1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4 * Author: James.Qian.Wang <james.qian.wang@arm.com>
5 *
6 */
7
8 #include <drm/drm_print.h>
9 #include <linux/clk.h>
10 #include "komeda_dev.h"
11 #include "komeda_kms.h"
12 #include "komeda_pipeline.h"
13 #include "komeda_framebuffer.h"
14
is_switching_user(void * old,void * new)15 static inline bool is_switching_user(void *old, void *new)
16 {
17 if (!old || !new)
18 return false;
19
20 return old != new;
21 }
22
23 static struct komeda_pipeline_state *
komeda_pipeline_get_state(struct komeda_pipeline * pipe,struct drm_atomic_state * state)24 komeda_pipeline_get_state(struct komeda_pipeline *pipe,
25 struct drm_atomic_state *state)
26 {
27 struct drm_private_state *priv_st;
28
29 priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
30 if (IS_ERR(priv_st))
31 return ERR_CAST(priv_st);
32
33 return priv_to_pipe_st(priv_st);
34 }
35
36 struct komeda_pipeline_state *
komeda_pipeline_get_old_state(struct komeda_pipeline * pipe,struct drm_atomic_state * state)37 komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
38 struct drm_atomic_state *state)
39 {
40 struct drm_private_state *priv_st;
41
42 priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
43 if (priv_st)
44 return priv_to_pipe_st(priv_st);
45 return NULL;
46 }
47
48 static struct komeda_pipeline_state *
komeda_pipeline_get_new_state(struct komeda_pipeline * pipe,struct drm_atomic_state * state)49 komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
50 struct drm_atomic_state *state)
51 {
52 struct drm_private_state *priv_st;
53
54 priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
55 if (priv_st)
56 return priv_to_pipe_st(priv_st);
57 return NULL;
58 }
59
60 /* Assign pipeline for crtc */
61 static struct komeda_pipeline_state *
komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline * pipe,struct drm_atomic_state * state,struct drm_crtc * crtc)62 komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
63 struct drm_atomic_state *state,
64 struct drm_crtc *crtc)
65 {
66 struct komeda_pipeline_state *st;
67
68 st = komeda_pipeline_get_state(pipe, state);
69 if (IS_ERR(st))
70 return st;
71
72 if (is_switching_user(crtc, st->crtc)) {
73 DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
74 drm_crtc_index(crtc), pipe->id);
75 return ERR_PTR(-EBUSY);
76 }
77
78 /* pipeline only can be disabled when the it is free or unused */
79 if (!crtc && st->active_comps) {
80 DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
81 return ERR_PTR(-EBUSY);
82 }
83
84 st->crtc = crtc;
85
86 if (crtc) {
87 struct komeda_crtc_state *kcrtc_st;
88
89 kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
90 crtc));
91
92 kcrtc_st->active_pipes |= BIT(pipe->id);
93 kcrtc_st->affected_pipes |= BIT(pipe->id);
94 }
95 return st;
96 }
97
98 static struct komeda_component_state *
komeda_component_get_state(struct komeda_component * c,struct drm_atomic_state * state)99 komeda_component_get_state(struct komeda_component *c,
100 struct drm_atomic_state *state)
101 {
102 struct drm_private_state *priv_st;
103
104 WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
105
106 priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
107 if (IS_ERR(priv_st))
108 return ERR_CAST(priv_st);
109
110 return priv_to_comp_st(priv_st);
111 }
112
113 static struct komeda_component_state *
komeda_component_get_old_state(struct komeda_component * c,struct drm_atomic_state * state)114 komeda_component_get_old_state(struct komeda_component *c,
115 struct drm_atomic_state *state)
116 {
117 struct drm_private_state *priv_st;
118
119 priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
120 if (priv_st)
121 return priv_to_comp_st(priv_st);
122 return NULL;
123 }
124
125 /**
126 * komeda_component_get_state_and_set_user()
127 *
128 * @c: component to get state and set user
129 * @state: global atomic state
130 * @user: direct user, the binding user
131 * @crtc: the CRTC user, the big boss :)
132 *
133 * This function accepts two users:
134 * - The direct user: can be plane/crtc/wb_connector depends on component
135 * - The big boss (CRTC)
136 * CRTC is the big boss (the final user), because all component resources
137 * eventually will be assigned to CRTC, like the layer will be binding to
138 * kms_plane, but kms plane will be binding to a CRTC eventually.
139 *
140 * The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
141 * independent and can be assigned to CRTC freely, but belongs to a specific
142 * pipeline, only pipeline can be shared between crtc, and pipeline as a whole
143 * (include all the internal components) assigned to a specific CRTC.
144 *
145 * So when set a user to komeda_component, need first to check the status of
146 * component->pipeline to see if the pipeline is available on this specific
147 * CRTC. if the pipeline is busy (assigned to another CRTC), even the required
148 * component is free, the component still cannot be assigned to the direct user.
