1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_PGTABLE_H
3 #define _ASM_GENERIC_PGTABLE_H
4
5 #include <linux/pfn.h>
6
7 #ifndef __ASSEMBLY__
8 #ifdef CONFIG_MMU
9
10 #include <linux/mm_types.h>
11 #include <linux/bug.h>
12 #include <linux/errno.h>
13
14 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
16 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
17 #endif
18
19 /*
20 * On almost all architectures and configurations, 0 can be used as the
21 * upper ceiling to free_pgtables(): on many architectures it has the same
22 * effect as using TASK_SIZE. However, there is one configuration which
23 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 */
25 #ifndef USER_PGTABLES_CEILING
26 #define USER_PGTABLES_CEILING 0UL
27 #endif
28
29 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
30 extern int ptep_set_access_flags(struct vm_area_struct *vma,
31 unsigned long address, pte_t *ptep,
32 pte_t entry, int dirty);
33 #endif
34
35 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
37 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
38 unsigned long address, pmd_t *pmdp,
39 pmd_t entry, int dirty);
40 extern int pudp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pud_t *pudp,
42 pud_t entry, int dirty);
43 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)44 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
45 unsigned long address, pmd_t *pmdp,
46 pmd_t entry, int dirty)
47 {
48 BUILD_BUG();
49 return 0;
50 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)51 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
52 unsigned long address, pud_t *pudp,
53 pud_t entry, int dirty)
54 {
55 BUILD_BUG();
56 return 0;
57 }
58 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
59 #endif
60
61 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)62 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pte_t *ptep)
65 {
66 pte_t pte = *ptep;
67 int r = 1;
68 if (!pte_young(pte))
69 r = 0;
70 else
71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
72 return r;
73 }
74 #endif
75
76 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)78 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 unsigned long address,
80 pmd_t *pmdp)
81 {
82 pmd_t pmd = *pmdp;
83 int r = 1;
84 if (!pmd_young(pmd))
85 r = 0;
86 else
87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
88 return r;
89 }
90 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)91 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
92 unsigned long address,
93 pmd_t *pmdp)
94 {
95 BUILD_BUG();
96 return 0;
97 }
98 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
99 #endif
100
101 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
102 int ptep_clear_flush_young(struct vm_area_struct *vma,
103 unsigned long address, pte_t *ptep);
104 #endif
105
106 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
108 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
109 unsigned long address, pmd_t *pmdp);
110 #else
111 /*
112 * Despite relevant to THP only, this API is called from generic rmap code
113 * under PageTransHuge(), hence needs a dummy implementation for !THP
114 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)115 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
116 unsigned long address, pmd_t *pmdp)
117 {
118 BUILD_BUG();
119 return 0;
120 }
121 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
122 #endif
123
124 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)125 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
126 unsigned long address,
127 pte_t *ptep)
128 {
129 pte_t pte = *ptep;
130 pte_clear(mm, address, ptep);
131 return pte;
132 }
133 #endif
134
135 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
136 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)137 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
138 unsigned long address,
139 pmd_t *pmdp)
140 {
141 pmd_t pmd = *pmdp;
142 pmd_clear(pmdp);
143 return pmd;
144 }
145 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
146 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)147 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
148 unsigned long address,
149 pud_t *pudp)
150 {
151 pud_t pud = *pudp;
152
153 pud_clear(pudp);
154 return pud;
155 }
156 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158
159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
160 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pmd_t * pmdp,int full)161 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
162 unsigned long address, pmd_t *pmdp,
163 int full)
164 {
165 return pmdp_huge_get_and_clear(mm, address, pmdp);
166 }
167 #endif
168
169 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)170 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
171 unsigned long address, pud_t *pudp,
172 int full)
173 {
174 return pudp_huge_get_and_clear(mm, address, pudp);
175 }
176 #endif
177 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178
179 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)180 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
181 unsigned long address, pte_t *ptep,
182 int full)
183 {
184 pte_t pte;
185 pte = ptep_get_and_clear(mm, address, ptep);
186 return pte;
187 }
188 #endif
189
190 /*
191 * Some architectures may be able to avoid expensive synchronization
192 * primitives when modifications are made to PTE's which are already
193 * not present, or in the process of an address space destruction.
