1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARM PL353 SMC driver
4 *
5 * Copyright (C) 2012 - 2018 Xilinx, Inc
6 * Author: Punnaiah Choudary Kalluri <punnaiah@xilinx.com>
7 * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of_platform.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/pl353-smc.h>
18 #include <linux/amba/bus.h>
19
20 /* Register definitions */
21 #define PL353_SMC_MEMC_STATUS_OFFS 0 /* Controller status reg, RO */
22 #define PL353_SMC_CFG_CLR_OFFS 0xC /* Clear config reg, WO */
23 #define PL353_SMC_DIRECT_CMD_OFFS 0x10 /* Direct command reg, WO */
24 #define PL353_SMC_SET_CYCLES_OFFS 0x14 /* Set cycles register, WO */
25 #define PL353_SMC_SET_OPMODE_OFFS 0x18 /* Set opmode register, WO */
26 #define PL353_SMC_ECC_STATUS_OFFS 0x400 /* ECC status register */
27 #define PL353_SMC_ECC_MEMCFG_OFFS 0x404 /* ECC mem config reg */
28 #define PL353_SMC_ECC_MEMCMD1_OFFS 0x408 /* ECC mem cmd1 reg */
29 #define PL353_SMC_ECC_MEMCMD2_OFFS 0x40C /* ECC mem cmd2 reg */
30 #define PL353_SMC_ECC_VALUE0_OFFS 0x418 /* ECC value 0 reg */
31
32 /* Controller status register specific constants */
33 #define PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT 6
34
35 /* Clear configuration register specific constants */
36 #define PL353_SMC_CFG_CLR_INT_CLR_1 0x10
37 #define PL353_SMC_CFG_CLR_ECC_INT_DIS_1 0x40
38 #define PL353_SMC_CFG_CLR_INT_DIS_1 0x2
39 #define PL353_SMC_CFG_CLR_DEFAULT_MASK (PL353_SMC_CFG_CLR_INT_CLR_1 | \
40 PL353_SMC_CFG_CLR_ECC_INT_DIS_1 | \
41 PL353_SMC_CFG_CLR_INT_DIS_1)
42
43 /* Set cycles register specific constants */
44 #define PL353_SMC_SET_CYCLES_T0_MASK 0xF
45 #define PL353_SMC_SET_CYCLES_T0_SHIFT 0
46 #define PL353_SMC_SET_CYCLES_T1_MASK 0xF
47 #define PL353_SMC_SET_CYCLES_T1_SHIFT 4
48 #define PL353_SMC_SET_CYCLES_T2_MASK 0x7
49 #define PL353_SMC_SET_CYCLES_T2_SHIFT 8
50 #define PL353_SMC_SET_CYCLES_T3_MASK 0x7
51 #define PL353_SMC_SET_CYCLES_T3_SHIFT 11
52 #define PL353_SMC_SET_CYCLES_T4_MASK 0x7
53 #define PL353_SMC_SET_CYCLES_T4_SHIFT 14
54 #define PL353_SMC_SET_CYCLES_T5_MASK 0x7
55 #define PL353_SMC_SET_CYCLES_T5_SHIFT 17
56 #define PL353_SMC_SET_CYCLES_T6_MASK 0xF
57 #define PL353_SMC_SET_CYCLES_T6_SHIFT 20
58
59 /* ECC status register specific constants */
60 #define PL353_SMC_ECC_STATUS_BUSY BIT(6)
61 #define PL353_SMC_ECC_REG_SIZE_OFFS 4
62
63 /* ECC memory config register specific constants */
64 #define PL353_SMC_ECC_MEMCFG_MODE_MASK 0xC
65 #define PL353_SMC_ECC_MEMCFG_MODE_SHIFT 2
66 #define PL353_SMC_ECC_MEMCFG_PGSIZE_MASK 0xC
67
68 #define PL353_SMC_DC_UPT_NAND_REGS ((4 << 23) | /* CS: NAND chip */ \
69 (2 << 21)) /* UpdateRegs operation */
70
71 #define PL353_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
72 (0 << 8) | /* Read command */ \
73 (0x30 << 16) | /* Read End command */ \
74 (1 << 24)) /* Read End command calid */
75
76 #define PL353_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
77 (5 << 8) | /* Read col change cmd */ \
78 (0xE0 << 16) | /* Read col change end cmd */ \
79 (1 << 24)) /* Read col change end cmd valid */
80 #define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
81 /**
82 * struct pl353_smc_data - Private smc driver structure
83 * @memclk: Pointer to the peripheral clock
84 * @aclk: Pointer to the APER clock
85 */
86 struct pl353_smc_data {
87 struct clk *memclk;
88 struct clk *aclk;
89 };
90
91 /* SMC virtual register base */
92 static void __iomem *pl353_smc_base;
93
94 /**
95 * pl353_smc_set_buswidth - Set memory buswidth
96 * @bw: Memory buswidth (8 | 16)
97 * Return: 0 on success or negative errno.
