1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3  #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4  
5  #include <asm-generic/pgtable-nop4d.h>
6  
7  #ifndef __ASSEMBLY__
8  #include <linux/mmdebug.h>
9  #include <linux/bug.h>
10  #include <linux/sizes.h>
11  #endif
12  
13  /*
14   * Common bits between hash and Radix page table
15   */
16  
17  #define _PAGE_EXEC		0x00001 /* execute permission */
18  #define _PAGE_WRITE		0x00002 /* write access allowed */
19  #define _PAGE_READ		0x00004	/* read access allowed */
20  #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21  #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22  #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23  #define _PAGE_SAO		0x00010 /* Strong access order */
24  #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25  #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26  #define _PAGE_DIRTY		0x00080 /* C: page changed */
27  #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28  /*
29   * Software bits
30   */
31  #define _RPAGE_SW0		0x2000000000000000UL
32  #define _RPAGE_SW1		0x00800
33  #define _RPAGE_SW2		0x00400
34  #define _RPAGE_SW3		0x00200
35  #define _RPAGE_RSV1		0x00040UL
36  
37  #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38  #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39  #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40  #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41  #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42  
43  #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44  #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45  /*
46   * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47   * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48   * differentiate between two use a SW field when invalidating.
49   *
50   * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51   *
52   * This is used only when _PAGE_PRESENT is cleared.
53   */
54  #define _PAGE_INVALID		_RPAGE_SW0
55  
56  /*
57   * Top and bottom bits of RPN which can be used by hash
58   * translation mode, because we expect them to be zero
59   * otherwise.
60   */
61  #define _RPAGE_RPN0		0x01000
62  #define _RPAGE_RPN1		0x02000
63  #define _RPAGE_RPN43		0x0080000000000000UL
64  #define _RPAGE_RPN42		0x0040000000000000UL
65  #define _RPAGE_RPN41		0x0020000000000000UL
66  
67  /* Max physical address bit as per radix table */
68  #define _RPAGE_PA_MAX		56
69  
70  /*
71   * Max physical address bit we will use for now.
72   *
73   * This is mostly a hardware limitation and for now Power9 has
74   * a 51 bit limit.
75   *
76   * This is different from the number of physical bit required to address
77   * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78   * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79   * number of sections we can support (SECTIONS_SHIFT).
80   *
81   * This is different from Radix page table limitation above and
82   * should always be less than that. The limit is done such that
83   * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84   * for hash linux page table specific bits.
85   *
86   * In order to be compatible with future hardware generations we keep
87   * some offsets and limit this for now to 53
88   */
89  #define _PAGE_PA_MAX		53
90  
91  #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92  #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93  #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94  
95  /*
96   * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97   * Instead of fixing all of them, add an alternate define which
98   * maps CI pte mapping.
99   */
100  #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101  /*
102   * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103   * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104   * and every thing below PAGE_SHIFT;
105   */
106  #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107  /*
108   * set of bits not changed in pmd_modify. Even though we have hash specific bits
109   * in here, on radix we expect them to be zero.
110   */
111  #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112  			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113  			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114  /*
115   * user access blocked by key
116   */
117  #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118  #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119  #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
120  #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
121  /*
122   * _PAGE_CHG_MASK masks of bits that are to be preserved across
123   * pgprot changes
124   */
125  #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126  			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127  			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
128  
129  /*
130   * We define 2 sets of base prot bits, one for basic pages (ie,
131   * cacheable kernel and user pages) and one for non cacheable
132   * pages. We always set _PAGE_COHERENT when SMP is enabled or
133   * the processor might need it for DMA coherency.
134   */
135  #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
136  #define _PAGE_BASE	(_PAGE_BASE_NC)
137  
138  /* Permission masks used to generate the __P and __S table,
139   *
140   * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
141   *
142   * Write permissions imply read permissions for now (we could make write-only
143   * pages on BookE but we don't bother for now). Execute permission control is
144   * possible on platforms that define _PAGE_EXEC
145   */
146  #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
147  #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
148  #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
149  #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
150  #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
151  #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
152  #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153  /* Radix only, Hash uses PAGE_READONLY_X + execute-only pkey instead */
154  #define PAGE_EXECONLY	__pgprot(_PAGE_BASE | _PAGE_EXEC)
155  
156  /* Permission masks used for kernel mappings */
157  #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158  #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
159  #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
160  #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
161  #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
162  #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
163  
164  #ifndef __ASSEMBLY__
165  /*
166   * page table defines
167   */
168  extern unsigned long __pte_index_size;
169  extern unsigned long __pmd_index_size;
170  extern unsigned long __pud_index_size;
171  extern unsigned long __pgd_index_size;
172  extern unsigned long __pud_cache_index;
173  #define PTE_INDEX_SIZE  __pte_index_size
174  #define PMD_INDEX_SIZE  __pmd_index_size
175  #define PUD_INDEX_SIZE  __pud_index_size
176  #define PGD_INDEX_SIZE  __pgd_index_size
177  /* pmd table use page table fragments */
178  #define PMD_CACHE_INDEX  0
179  #define PUD_CACHE_INDEX __pud_cache_index
180  /*
181   * Because of use of pte fragments and THP, size of page table
182   * are not always derived out of index size above.