194 */
195 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)196 static inline void pte_clear_not_present_full(struct mm_struct *mm,
197 unsigned long address,
198 pte_t *ptep,
199 int full)
200 {
201 pte_clear(mm, address, ptep);
202 }
203 #endif
204
205 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
206 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
207 unsigned long address,
208 pte_t *ptep);
209 #endif
210
211 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
212 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
213 unsigned long address,
214 pmd_t *pmdp);
215 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
216 unsigned long address,
217 pud_t *pudp);
218 #endif
219
220 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
221 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)222 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223 {
224 pte_t old_pte = *ptep;
225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226 }
227 #endif
228
229 #ifndef pte_savedwrite
230 #define pte_savedwrite pte_write
231 #endif
232
233 #ifndef pte_mk_savedwrite
234 #define pte_mk_savedwrite pte_mkwrite
235 #endif
236
237 #ifndef pte_clear_savedwrite
238 #define pte_clear_savedwrite pte_wrprotect
239 #endif
240
241 #ifndef pmd_savedwrite
242 #define pmd_savedwrite pmd_write
243 #endif
244
245 #ifndef pmd_mk_savedwrite
246 #define pmd_mk_savedwrite pmd_mkwrite
247 #endif
248
249 #ifndef pmd_clear_savedwrite
250 #define pmd_clear_savedwrite pmd_wrprotect
251 #endif
252
253 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)255 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
256 unsigned long address, pmd_t *pmdp)
257 {
258 pmd_t old_pmd = *pmdp;
259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260 }
261 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)262 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
263 unsigned long address, pmd_t *pmdp)
264 {
265 BUILD_BUG();
266 }
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #endif
269 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
270 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)271 static inline void pudp_set_wrprotect(struct mm_struct *mm,
272 unsigned long address, pud_t *pudp)
273 {
274 pud_t old_pud = *pudp;
275
276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277 }
278 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)279 static inline void pudp_set_wrprotect(struct mm_struct *mm,
280 unsigned long address, pud_t *pudp)
281 {
282 BUILD_BUG();
283 }
284 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
285 #endif
286
287 #ifndef pmdp_collapse_flush
288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
289 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
290 unsigned long address, pmd_t *pmdp);
291 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)292 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
293 unsigned long address,
294 pmd_t *pmdp)
295 {
296 BUILD_BUG();
297 return *pmdp;
298 }
299 #define pmdp_collapse_flush pmdp_collapse_flush
300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301 #endif
302
303 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
304 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
305 pgtable_t pgtable);
306 #endif
307
308 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
309 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
310 #endif
311
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 /*
314 * This is an implementation of pmdp_establish() that is only suitable for an
315 * architecture that doesn't have hardware dirty/accessed bits. In this case we
316 * can't race with CPU which sets these bits and non-atomic aproach is fine.
317 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)318 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp, pmd_t pmd)
320 {
321 pmd_t old_pmd = *pmdp;
322 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
323 return old_pmd;
324 }
325 #endif
326
327 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
328 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
329 pmd_t *pmdp);
330 #endif
331
332 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)333 static inline int pte_same(pte_t pte_a, pte_t pte_b)
334 {
335 return pte_val(pte_a) == pte_val(pte_b);
336 }
337 #endif
338
339 #ifndef __HAVE_ARCH_PTE_UNUSED
340 /*
341 * Some architectures provide facilities to virtualization guests
342 * so that they can flag allocated pages as unused. This allows the
343 * host to transparently reclaim unused pages. This function returns
344 * whether the pte's page is unused.
