int gup_flags)
5195  {
5196  	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5197  }
5198  
5199  /*
5200   * Access another process' address space.
5201   * Source/target buffer must be kernel space,
5202   * Do not walk the page table directly, use get_user_pages
5203   */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5204  int access_process_vm(struct task_struct *tsk, unsigned long addr,
5205  		void *buf, int len, unsigned int gup_flags)
5206  {
5207  	struct mm_struct *mm;
5208  	int ret;
5209  
5210  	mm = get_task_mm(tsk);
5211  	if (!mm)
5212  		return 0;
5213  
5214  	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5215  
5216  	mmput(mm);
5217  
5218  	return ret;
5219  }
5220  EXPORT_SYMBOL_GPL(access_process_vm);
5221  
5222  /*
5223   * Print the name of a VMA.
5224   */
print_vma_addr(char * prefix,unsigned long ip)5225  void print_vma_addr(char *prefix, unsigned long ip)
5226  {
5227  	struct mm_struct *mm = current->mm;
5228  	struct vm_area_struct *vma;
5229  
5230  	/*
5231  	 * we might be running from an atomic context so we cannot sleep
5232  	 */
5233  	if (!mmap_read_trylock(mm))
5234  		return;
5235  
5236  	vma = find_vma(mm, ip);
5237  	if (vma && vma->vm_file) {
5238  		struct file *f = vma->vm_file;
5239  		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5240  		if (buf) {
5241  			char *p;
5242  
5243  			p = file_path(f, buf, PAGE_SIZE);
5244  			if (IS_ERR(p))
5245  				p = "?";
5246  			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5247  					vma->vm_start,
5248  					vma->vm_end - vma->vm_start);
5249  			free_page((unsigned long)buf);
5250  		}
5251  	}
5252  	mmap_read_unlock(mm);
5253  }
5254  
5255  #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5256  void __might_fault(const char *file, int line)
5257  {
5258  	/*
5259  	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5260  	 * holding the mmap_lock, this is safe because kernel memory doesn't
5261  	 * get paged out, therefore we'll never actually fault, and the
5262  	 * below annotations will generate false positives.
5263  	 */
5264  	if (uaccess_kernel())
5265  		return;
5266  	if (pagefault_disabled())
5267  		return;
5268  	__might_sleep(file, line, 0);
5269  #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5270  	if (current->mm)
5271  		might_lock_read(&current->mm->mmap_lock);
5272  #endif
5273  }
5274  EXPORT_SYMBOL(__might_fault);
5275  #endif
5276  
5277  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5278  /*
5279   * Process all subpages of the specified huge page with the specified
5280   * operation.  The target subpage will be processed last to keep its
5281   * cache lines hot.
5282   */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5283  static inline void process_huge_page(
5284  	unsigned long addr_hint, unsigned int pages_per_huge_page,
5285  	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5286  	void *arg)
5287  {
5288  	int i, n, base, l;
5289  	unsigned long addr = addr_hint &
5290  		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5291  
5292  	/* Process target subpage last to keep its cache lines hot */
5293  	might_sleep();
5294  	n = (addr_hint - addr) / PAGE_SIZE;
5295  	if (2 * n <= pages_per_huge_page) {
5296  		/* If target subpage in first half of huge page */
5297  		base = 0;
5298  		l = n;
5299  		/* Process subpages at the end of huge page */
5300  		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5301  			cond_resched();
5302  			process_subpage(addr + i * PAGE_SIZE, i, arg);
5303  		}
5304  	} else {
5305  		/* If target subpage in second half of huge page */
5306  		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5307  		l = pages_per_huge_page - n;
5308  		/* Process subpages at the begin of huge page */
5309  		for (i = 0; i < base; i++) {
5310  			cond_resched();
5311  			process_subpage(addr + i * PAGE_SIZE, i, arg);
5312  		}
5313  	}
5314  	/*
5315  	 * Process remaining subpages in left-right-left-right pattern
5316  	 * towards the target subpage
5317  	 */
5318  	for (i = 0; i < l; i++) {
5319  		int left_idx = base + i;
5320  		int right_idx = base + 2 * l - 1 - i;
5321  
5322  		cond_resched();
5323  		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5324  		cond_resched();
5325  		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5326  	}
5327  }
5328  
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5329  static void clear_gigantic_page(struct page *page,
5330  				unsigned long addr,
5331  				unsigned int pages_per_huge_page)
5332  {
5333  	int i;