183   */
184  extern unsigned long __pte_table_size;
185  extern unsigned long __pmd_table_size;
186  extern unsigned long __pud_table_size;
187  extern unsigned long __pgd_table_size;
188  #define PTE_TABLE_SIZE	__pte_table_size
189  #define PMD_TABLE_SIZE	__pmd_table_size
190  #define PUD_TABLE_SIZE	__pud_table_size
191  #define PGD_TABLE_SIZE	__pgd_table_size
192  
193  extern unsigned long __pmd_val_bits;
194  extern unsigned long __pud_val_bits;
195  extern unsigned long __pgd_val_bits;
196  #define PMD_VAL_BITS	__pmd_val_bits
197  #define PUD_VAL_BITS	__pud_val_bits
198  #define PGD_VAL_BITS	__pgd_val_bits
199  
200  extern unsigned long __pte_frag_nr;
201  #define PTE_FRAG_NR __pte_frag_nr
202  extern unsigned long __pte_frag_size_shift;
203  #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
204  #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
205  
206  extern unsigned long __pmd_frag_nr;
207  #define PMD_FRAG_NR __pmd_frag_nr
208  extern unsigned long __pmd_frag_size_shift;
209  #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
210  #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
211  
212  #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
213  #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
214  #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
215  #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
216  
217  #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
218  #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
219  #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
220  #define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
221  				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
222  
223  /* PMD_SHIFT determines what a second-level page table entry can map */
224  #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
225  #define PMD_SIZE	(1UL << PMD_SHIFT)
226  #define PMD_MASK	(~(PMD_SIZE-1))
227  
228  /* PUD_SHIFT determines what a third-level page table entry can map */
229  #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
230  #define PUD_SIZE	(1UL << PUD_SHIFT)
231  #define PUD_MASK	(~(PUD_SIZE-1))
232  
233  /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
234  #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
235  #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
236  #define PGDIR_MASK	(~(PGDIR_SIZE-1))
237  
238  /* Bits to mask out from a PMD to get to the PTE page */
239  #define PMD_MASKED_BITS		0xc0000000000000ffUL
240  /* Bits to mask out from a PUD to get to the PMD page */
241  #define PUD_MASKED_BITS		0xc0000000000000ffUL
242  /* Bits to mask out from a PGD to get to the PUD page */
243  #define P4D_MASKED_BITS		0xc0000000000000ffUL
244  
245  /*
246   * Used as an indicator for rcu callback functions
247   */
248  enum pgtable_index {
249  	PTE_INDEX = 0,
250  	PMD_INDEX,
251  	PUD_INDEX,
252  	PGD_INDEX,
253  	/*
254  	 * Below are used with 4k page size and hugetlb
255  	 */
256  	HTLB_16M_INDEX,
257  	HTLB_16G_INDEX,
258  };
259  
260  extern unsigned long __vmalloc_start;
261  extern unsigned long __vmalloc_end;
262  #define VMALLOC_START	__vmalloc_start
263  #define VMALLOC_END	__vmalloc_end
264  
ioremap_max_order(void)265  static inline unsigned int ioremap_max_order(void)
266  {
267  	if (radix_enabled())
268  		return PUD_SHIFT;
269  	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
270  }
271  #define IOREMAP_MAX_ORDER ioremap_max_order()
272  
273  extern unsigned long __kernel_virt_start;
274  extern unsigned long __kernel_io_start;
275  extern unsigned long __kernel_io_end;
276  #define KERN_VIRT_START __kernel_virt_start
277  #define KERN_IO_START  __kernel_io_start
278  #define KERN_IO_END __kernel_io_end
279  
280  extern struct page *vmemmap;
281  extern unsigned long pci_io_base;
282  #endif /* __ASSEMBLY__ */
283  
284  #include <asm/book3s/64/hash.h>
285  #include <asm/book3s/64/radix.h>
286  
287  #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
288  #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
289  #else
290  #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
291  #endif
292  
293  
294  #ifdef CONFIG_PPC_64K_PAGES
295  #include <asm/book3s/64/pgtable-64k.h>
296  #else
297  #include <asm/book3s/64/pgtable-4k.h>
298  #endif
299  
300  #include <asm/barrier.h>
301  /*
302   * IO space itself carved into the PIO region (ISA and PHB IO space) and
303   * the ioremap space
304   *
305   *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
306   *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
307   * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
308   */
309  #define FULL_IO_SIZE	0x80000000ul
310  #define  ISA_IO_BASE	(KERN_IO_START)
311  #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
312  #define  PHB_IO_BASE	(ISA_IO_END)
313  #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
314  #define IOREMAP_BASE	(PHB_IO_END)
315  #define IOREMAP_START	(ioremap_bot)
316  #define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
317  #define FIXADDR_SIZE	SZ_32M
318  
319  #ifndef __ASSEMBLY__
320  
321  /*
322   * This is the default implementation of various PTE accessors, it's
323   * used in all cases except Book3S with 64K pages where we have a
324   * concept of sub-pages
325   */
326  #ifndef __real_pte
327  
328  #define __real_pte(e, p, o)		((real_pte_t){(e)})
329  #define __rpte_to_pte(r)	((r).pte)
330  #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
331  
332  #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
333  	do {							         \
334  		index = 0;					         \
335  		shift = mmu_psize_defs[psize].shift;		         \
336  
337  #define pte_iterate_hashed_end() } while(0)
338  
339  /*
340   * We expect this to be called only for user addresses or kernel virtual
341   * addresses other than the linear mapping.