345 */
pte_unused(pte_t pte)346 static inline int pte_unused(pte_t pte)
347 {
348 return 0;
349 }
350 #endif
351
352 #ifndef pte_access_permitted
353 #define pte_access_permitted(pte, write) \
354 (pte_present(pte) && (!(write) || pte_write(pte)))
355 #endif
356
357 #ifndef pmd_access_permitted
358 #define pmd_access_permitted(pmd, write) \
359 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
360 #endif
361
362 #ifndef pud_access_permitted
363 #define pud_access_permitted(pud, write) \
364 (pud_present(pud) && (!(write) || pud_write(pud)))
365 #endif
366
367 #ifndef p4d_access_permitted
368 #define p4d_access_permitted(p4d, write) \
369 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
370 #endif
371
372 #ifndef pgd_access_permitted
373 #define pgd_access_permitted(pgd, write) \
374 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
375 #endif
376
377 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)378 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
379 {
380 return pmd_val(pmd_a) == pmd_val(pmd_b);
381 }
382
pud_same(pud_t pud_a,pud_t pud_b)383 static inline int pud_same(pud_t pud_a, pud_t pud_b)
384 {
385 return pud_val(pud_a) == pud_val(pud_b);
386 }
387 #endif
388
389 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)390 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
391 {
392 return p4d_val(p4d_a) == p4d_val(p4d_b);
393 }
394 #endif
395
396 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)397 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
398 {
399 return pgd_val(pgd_a) == pgd_val(pgd_b);
400 }
401 #endif
402
403 /*
404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
405 * TLB flush will be required as a result of the "set". For example, use
406 * in scenarios where it is known ahead of time that the routine is
407 * setting non-present entries, or re-setting an existing entry to the
408 * same value. Otherwise, use the typical "set" helpers and flush the
409 * TLB.
410 */
411 #define set_pte_safe(ptep, pte) \
412 ({ \
413 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
414 set_pte(ptep, pte); \
415 })
416
417 #define set_pmd_safe(pmdp, pmd) \
418 ({ \
419 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
420 set_pmd(pmdp, pmd); \
421 })
422
423 #define set_pud_safe(pudp, pud) \
424 ({ \
425 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
426 set_pud(pudp, pud); \
427 })
428
429 #define set_p4d_safe(p4dp, p4d) \
430 ({ \
431 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
432 set_p4d(p4dp, p4d); \
433 })
434
435 #define set_pgd_safe(pgdp, pgd) \
436 ({ \
437 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
438 set_pgd(pgdp, pgd); \
439 })
440
441 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
442 /*
443 * Some architectures support metadata associated with a page. When a
444 * page is being swapped out, this metadata must be saved so it can be
445 * restored when the page is swapped back in. SPARC M7 and newer
446 * processors support an ADI (Application Data Integrity) tag for the
447 * page as metadata for the page. arch_do_swap_page() can restore this
448 * metadata when a page is swapped back in.
449 */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)450 static inline void arch_do_swap_page(struct mm_struct *mm,
451 struct vm_area_struct *vma,
452 unsigned long addr,
453 pte_t pte, pte_t oldpte)
454 {
455
456 }
457 #endif
458
459 #ifndef __HAVE_ARCH_UNMAP_ONE
460 /*
461 * Some architectures support metadata associated with a page. When a
462 * page is being swapped out, this metadata must be saved so it can be
463 * restored when the page is swapped back in. SPARC M7 and newer
464 * processors support an ADI (Application Data Integrity) tag for the
465 * page as metadata for the page. arch_unmap_one() can save this
466 * metadata on a swap-out of a page.
