1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
28
29 #ifdef CONFIG_GPIOLIB
30 #include "../gpio/gpiolib.h"
31 #include <asm-generic/gpio.h>
32 #endif
33
34 #include "core.h"
35 #include "devicetree.h"
36 #include "pinmux.h"
37 #include "pinconf.h"
38
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (pctldev->dev->of_node == np) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name_from_id() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208
209 pindesc = pin_desc_get(pctldev, pin->number);
210 if (pindesc) {
211 dev_err(pctldev->dev, "pin %d already registered\n",
212 pin->number);
213 return -EINVAL;
214 }
215
216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217 if (!pindesc)
218 return -ENOMEM;
219
220 /* Set owner */
221 pindesc->pctldev = pctldev;
222
223 /* Copy basic pin info */
224 if (pin->name) {
225 pindesc->name = pin->name;
226 } else {
227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 if (!pindesc->name) {
229 kfree(pindesc);
230 return -ENOMEM;
231 }
232 pindesc->dynamic_name = true;
233 }
234
235 pindesc->drv_data = pin->drv_data;
236
237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 pr_debug("registered pin %d (%s) on %s\n",
239 pin->number, pindesc->name, pctldev->desc->name);
240 return 0;
241 }
242
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 const struct pinctrl_pin_desc *pins,
245 unsigned num_descs)
246 {
247 unsigned i;
248 int ret = 0;
249
250 for (i = 0; i < num_descs; i++) {
251 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252 if (ret)
253 return ret;
254 }
255
256 return 0;
257 }
258
259 /**
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
263 *
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
267 *
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
271 */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 unsigned int gpio)
274 {
275 unsigned int offset = gpio - range->base;
276 if (range->pins)
277 return range->pins[offset];
278 else
279 return range->pin_base + offset;
280 }
281
282 /**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292 {
293 struct pinctrl_gpio_range *range;
294
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
302 return range;
303 }
304 }
305 mutex_unlock(&pctldev->mutex);
306 return NULL;
307 }
308
309 /**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324 {
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 struct gpio_chip *chip = gpio_to_chip(gpio);
328
329 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330 return false;
331
332 mutex_lock(&pinctrldev_list_mutex);
333
334 /* Loop over the pin controllers */
335 list_for_each_entry(pctldev, &pinctrldev_list, node) {
336 /* Loop over the ranges */
337 mutex_lock(&pctldev->mutex);
338 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339 /* Check if any gpio range overlapped with gpio chip */
340 if (range->base + range->npins - 1 < chip->base ||
341 range->base > chip->base + chip->ngpio - 1)
342 continue;
343 mutex_unlock(&pctldev->mutex);
344 mutex_unlock(&pinctrldev_list_mutex);
345 return true;
346 }
347 mutex_unlock(&pctldev->mutex);
348 }
349
350 mutex_unlock(&pinctrldev_list_mutex);
351
352 return false;
353 }
354 #else
pinctrl_ready_for_gpio_range(unsigned gpio)355 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
356 #endif
357
358 /**
359 * pinctrl_get_device_gpio_range() - find device for GPIO range
360 * @gpio: the pin to locate the pin controller for
361 * @outdev: the pin control device if found
362 * @outrange: the GPIO range if found
363 *
364 * Find the pin controller handling a certain GPIO pin from the pinspace of
365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367 * may still have not been registered.
368 */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)369 static int pinctrl_get_device_gpio_range(unsigned gpio,
370 struct pinctrl_dev **outdev,
371 struct pinctrl_gpio_range **outrange)
372 {
373 struct pinctrl_dev *pctldev;
374
375 mutex_lock(&pinctrldev_list_mutex);
376
377 /* Loop over the pin controllers */
378 list_for_each_entry(pctldev, &pinctrldev_list, node) {
379 struct pinctrl_gpio_range *range;
380
381 range = pinctrl_match_gpio_range(pctldev, gpio);
382 if (range) {
383 *outdev = pctldev;
384 *outrange = range;
385 mutex_unlock(&pinctrldev_list_mutex);
386 return 0;
387 }
388 }
389
390 mutex_unlock(&pinctrldev_list_mutex);
391
392 return -EPROBE_DEFER;
393 }
394
395 /**
396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
397 * @pctldev: pin controller device to add the range to
398 * @range: the GPIO range to add
399 *
400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
401 * this to register handled ranges after registering your pin controller.