149 */
150 static struct komeda_component_state *
komeda_component_get_state_and_set_user(struct komeda_component * c,struct drm_atomic_state * state,void * user,struct drm_crtc * crtc)151 komeda_component_get_state_and_set_user(struct komeda_component *c,
152 struct drm_atomic_state *state,
153 void *user,
154 struct drm_crtc *crtc)
155 {
156 struct komeda_pipeline_state *pipe_st;
157 struct komeda_component_state *st;
158
159 /* First check if the pipeline is available */
160 pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
161 state, crtc);
162 if (IS_ERR(pipe_st))
163 return ERR_CAST(pipe_st);
164
165 st = komeda_component_get_state(c, state);
166 if (IS_ERR(st))
167 return st;
168
169 /* check if the component has been occupied */
170 if (is_switching_user(user, st->binding_user)) {
171 DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
172 return ERR_PTR(-EBUSY);
173 }
174
175 st->binding_user = user;
176 /* mark the component as active if user is valid */
177 if (st->binding_user)
178 pipe_st->active_comps |= BIT(c->id);
179
180 return st;
181 }
182
183 static void
komeda_component_add_input(struct komeda_component_state * state,struct komeda_component_output * input,int idx)184 komeda_component_add_input(struct komeda_component_state *state,
185 struct komeda_component_output *input,
186 int idx)
187 {
188 struct komeda_component *c = state->component;
189
190 WARN_ON((idx < 0 || idx >= c->max_active_inputs));
191
192 /* since the inputs[i] is only valid when it is active. So if a input[i]
193 * is a newly enabled input which switches from disable to enable, then
194 * the old inputs[i] is undefined (NOT zeroed), we can not rely on
195 * memcmp, but directly mark it changed
196 */
197 if (!has_bit(idx, state->affected_inputs) ||
198 memcmp(&state->inputs[idx], input, sizeof(*input))) {
199 memcpy(&state->inputs[idx], input, sizeof(*input));
200 state->changed_active_inputs |= BIT(idx);
201 }
202 state->active_inputs |= BIT(idx);
203 state->affected_inputs |= BIT(idx);
204 }
205
206 static int
komeda_component_check_input(struct komeda_component_state * state,struct komeda_component_output * input,int idx)207 komeda_component_check_input(struct komeda_component_state *state,
208 struct komeda_component_output *input,
209 int idx)
210 {
211 struct komeda_component *c = state->component;
212
213 if ((idx < 0) || (idx >= c->max_active_inputs)) {
214 DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
215 input->component->name, c->name, idx);
216 return -EINVAL;
217 }
218
219 if (has_bit(idx, state->active_inputs)) {
220 DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
221 input->component->name, c->name, idx);
222 return -EINVAL;
223 }
224
225 return 0;
226 }
227
228 static void
komeda_component_set_output(struct komeda_component_output * output,struct komeda_component * comp,u8 output_port)229 komeda_component_set_output(struct komeda_component_output *output,
230 struct komeda_component *comp,
231 u8 output_port)
232 {
233 output->component = comp;
234 output->output_port = output_port;
235 }
236
237 static int
komeda_component_validate_private(struct komeda_component * c,struct komeda_component_state * st)238 komeda_component_validate_private(struct komeda_component *c,
239 struct komeda_component_state *st)
240 {
241 int err;
242
243 if (!c->funcs->validate)
244 return 0;
245
246 err = c->funcs->validate(c, st);
247 if (err)
248 DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
249
250 return err;
251 }
252
253 /* Get current available scaler from the component->supported_outputs */
254 static struct komeda_scaler *
komeda_component_get_avail_scaler(struct komeda_component * c,struct drm_atomic_state * state)255 komeda_component_get_avail_scaler(struct komeda_component *c,
256 struct drm_atomic_state *state)
257 {
258 struct komeda_pipeline_state *pipe_st;
259 u32 avail_scalers;
260
261 pipe_st = komeda_pipeline_get_state(c->pipeline, state);
262 if (!pipe_st)
263 return NULL;
264
265 avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
266 KOMEDA_PIPELINE_SCALERS;
267
268 c = komeda_component_pickup_output(c, avail_scalers);
269
270 return to_scaler(c);
271 }
272
273 static void
komeda_rotate_data_flow(struct komeda_data_flow_cfg * dflow,u32 rot)274 komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
275 {
276 if (drm_rotation_90_or_270(rot)) {
277 swap(dflow->in_h, dflow->in_w);
278 swap(dflow->total_in_h, dflow->total_in_w);
279 }
280 }
281
282 static int
komeda_layer_check_cfg(struct komeda_layer * layer,struct komeda_fb * kfb,struct komeda_data_flow_cfg * dflow)283 komeda_layer_check_cfg(struct komeda_layer *layer,
284 struct komeda_fb *kfb,
285 struct komeda_data_flow_cfg *dflow)
286 {
287 u32 src_x, src_y, src_w, src_h;
288
289 if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
290 return -EINVAL;
291
292 if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
293 src_x = dflow->out_x;
294 src_y = dflow->out_y;
295 src_w = dflow->out_w;
296 src_h = dflow->out_h;
297 } else {
298 src_x = dflow->in_x;
299 src_y = dflow->in_y;
300 src_w = dflow->in_w;
301 src_h = dflow->in_h;
302 }
303
304 if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
305 return -EINVAL;
306
307 if (!in_range(&layer->hsize_in, src_w)) {
308 DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
309 return -EINVAL;
310 }
311
312 if (!in_range(&layer->vsize_in, src_h)) {
313 DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
314 return -EINVAL;
315 }
316
317 return 0;
318 }
319
320 static int
komeda_layer_validate(struct komeda_layer * layer,struct komeda_plane_state * kplane_st,struct komeda_data_flow_cfg * dflow)321 komeda_layer_validate(struct komeda_layer *layer,
322 struct komeda_plane_state *kplane_st,
323 struct komeda_data_flow_cfg *dflow)
324 {
325 struct drm_plane_state *plane_st = &kplane_st->base;
326 struct drm_framebuffer *fb = plane_st->fb;
327 struct komeda_fb *kfb = to_kfb(fb);
328 struct komeda_component_state *c_st;
329 struct komeda_layer_state *st;
330 int i, err;
331
332 err = komeda_layer_check_cfg(layer, kfb, dflow);
333 if (err)
334 return err;
335
336 c_st = komeda_component_get_state_and_set_user(&layer->base,
337 plane_st->state, plane_st->plane, plane_st->crtc);
338 if (IS_ERR(c_st))
339 return PTR_ERR(c_st);
340
341 st = to_layer_st(c_st);
342
343 st->rot = dflow->rot;
344
345 if (fb->modifier) {
346 st->hsize = kfb->aligned_w;
347 st->vsize = kfb->aligned_h;
348 st->afbc_crop_l = dflow->in_x;
349 st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
350 st->afbc_crop_t = dflow->in_y;
351 st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
352 } else {
353 st->hsize = dflow->in_w;
354 st->vsize = dflow->in_h;
355 st->afbc_crop_l = 0;
356 st->afbc_crop_r = 0;
357 st->afbc_crop_t = 0;
358 st->afbc_crop_b = 0;
359 }
360
361 for (i = 0; i < fb->format->num_planes; i++)
362 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
363 dflow->in_y, i);
364
365 err = komeda_component_validate_private(&layer->base, c_st);
366 if (err)
367 return err;
368
369 /* update the data flow for the next stage */
370 komeda_component_set_output(&dflow->input, &layer->base, 0);
371
372 /*
373 * The rotation has been handled by layer, so adjusted the data flow for
374 * the next stage.