467 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)468 static inline int arch_unmap_one(struct mm_struct *mm,
469 struct vm_area_struct *vma,
470 unsigned long addr,
471 pte_t orig_pte)
472 {
473 return 0;
474 }
475 #endif
476
477 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
478 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
479 #endif
480
481 #ifndef __HAVE_ARCH_MOVE_PTE
482 #define move_pte(pte, prot, old_addr, new_addr) (pte)
483 #endif
484
485 #ifndef pte_accessible
486 # define pte_accessible(mm, pte) ((void)(pte), 1)
487 #endif
488
489 #ifndef flush_tlb_fix_spurious_fault
490 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
491 #endif
492
493 #ifndef pgprot_noncached
494 #define pgprot_noncached(prot) (prot)
495 #endif
496
497 #ifndef pgprot_writecombine
498 #define pgprot_writecombine pgprot_noncached
499 #endif
500
501 #ifndef pgprot_writethrough
502 #define pgprot_writethrough pgprot_noncached
503 #endif
504
505 #ifndef pgprot_device
506 #define pgprot_device pgprot_noncached
507 #endif
508
509 #ifndef pgprot_modify
510 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)511 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
512 {
513 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
514 newprot = pgprot_noncached(newprot);
515 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
516 newprot = pgprot_writecombine(newprot);
517 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
518 newprot = pgprot_device(newprot);
519 return newprot;
520 }
521 #endif
522
523 /*
524 * When walking page tables, get the address of the next boundary,
525 * or the end address of the range if that comes earlier. Although no
526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
527 */
528
529 #define pgd_addr_end(addr, end) \
530 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
531 (__boundary - 1 < (end) - 1)? __boundary: (end); \
532 })
533
534 #ifndef p4d_addr_end
535 #define p4d_addr_end(addr, end) \
536 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
537 (__boundary - 1 < (end) - 1)? __boundary: (end); \
538 })
539 #endif
540
541 #ifndef pud_addr_end
542 #define pud_addr_end(addr, end) \
543 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
544 (__boundary - 1 < (end) - 1)? __boundary: (end); \
545 })
546 #endif
547
548 #ifndef pmd_addr_end
549 #define pmd_addr_end(addr, end) \
550 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
551 (__boundary - 1 < (end) - 1)? __boundary: (end); \
552 })
553 #endif
554
555 /*
556 * When walking page tables, we usually want to skip any p?d_none entries;
557 * and any p?d_bad entries - reporting the error before resetting to none.
558 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
559 */
560 void pgd_clear_bad(pgd_t *);
561 void p4d_clear_bad(p4d_t *);
562 void pud_clear_bad(pud_t *);
563 void pmd_clear_bad(pmd_t *);
564
pgd_none_or_clear_bad(pgd_t * pgd)565 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
566 {
567 if (pgd_none(*pgd))
568 return 1;
569 if (unlikely(pgd_bad(*pgd))) {
570 pgd_clear_bad(pgd);
571 return 1;
572 }
573 return 0;
574 }
575
p4d_none_or_clear_bad(p4d_t * p4d)576 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
577 {
578 if (p4d_none(*p4d))
579 return 1;
580 if (unlikely(p4d_bad(*p4d))) {
581 p4d_clear_bad(p4d);
582 return 1;
583 }
584 return 0;
585 }
586
pud_none_or_clear_bad(pud_t * pud)587 static inline int pud_none_or_clear_bad(pud_t *pud)
588 {
589 if (pud_none(*pud))
590 return 1;
591 if (unlikely(pud_bad(*pud))) {
592 pud_clear_bad(pud);
593 return 1;
594 }
595 return 0;
596 }
597
pmd_none_or_clear_bad(pmd_t * pmd)598 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
599 {
600 if (pmd_none(*pmd))
601 return 1;
602 if (unlikely(pmd_bad(*pmd))) {
603 pmd_clear_bad(pmd);
604 return 1;
605 }
606 return 0;
607 }
608
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)609 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
610 unsigned long addr,
611 pte_t *ptep)
612 {
613 /*
614 * Get the current pte state, but zero it out to make it
615 * non-present, preventing the hardware from asynchronously
616 * updating it.
617 */
618 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
619 }
620
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)621 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
622 unsigned long addr,
623 pte_t *ptep, pte_t pte)
624 {
625 /*
626 * The pte is non-present, so there's no hardware state to
627 * preserve.
628 */
629 set_pte_at(vma->vm_mm, addr, ptep, pte);
630 }
631
632 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
633 /*
634 * Start a pte protection read-modify-write transaction, which
635 * protects against asynchronous hardware modifications to the pte.
636 * The intention is not to prevent the hardware from making pte
637 * updates, but to prevent any updates it may make from being lost.
638 *
639 * This does not protect against other software modifications of the
640 * pte; the appropriate pte lock must be held over the transation.
641 *
642 * Note that this interface is intended to be batchable, meaning that
643 * ptep_modify_prot_commit may not actually update the pte, but merely
644 * queue the update to be done at some later time. The update must be
645 * actually committed before the pte lock is released, however.