5334  	struct page *p = page;
5335  
5336  	might_sleep();
5337  	for (i = 0; i < pages_per_huge_page;
5338  	     i++, p = mem_map_next(p, page, i)) {
5339  		cond_resched();
5340  		clear_user_highpage(p, addr + i * PAGE_SIZE);
5341  	}
5342  }
5343  
clear_subpage(unsigned long addr,int idx,void * arg)5344  static void clear_subpage(unsigned long addr, int idx, void *arg)
5345  {
5346  	struct page *page = arg;
5347  
5348  	clear_user_highpage(page + idx, addr);
5349  }
5350  
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5351  void clear_huge_page(struct page *page,
5352  		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5353  {
5354  	unsigned long addr = addr_hint &
5355  		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5356  
5357  	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5358  		clear_gigantic_page(page, addr, pages_per_huge_page);
5359  		return;
5360  	}
5361  
5362  	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5363  }
5364  
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5365  static void copy_user_gigantic_page(struct page *dst, struct page *src,
5366  				    unsigned long addr,
5367  				    struct vm_area_struct *vma,
5368  				    unsigned int pages_per_huge_page)
5369  {
5370  	int i;
5371  	struct page *dst_base = dst;
5372  	struct page *src_base = src;
5373  
5374  	for (i = 0; i < pages_per_huge_page; ) {
5375  		cond_resched();
5376  		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5377  
5378  		i++;
5379  		dst = mem_map_next(dst, dst_base, i);
5380  		src = mem_map_next(src, src_base, i);
5381  	}
5382  }
5383  
5384  struct copy_subpage_arg {
5385  	struct page *dst;
5386  	struct page *src;
5387  	struct vm_area_struct *vma;
5388  };
5389  
copy_subpage(unsigned long addr,int idx,void * arg)5390  static void copy_subpage(unsigned long addr, int idx, void *arg)
5391  {
5392  	struct copy_subpage_arg *copy_arg = arg;
5393  
5394  	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5395  			   addr, copy_arg->vma);
5396  }
5397  
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5398  void copy_user_huge_page(struct page *dst, struct page *src,
5399  			 unsigned long addr_hint, struct vm_area_struct *vma,
5400  			 unsigned int pages_per_huge_page)
5401  {
5402  	unsigned long addr = addr_hint &
5403  		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5404  	struct copy_subpage_arg arg = {
5405  		.dst = dst,
5406  		.src = src,
5407  		.vma = vma,
5408  	};
5409  
5410  	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5411  		copy_user_gigantic_page(dst, src, addr, vma,
5412  					pages_per_huge_page);
5413  		return;
5414  	}
5415  
5416  	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5417  }
5418  
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5419  long copy_huge_page_from_user(struct page *dst_page,
5420  				const void __user *usr_src,
5421  				unsigned int pages_per_huge_page,
5422  				bool allow_pagefault)
5423  {
5424  	void *src = (void *)usr_src;
5425  	void *page_kaddr;
5426  	unsigned long i, rc = 0;
5427  	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5428  	struct page *subpage = dst_page;
5429  
5430  	for (i = 0; i < pages_per_huge_page;
5431  	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5432  		if (allow_pagefault)
5433  			page_kaddr = kmap(subpage);
5434  		else
5435  			page_kaddr = kmap_atomic(subpage);
5436  		rc = copy_from_user(page_kaddr,
5437  				(const void __user *)(src + i * PAGE_SIZE),
5438  				PAGE_SIZE);
5439  		if (allow_pagefault)
5440  			kunmap(subpage);
5441  		else
5442  			kunmap_atomic(page_kaddr);
5443  
5444  		ret_val -= (PAGE_SIZE - rc);
5445  		if (rc)
5446  			break;
5447  
5448  		cond_resched();
5449  	}
5450  	return ret_val;
5451  }
5452  #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5453  
5454  #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5455  
5456  static struct kmem_cache *page_ptl_cachep;
5457  
ptlock_cache_init(void)5458  void __init ptlock_cache_init(void)
5459  {
5460  	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5461  			SLAB_PANIC, NULL);
5462  }
5463  
ptlock_alloc(struct page * page)5464  bool ptlock_alloc(struct page *page)
5465  {
5466  	spinlock_t *ptl;
5467  
5468  	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5469  	if (!ptl)
5470  		return false;
5471  	page->ptl = ptl;
5472  	return true;
5473  }
5474  
ptlock_free(struct page * page)5475  void ptlock_free(struct page *page)
5476  {
5477  	kmem_cache_free(page_ptl_cachep, page->ptl);
5478  }
5479  #endif
5480