375 */
376 komeda_rotate_data_flow(dflow, st->rot);
377
378 return 0;
379 }
380
381 static int
komeda_wb_layer_validate(struct komeda_layer * wb_layer,struct drm_connector_state * conn_st,struct komeda_data_flow_cfg * dflow)382 komeda_wb_layer_validate(struct komeda_layer *wb_layer,
383 struct drm_connector_state *conn_st,
384 struct komeda_data_flow_cfg *dflow)
385 {
386 struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
387 struct komeda_component_state *c_st;
388 struct komeda_layer_state *st;
389 int i, err;
390
391 err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
392 if (err)
393 return err;
394
395 c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
396 conn_st->state, conn_st->connector, conn_st->crtc);
397 if (IS_ERR(c_st))
398 return PTR_ERR(c_st);
399
400 st = to_layer_st(c_st);
401
402 st->hsize = dflow->out_w;
403 st->vsize = dflow->out_h;
404
405 for (i = 0; i < kfb->base.format->num_planes; i++)
406 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
407 dflow->out_y, i);
408
409 komeda_component_add_input(&st->base, &dflow->input, 0);
410 komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
411
412 return 0;
413 }
414
scaling_ratio_valid(u32 size_in,u32 size_out,u32 max_upscaling,u32 max_downscaling)415 static bool scaling_ratio_valid(u32 size_in, u32 size_out,
416 u32 max_upscaling, u32 max_downscaling)
417 {
418 if (size_out > size_in * max_upscaling)
419 return false;
420 else if (size_in > size_out * max_downscaling)
421 return false;
422 return true;
423 }
424
425 static int
komeda_scaler_check_cfg(struct komeda_scaler * scaler,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)426 komeda_scaler_check_cfg(struct komeda_scaler *scaler,
427 struct komeda_crtc_state *kcrtc_st,
428 struct komeda_data_flow_cfg *dflow)
429 {
430 u32 hsize_in, vsize_in, hsize_out, vsize_out;
431 u32 max_upscaling;
432
433 hsize_in = dflow->in_w;
434 vsize_in = dflow->in_h;
435 hsize_out = dflow->out_w;
436 vsize_out = dflow->out_h;
437
438 if (!in_range(&scaler->hsize, hsize_in) ||
439 !in_range(&scaler->hsize, hsize_out)) {
440 DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
441 return -EINVAL;
442 }
443
444 if (!in_range(&scaler->vsize, vsize_in) ||
445 !in_range(&scaler->vsize, vsize_out)) {
446 DRM_DEBUG_ATOMIC("Invalid vertical sizes");
447 return -EINVAL;
448 }
449
450 /* If input comes from compiz that means the scaling is for writeback
451 * and scaler can not do upscaling for writeback
452 */
453 if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
454 max_upscaling = 1;
455 else
456 max_upscaling = scaler->max_upscaling;
457
458 if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
459 scaler->max_downscaling)) {
460 DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
461 return -EINVAL;
462 }
463
464 if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
465 scaler->max_downscaling)) {
466 DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
467 return -EINVAL;
468 }
469
470 if (hsize_in > hsize_out || vsize_in > vsize_out) {
471 struct komeda_pipeline *pipe = scaler->base.pipeline;
472 int err;
473
474 err = pipe->funcs->downscaling_clk_check(pipe,
475 &kcrtc_st->base.adjusted_mode,
476 komeda_crtc_get_aclk(kcrtc_st), dflow);
477 if (err) {
478 DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
479 return err;
480 }
481 }
482
483 return 0;
484 }
485
486 static int
komeda_scaler_validate(void * user,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)487 komeda_scaler_validate(void *user,
488 struct komeda_crtc_state *kcrtc_st,
489 struct komeda_data_flow_cfg *dflow)
490 {
491 struct drm_atomic_state *drm_st = kcrtc_st->base.state;
492 struct komeda_component_state *c_st;
493 struct komeda_scaler_state *st;
494 struct komeda_scaler *scaler;
495 int err = 0;
496
497 if (!(dflow->en_scaling || dflow->en_img_enhancement))
498 return 0;
499
500 scaler = komeda_component_get_avail_scaler(dflow->input.component,
501 drm_st);
502 if (!scaler) {
503 DRM_DEBUG_ATOMIC("No scaler available");
504 return -EINVAL;
505 }
506
507 err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
508 if (err)
509 return err;
510
511 c_st = komeda_component_get_state_and_set_user(&scaler->base,
512 drm_st, user, kcrtc_st->base.crtc);
513 if (IS_ERR(c_st))
514 return PTR_ERR(c_st);
515
516 st = to_scaler_st(c_st);
517
518 st->hsize_in = dflow->in_w;
519 st->vsize_in = dflow->in_h;
520 st->hsize_out = dflow->out_w;
521 st->vsize_out = dflow->out_h;
522 st->right_crop = dflow->right_crop;
523 st->left_crop = dflow->left_crop;
524 st->total_vsize_in = dflow->total_in_h;
525 st->total_hsize_in = dflow->total_in_w;
526 st->total_hsize_out = dflow->total_out_w;
527
528 /* Enable alpha processing if the next stage needs the pixel alpha */
529 st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
530 st->en_scaling = dflow->en_scaling;