646 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)647 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
648 unsigned long addr,
649 pte_t *ptep)
650 {
651 return __ptep_modify_prot_start(vma, addr, ptep);
652 }
653
654 /*
655 * Commit an update to a pte, leaving any hardware-controlled bits in
656 * the PTE unmodified.
657 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)658 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
659 unsigned long addr,
660 pte_t *ptep, pte_t old_pte, pte_t pte)
661 {
662 __ptep_modify_prot_commit(vma, addr, ptep, pte);
663 }
664 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
665 #endif /* CONFIG_MMU */
666
667 /*
668 * No-op macros that just return the current protection value. Defined here
669 * because these macros can be used used even if CONFIG_MMU is not defined.
670 */
671 #ifndef pgprot_encrypted
672 #define pgprot_encrypted(prot) (prot)
673 #endif
674
675 #ifndef pgprot_decrypted
676 #define pgprot_decrypted(prot) (prot)
677 #endif
678
679 /*
680 * A facility to provide lazy MMU batching. This allows PTE updates and
681 * page invalidations to be delayed until a call to leave lazy MMU mode
682 * is issued. Some architectures may benefit from doing this, and it is
683 * beneficial for both shadow and direct mode hypervisors, which may batch
684 * the PTE updates which happen during this window. Note that using this
685 * interface requires that read hazards be removed from the code. A read
686 * hazard could result in the direct mode hypervisor case, since the actual
687 * write to the page tables may not yet have taken place, so reads though
688 * a raw PTE pointer after it has been modified are not guaranteed to be
689 * up to date. This mode can only be entered and left under the protection of
690 * the page table locks for all page tables which may be modified. In the UP
691 * case, this is required so that preemption is disabled, and in the SMP case,
692 * it must synchronize the delayed page table writes properly on other CPUs.
693 */
694 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
695 #define arch_enter_lazy_mmu_mode() do {} while (0)
696 #define arch_leave_lazy_mmu_mode() do {} while (0)
697 #define arch_flush_lazy_mmu_mode() do {} while (0)
698 #endif
699
700 /*
701 * A facility to provide batching of the reload of page tables and
702 * other process state with the actual context switch code for
703 * paravirtualized guests. By convention, only one of the batched
704 * update (lazy) modes (CPU, MMU) should be active at any given time,
705 * entry should never be nested, and entry and exits should always be
706 * paired. This is for sanity of maintaining and reasoning about the
707 * kernel code. In this case, the exit (end of the context switch) is
708 * in architecture-specific code, and so doesn't need a generic
709 * definition.
710 */
711 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
712 #define arch_start_context_switch(prev) do {} while (0)
713 #endif
714
715 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
716 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)717 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
718 {
719 return pmd;
720 }
721
pmd_swp_soft_dirty(pmd_t pmd)722 static inline int pmd_swp_soft_dirty(pmd_t pmd)
723 {
724 return 0;
725 }
726
pmd_swp_clear_soft_dirty(pmd_t pmd)727 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
728 {
729 return pmd;
730 }
731 #endif
732 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)733 static inline int pte_soft_dirty(pte_t pte)
734 {
735 return 0;
736 }
737
pmd_soft_dirty(pmd_t pmd)738 static inline int pmd_soft_dirty(pmd_t pmd)
739 {
740 return 0;
741 }
742
pte_mksoft_dirty(pte_t pte)743 static inline pte_t pte_mksoft_dirty(pte_t pte)
744 {
745 return pte;
746 }
747
pmd_mksoft_dirty(pmd_t pmd)748 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
749 {
750 return pmd;
751 }
752
pte_clear_soft_dirty(pte_t pte)753 static inline pte_t pte_clear_soft_dirty(pte_t pte)
754 {
755 return pte;
756 }
757
pmd_clear_soft_dirty(pmd_t pmd)758 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
759 {
760 return pmd;
761 }
762
pte_swp_mksoft_dirty(pte_t pte)763 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
764 {
765 return pte;
766 }
767
pte_swp_soft_dirty(pte_t pte)768 static inline int pte_swp_soft_dirty(pte_t pte)
769 {
770 return 0;
771 }
772
pte_swp_clear_soft_dirty(pte_t pte)773 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
774 {
775 return pte;
776 }
777
pmd_swp_mksoft_dirty(pmd_t pmd)778 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
779 {
780 return pmd;
781 }
782
pmd_swp_soft_dirty(pmd_t pmd)783 static inline int pmd_swp_soft_dirty(pmd_t pmd)
784 {
785 return 0;
786 }
787
pmd_swp_clear_soft_dirty(pmd_t pmd)788 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
789 {
790 return pmd;
791 }
792 #endif
793
794 #ifndef __HAVE_PFNMAP_TRACKING
795 /*
796 * Interfaces that can be used by architecture code to keep track of
797 * memory type of pfn mappings specified by the remap_pfn_range,
798 * vmf_insert_pfn.