342   */
343  #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
344  
345  #endif /* __real_pte */
346  
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)347  static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
348  				       pte_t *ptep, unsigned long clr,
349  				       unsigned long set, int huge)
350  {
351  	if (radix_enabled())
352  		return radix__pte_update(mm, addr, ptep, clr, set, huge);
353  	return hash__pte_update(mm, addr, ptep, clr, set, huge);
354  }
355  /*
356   * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
357   * We currently remove entries from the hashtable regardless of whether
358   * the entry was young or dirty.
359   *
360   * We should be more intelligent about this but for the moment we override
361   * these functions and force a tlb flush unconditionally
362   * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
363   * function for both hash and radix.
364   */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)365  static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
366  					      unsigned long addr, pte_t *ptep)
367  {
368  	unsigned long old;
369  
370  	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
371  		return 0;
372  	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
373  	return (old & _PAGE_ACCESSED) != 0;
374  }
375  
376  #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
377  #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
378  ({								\
379  	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
380  })
381  
382  /*
383   * On Book3S CPUs, clearing the accessed bit without a TLB flush
384   * doesn't cause data corruption. [ It could cause incorrect
385   * page aging and the (mistaken) reclaim of hot pages, but the
386   * chance of that should be relatively low. ]
387   *
388   * So as a performance optimization don't flush the TLB when
389   * clearing the accessed bit, it will eventually be flushed by
390   * a context switch or a VM operation anyway. [ In the rare
391   * event of it not getting flushed for a long time the delay
392   * shouldn't really matter because there's no real memory
393   * pressure for swapout to react to. ]
394   *
395   * Note: this optimisation also exists in pte_needs_flush() and
396   * huge_pmd_needs_flush().
397   */
398  #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
399  #define ptep_clear_flush_young ptep_test_and_clear_young
400  
401  #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
402  #define pmdp_clear_flush_young pmdp_test_and_clear_young
403  
__pte_write(pte_t pte)404  static inline int __pte_write(pte_t pte)
405  {
406  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
407  }
408  
409  #ifdef CONFIG_NUMA_BALANCING
410  #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)411  static inline bool pte_savedwrite(pte_t pte)
412  {
413  	/*
414  	 * Saved write ptes are prot none ptes that doesn't have
415  	 * privileged bit sit. We mark prot none as one which has
416  	 * present and pviliged bit set and RWX cleared. To mark
417  	 * protnone which used to have _PAGE_WRITE set we clear
418  	 * the privileged bit.
419  	 */
420  	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
421  }
422  #else
423  #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)424  static inline bool pte_savedwrite(pte_t pte)
425  {
426  	return false;
427  }
428  #endif
429  
pte_write(pte_t pte)430  static inline int pte_write(pte_t pte)
431  {
432  	return __pte_write(pte) || pte_savedwrite(pte);
433  }
434  
pte_read(pte_t pte)435  static inline int pte_read(pte_t pte)
436  {
437  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
438  }
439  
440  #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)441  static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
442  				      pte_t *ptep)
443  {
444  	if (__pte_write(*ptep))
445  		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
446  	else if (unlikely(pte_savedwrite(*ptep)))
447  		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
448  }
449  
450  #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)451  static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
452  					   unsigned long addr, pte_t *ptep)
453  {
454  	/*
455  	 * We should not find protnone for hugetlb, but this complete the
456  	 * interface.
457  	 */
458  	if (__pte_write(*ptep))
459  		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
460  	else if (unlikely(pte_savedwrite(*ptep)))
461  		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
462  }
463  
464  #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)465  static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
466  				       unsigned long addr, pte_t *ptep)
467  {
468  	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
469  	return __pte(old);
470  }
471  
472  #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)473  static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
474  					    unsigned long addr,
475  					    pte_t *ptep, int full)
476  {
477  	if (full && radix_enabled()) {
478  		/*
479  		 * We know that this is a full mm pte clear and
480  		 * hence can be sure there is no parallel set_pte.
481  		 */
482  		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
483  	}
484  	return ptep_get_and_clear(mm, addr, ptep);
485  }
486  
487  
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)488  static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
489  			     pte_t * ptep)
490  {
491  	pte_update(mm, addr, ptep, ~0UL, 0, 0);
492  }
493  
pte_dirty(pte_t pte)494  static inline int pte_dirty(pte_t pte)
495  {
496  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
497  }
498  
pte_young(pte_t pte)499  static inline int pte_young(pte_t pte)
500  {
501  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
502  }
503  
pte_special(pte_t pte)504  static inline int pte_special(pte_t pte)
505  {
506  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
507  }
508  
pte_exec(pte_t pte)509  static inline bool pte_exec(pte_t pte)
510  {
511  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
512  }
513  
514  
515  #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)516  static inline bool pte_soft_dirty(pte_t pte)
517  {
518  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
519  }
520  
pte_mksoft_dirty(pte_t pte)521  static inline pte_t pte_mksoft_dirty(pte_t pte)
522  {
523  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
524  }
525  
pte_clear_soft_dirty(pte_t pte)526  static inline pte_t pte_clear_soft_dirty(pte_t pte)
527  {
528  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
529  }
530  #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
531  
532  #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)533  static inline int pte_protnone(pte_t pte)
534  {
535  	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
536  		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
537  }
538  
539  #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)540  static inline pte_t pte_mk_savedwrite(pte_t pte)
541  {
542  	/*
543  	 * Used by Autonuma subsystem to preserve the write bit
544  	 * while marking the pte PROT_NONE. Only allow this
545  	 * on PROT_NONE pte
546  	 */
547  	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
548  		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
549  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
550  }
551  
552  #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)553  static inline pte_t pte_clear_savedwrite(pte_t pte)
554  {
555  	/*
556  	 * Used by KSM subsystem to make a protnone pte readonly.