531 st->en_img_enhancement = dflow->en_img_enhancement;
532 st->en_split = dflow->en_split;
533 st->right_part = dflow->right_part;
534
535 komeda_component_add_input(&st->base, &dflow->input, 0);
536 komeda_component_set_output(&dflow->input, &scaler->base, 0);
537 return err;
538 }
539
540 static void komeda_split_data_flow(struct komeda_scaler *scaler,
541 struct komeda_data_flow_cfg *dflow,
542 struct komeda_data_flow_cfg *l_dflow,
543 struct komeda_data_flow_cfg *r_dflow);
544
545 static int
komeda_splitter_validate(struct komeda_splitter * splitter,struct drm_connector_state * conn_st,struct komeda_data_flow_cfg * dflow,struct komeda_data_flow_cfg * l_output,struct komeda_data_flow_cfg * r_output)546 komeda_splitter_validate(struct komeda_splitter *splitter,
547 struct drm_connector_state *conn_st,
548 struct komeda_data_flow_cfg *dflow,
549 struct komeda_data_flow_cfg *l_output,
550 struct komeda_data_flow_cfg *r_output)
551 {
552 struct komeda_component_state *c_st;
553 struct komeda_splitter_state *st;
554
555 if (!splitter) {
556 DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
557 return -EINVAL;
558 }
559
560 if (!in_range(&splitter->hsize, dflow->in_w)) {
561 DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
562 dflow->in_w);
563 return -EINVAL;
564 }
565
566 if (!in_range(&splitter->vsize, dflow->in_h)) {
567 DRM_DEBUG_ATOMIC("split in_h: %d exceeds the acceptable range.\n",
568 dflow->in_h);
569 return -EINVAL;
570 }
571
572 c_st = komeda_component_get_state_and_set_user(&splitter->base,
573 conn_st->state, conn_st->connector, conn_st->crtc);
574
575 if (IS_ERR(c_st))
576 return PTR_ERR(c_st);
577
578 komeda_split_data_flow(splitter->base.pipeline->scalers[0],
579 dflow, l_output, r_output);
580
581 st = to_splitter_st(c_st);
582 st->hsize = dflow->in_w;
583 st->vsize = dflow->in_h;
584 st->overlap = dflow->overlap;
585
586 komeda_component_add_input(&st->base, &dflow->input, 0);
587 komeda_component_set_output(&l_output->input, &splitter->base, 0);
588 komeda_component_set_output(&r_output->input, &splitter->base, 1);
589
590 return 0;
591 }
592
593 static int
komeda_merger_validate(struct komeda_merger * merger,void * user,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * left_input,struct komeda_data_flow_cfg * right_input,struct komeda_data_flow_cfg * output)594 komeda_merger_validate(struct komeda_merger *merger,
595 void *user,
596 struct komeda_crtc_state *kcrtc_st,
597 struct komeda_data_flow_cfg *left_input,
598 struct komeda_data_flow_cfg *right_input,
599 struct komeda_data_flow_cfg *output)
600 {
601 struct komeda_component_state *c_st;
602 struct komeda_merger_state *st;
603 int err = 0;
604
605 if (!merger) {
606 DRM_DEBUG_ATOMIC("No merger is available");
607 return -EINVAL;
608 }
609
610 if (!in_range(&merger->hsize_merged, output->out_w)) {
611 DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
612 output->out_w);
613 return -EINVAL;
614 }
615
616 if (!in_range(&merger->vsize_merged, output->out_h)) {
617 DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
618 output->out_h);
619 return -EINVAL;
620 }
621
622 c_st = komeda_component_get_state_and_set_user(&merger->base,
623 kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
624
625 if (IS_ERR(c_st))
626 return PTR_ERR(c_st);
627
628 st = to_merger_st(c_st);
629 st->hsize_merged = output->out_w;
630 st->vsize_merged = output->out_h;
631
632 komeda_component_add_input(c_st, &left_input->input, 0);
633 komeda_component_add_input(c_st, &right_input->input, 1);
634 komeda_component_set_output(&output->input, &merger->base, 0);
635
636 return err;
637 }
638
pipeline_composition_size(struct komeda_crtc_state * kcrtc_st,u16 * hsize,u16 * vsize)639 void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
640 u16 *hsize, u16 *vsize)
641 {
642 struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
643
644 if (hsize)
645 *hsize = m->hdisplay;
646 if (vsize)
647 *vsize = m->vdisplay;
648 }
649
650 static int
komeda_compiz_set_input(struct komeda_compiz * compiz,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)651 komeda_compiz_set_input(struct komeda_compiz *compiz,
652 struct komeda_crtc_state *kcrtc_st,
653 struct komeda_data_flow_cfg *dflow)
654 {
655 struct drm_atomic_state *drm_st = kcrtc_st->base.state;
656 struct komeda_component_state *c_st, *old_st;
657 struct komeda_compiz_input_cfg *cin;
658 u16 compiz_w, compiz_h;
659 int idx = dflow->blending_zorder;
660
661 pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
662 /* check display rect */
663 if ((dflow->out_x + dflow->out_w > compiz_w) ||
664 (dflow->out_y + dflow->out_h > compiz_h) ||
665 dflow->out_w == 0 || dflow->out_h == 0) {
666 DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
667 dflow->out_x, dflow->out_y,
668 dflow->out_w, dflow->out_h);
669 return -EINVAL;
670 }