799 */
800
801 /*
802 * track_pfn_remap is called when a _new_ pfn mapping is being established
803 * by remap_pfn_range() for physical range indicated by pfn and size.
804 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)805 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
806 unsigned long pfn, unsigned long addr,
807 unsigned long size)
808 {
809 return 0;
810 }
811
812 /*
813 * track_pfn_insert is called when a _new_ single pfn is established
814 * by vmf_insert_pfn().
815 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)816 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
817 pfn_t pfn)
818 {
819 }
820
821 /*
822 * track_pfn_copy is called when vma that is covering the pfnmap gets
823 * copied through copy_page_range().
824 */
track_pfn_copy(struct vm_area_struct * vma)825 static inline int track_pfn_copy(struct vm_area_struct *vma)
826 {
827 return 0;
828 }
829
830 /*
831 * untrack_pfn is called while unmapping a pfnmap for a region.
832 * untrack can be called for a specific region indicated by pfn and size or
833 * can be for the entire vma (in which case pfn, size are zero).
834 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)835 static inline void untrack_pfn(struct vm_area_struct *vma,
836 unsigned long pfn, unsigned long size)
837 {
838 }
839
840 /*
841 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
842 */
untrack_pfn_moved(struct vm_area_struct * vma)843 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
844 {
845 }
846 #else
847 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
848 unsigned long pfn, unsigned long addr,
849 unsigned long size);
850 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
851 pfn_t pfn);
852 extern int track_pfn_copy(struct vm_area_struct *vma);
853 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
854 unsigned long size);
855 extern void untrack_pfn_moved(struct vm_area_struct *vma);
856 #endif
857
858 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)859 static inline int is_zero_pfn(unsigned long pfn)
860 {
861 extern unsigned long zero_pfn;
862 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
863 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
864 }
865
866 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
867
868 #else
is_zero_pfn(unsigned long pfn)869 static inline int is_zero_pfn(unsigned long pfn)
870 {
871 extern unsigned long zero_pfn;
872 return pfn == zero_pfn;
873 }
874
my_zero_pfn(unsigned long addr)875 static inline unsigned long my_zero_pfn(unsigned long addr)
876 {
877 extern unsigned long zero_pfn;
878 return zero_pfn;
879 }
880 #endif
881
882 #ifdef CONFIG_MMU
883
884 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)885 static inline int pmd_trans_huge(pmd_t pmd)
886 {
887 return 0;
888 }
889 #ifndef pmd_write
pmd_write(pmd_t pmd)890 static inline int pmd_write(pmd_t pmd)
891 {
892 BUG();
893 return 0;
894 }
895 #endif /* pmd_write */
896 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
897
898 #ifndef pud_write
pud_write(pud_t pud)899 static inline int pud_write(pud_t pud)
900 {
901 BUG();
902 return 0;
903 }
904 #endif /* pud_write */
905
906 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
907 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
908 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)909 static inline int pud_trans_huge(pud_t pud)
910 {
911 return 0;
912 }
913 #endif
914
915 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)916 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
917 {
918 /*
919 * Depend on compiler for an atomic pmd read. NOTE: this is
920 * only going to work, if the pmdval_t isn't larger than
921 * an unsigned long.