98 */
pl353_smc_set_buswidth(unsigned int bw)99 int pl353_smc_set_buswidth(unsigned int bw)
100 {
101 if (bw != PL353_SMC_MEM_WIDTH_8 && bw != PL353_SMC_MEM_WIDTH_16)
102 return -EINVAL;
103
104 writel(bw, pl353_smc_base + PL353_SMC_SET_OPMODE_OFFS);
105 writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
106 PL353_SMC_DIRECT_CMD_OFFS);
107
108 return 0;
109 }
110 EXPORT_SYMBOL_GPL(pl353_smc_set_buswidth);
111
112 /**
113 * pl353_smc_set_cycles - Set memory timing parameters
114 * @timings: NAND controller timing parameters
115 *
116 * Sets NAND chip specific timing parameters.
117 */
pl353_smc_set_cycles(u32 timings[])118 void pl353_smc_set_cycles(u32 timings[])
119 {
120 /*
121 * Set write pulse timing. This one is easy to extract:
122 *
123 * NWE_PULSE = tWP
124 */
125 timings[0] &= PL353_SMC_SET_CYCLES_T0_MASK;
126 timings[1] = (timings[1] & PL353_SMC_SET_CYCLES_T1_MASK) <<
127 PL353_SMC_SET_CYCLES_T1_SHIFT;
128 timings[2] = (timings[2] & PL353_SMC_SET_CYCLES_T2_MASK) <<
129 PL353_SMC_SET_CYCLES_T2_SHIFT;
130 timings[3] = (timings[3] & PL353_SMC_SET_CYCLES_T3_MASK) <<
131 PL353_SMC_SET_CYCLES_T3_SHIFT;
132 timings[4] = (timings[4] & PL353_SMC_SET_CYCLES_T4_MASK) <<
133 PL353_SMC_SET_CYCLES_T4_SHIFT;
134 timings[5] = (timings[5] & PL353_SMC_SET_CYCLES_T5_MASK) <<
135 PL353_SMC_SET_CYCLES_T5_SHIFT;
136 timings[6] = (timings[6] & PL353_SMC_SET_CYCLES_T6_MASK) <<
137 PL353_SMC_SET_CYCLES_T6_SHIFT;
138 timings[0] |= timings[1] | timings[2] | timings[3] |
139 timings[4] | timings[5] | timings[6];
140
141 writel(timings[0], pl353_smc_base + PL353_SMC_SET_CYCLES_OFFS);
142 writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
143 PL353_SMC_DIRECT_CMD_OFFS);
144 }
145 EXPORT_SYMBOL_GPL(pl353_smc_set_cycles);
146
147 /**
148 * pl353_smc_ecc_is_busy - Read ecc busy flag
149 * Return: the ecc_status bit from the ecc_status register. 1 = busy, 0 = idle
150 */
pl353_smc_ecc_is_busy(void)151 bool pl353_smc_ecc_is_busy(void)
152 {
153 return ((readl(pl353_smc_base + PL353_SMC_ECC_STATUS_OFFS) &
154 PL353_SMC_ECC_STATUS_BUSY) == PL353_SMC_ECC_STATUS_BUSY);
155 }
156 EXPORT_SYMBOL_GPL(pl353_smc_ecc_is_busy);
157
158 /**
159 * pl353_smc_get_ecc_val - Read ecc_valueN registers
160 * @ecc_reg: Index of the ecc_value reg (0..3)
161 * Return: the content of the requested ecc_value register.
162 *
163 * There are four valid ecc_value registers. The argument is truncated to stay
164 * within this valid boundary.