671
672 c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
673 kcrtc_st->base.crtc, kcrtc_st->base.crtc);
674 if (IS_ERR(c_st))
675 return PTR_ERR(c_st);
676
677 if (komeda_component_check_input(c_st, &dflow->input, idx))
678 return -EINVAL;
679
680 cin = &(to_compiz_st(c_st)->cins[idx]);
681
682 cin->hsize = dflow->out_w;
683 cin->vsize = dflow->out_h;
684 cin->hoffset = dflow->out_x;
685 cin->voffset = dflow->out_y;
686 cin->pixel_blend_mode = dflow->pixel_blend_mode;
687 cin->layer_alpha = dflow->layer_alpha;
688
689 old_st = komeda_component_get_old_state(&compiz->base, drm_st);
690 WARN_ON(!old_st);
691
692 /* compare with old to check if this input has been changed */
693 if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
694 c_st->changed_active_inputs |= BIT(idx);
695
696 komeda_component_add_input(c_st, &dflow->input, idx);
697 komeda_component_set_output(&dflow->input, &compiz->base, 0);
698
699 return 0;
700 }
701
702 static int
komeda_compiz_validate(struct komeda_compiz * compiz,struct komeda_crtc_state * state,struct komeda_data_flow_cfg * dflow)703 komeda_compiz_validate(struct komeda_compiz *compiz,
704 struct komeda_crtc_state *state,
705 struct komeda_data_flow_cfg *dflow)
706 {
707 struct komeda_component_state *c_st;
708 struct komeda_compiz_state *st;
709
710 c_st = komeda_component_get_state_and_set_user(&compiz->base,
711 state->base.state, state->base.crtc, state->base.crtc);
712 if (IS_ERR(c_st))
713 return PTR_ERR(c_st);
714
715 st = to_compiz_st(c_st);
716
717 pipeline_composition_size(state, &st->hsize, &st->vsize);
718
719 komeda_component_set_output(&dflow->input, &compiz->base, 0);
720
721 /* compiz output dflow will be fed to the next pipeline stage, prepare
722 * the data flow configuration for the next stage
723 */
724 if (dflow) {
725 dflow->in_w = st->hsize;
726 dflow->in_h = st->vsize;
727 dflow->out_w = dflow->in_w;
728 dflow->out_h = dflow->in_h;
729 /* the output data of compiz doesn't have alpha, it only can be
730 * used as bottom layer when blend it with master layers
731 */
732 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
733 dflow->layer_alpha = 0xFF;
734 dflow->blending_zorder = 0;
735 }
736
737 return 0;
738 }
739
740 static int
komeda_improc_validate(struct komeda_improc * improc,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)741 komeda_improc_validate(struct komeda_improc *improc,
742 struct komeda_crtc_state *kcrtc_st,
743 struct komeda_data_flow_cfg *dflow)
744 {
745 struct drm_crtc *crtc = kcrtc_st->base.crtc;
746 struct komeda_component_state *c_st;
747 struct komeda_improc_state *st;
748
749 c_st = komeda_component_get_state_and_set_user(&improc->base,
750 kcrtc_st->base.state, crtc, crtc);
751 if (IS_ERR(c_st))
752 return PTR_ERR(c_st);
753
754 st = to_improc_st(c_st);
755
756 st->hsize = dflow->in_w;
757 st->vsize = dflow->in_h;
758
759 komeda_component_add_input(&st->base, &dflow->input, 0);
760 komeda_component_set_output(&dflow->input, &improc->base, 0);
761
762 return 0;
763 }
764
765 static int
komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr * ctrlr,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)766 komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
767 struct komeda_crtc_state *kcrtc_st,
768 struct komeda_data_flow_cfg *dflow)
769 {
770 struct drm_crtc *crtc = kcrtc_st->base.crtc;
771 struct komeda_timing_ctrlr_state *st;
772 struct komeda_component_state *c_st;
773
774 c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
775 kcrtc_st->base.state, crtc, crtc);
776 if (IS_ERR(c_st))
777 return PTR_ERR(c_st);
778
779 st = to_ctrlr_st(c_st);
780
781 komeda_component_add_input(&st->base, &dflow->input, 0);
782 komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
783
784 return 0;
785 }
786
komeda_complete_data_flow_cfg(struct komeda_layer * layer,struct komeda_data_flow_cfg * dflow,struct drm_framebuffer * fb)787 void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
788 struct komeda_data_flow_cfg *dflow,
789 struct drm_framebuffer *fb)
790 {
791 struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
792 u32 w = dflow->in_w;
793 u32 h = dflow->in_h;
794
795 dflow->total_in_w = dflow->in_w;
796 dflow->total_in_h = dflow->in_h;
797 dflow->total_out_w = dflow->out_w;
798
799 /* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
800 if (!fb->format->has_alpha)
801 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
802
803 if (drm_rotation_90_or_270(dflow->rot))
804 swap(w, h);
805
806 dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
807 dflow->is_yuv = fb->format->is_yuv;
808
809 /* try to enable image enhancer if data flow is a 2x+ upscaling */
810 dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
811 dflow->out_h >= 2 * h;
812
813 /* try to enable split if scaling exceed the scaler's acceptable
814 * input/output range.