557  	 */
558  	VM_BUG_ON(!pte_protnone(pte));
559  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
560  }
561  #else
562  #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)563  static inline pte_t pte_clear_savedwrite(pte_t pte)
564  {
565  	VM_WARN_ON(1);
566  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
567  }
568  #endif /* CONFIG_NUMA_BALANCING */
569  
pte_hw_valid(pte_t pte)570  static inline bool pte_hw_valid(pte_t pte)
571  {
572  	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
573  		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
574  }
575  
pte_present(pte_t pte)576  static inline int pte_present(pte_t pte)
577  {
578  	/*
579  	 * A pte is considerent present if _PAGE_PRESENT is set.
580  	 * We also need to consider the pte present which is marked
581  	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
582  	 * if we find _PAGE_PRESENT cleared.
583  	 */
584  
585  	if (pte_hw_valid(pte))
586  		return true;
587  	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
588  		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
589  }
590  
591  #ifdef CONFIG_PPC_MEM_KEYS
592  extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
593  #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)594  static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
595  {
596  	return true;
597  }
598  #endif /* CONFIG_PPC_MEM_KEYS */
599  
pte_user(pte_t pte)600  static inline bool pte_user(pte_t pte)
601  {
602  	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
603  }
604  
605  #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)606  static inline bool pte_access_permitted(pte_t pte, bool write)
607  {
608  	/*
609  	 * _PAGE_READ is needed for any access and will be
610  	 * cleared for PROT_NONE
611  	 */
612  	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
613  		return false;
614  
615  	if (write && !pte_write(pte))
616  		return false;
617  
618  	return arch_pte_access_permitted(pte_val(pte), write, 0);
619  }
620  
621  /*
622   * Conversion functions: convert a page and protection to a page entry,
623   * and a page entry and page directory to the page they refer to.
624   *
625   * Even if PTEs can be unsigned long long, a PFN is always an unsigned
626   * long for now.
627   */
pfn_pte(unsigned long pfn,pgprot_t pgprot)628  static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
629  {
630  	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
631  	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
632  
633  	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
634  }
635  
pte_pfn(pte_t pte)636  static inline unsigned long pte_pfn(pte_t pte)
637  {
638  	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
639  }
640  
641  /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)642  static inline pte_t pte_wrprotect(pte_t pte)
643  {
644  	if (unlikely(pte_savedwrite(pte)))
645  		return pte_clear_savedwrite(pte);
646  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
647  }
648  
pte_exprotect(pte_t pte)649  static inline pte_t pte_exprotect(pte_t pte)
650  {
651  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
652  }
653  
pte_mkclean(pte_t pte)654  static inline pte_t pte_mkclean(pte_t pte)
655  {
656  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
657  }
658  
pte_mkold(pte_t pte)659  static inline pte_t pte_mkold(pte_t pte)
660  {
661  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
662  }
663  
pte_mkexec(pte_t pte)664  static inline pte_t pte_mkexec(pte_t pte)
665  {
666  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
667  }
668  
pte_mkwrite(pte_t pte)669  static inline pte_t pte_mkwrite(pte_t pte)
670  {
671  	/*
672  	 * write implies read, hence set both
673  	 */
674  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
675  }
676  
pte_mkdirty(pte_t pte)677  static inline pte_t pte_mkdirty(pte_t pte)
678  {
679  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
680  }
681  
pte_mkyoung(pte_t pte)682  static inline pte_t pte_mkyoung(pte_t pte)
683  {
684  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
685  }
686  
pte_mkspecial(pte_t pte)687  static inline pte_t pte_mkspecial(pte_t pte)
688  {
689  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
690  }
691  
pte_mkhuge(pte_t pte)692  static inline pte_t pte_mkhuge(pte_t pte)
693  {
694  	return pte;
695  }
696  
pte_mkdevmap(pte_t pte)697  static inline pte_t pte_mkdevmap(pte_t pte)
698  {
699  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
700  }
701  
pte_mkprivileged(pte_t pte)702  static inline pte_t pte_mkprivileged(pte_t pte)
703  {
704  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
705  }
706  
pte_mkuser(pte_t pte)707  static inline pte_t pte_mkuser(pte_t pte)
708  {
709  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
710  }
711  
712  /*
713   * This is potentially called with a pmd as the argument, in which case it's not
714   * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
715   * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
716   * use in page directory entries (ie. non-ptes).
