1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * PowerPC Memory Protection Keys management
4 *
5 * Copyright 2017, Ram Pai, IBM Corporation.
6 */
7
8 #include <asm/mman.h>
9 #include <asm/setup.h>
10 #include <linux/pkeys.h>
11 #include <linux/of_device.h>
12
13 DEFINE_STATIC_KEY_TRUE(pkey_disabled);
14 bool pkey_execute_disable_supported;
15 int pkeys_total; /* Total pkeys as per device tree */
16 bool pkeys_devtree_defined; /* pkey property exported by device tree */
17 u32 initial_allocation_mask; /* Bits set for the initially allocated keys */
18 u32 reserved_allocation_mask; /* Bits set for reserved keys */
19 u64 pkey_amr_mask; /* Bits in AMR not to be touched */
20 u64 pkey_iamr_mask; /* Bits in AMR not to be touched */
21 u64 pkey_uamor_mask; /* Bits in UMOR not to be touched */
22 int execute_only_key = 2;
23
24 #define AMR_BITS_PER_PKEY 2
25 #define AMR_RD_BIT 0x1UL
26 #define AMR_WR_BIT 0x2UL
27 #define IAMR_EX_BIT 0x1UL
28 #define PKEY_REG_BITS (sizeof(u64)*8)
29 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
30
scan_pkey_feature(void)31 static void scan_pkey_feature(void)
32 {
33 u32 vals[2];
34 struct device_node *cpu;
35
36 cpu = of_find_node_by_type(NULL, "cpu");
37 if (!cpu)
38 return;
39
40 if (of_property_read_u32_array(cpu,
41 "ibm,processor-storage-keys", vals, 2))
42 return;
43
44 /*
45 * Since any pkey can be used for data or execute, we will just treat
46 * all keys as equal and track them as one entity.
47 */
48 pkeys_total = vals[0];
49 pkeys_devtree_defined = true;
50 }
51
pkey_mmu_enabled(void)52 static inline bool pkey_mmu_enabled(void)
53 {
54 if (firmware_has_feature(FW_FEATURE_LPAR))
55 return pkeys_total;
56 else
57 return cpu_has_feature(CPU_FTR_PKEY);
58 }
59
pkey_initialize(void)60 int pkey_initialize(void)
61 {
62 int os_reserved, i;
63
64 /*
65 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
66 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
67 * Ensure that the bits a distinct.
68 */
69 BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
70 (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
71
72 /*
73 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
74 * in the vmaflag. Make sure that is really the case.
75 */
76 BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
77 __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
78 != (sizeof(u64) * BITS_PER_BYTE));
79
80 /* scan the device tree for pkey feature */
81 scan_pkey_feature();
82
83 /*
84 * Let's assume 32 pkeys on P8 bare metal, if its not defined by device
85 * tree. We make this exception since skiboot forgot to expose this
86 * property on power8.
87 */
88 if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) &&
89 cpu_has_feature(CPU_FTRS_POWER8))
90 pkeys_total = 32;
91
92 /*
93 * Adjust the upper limit, based on the number of bits supported by
94 * arch-neutral code.
95 */
96 pkeys_total = min_t(int, pkeys_total,
97 ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
98
99 if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
100 static_branch_enable(&pkey_disabled);
101 else
102 static_branch_disable(&pkey_disabled);
103
104 if (static_branch_likely(&pkey_disabled))
105 return 0;
106
107 /*
108 * The device tree cannot be relied to indicate support for
109 * execute_disable support. Instead we use a PVR check.
110 */
111 if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
112 pkey_execute_disable_supported = false;
113 else
114 pkey_execute_disable_supported = true;
115
116 #ifdef CONFIG_PPC_4K_PAGES
117 /*
118 * The OS can manage only 8 pkeys due to its inability to represent them
119 * in the Linux 4K PTE.
120 */
121 os_reserved = pkeys_total - 8;
122 #else
123 os_reserved = 0;
124 #endif
125 /* Bits are in LE format. */
126 reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
127
128 /* register mask is in BE format */
129 pkey_amr_mask = ~0x0ul;
130 pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
131
132 pkey_iamr_mask = ~0x0ul;
133 pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
134 pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
135
136 pkey_uamor_mask = ~0x0ul;
137 pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
138 pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
139
140 /* mark the rest of the keys as reserved and hence unavailable */
141 for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
142 reserved_allocation_mask |= (0x1 << i);
143 pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
144 }
145 initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
146
147 if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
148 /*
149 * Insufficient number of keys to support
150 * execute only key. Mark it unavailable.