165 */
pl353_smc_get_ecc_val(int ecc_reg)166 u32 pl353_smc_get_ecc_val(int ecc_reg)
167 {
168 u32 addr, reg;
169
170 addr = PL353_SMC_ECC_VALUE0_OFFS +
171 (ecc_reg * PL353_SMC_ECC_REG_SIZE_OFFS);
172 reg = readl(pl353_smc_base + addr);
173
174 return reg;
175 }
176 EXPORT_SYMBOL_GPL(pl353_smc_get_ecc_val);
177
178 /**
179 * pl353_smc_get_nand_int_status_raw - Get NAND interrupt status bit
180 * Return: the raw_int_status1 bit from the memc_status register
181 */
pl353_smc_get_nand_int_status_raw(void)182 int pl353_smc_get_nand_int_status_raw(void)
183 {
184 u32 reg;
185
186 reg = readl(pl353_smc_base + PL353_SMC_MEMC_STATUS_OFFS);
187 reg >>= PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT;
188 reg &= 1;
189
190 return reg;
191 }
192 EXPORT_SYMBOL_GPL(pl353_smc_get_nand_int_status_raw);
193
194 /**
195 * pl353_smc_clr_nand_int - Clear NAND interrupt
196 */
pl353_smc_clr_nand_int(void)197 void pl353_smc_clr_nand_int(void)
198 {
199 writel(PL353_SMC_CFG_CLR_INT_CLR_1,
200 pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
201 }
202 EXPORT_SYMBOL_GPL(pl353_smc_clr_nand_int);
203
204 /**
205 * pl353_smc_set_ecc_mode - Set SMC ECC mode
206 * @mode: ECC mode (BYPASS, APB, MEM)
207 * Return: 0 on success or negative errno.
208 */
pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode)209 int pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode)
210 {
211 u32 reg;
212 int ret = 0;
213
214 switch (mode) {
215 case PL353_SMC_ECCMODE_BYPASS:
216 case PL353_SMC_ECCMODE_APB:
217 case PL353_SMC_ECCMODE_MEM:
218
219 reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
220 reg &= ~PL353_SMC_ECC_MEMCFG_MODE_MASK;
221 reg |= mode << PL353_SMC_ECC_MEMCFG_MODE_SHIFT;
222 writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
223
224 break;
225 default:
226 ret = -EINVAL;
227 }
228
229 return ret;
230 }
231 EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_mode);
232
233 /**
234 * pl353_smc_set_ecc_pg_size - Set SMC ECC page size
235 * @pg_sz: ECC page size
236 * Return: 0 on success or negative errno.
237 */
pl353_smc_set_ecc_pg_size(unsigned int pg_sz)238 int pl353_smc_set_ecc_pg_size(unsigned int pg_sz)
239 {
240 u32 reg, sz;
241
242 switch (pg_sz) {
243 case 0:
244 sz = 0;
245 break;
246 case SZ_512:
247 sz = 1;
248 break;
249 case SZ_1K:
250 sz = 2;
251 break;
252 case SZ_2K:
253 sz = 3;
254 break;
255 default:
256 return -EINVAL;
257 }
258
259 reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
260 reg &= ~PL353_SMC_ECC_MEMCFG_PGSIZE_MASK;
261 reg |= sz;
262 writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_pg_size);
267
pl353_smc_suspend(struct device * dev)268 static int __maybe_unused pl353_smc_suspend(struct device *dev)
269 {
270 struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
271
272 clk_disable(pl353_smc->memclk);
273 clk_disable(pl353_smc->aclk);
274
275 return 0;
276 }
277
pl353_smc_resume(struct device * dev)278 static int __maybe_unused pl353_smc_resume(struct device *dev)
279 {
280 int ret;
281 struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
282
283 ret = clk_enable(pl353_smc->aclk);
284 if (ret) {
285 dev_err(dev, "Cannot enable axi domain clock.\n");
286 return ret;
287 }
288
289 ret = clk_enable(pl353_smc->memclk);
290 if (ret) {
291 dev_err(dev, "Cannot enable memory clock.\n");
292 clk_disable(pl353_smc->aclk);
293 return ret;
294 }
295
296 return ret;
297 }
298
299 static struct amba_driver pl353_smc_driver;
300
301 static SIMPLE_DEV_PM_OPS(pl353_smc_dev_pm_ops, pl353_smc_suspend,
302 pl353_smc_resume);
303
304 /**
305 * pl353_smc_init_nand_interface - Initialize the NAND interface
306 * @adev: Pointer to the amba_device struct
307 * @nand_node: Pointer to the pl353_nand device_node struct
308 */
pl353_smc_init_nand_interface(struct amba_device * adev,struct device_node * nand_node)309 static void pl353_smc_init_nand_interface(struct amba_device *adev,
310 struct device_node *nand_node)
311 {
312 unsigned long timeout;
313
314 pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
315 writel(PL353_SMC_CFG_CLR_INT_CLR_1,