717   */
pte_devmap(pte_t pte)718  static inline int pte_devmap(pte_t pte)
719  {
720  	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
721  
722  	return (pte_raw(pte) & mask) == mask;
723  }
724  
pte_modify(pte_t pte,pgprot_t newprot)725  static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
726  {
727  	/* FIXME!! check whether this need to be a conditional */
728  	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
729  			 cpu_to_be64(pgprot_val(newprot)));
730  }
731  
732  /* Encode and de-code a swap entry */
733  #define MAX_SWAPFILES_CHECK() do { \
734  	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
735  	/*							\
736  	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
737  	 * We filter HPTEFLAGS on set_pte.			\
738  	 */							\
739  	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
740  	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
741  	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
742  	} while (0)
743  
744  #define SWP_TYPE_BITS 5
745  #define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
746  #define __swp_type(x)		((x).val & SWP_TYPE_MASK)
747  #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
748  #define __swp_entry(type, offset)	((swp_entry_t) { \
749  				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
750  /*
751   * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
752   * swap type and offset we get from swap and convert that to pte to find a
753   * matching pte in linux page table.
754   * Clear bits not found in swap entries here.
755   */
756  #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
757  #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
758  #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
759  #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
760  
761  #ifdef CONFIG_MEM_SOFT_DIRTY
762  #define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
763  #else
764  #define _PAGE_SWP_SOFT_DIRTY	0UL
765  #endif /* CONFIG_MEM_SOFT_DIRTY */
766  
767  #define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
768  
769  #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)770  static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
771  {
772  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
773  }
774  
pte_swp_soft_dirty(pte_t pte)775  static inline bool pte_swp_soft_dirty(pte_t pte)
776  {
777  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
778  }
779  
pte_swp_clear_soft_dirty(pte_t pte)780  static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
781  {
782  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
783  }
784  #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
785  
786  #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
pte_swp_mkexclusive(pte_t pte)787  static inline pte_t pte_swp_mkexclusive(pte_t pte)
788  {
789  	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
790  }
791  
pte_swp_exclusive(pte_t pte)792  static inline int pte_swp_exclusive(pte_t pte)
793  {
794  	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
795  }
796  
pte_swp_clear_exclusive(pte_t pte)797  static inline pte_t pte_swp_clear_exclusive(pte_t pte)
798  {
799  	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
800  }
801  
check_pte_access(unsigned long access,unsigned long ptev)802  static inline bool check_pte_access(unsigned long access, unsigned long ptev)
803  {
804  	/*
805  	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
806  	 */
807  	if (access & ~ptev)
808  		return false;
809  	/*
810  	 * This check for access to privilege space
811  	 */
812  	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
813  		return false;
814  
815  	return true;
816  }
817  /*
818   * Generic functions with hash/radix callbacks
819   */
820  
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)821  static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
822  					   pte_t *ptep, pte_t entry,
823  					   unsigned long address,
824  					   int psize)
825  {
826  	if (radix_enabled())
827  		return radix__ptep_set_access_flags(vma, ptep, entry,
828  						    address, psize);
829  	return hash__ptep_set_access_flags(ptep, entry);
830  }
831  
832  #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)833  static inline int pte_same(pte_t pte_a, pte_t pte_b)
834  {
835  	if (radix_enabled())
836  		return radix__pte_same(pte_a, pte_b);
837  	return hash__pte_same(pte_a, pte_b);
838  }
839  
pte_none(pte_t pte)840  static inline int pte_none(pte_t pte)
841  {
842  	if (radix_enabled())
843  		return radix__pte_none(pte);
844  	return hash__pte_none(pte);
845  }
846  
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)847  static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
848  				pte_t *ptep, pte_t pte, int percpu)
849  {
850  
851  	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
852  	/*
853  	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
854  	 * in all the callers.
855  	 */
856  	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
857  
858  	if (radix_enabled())
859  		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
860  	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
861  }
862  
863  #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
864  
865  #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)866  static inline pgprot_t pgprot_noncached(pgprot_t prot)
867  {
868  	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
869  			_PAGE_NON_IDEMPOTENT);
870  }
871  
872  #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)873  static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
874  {
875  	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
876  			_PAGE_TOLERANT);
877  }
878  
879  #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)880  static inline pgprot_t pgprot_cached(pgprot_t prot)
881  {
882  	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
883  }
884  
885  #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)886  static inline pgprot_t pgprot_writecombine(pgprot_t prot)
887  {
888  	return pgprot_noncached_wc(prot);
889  }
890  /*
891   * check a pte mapping have cache inhibited property
892   */
pte_ci(pte_t pte)893  static inline bool pte_ci(pte_t pte)
894  {
895  	__be64 pte_v = pte_raw(pte);
896  
897  	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
898  	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
899  		return true;
900  	return false;
901  }
902  
pmd_clear(pmd_t * pmdp)903  static inline void pmd_clear(pmd_t *pmdp)
904  {
905  	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
906  		/*
907  		 * Don't use this if we can possibly have a hash page table
908  		 * entry mapping this.