402 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)403 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404 struct pinctrl_gpio_range *range)
405 {
406 mutex_lock(&pctldev->mutex);
407 list_add_tail(&range->node, &pctldev->gpio_ranges);
408 mutex_unlock(&pctldev->mutex);
409 }
410 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
411
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)412 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413 struct pinctrl_gpio_range *ranges,
414 unsigned nranges)
415 {
416 int i;
417
418 for (i = 0; i < nranges; i++)
419 pinctrl_add_gpio_range(pctldev, &ranges[i]);
420 }
421 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
422
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)423 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424 struct pinctrl_gpio_range *range)
425 {
426 struct pinctrl_dev *pctldev;
427
428 pctldev = get_pinctrl_dev_from_devname(devname);
429
430 /*
431 * If we can't find this device, let's assume that is because
432 * it has not probed yet, so the driver trying to register this
433 * range need to defer probing.
434 */
435 if (!pctldev) {
436 return ERR_PTR(-EPROBE_DEFER);
437 }
438 pinctrl_add_gpio_range(pctldev, range);
439
440 return pctldev;
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
443
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)444 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445 const unsigned **pins, unsigned *num_pins)
446 {
447 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448 int gs;
449
450 if (!pctlops->get_group_pins)
451 return -EINVAL;
452
453 gs = pinctrl_get_group_selector(pctldev, pin_group);
454 if (gs < 0)
455 return gs;
456
457 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
458 }
459 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
460
461 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)462 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463 unsigned int pin)
464 {
465 struct pinctrl_gpio_range *range;
466
467 /* Loop over the ranges */
468 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469 /* Check if we're in the valid range */
470 if (range->pins) {
471 int a;
472 for (a = 0; a < range->npins; a++) {
473 if (range->pins[a] == pin)
474 return range;
475 }
476 } else if (pin >= range->pin_base &&
477 pin < range->pin_base + range->npins)
478 return range;
479 }
480
481 return NULL;
482 }
483 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484
485 /**
486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487 * @pctldev: the pin controller device to look in
488 * @pin: a controller-local number to find the range for
489 */
490 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)491 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492 unsigned int pin)
493 {
494 struct pinctrl_gpio_range *range;
495
496 mutex_lock(&pctldev->mutex);
497 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498 mutex_unlock(&pctldev->mutex);
499
500 return range;
501 }
502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503
504 /**
505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506 * @pctldev: pin controller device to remove the range from
507 * @range: the GPIO range to remove
508 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)509 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510 struct pinctrl_gpio_range *range)
511 {
512 mutex_lock(&pctldev->mutex);
513 list_del(&range->node);
514 mutex_unlock(&pctldev->mutex);
515 }
516 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
517
518 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519
520 /**
521 * pinctrl_generic_get_group_count() - returns the number of pin groups
522 * @pctldev: pin controller device
523 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)524 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
525 {
526 return pctldev->num_groups;
527 }
528 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529
530 /**
531 * pinctrl_generic_get_group_name() - returns the name of a pin group
532 * @pctldev: pin controller device
533 * @selector: group number
534 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)535 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536 unsigned int selector)
537 {
538 struct group_desc *group;
539
540 group = radix_tree_lookup(&pctldev->pin_group_tree,
541 selector);
542 if (!group)
543 return NULL;
544
545 return group->name;
546 }
547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548
549 /**
550 * pinctrl_generic_get_group_pins() - gets the pin group pins
551 * @pctldev: pin controller device
552 * @selector: group number
553 * @pins: pins in the group
554 * @num_pins: number of pins in the group
555 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)556 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557 unsigned int selector,
558 const unsigned int **pins,
559 unsigned int *num_pins)
560 {
561 struct group_desc *group;
562
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group) {
566 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
567 __func__, selector);
568 return -EINVAL;
569 }
570
571 *pins = group->pins;
572 *num_pins = group->num_pins;
573
574 return 0;
575 }
576 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577
578 /**
579 * pinctrl_generic_get_group() - returns a pin group based on the number
580 * @pctldev: pin controller device
581 * @selector: group number
582 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)583 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584 unsigned int selector)
585 {
586 struct group_desc *group;
587
588 group = radix_tree_lookup(&pctldev->pin_group_tree,
589 selector);
590 if (!group)
591 return NULL;
592
593 return group;
594 }
595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
596
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)597 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598 const char *function)
599 {
600 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601 int ngroups = ops->get_groups_count(pctldev);
602 int selector = 0;
603
604 /* See if this pctldev has this group */
605 while (selector < ngroups) {
606 const char *gname = ops->get_group_name(pctldev, selector);
607
608 if (gname && !strcmp(function, gname))
609 return selector;
610
611 selector++;
612 }
613
614 return -EINVAL;
615 }
616
617 /**
618 * pinctrl_generic_add_group() - adds a new pin group
619 * @pctldev: pin controller device
620 * @name: name of the pin group
621 * @pins: pins in the pin group
622 * @num_pins: number of pins in the pin group
623 * @data: pin controller driver specific data
624 *
625 * Note that the caller must take care of locking.