815 */
816 if (dflow->en_scaling && scaler)
817 dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
818 !in_range(&scaler->hsize, dflow->out_w);
819 }
820
merger_is_available(struct komeda_pipeline * pipe,struct komeda_data_flow_cfg * dflow)821 static bool merger_is_available(struct komeda_pipeline *pipe,
822 struct komeda_data_flow_cfg *dflow)
823 {
824 u32 avail_inputs = pipe->merger ?
825 pipe->merger->base.supported_inputs : 0;
826
827 return has_bit(dflow->input.component->id, avail_inputs);
828 }
829
komeda_build_layer_data_flow(struct komeda_layer * layer,struct komeda_plane_state * kplane_st,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)830 int komeda_build_layer_data_flow(struct komeda_layer *layer,
831 struct komeda_plane_state *kplane_st,
832 struct komeda_crtc_state *kcrtc_st,
833 struct komeda_data_flow_cfg *dflow)
834 {
835 struct drm_plane *plane = kplane_st->base.plane;
836 struct komeda_pipeline *pipe = layer->base.pipeline;
837 int err;
838
839 DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
840 layer->base.name, plane->base.id, plane->name,
841 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
842 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
843
844 err = komeda_layer_validate(layer, kplane_st, dflow);
845 if (err)
846 return err;
847
848 err = komeda_scaler_validate(plane, kcrtc_st, dflow);
849 if (err)
850 return err;
851
852 /* if split, check if can put the data flow into merger */
853 if (dflow->en_split && merger_is_available(pipe, dflow))
854 return 0;
855
856 err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
857
858 return err;
859 }
860
861 /*
862 * Split is introduced for workaround scaler's input/output size limitation.
863 * The idea is simple, if one scaler can not fit the requirement, use two.
864 * So split splits the big source image to two half parts (left/right) and do
865 * the scaling by two scaler separately and independently.
866 * But split also imports an edge problem in the middle of the image when
867 * scaling, to avoid it, split isn't a simple half-and-half, but add an extra
868 * pixels (overlap) to both side, after split the left/right will be:
869 * - left: [0, src_length/2 + overlap]
870 * - right: [src_length/2 - overlap, src_length]
871 * The extra overlap do eliminate the edge problem, but which may also generates
872 * unnecessary pixels when scaling, we need to crop them before scaler output
873 * the result to the next stage. and for the how to crop, it depends on the
874 * unneeded pixels, another words the position where overlay has been added.
875 * - left: crop the right
876 * - right: crop the left
877 *
878 * The diagram for how to do the split
879 *
880 * <---------------------left->out_w ---------------->
881 * |--------------------------------|---right_crop-----| <- left after split
882 * \ \ /
883 * \ \<--overlap--->/
884 * |-----------------|-------------|(Middle)------|-----------------| <- src
885 * /<---overlap--->\ \
886 * / \ \
887 * right after split->|-----left_crop---|--------------------------------|
888 * ^<------------------- right->out_w --------------->^
889 *
890 * NOTE: To consistent with HW the output_w always contains the crop size.
891 */
892
komeda_split_data_flow(struct komeda_scaler * scaler,struct komeda_data_flow_cfg * dflow,struct komeda_data_flow_cfg * l_dflow,struct komeda_data_flow_cfg * r_dflow)893 static void komeda_split_data_flow(struct komeda_scaler *scaler,
894 struct komeda_data_flow_cfg *dflow,
895 struct komeda_data_flow_cfg *l_dflow,
896 struct komeda_data_flow_cfg *r_dflow)
897 {
898 bool r90 = drm_rotation_90_or_270(dflow->rot);
899 bool flip_h = has_flip_h(dflow->rot);
900 u32 l_out, r_out, overlap;
901
902 memcpy(l_dflow, dflow, sizeof(*dflow));
903 memcpy(r_dflow, dflow, sizeof(*dflow));
904
905 l_dflow->right_part = false;
906 r_dflow->right_part = true;
907 r_dflow->blending_zorder = dflow->blending_zorder + 1;
908
909 overlap = 0;
910 if (dflow->en_scaling && scaler)
911 overlap += scaler->scaling_split_overlap;
912
913 /* original dflow may fed into splitter, and which doesn't need
914 * enhancement overlap
915 */
916 dflow->overlap = overlap;
917
918 if (dflow->en_img_enhancement && scaler)
919 overlap += scaler->enh_split_overlap;
920
921 l_dflow->overlap = overlap;
922 r_dflow->overlap = overlap;
923
924 /* split the origin content */
925 /* left/right here always means the left/right part of display image,
926 * not the source Image
927 */
928 /* DRM rotation is anti-clockwise */
929 if (r90) {
930 if (dflow->en_scaling) {
931 l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
932 r_dflow->in_h = l_dflow->in_h;
933 } else if (dflow->en_img_enhancement) {
934 /* enhancer only */
935 l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
936 r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
937 } else {
938 /* split without scaler, no overlap */
939 l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
940 r_dflow->in_h = dflow->in_h - l_dflow->in_h;
941 }
942
943 /* Consider YUV format, after split, the split source w/h
944 * may not aligned to 2. we have two choices for such case.
945 * 1. scaler is enabled (overlap != 0), we can do a alignment
946 * both left/right and crop the extra data by scaler.