909  		 */
910  		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
911  	}
912  	*pmdp = __pmd(0);
913  }
914  
pmd_none(pmd_t pmd)915  static inline int pmd_none(pmd_t pmd)
916  {
917  	return !pmd_raw(pmd);
918  }
919  
pmd_present(pmd_t pmd)920  static inline int pmd_present(pmd_t pmd)
921  {
922  	/*
923  	 * A pmd is considerent present if _PAGE_PRESENT is set.
924  	 * We also need to consider the pmd present which is marked
925  	 * invalid during a split. Hence we look for _PAGE_INVALID
926  	 * if we find _PAGE_PRESENT cleared.
927  	 */
928  	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
929  		return true;
930  
931  	return false;
932  }
933  
pmd_is_serializing(pmd_t pmd)934  static inline int pmd_is_serializing(pmd_t pmd)
935  {
936  	/*
937  	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
938  	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
939  	 *
940  	 * This condition may also occur when flushing a pmd while flushing
941  	 * it (see ptep_modify_prot_start), so callers must ensure this
942  	 * case is fine as well.
943  	 */
944  	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
945  						cpu_to_be64(_PAGE_INVALID))
946  		return true;
947  
948  	return false;
949  }
950  
pmd_bad(pmd_t pmd)951  static inline int pmd_bad(pmd_t pmd)
952  {
953  	if (radix_enabled())
954  		return radix__pmd_bad(pmd);
955  	return hash__pmd_bad(pmd);
956  }
957  
pud_clear(pud_t * pudp)958  static inline void pud_clear(pud_t *pudp)
959  {
960  	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
961  		/*
962  		 * Don't use this if we can possibly have a hash page table
963  		 * entry mapping this.
964  		 */
965  		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
966  	}
967  	*pudp = __pud(0);
968  }
969  
pud_none(pud_t pud)970  static inline int pud_none(pud_t pud)
971  {
972  	return !pud_raw(pud);
973  }
974  
pud_present(pud_t pud)975  static inline int pud_present(pud_t pud)
976  {
977  	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
978  }
979  
980  extern struct page *pud_page(pud_t pud);
981  extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)982  static inline pte_t pud_pte(pud_t pud)
983  {
984  	return __pte_raw(pud_raw(pud));
985  }
986  
pte_pud(pte_t pte)987  static inline pud_t pte_pud(pte_t pte)
988  {
989  	return __pud_raw(pte_raw(pte));
990  }
991  #define pud_write(pud)		pte_write(pud_pte(pud))
992  
pud_bad(pud_t pud)993  static inline int pud_bad(pud_t pud)
994  {
995  	if (radix_enabled())
996  		return radix__pud_bad(pud);
997  	return hash__pud_bad(pud);
998  }
999  
1000  #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)1001  static inline bool pud_access_permitted(pud_t pud, bool write)
1002  {
1003  	return pte_access_permitted(pud_pte(pud), write);
1004  }
1005  
1006  #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)1007  static inline __be64 p4d_raw(p4d_t x)
1008  {
1009  	return pgd_raw(x.pgd);
1010  }
1011  
1012  #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1013  
p4d_clear(p4d_t * p4dp)1014  static inline void p4d_clear(p4d_t *p4dp)
1015  {
1016  	*p4dp = __p4d(0);
1017  }
1018  
p4d_none(p4d_t p4d)1019  static inline int p4d_none(p4d_t p4d)
1020  {
1021  	return !p4d_raw(p4d);
1022  }
1023  
p4d_present(p4d_t p4d)1024  static inline int p4d_present(p4d_t p4d)
1025  {
1026  	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1027  }
1028  
p4d_pte(p4d_t p4d)1029  static inline pte_t p4d_pte(p4d_t p4d)
1030  {
1031  	return __pte_raw(p4d_raw(p4d));
1032  }
1033  
pte_p4d(pte_t pte)1034  static inline p4d_t pte_p4d(pte_t pte)
1035  {
1036  	return __p4d_raw(pte_raw(pte));
1037  }
1038  
p4d_bad(p4d_t p4d)1039  static inline int p4d_bad(p4d_t p4d)
1040  {
1041  	if (radix_enabled())
1042  		return radix__p4d_bad(p4d);
1043  	return hash__p4d_bad(p4d);
1044  }
1045  
1046  #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)1047  static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1048  {
1049  	return pte_access_permitted(p4d_pte(p4d), write);
1050  }
1051  
1052  extern struct page *p4d_page(p4d_t p4d);
1053  
1054  /* Pointers in the page table tree are physical addresses */
1055  #define __pgtable_ptr_val(ptr)	__pa(ptr)
1056  
p4d_pgtable(p4d_t p4d)1057  static inline pud_t *p4d_pgtable(p4d_t p4d)
1058  {
1059  	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1060  }
1061  
pud_pgtable(pud_t pud)1062  static inline pmd_t *pud_pgtable(pud_t pud)
1063  {
1064  	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1065  }
1066  
1067  #define pte_ERROR(e) \
1068  	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1069  #define pmd_ERROR(e) \
1070  	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1071  #define pud_ERROR(e) \
1072  	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1073  #define pgd_ERROR(e) \
1074  	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1075  
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)1076  static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1077  {
1078  	if (radix_enabled()) {
1079  #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1080  		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1081  		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1082  #endif
1083  		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1084  	}
1085  	return hash__map_kernel_page(ea, pa, prot);
1086  }
1087  
1088  void unmap_kernel_page(unsigned long va);
1089  
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1090  static inline int __meminit vmemmap_create_mapping(unsigned long start,
1091  						   unsigned long page_size,
1092  						   unsigned long phys)
1093  {
1094  	if (radix_enabled())
1095  		return radix__vmemmap_create_mapping(start, page_size, phys);
1096  	return hash__vmemmap_create_mapping(start, page_size, phys);
1097  }
1098  
1099  #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1100  static inline void vmemmap_remove_mapping(unsigned long start,
1101  					  unsigned long page_size)
1102  {
1103  	if (radix_enabled())