626 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)627 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628 int *pins, int num_pins, void *data)
629 {
630 struct group_desc *group;
631 int selector;
632
633 if (!name)
634 return -EINVAL;
635
636 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
637 if (selector >= 0)
638 return selector;
639
640 selector = pctldev->num_groups;
641
642 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
643 if (!group)
644 return -ENOMEM;
645
646 group->name = name;
647 group->pins = pins;
648 group->num_pins = num_pins;
649 group->data = data;
650
651 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
652
653 pctldev->num_groups++;
654
655 return selector;
656 }
657 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658
659 /**
660 * pinctrl_generic_remove_group() - removes a numbered pin group
661 * @pctldev: pin controller device
662 * @selector: group number
663 *
664 * Note that the caller must take care of locking.
665 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)666 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667 unsigned int selector)
668 {
669 struct group_desc *group;
670
671 group = radix_tree_lookup(&pctldev->pin_group_tree,
672 selector);
673 if (!group)
674 return -ENOENT;
675
676 radix_tree_delete(&pctldev->pin_group_tree, selector);
677 devm_kfree(pctldev->dev, group);
678
679 pctldev->num_groups--;
680
681 return 0;
682 }
683 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684
685 /**
686 * pinctrl_generic_free_groups() - removes all pin groups
687 * @pctldev: pin controller device
688 *
689 * Note that the caller must take care of locking. The pinctrl groups
690 * are allocated with devm_kzalloc() so no need to free them here.
691 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)692 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
693 {
694 struct radix_tree_iter iter;
695 void __rcu **slot;
696
697 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
699
700 pctldev->num_groups = 0;
701 }
702
703 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)704 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705 {
706 }
707 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708
709 /**
710 * pinctrl_get_group_selector() - returns the group selector for a group
711 * @pctldev: the pin controller handling the group
712 * @pin_group: the pin group to look up
713 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)714 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715 const char *pin_group)
716 {
717 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718 unsigned ngroups = pctlops->get_groups_count(pctldev);
719 unsigned group_selector = 0;
720
721 while (group_selector < ngroups) {
722 const char *gname = pctlops->get_group_name(pctldev,
723 group_selector);
724 if (gname && !strcmp(gname, pin_group)) {
725 dev_dbg(pctldev->dev,
726 "found group selector %u for %s\n",
727 group_selector,
728 pin_group);
729 return group_selector;
730 }
731
732 group_selector++;
733 }
734
735 dev_err(pctldev->dev, "does not have pin group %s\n",
736 pin_group);
737
738 return -EINVAL;
739 }
740
pinctrl_gpio_can_use_line(unsigned gpio)741 bool pinctrl_gpio_can_use_line(unsigned gpio)
742 {
743 struct pinctrl_dev *pctldev;
744 struct pinctrl_gpio_range *range;
745 bool result;
746 int pin;
747
748 /*
749 * Try to obtain GPIO range, if it fails
750 * we're probably dealing with GPIO driver
751 * without a backing pin controller - bail out.
752 */
753 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
754 return true;
755
756 mutex_lock(&pctldev->mutex);
757
758 /* Convert to the pin controllers number space */
759 pin = gpio_to_pin(range, gpio);
760
761 result = pinmux_can_be_used_for_gpio(pctldev, pin);
762
763 mutex_unlock(&pctldev->mutex);
764
765 return result;
766 }
767 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
768
769 /**
770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
771 * @gpio: the GPIO pin number from the GPIO subsystem number space
772 *
773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774 * as part of their gpio_request() semantics, platforms and individual drivers
775 * shall *NOT* request GPIO pins to be muxed in.
776 */
pinctrl_gpio_request(unsigned gpio)777 int pinctrl_gpio_request(unsigned gpio)
778 {
779 struct pinctrl_dev *pctldev;
780 struct pinctrl_gpio_range *range;
781 int ret;
782 int pin;
783
784 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
785 if (ret) {
786 if (pinctrl_ready_for_gpio_range(gpio))
787 ret = 0;
788 return ret;
789 }
790
791 mutex_lock(&pctldev->mutex);
792
793 /* Convert to the pin controllers number space */
794 pin = gpio_to_pin(range, gpio);
795
796 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
797
798 mutex_unlock(&pctldev->mutex);
799
800 return ret;
801 }
802 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
803
804 /**
805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806 * @gpio: the GPIO pin number from the GPIO subsystem number space
807 *
808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809 * as part of their gpio_free() semantics, platforms and individual drivers
810 * shall *NOT* request GPIO pins to be muxed out.