922 */
923 return *pmdp;
924 }
925 #endif
926
927 #ifndef arch_needs_pgtable_deposit
928 #define arch_needs_pgtable_deposit() (false)
929 #endif
930 /*
931 * This function is meant to be used by sites walking pagetables with
932 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
933 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
934 * into a null pmd and the transhuge page fault can convert a null pmd
935 * into an hugepmd or into a regular pmd (if the hugepage allocation
936 * fails). While holding the mmap_sem in read mode the pmd becomes
937 * stable and stops changing under us only if it's not null and not a
938 * transhuge pmd. When those races occurs and this function makes a
939 * difference vs the standard pmd_none_or_clear_bad, the result is
940 * undefined so behaving like if the pmd was none is safe (because it
941 * can return none anyway). The compiler level barrier() is critically
942 * important to compute the two checks atomically on the same pmdval.
943 *
944 * For 32bit kernels with a 64bit large pmd_t this automatically takes
945 * care of reading the pmd atomically to avoid SMP race conditions
946 * against pmd_populate() when the mmap_sem is hold for reading by the
947 * caller (a special atomic read not done by "gcc" as in the generic
948 * version above, is also needed when THP is disabled because the page
949 * fault can populate the pmd from under us).
950 */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)951 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
952 {
953 pmd_t pmdval = pmd_read_atomic(pmd);
954 /*
955 * The barrier will stabilize the pmdval in a register or on
956 * the stack so that it will stop changing under the code.
957 *
958 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
959 * pmd_read_atomic is allowed to return a not atomic pmdval
960 * (for example pointing to an hugepage that has never been
961 * mapped in the pmd). The below checks will only care about
962 * the low part of the pmd with 32bit PAE x86 anyway, with the
963 * exception of pmd_none(). So the important thing is that if
964 * the low part of the pmd is found null, the high part will
965 * be also null or the pmd_none() check below would be
966 * confused.
967 */
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 barrier();
970 #endif
971 /*
972 * !pmd_present() checks for pmd migration entries
973 *
974 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
975 * But using that requires moving current function and pmd_trans_unstable()
976 * to linux/swapops.h to resovle dependency, which is too much code move.
977 *
978 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
979 * because !pmd_present() pages can only be under migration not swapped
980 * out.
981 *
982 * pmd_none() is preseved for future condition checks on pmd migration
983 * entries and not confusing with this function name, although it is
984 * redundant with !pmd_present().
985 */
986 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
987 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
988 return 1;
989 if (unlikely(pmd_bad(pmdval))) {
990 pmd_clear_bad(pmd);
991 return 1;
992 }
993 return 0;
994 }
995
996 /*
997 * This is a noop if Transparent Hugepage Support is not built into
998 * the kernel. Otherwise it is equivalent to
999 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1000 * places that already verified the pmd is not none and they want to
1001 * walk ptes while holding the mmap sem in read mode (write mode don't
1002 * need this). If THP is not enabled, the pmd can't go away under the
1003 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1004 * run a pmd_trans_unstable before walking the ptes after
1005 * split_huge_pmd returns (because it may have run when the pmd become
1006 * null, but then a page fault can map in a THP and not a regular page).
1007 */
pmd_trans_unstable(pmd_t * pmd)1008 static inline int pmd_trans_unstable(pmd_t *pmd)
1009 {
1010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1011 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1012 #else
1013 return 0;
1014 #endif
1015 }
1016
1017 #ifndef CONFIG_NUMA_BALANCING
1018 /*
1019 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1020 * the only case the kernel cares is for NUMA balancing and is only ever set
1021 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1022 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1023 * is the responsibility of the caller to distinguish between PROT_NONE
1024 * protections and NUMA hinting fault protections.