1104  		return radix__vmemmap_remove_mapping(start, page_size);
1105  	return hash__vmemmap_remove_mapping(start, page_size);
1106  }
1107  #endif
1108  
1109  #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
__kernel_map_pages(struct page * page,int numpages,int enable)1110  static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1111  {
1112  	if (radix_enabled())
1113  		radix__kernel_map_pages(page, numpages, enable);
1114  	else
1115  		hash__kernel_map_pages(page, numpages, enable);
1116  }
1117  #endif
1118  
pmd_pte(pmd_t pmd)1119  static inline pte_t pmd_pte(pmd_t pmd)
1120  {
1121  	return __pte_raw(pmd_raw(pmd));
1122  }
1123  
pte_pmd(pte_t pte)1124  static inline pmd_t pte_pmd(pte_t pte)
1125  {
1126  	return __pmd_raw(pte_raw(pte));
1127  }
1128  
pmdp_ptep(pmd_t * pmd)1129  static inline pte_t *pmdp_ptep(pmd_t *pmd)
1130  {
1131  	return (pte_t *)pmd;
1132  }
1133  #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1134  #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1135  #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1136  #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1137  #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1138  #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1139  #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1140  #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1141  #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1142  #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1143  #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1144  
1145  #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1146  #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1147  #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1148  #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1149  
1150  #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1151  #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1152  #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1153  #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1154  #endif
1155  #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1156  
1157  #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1158  static inline int pmd_protnone(pmd_t pmd)
1159  {
1160  	return pte_protnone(pmd_pte(pmd));
1161  }
1162  #endif /* CONFIG_NUMA_BALANCING */
1163  
1164  #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1165  #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1166  #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1167  
1168  #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1169  static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1170  {
1171  	/*
1172  	 * pmdp_invalidate sets this combination (which is not caught by
1173  	 * !pte_present() check in pte_access_permitted), to prevent
1174  	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1175  	 * synchronisation.
1176  	 *
1177  	 * This also catches the case where the PTE's hardware PRESENT bit is
1178  	 * cleared while TLB is flushed, which is suboptimal but should not
1179  	 * be frequent.
1180  	 */
1181  	if (pmd_is_serializing(pmd))
1182  		return false;
1183  
1184  	return pte_access_permitted(pmd_pte(pmd), write);
1185  }
1186  
1187  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1188  extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1189  extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1190  extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1191  extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1192  		       pmd_t *pmdp, pmd_t pmd);
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1193  static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1194  					unsigned long addr, pmd_t *pmd)
1195  {
1196  }
1197  
1198  extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1199  static inline int has_transparent_hugepage(void)
1200  {
1201  	if (radix_enabled())
1202  		return radix__has_transparent_hugepage();
1203  	return hash__has_transparent_hugepage();
1204  }
1205  #define has_transparent_hugepage has_transparent_hugepage
1206  
1207  static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1208  pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1209  		    unsigned long clr, unsigned long set)
1210  {
1211  	if (radix_enabled())
1212  		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1213  	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1214  }
1215  
1216  /*
1217   * returns true for pmd migration entries, THP, devmap, hugetlb
1218   * But compile time dependent on THP config
1219   */
pmd_large(pmd_t pmd)1220  static inline int pmd_large(pmd_t pmd)
1221  {
1222  	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1223  }
1224  
1225  /*
1226   * For radix we should always find H_PAGE_HASHPTE zero. Hence
1227   * the below will work for radix too
1228   */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1229  static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1230  					      unsigned long addr, pmd_t *pmdp)
1231  {
1232  	unsigned long old;
1233  
1234  	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1235  		return 0;
1236  	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1237  	return ((old & _PAGE_ACCESSED) != 0);
1238  }
1239  
1240  #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1241  static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1242  				      pmd_t *pmdp)
1243  {
1244  	if (__pmd_write((*pmdp)))
1245  		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1246  	else if (unlikely(pmd_savedwrite(*pmdp)))
1247  		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1248  }
1249  
1250  /*
1251   * Only returns true for a THP. False for pmd migration entry.
1252   * We also need to return true when we come across a pte that
1253   * in between a thp split. While splitting THP, we mark the pmd
1254   * invalid (pmdp_invalidate()) before we set it with pte page
1255   * address. A pmd_trans_huge() check against a pmd entry during that time
1256   * should return true.