947 * 2. scaler is not enabled, only align the split left
948 * src/disp, and the rest part assign to right
949 */
950 if ((overlap != 0) && dflow->is_yuv) {
951 l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
952 r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
953 }
954
955 if (flip_h)
956 l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
957 else
958 r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
959 } else {
960 if (dflow->en_scaling) {
961 l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
962 r_dflow->in_w = l_dflow->in_w;
963 } else if (dflow->en_img_enhancement) {
964 l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
965 r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
966 } else {
967 l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
968 r_dflow->in_w = dflow->in_w - l_dflow->in_w;
969 }
970
971 /* do YUV alignment when scaler enabled */
972 if ((overlap != 0) && dflow->is_yuv) {
973 l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
974 r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
975 }
976
977 /* on flip_h, the left display content from the right-source */
978 if (flip_h)
979 l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
980 else
981 r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
982 }
983
984 /* split the disp_rect */
985 if (dflow->en_scaling || dflow->en_img_enhancement)
986 l_dflow->out_w = ((dflow->out_w + 1) >> 1);
987 else
988 l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
989
990 r_dflow->out_w = dflow->out_w - l_dflow->out_w;
991
992 l_dflow->out_x = dflow->out_x;
993 r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
994
995 /* calculate the scaling crop */
996 /* left scaler output more data and do crop */
997 if (r90) {
998 l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
999 r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
1000 } else {
1001 l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
1002 r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
1003 }
1004
1005 l_dflow->left_crop = 0;
1006 l_dflow->right_crop = l_out - l_dflow->out_w;
1007 r_dflow->left_crop = r_out - r_dflow->out_w;
1008 r_dflow->right_crop = 0;
1009
1010 /* out_w includes the crop length */
1011 l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
1012 r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
1013 }
1014
1015 /* For layer split, a plane state will be split to two data flows and handled
1016 * by two separated komeda layer input pipelines. komeda supports two types of
1017 * layer split:
1018 * - none-scaling split:
1019 * / layer-left -> \
1020 * plane_state compiz-> ...
1021 * \ layer-right-> /
1022 *
1023 * - scaling split:
1024 * / layer-left -> scaler->\
1025 * plane_state merger -> compiz-> ...
1026 * \ layer-right-> scaler->/
1027 *
1028 * Since merger only supports scaler as input, so for none-scaling split, two
1029 * layer data flows will be output to compiz directly. for scaling_split, two
1030 * data flow will be merged by merger firstly, then merger outputs one merged
1031 * data flow to compiz.
1032 */
komeda_build_layer_split_data_flow(struct komeda_layer * left,struct komeda_plane_state * kplane_st,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)1033 int komeda_build_layer_split_data_flow(struct komeda_layer *left,
1034 struct komeda_plane_state *kplane_st,
1035 struct komeda_crtc_state *kcrtc_st,
1036 struct komeda_data_flow_cfg *dflow)
1037 {
1038 struct drm_plane *plane = kplane_st->base.plane;
1039 struct komeda_pipeline *pipe = left->base.pipeline;
1040 struct komeda_layer *right = left->right;
1041 struct komeda_data_flow_cfg l_dflow, r_dflow;
1042 int err;
1043
1044 komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
1045
1046 DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
1047 "src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
1048 left->base.name, right->base.name,
1049 plane->base.id, plane->name,
1050 dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
1051 dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
1052
1053 err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
1054 if (err)
1055 return err;
1056
1057 err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
1058 if (err)
1059 return err;
1060
1061 /* The rotation has been handled by layer, so adjusted the data flow */
1062 komeda_rotate_data_flow(dflow, dflow->rot);
1063
1064 /* left and right dflow has been merged to compiz already,
1065 * no need merger to merge them anymore.
1066 */
1067 if (r_dflow.input.component == l_dflow.input.component)
1068 return 0;
1069
1070 /* line merger path */
1071 err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
1072 &l_dflow, &r_dflow, dflow);
1073 if (err)
1074 return err;
1075
1076 err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
1077
1078 return err;
1079 }
1080
1081 /* writeback data path: compiz -> scaler -> wb_layer -> memory */
komeda_build_wb_data_flow(struct komeda_layer * wb_layer,struct drm_connector_state * conn_st,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)1082 int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
1083 struct drm_connector_state *conn_st,
1084 struct komeda_crtc_state *kcrtc_st,
1085 struct komeda_data_flow_cfg *dflow)
1086 {
1087 struct drm_connector *conn = conn_st->connector;
1088 int err;
1089
1090 err = komeda_scaler_validate(conn, kcrtc_st, dflow);
1091 if (err)
1092 return err;
1093
1094 return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1095 }
1096
1097 /* writeback scaling split data path:
1098 * /-> scaler ->\
1099 * compiz -> splitter merger -> wb_layer -> memory
1100 * \-> scaler ->/
1101 */
komeda_build_wb_split_data_flow(struct komeda_layer * wb_layer,struct drm_connector_state * conn_st,struct komeda_crtc_state * kcrtc_st,struct komeda_data_flow_cfg * dflow)1102 int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