316 pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
317 writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
318 PL353_SMC_DIRECT_CMD_OFFS);
319
320 timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
321 /* Wait till the ECC operation is complete */
322 do {
323 if (pl353_smc_ecc_is_busy())
324 cpu_relax();
325 else
326 break;
327 } while (!time_after_eq(jiffies, timeout));
328
329 if (time_after_eq(jiffies, timeout))
330 return;
331
332 writel(PL353_NAND_ECC_CMD1,
333 pl353_smc_base + PL353_SMC_ECC_MEMCMD1_OFFS);
334 writel(PL353_NAND_ECC_CMD2,
335 pl353_smc_base + PL353_SMC_ECC_MEMCMD2_OFFS);
336 }
337
338 static const struct of_device_id pl353_smc_supported_children[] = {
339 {
340 .compatible = "cfi-flash"
341 },
342 {
343 .compatible = "arm,pl353-nand-r2p1",
344 .data = pl353_smc_init_nand_interface
345 },
346 {}
347 };
348
pl353_smc_probe(struct amba_device * adev,const struct amba_id * id)349 static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id)
350 {
351 struct pl353_smc_data *pl353_smc;
352 struct device_node *child;
353 struct resource *res;
354 int err;
355 struct device_node *of_node = adev->dev.of_node;
356 static void (*init)(struct amba_device *adev,
357 struct device_node *nand_node);
358 const struct of_device_id *match = NULL;
359
360 pl353_smc = devm_kzalloc(&adev->dev, sizeof(*pl353_smc), GFP_KERNEL);
361 if (!pl353_smc)
362 return -ENOMEM;
363
364 /* Get the NAND controller virtual address */
365 res = &adev->res;
366 pl353_smc_base = devm_ioremap_resource(&adev->dev, res);
367 if (IS_ERR(pl353_smc_base))
368 return PTR_ERR(pl353_smc_base);
369
370 pl353_smc->aclk = devm_clk_get(&adev->dev, "apb_pclk");
371 if (IS_ERR(pl353_smc->aclk)) {
372 dev_err(&adev->dev, "aclk clock not found.\n");
373 return PTR_ERR(pl353_smc->aclk);
374 }
375
376 pl353_smc->memclk = devm_clk_get(&adev->dev, "memclk");
377 if (IS_ERR(pl353_smc->memclk)) {
378 dev_err(&adev->dev, "memclk clock not found.\n");
379 return PTR_ERR(pl353_smc->memclk);
380 }
381
382 err = clk_prepare_enable(pl353_smc->aclk);
383 if (err) {
384 dev_err(&adev->dev, "Unable to enable AXI clock.\n");
385 return err;
386 }
387
388 err = clk_prepare_enable(pl353_smc->memclk);
389 if (err) {
390 dev_err(&adev->dev, "Unable to enable memory clock.\n");
391 goto out_clk_dis_aper;
392 }
393
394 amba_set_drvdata(adev, pl353_smc);
395
396 /* clear interrupts */
397 writel(PL353_SMC_CFG_CLR_DEFAULT_MASK,
398 pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
399
400 /* Find compatible children. Only a single child is supported */
401 for_each_available_child_of_node(of_node, child) {
402 match = of_match_node(pl353_smc_supported_children, child);
403 if (!match) {
404 dev_warn(&adev->dev, "unsupported child node\n");
405 continue;
406 }
407 break;
408 }
409 if (!match) {
410 dev_err(&adev->dev, "no matching children\n");
411 goto out_clk_disable;
412 }
413
414 init = match->data;
415 if (init)
416 init(adev, child);
417 of_platform_device_create(child, NULL, &adev->dev);
418
419 return 0;
420
421 out_clk_disable:
422 clk_disable_unprepare(pl353_smc->memclk);
423 out_clk_dis_aper:
424 clk_disable_unprepare(pl353_smc->aclk);
425
426 return err;
427 }
428
pl353_smc_remove(struct amba_device * adev)429 static int pl353_smc_remove(struct amba_device *adev)
430 {
431 struct pl353_smc_data *pl353_smc = amba_get_drvdata(adev);
432
433 clk_disable_unprepare(pl353_smc->memclk);
434 clk_disable_unprepare(pl353_smc->aclk);
435
436 return 0;
437 }
438
439 static const struct amba_id pl353_ids[] = {
440 {
441 .id = 0x00041353,
442 .mask = 0x000fffff,
443 },
444 { 0, 0 },
445 };
446 MODULE_DEVICE_TABLE(amba, pl353_ids);
447
448 static struct amba_driver pl353_smc_driver = {
449 .drv = {
450 .owner = THIS_MODULE,
451 .name = "pl353-smc",
452 .pm = &pl353_smc_dev_pm_ops,
453 },
454 .id_table = pl353_ids,
455 .probe = pl353_smc_probe,
456 .remove = pl353_smc_remove,
457 };
458
459 module_amba_driver(pl353_smc_driver);
460
461 MODULE_AUTHOR("Xilinx, Inc.");
462 MODULE_DESCRIPTION("ARM PL353 SMC Driver");
463 MODULE_LICENSE("GPL");
464