151 * Any AMR, UAMOR, IAMR bit set for
152 * this key is irrelevant since this key
153 * can never be allocated.
154 */
155 execute_only_key = -1;
156 }
157
158 return 0;
159 }
160
161 arch_initcall(pkey_initialize);
162
pkey_mm_init(struct mm_struct * mm)163 void pkey_mm_init(struct mm_struct *mm)
164 {
165 if (static_branch_likely(&pkey_disabled))
166 return;
167 mm_pkey_allocation_map(mm) = initial_allocation_mask;
168 mm->context.execute_only_pkey = execute_only_key;
169 }
170
read_amr(void)171 static inline u64 read_amr(void)
172 {
173 return mfspr(SPRN_AMR);
174 }
175
write_amr(u64 value)176 static inline void write_amr(u64 value)
177 {
178 mtspr(SPRN_AMR, value);
179 }
180
read_iamr(void)181 static inline u64 read_iamr(void)
182 {
183 if (!likely(pkey_execute_disable_supported))
184 return 0x0UL;
185
186 return mfspr(SPRN_IAMR);
187 }
188
write_iamr(u64 value)189 static inline void write_iamr(u64 value)
190 {
191 if (!likely(pkey_execute_disable_supported))
192 return;
193
194 mtspr(SPRN_IAMR, value);
195 }
196
read_uamor(void)197 static inline u64 read_uamor(void)
198 {
199 return mfspr(SPRN_UAMOR);
200 }
201
write_uamor(u64 value)202 static inline void write_uamor(u64 value)
203 {
204 mtspr(SPRN_UAMOR, value);
205 }
206
is_pkey_enabled(int pkey)207 static bool is_pkey_enabled(int pkey)
208 {
209 u64 uamor = read_uamor();
210 u64 pkey_bits = 0x3ul << pkeyshift(pkey);
211 u64 uamor_pkey_bits = (uamor & pkey_bits);
212
213 /*
214 * Both the bits in UAMOR corresponding to the key should be set or
215 * reset.
216 */
217 WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
218 return !!(uamor_pkey_bits);
219 }
220
init_amr(int pkey,u8 init_bits)221 static inline void init_amr(int pkey, u8 init_bits)
222 {
223 u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
224 u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
225
226 write_amr(old_amr | new_amr_bits);
227 }
228
init_iamr(int pkey,u8 init_bits)229 static inline void init_iamr(int pkey, u8 init_bits)
230 {
231 u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
232 u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
233
234 write_iamr(old_iamr | new_iamr_bits);
235 }
236
237 /*
238 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
239 * specified in @init_val.
240 */
__arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)241 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
242 unsigned long init_val)
243 {
244 u64 new_amr_bits = 0x0ul;
245 u64 new_iamr_bits = 0x0ul;
246
247 if (!is_pkey_enabled(pkey))
248 return -EINVAL;
249
250 if (init_val & PKEY_DISABLE_EXECUTE) {
251 if (!pkey_execute_disable_supported)
252 return -EINVAL;
253 new_iamr_bits |= IAMR_EX_BIT;
254 }
255 init_iamr(pkey, new_iamr_bits);
256
257 /* Set the bits we need in AMR: */
258 if (init_val & PKEY_DISABLE_ACCESS)
259 new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
260 else if (init_val & PKEY_DISABLE_WRITE)
261 new_amr_bits |= AMR_WR_BIT;
262
263 init_amr(pkey, new_amr_bits);
264 return 0;
265 }
266
thread_pkey_regs_save(struct thread_struct * thread)267 void thread_pkey_regs_save(struct thread_struct *thread)
268 {
269 if (static_branch_likely(&pkey_disabled))
270 return;
271
272 /*
273 * TODO: Skip saving registers if @thread hasn't used any keys yet.