1103 struct drm_connector_state *conn_st,
1104 struct komeda_crtc_state *kcrtc_st,
1105 struct komeda_data_flow_cfg *dflow)
1106 {
1107 struct komeda_pipeline *pipe = wb_layer->base.pipeline;
1108 struct drm_connector *conn = conn_st->connector;
1109 struct komeda_data_flow_cfg l_dflow, r_dflow;
1110 int err;
1111
1112 err = komeda_splitter_validate(pipe->splitter, conn_st,
1113 dflow, &l_dflow, &r_dflow);
1114 if (err)
1115 return err;
1116 err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
1117 if (err)
1118 return err;
1119
1120 err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
1121 if (err)
1122 return err;
1123
1124 err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
1125 &l_dflow, &r_dflow, dflow);
1126 if (err)
1127 return err;
1128
1129 return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1130 }
1131
1132 /* build display output data flow, the data path is:
1133 * compiz -> improc -> timing_ctrlr
1134 */
komeda_build_display_data_flow(struct komeda_crtc * kcrtc,struct komeda_crtc_state * kcrtc_st)1135 int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
1136 struct komeda_crtc_state *kcrtc_st)
1137 {
1138 struct komeda_pipeline *master = kcrtc->master;
1139 struct komeda_pipeline *slave = kcrtc->slave;
1140 struct komeda_data_flow_cfg m_dflow; /* master data flow */
1141 struct komeda_data_flow_cfg s_dflow; /* slave data flow */
1142 int err;
1143
1144 memset(&m_dflow, 0, sizeof(m_dflow));
1145 memset(&s_dflow, 0, sizeof(s_dflow));
1146
1147 if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
1148 err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
1149 if (err)
1150 return err;
1151
1152 /* merge the slave dflow into master pipeline */
1153 err = komeda_compiz_set_input(master->compiz, kcrtc_st,
1154 &s_dflow);
1155 if (err)
1156 return err;
1157 }
1158
1159 err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
1160 if (err)
1161 return err;
1162
1163 err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
1164 if (err)
1165 return err;
1166
1167 err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
1168 if (err)
1169 return err;
1170
1171 return 0;
1172 }
1173
1174 static void
komeda_pipeline_unbound_components(struct komeda_pipeline * pipe,struct komeda_pipeline_state * new)1175 komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
1176 struct komeda_pipeline_state *new)
1177 {
1178 struct drm_atomic_state *drm_st = new->obj.state;
1179 struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
1180 struct komeda_component_state *c_st;
1181 struct komeda_component *c;
1182 u32 disabling_comps, id;
1183
1184 WARN_ON(!old);
1185
1186 disabling_comps = (~new->active_comps) & old->active_comps;
1187
1188 /* unbound all disabling component */
1189 dp_for_each_set_bit(id, disabling_comps) {
1190 c = komeda_pipeline_get_component(pipe, id);
1191 c_st = komeda_component_get_state_and_set_user(c,
1192 drm_st, NULL, new->crtc);
1193 WARN_ON(IS_ERR(c_st));
1194 }
1195 }
1196
1197 /* release unclaimed pipeline resource */
komeda_release_unclaimed_resources(struct komeda_pipeline * pipe,struct komeda_crtc_state * kcrtc_st)1198 int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
1199 struct komeda_crtc_state *kcrtc_st)
1200 {
1201 struct drm_atomic_state *drm_st = kcrtc_st->base.state;
1202 struct komeda_pipeline_state *st;
1203
1204 /* ignore the pipeline which is not affected */
1205 if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
1206 return 0;
1207
1208 if (has_bit(pipe->id, kcrtc_st->active_pipes))
1209 st = komeda_pipeline_get_new_state(pipe, drm_st);
1210 else
1211 st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
1212
1213 if (WARN_ON(IS_ERR_OR_NULL(st)))
1214 return -EINVAL;
1215
1216 komeda_pipeline_unbound_components(pipe, st);
1217
1218 return 0;
1219 }
1220
komeda_pipeline_disable(struct komeda_pipeline * pipe,struct drm_atomic_state * old_state)1221 void komeda_pipeline_disable(struct komeda_pipeline *pipe,
1222 struct drm_atomic_state *old_state)
1223 {
1224 struct komeda_pipeline_state *old;
1225 struct komeda_component *c;
1226 struct komeda_component_state *c_st;
1227 u32 id, disabling_comps = 0;
1228
1229 old = komeda_pipeline_get_old_state(pipe, old_state);
1230
1231 disabling_comps = old->active_comps;
1232 DRM_DEBUG_ATOMIC("PIPE%d: disabling_comps: 0x%x.\n",
1233 pipe->id, disabling_comps);
1234
1235 dp_for_each_set_bit(id, disabling_comps) {
1236 c = komeda_pipeline_get_component(pipe, id);
1237 c_st = priv_to_comp_st(c->obj.state);
1238
1239 /*
1240 * If we disabled a component then all active_inputs should be
1241 * put in the list of changed_active_inputs, so they get
1242 * re-enabled.
1243 * This usually happens during a modeset when the pipeline is
1244 * first disabled and then the actual state gets committed
1245 * again.
1246 */
1247 c_st->changed_active_inputs |= c_st->active_inputs;
1248
1249 c->funcs->disable(c);
1250 }
1251 }
1252
komeda_pipeline_update(struct komeda_pipeline * pipe,struct drm_atomic_state * old_state)1253 void komeda_pipeline_update(struct komeda_pipeline *pipe,
1254 struct drm_atomic_state *old_state)
1255 {
1256 struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
1257 struct komeda_pipeline_state *old;
1258 struct komeda_component *c;
1259 u32 id, changed_comps = 0;
1260
1261 old = komeda_pipeline_get_old_state(pipe, old_state);
1262
1263 changed_comps = new->active_comps | old->active_comps;
1264
1265 DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n",
1266 pipe->id, new->active_comps, changed_comps);
1267
1268 dp_for_each_set_bit(id, changed_comps) {
1269 c = komeda_pipeline_get_component(pipe, id);
1270
1271 if (new->active_comps & BIT(c->id))
1272 c->funcs->update(c, priv_to_comp_st(c->obj.state));
1273 else
1274 c->funcs->disable(c);
1275 }
1276 }
1277