1025 */
pte_protnone(pte_t pte)1026 static inline int pte_protnone(pte_t pte)
1027 {
1028 return 0;
1029 }
1030
pmd_protnone(pmd_t pmd)1031 static inline int pmd_protnone(pmd_t pmd)
1032 {
1033 return 0;
1034 }
1035 #endif /* CONFIG_NUMA_BALANCING */
1036
1037 #endif /* CONFIG_MMU */
1038
1039 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1040
1041 #ifndef __PAGETABLE_P4D_FOLDED
1042 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1043 int p4d_clear_huge(p4d_t *p4d);
1044 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1045 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1046 {
1047 return 0;
1048 }
p4d_clear_huge(p4d_t * p4d)1049 static inline int p4d_clear_huge(p4d_t *p4d)
1050 {
1051 return 0;
1052 }
1053 #endif /* !__PAGETABLE_P4D_FOLDED */
1054
1055 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1056 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1057 int pud_clear_huge(pud_t *pud);
1058 int pmd_clear_huge(pmd_t *pmd);
1059 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1060 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1061 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1062 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1063 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1064 {
1065 return 0;
1066 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1067 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1068 {
1069 return 0;
1070 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1071 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1072 {
1073 return 0;
1074 }
p4d_clear_huge(p4d_t * p4d)1075 static inline int p4d_clear_huge(p4d_t *p4d)
1076 {
1077 return 0;
1078 }
pud_clear_huge(pud_t * pud)1079 static inline int pud_clear_huge(pud_t *pud)
1080 {
1081 return 0;
1082 }
pmd_clear_huge(pmd_t * pmd)1083 static inline int pmd_clear_huge(pmd_t *pmd)
1084 {
1085 return 0;
1086 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1087 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1088 {
1089 return 0;
1090 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1091 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1092 {
1093 return 0;
1094 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1095 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1096 {
1097 return 0;
1098 }
1099 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1100
1101 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1102 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103 /*
1104 * ARCHes with special requirements for evicting THP backing TLB entries can
1105 * implement this. Otherwise also, it can help optimize normal TLB flush in
1106 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1107 * entire TLB TLB if flush span is greater than a threshold, which will
1108 * likely be true for a single huge page. Thus a single thp flush will
1109 * invalidate the entire TLB which is not desitable.
1110 * e.g. see arch/arc: flush_pmd_tlb_range
1111 */
1112 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1113 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1114 #else
1115 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1116 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1117 #endif
1118 #endif
1119
1120 struct file;
1121 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1122 unsigned long size, pgprot_t *vma_prot);
1123
1124 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1125 static inline void init_espfix_bsp(void) { }
1126 #endif
1127
1128 extern void __init pgtable_cache_init(void);
1129
1130 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1131 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1132 {
1133 return true;
1134 }
1135
arch_has_pfn_modify_check(void)1136 static inline bool arch_has_pfn_modify_check(void)
1137 {
1138 return false;
1139 }
1140 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1141
1142 /*
1143 * Architecture PAGE_KERNEL_* fallbacks
1144 *
1145 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1146 * because they really don't support them, or the port needs to be updated to
1147 * reflect the required functionality. Below are a set of relatively safe
1148 * fallbacks, as best effort, which we can count on in lieu of the architectures
1149 * not defining them on their own yet.
1150 */
1151
1152 #ifndef PAGE_KERNEL_RO
1153 # define PAGE_KERNEL_RO PAGE_KERNEL
1154 #endif
1155
1156 #ifndef PAGE_KERNEL_EXEC
1157 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1158 #endif
1159
1160 #endif /* !__ASSEMBLY__ */
1161
1162 #ifndef io_remap_pfn_range
1163 #define io_remap_pfn_range remap_pfn_range
1164 #endif
1165
1166 #ifndef has_transparent_hugepage
1167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1168 #define has_transparent_hugepage() 1
1169 #else
1170 #define has_transparent_hugepage() 0
1171 #endif
1172 #endif
1173
1174 /*
1175 * On some architectures it depends on the mm if the p4d/pud or pmd
1176 * layer of the page table hierarchy is folded or not.
1177 */
1178 #ifndef mm_p4d_folded
1179 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1180 #endif
1181
1182 #ifndef mm_pud_folded
1183 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1184 #endif
1185
1186 #ifndef mm_pmd_folded
1187 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1188 #endif
1189
1190 #endif /* _ASM_GENERIC_PGTABLE_H */
1191