1257   * We should not call this on a hugetlb entry. We should check for HugeTLB
1258   * entry using vma->vm_flags
1259   * The page table walk rule is explained in Documentation/mm/transhuge.rst
1260   */
pmd_trans_huge(pmd_t pmd)1261  static inline int pmd_trans_huge(pmd_t pmd)
1262  {
1263  	if (!pmd_present(pmd))
1264  		return false;
1265  
1266  	if (radix_enabled())
1267  		return radix__pmd_trans_huge(pmd);
1268  	return hash__pmd_trans_huge(pmd);
1269  }
1270  
1271  #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1272  static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1273  {
1274  	if (radix_enabled())
1275  		return radix__pmd_same(pmd_a, pmd_b);
1276  	return hash__pmd_same(pmd_a, pmd_b);
1277  }
1278  
__pmd_mkhuge(pmd_t pmd)1279  static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1280  {
1281  	if (radix_enabled())
1282  		return radix__pmd_mkhuge(pmd);
1283  	return hash__pmd_mkhuge(pmd);
1284  }
1285  
1286  /*
1287   * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1288   */
pmd_mkhuge(pmd_t pmd)1289  static inline pmd_t pmd_mkhuge(pmd_t pmd)
1290  {
1291  #ifdef CONFIG_DEBUG_VM
1292  	if (radix_enabled())
1293  		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1294  	else
1295  		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1296  			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1297  #endif
1298  	return pmd;
1299  }
1300  
1301  #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1302  extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1303  				 unsigned long address, pmd_t *pmdp,
1304  				 pmd_t entry, int dirty);
1305  
1306  #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1307  extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1308  				     unsigned long address, pmd_t *pmdp);
1309  
1310  #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1311  static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1312  					    unsigned long addr, pmd_t *pmdp)
1313  {
1314  	if (radix_enabled())
1315  		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1316  	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1317  }
1318  
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1319  static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1320  					unsigned long address, pmd_t *pmdp)
1321  {
1322  	if (radix_enabled())
1323  		return radix__pmdp_collapse_flush(vma, address, pmdp);
1324  	return hash__pmdp_collapse_flush(vma, address, pmdp);
1325  }
1326  #define pmdp_collapse_flush pmdp_collapse_flush
1327  
1328  #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1329  pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1330  				   unsigned long addr,
1331  				   pmd_t *pmdp, int full);
1332  
1333  #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1334  static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1335  					      pmd_t *pmdp, pgtable_t pgtable)
1336  {
1337  	if (radix_enabled())
1338  		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1339  	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1340  }
1341  
1342  #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1343  static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1344  						    pmd_t *pmdp)
1345  {
1346  	if (radix_enabled())
1347  		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1348  	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1349  }
1350  
1351  #define __HAVE_ARCH_PMDP_INVALIDATE
1352  extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1353  			     pmd_t *pmdp);
1354  
1355  #define pmd_move_must_withdraw pmd_move_must_withdraw
1356  struct spinlock;
1357  extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1358  				  struct spinlock *old_pmd_ptl,
1359  				  struct vm_area_struct *vma);
1360  /*
1361   * Hash translation mode use the deposited table to store hash pte
1362   * slot information.
1363   */
1364  #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1365  static inline bool arch_needs_pgtable_deposit(void)
1366  {
1367  	if (radix_enabled())
1368  		return false;
1369  	return true;
1370  }
1371  extern void serialize_against_pte_lookup(struct mm_struct *mm);
1372  
1373  
pmd_mkdevmap(pmd_t pmd)1374  static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1375  {
1376  	if (radix_enabled())
1377  		return radix__pmd_mkdevmap(pmd);
1378  	return hash__pmd_mkdevmap(pmd);
1379  }
1380  
pmd_devmap(pmd_t pmd)1381  static inline int pmd_devmap(pmd_t pmd)
1382  {
1383  	return pte_devmap(pmd_pte(pmd));
1384  }
1385  
pud_devmap(pud_t pud)1386  static inline int pud_devmap(pud_t pud)
1387  {
1388  	return 0;
1389  }
1390  
pgd_devmap(pgd_t pgd)1391  static inline int pgd_devmap(pgd_t pgd)
1392  {
1393  	return 0;
1394  }
1395  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1396  
pud_pfn(pud_t pud)1397  static inline int pud_pfn(pud_t pud)
1398  {
1399  	/*
1400  	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1401  	 * check so this should never be used. If it grows another user we
1402  	 * want to know about it.
1403  	 */
1404  	BUILD_BUG();
1405  	return 0;
1406  }
1407  #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1408  pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1409  void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1410  			     pte_t *, pte_t, pte_t);
1411  
1412  /*
1413   * Returns true for a R -> RW upgrade of pte
1414   */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1415  static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1416  {
1417  	if (!(old_val & _PAGE_READ))
1418  		return false;
1419  
1420  	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1421  		return true;
1422  
1423  	return false;
1424  }
1425  
1426  /*
1427   * Like pmd_huge() and pmd_large(), but works regardless of config options
1428   */
1429  #define pmd_is_leaf pmd_is_leaf
1430  #define pmd_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1431  static inline bool pmd_is_leaf(pmd_t pmd)
1432  {
1433  	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1434  }
1435  
1436  #define pud_is_leaf pud_is_leaf
1437  #define pud_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1438  static inline bool pud_is_leaf(pud_t pud)
1439  {
1440  	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1441  }
1442  
1443  #endif /* __ASSEMBLY__ */
1444  #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1445