274 */
275 thread->amr = read_amr();
276 thread->iamr = read_iamr();
277 thread->uamor = read_uamor();
278 }
279
thread_pkey_regs_restore(struct thread_struct * new_thread,struct thread_struct * old_thread)280 void thread_pkey_regs_restore(struct thread_struct *new_thread,
281 struct thread_struct *old_thread)
282 {
283 if (static_branch_likely(&pkey_disabled))
284 return;
285
286 if (old_thread->amr != new_thread->amr)
287 write_amr(new_thread->amr);
288 if (old_thread->iamr != new_thread->iamr)
289 write_iamr(new_thread->iamr);
290 if (old_thread->uamor != new_thread->uamor)
291 write_uamor(new_thread->uamor);
292 }
293
thread_pkey_regs_init(struct thread_struct * thread)294 void thread_pkey_regs_init(struct thread_struct *thread)
295 {
296 if (static_branch_likely(&pkey_disabled))
297 return;
298
299 thread->amr = pkey_amr_mask;
300 thread->iamr = pkey_iamr_mask;
301 thread->uamor = pkey_uamor_mask;
302
303 write_uamor(pkey_uamor_mask);
304 write_amr(pkey_amr_mask);
305 write_iamr(pkey_iamr_mask);
306 }
307
pkey_allows_readwrite(int pkey)308 static inline bool pkey_allows_readwrite(int pkey)
309 {
310 int pkey_shift = pkeyshift(pkey);
311
312 if (!is_pkey_enabled(pkey))
313 return true;
314
315 return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
316 }
317
__execute_only_pkey(struct mm_struct * mm)318 int __execute_only_pkey(struct mm_struct *mm)
319 {
320 return mm->context.execute_only_pkey;
321 }
322
vma_is_pkey_exec_only(struct vm_area_struct * vma)323 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
324 {
325 /* Do this check first since the vm_flags should be hot */
326 if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
327 return false;
328
329 return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
330 }
331
332 /*
333 * This should only be called for *plain* mprotect calls.
334 */
__arch_override_mprotect_pkey(struct vm_area_struct * vma,int prot,int pkey)335 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
336 int pkey)
337 {
338 /*
339 * If the currently associated pkey is execute-only, but the requested
340 * protection is not execute-only, move it back to the default pkey.
341 */
342 if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
343 return 0;
344
345 /*
346 * The requested protection is execute-only. Hence let's use an
347 * execute-only pkey.
348 */
349 if (prot == PROT_EXEC) {
350 pkey = execute_only_pkey(vma->vm_mm);
351 if (pkey > 0)
352 return pkey;
353 }
354
355 /* Nothing to override. */
356 return vma_pkey(vma);
357 }
358
pkey_access_permitted(int pkey,bool write,bool execute)359 static bool pkey_access_permitted(int pkey, bool write, bool execute)
360 {
361 int pkey_shift;
362 u64 amr;
363
364 if (!is_pkey_enabled(pkey))
365 return true;
366
367 pkey_shift = pkeyshift(pkey);
368 if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift)))
369 return true;
370
371 amr = read_amr(); /* Delay reading amr until absolutely needed */
372 return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) ||
373 (write && !(amr & (AMR_WR_BIT << pkey_shift))));
374 }
375
arch_pte_access_permitted(u64 pte,bool write,bool execute)376 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
377 {
378 if (static_branch_likely(&pkey_disabled))
379 return true;
380
381 return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
382 }
383
384 /*
385 * We only want to enforce protection keys on the current thread because we
386 * effectively have no access to AMR/IAMR for other threads or any way to tell
387 * which AMR/IAMR in a threaded process we could use.
388 *
389 * So do not enforce things if the VMA is not from the current mm, or if we are
390 * in a kernel thread.
391 */
vma_is_foreign(struct vm_area_struct * vma)392 static inline bool vma_is_foreign(struct vm_area_struct *vma)
393 {
394 if (!current->mm)
395 return true;
396
397 /* if it is not our ->mm, it has to be foreign */
398 if (current->mm != vma->vm_mm)
399 return true;
400
401 return false;
402 }
403
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)404 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
405 bool execute, bool foreign)
406 {
407 if (static_branch_likely(&pkey_disabled))
408 return true;
409 /*
410 * Do not enforce our key-permissions on a foreign vma.
411 */
412 if (foreign || vma_is_foreign(vma))
413 return true;
414
415 return pkey_access_permitted(vma_pkey(vma), write, execute);
416 }
417