811 */
pinctrl_gpio_free(unsigned gpio)812 void pinctrl_gpio_free(unsigned gpio)
813 {
814 struct pinctrl_dev *pctldev;
815 struct pinctrl_gpio_range *range;
816 int ret;
817 int pin;
818
819 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
820 if (ret) {
821 return;
822 }
823 mutex_lock(&pctldev->mutex);
824
825 /* Convert to the pin controllers number space */
826 pin = gpio_to_pin(range, gpio);
827
828 pinmux_free_gpio(pctldev, pin, range);
829
830 mutex_unlock(&pctldev->mutex);
831 }
832 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
833
pinctrl_gpio_direction(unsigned gpio,bool input)834 static int pinctrl_gpio_direction(unsigned gpio, bool input)
835 {
836 struct pinctrl_dev *pctldev;
837 struct pinctrl_gpio_range *range;
838 int ret;
839 int pin;
840
841 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
842 if (ret) {
843 return ret;
844 }
845
846 mutex_lock(&pctldev->mutex);
847
848 /* Convert to the pin controllers number space */
849 pin = gpio_to_pin(range, gpio);
850 ret = pinmux_gpio_direction(pctldev, range, pin, input);
851
852 mutex_unlock(&pctldev->mutex);
853
854 return ret;
855 }
856
857 /**
858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859 * @gpio: the GPIO pin number from the GPIO subsystem number space
860 *
861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862 * as part of their gpio_direction_input() semantics, platforms and individual
863 * drivers shall *NOT* touch pin control GPIO calls.
864 */
pinctrl_gpio_direction_input(unsigned gpio)865 int pinctrl_gpio_direction_input(unsigned gpio)
866 {
867 return pinctrl_gpio_direction(gpio, true);
868 }
869 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
870
871 /**
872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873 * @gpio: the GPIO pin number from the GPIO subsystem number space
874 *
875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876 * as part of their gpio_direction_output() semantics, platforms and individual
877 * drivers shall *NOT* touch pin control GPIO calls.
878 */
pinctrl_gpio_direction_output(unsigned gpio)879 int pinctrl_gpio_direction_output(unsigned gpio)
880 {
881 return pinctrl_gpio_direction(gpio, false);
882 }
883 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
884
885 /**
886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887 * @gpio: the GPIO pin number from the GPIO subsystem number space
888 * @config: the configuration to apply to the GPIO
889 *
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891 * they need to call the underlying pin controller to change GPIO config
892 * (for example set debounce time).
893 */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)894 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
895 {
896 unsigned long configs[] = { config };
897 struct pinctrl_gpio_range *range;
898 struct pinctrl_dev *pctldev;
899 int ret, pin;
900
901 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
902 if (ret)
903 return ret;
904
905 mutex_lock(&pctldev->mutex);
906 pin = gpio_to_pin(range, gpio);
907 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908 mutex_unlock(&pctldev->mutex);
909
910 return ret;
911 }
912 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
913
find_state(struct pinctrl * p,const char * name)914 static struct pinctrl_state *find_state(struct pinctrl *p,
915 const char *name)
916 {
917 struct pinctrl_state *state;
918
919 list_for_each_entry(state, &p->states, node)
920 if (!strcmp(state->name, name))
921 return state;
922
923 return NULL;
924 }
925
create_state(struct pinctrl * p,const char * name)926 static struct pinctrl_state *create_state(struct pinctrl *p,
927 const char *name)
928 {
929 struct pinctrl_state *state;
930
931 state = kzalloc(sizeof(*state), GFP_KERNEL);
932 if (!state)
933 return ERR_PTR(-ENOMEM);
934
935 state->name = name;
936 INIT_LIST_HEAD(&state->settings);
937
938 list_add_tail(&state->node, &p->states);
939
940 return state;
941 }
942
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)943 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944 const struct pinctrl_map *map)
945 {
946 struct pinctrl_state *state;
947 struct pinctrl_setting *setting;
948 int ret;
949
950 state = find_state(p, map->name);
951 if (!state)
952 state = create_state(p, map->name);
953 if (IS_ERR(state))
954 return PTR_ERR(state);
955
956 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
957 return 0;
958
959 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
960 if (!setting)
961 return -ENOMEM;
962
963 setting->type = map->type;
964
965 if (pctldev)
966 setting->pctldev = pctldev;
967 else
968 setting->pctldev =
969 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970 if (!setting->pctldev) {
971 kfree(setting);
972 /* Do not defer probing of hogs (circular loop) */
973 if (!strcmp(map->ctrl_dev_name, map->dev_name))
974 return -ENODEV;
975 /*
976 * OK let us guess that the driver is not there yet, and
977 * let's defer obtaining this pinctrl handle to later...
978 */
979 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
980 map->ctrl_dev_name);
981 return -EPROBE_DEFER;
982 }
983
984 setting->dev_name = map->dev_name;
985
986 switch (map->type) {
987 case PIN_MAP_TYPE_MUX_GROUP:
988 ret = pinmux_map_to_setting(map, setting);
989 break;
990 case PIN_MAP_TYPE_CONFIGS_PIN:
991 case PIN_MAP_TYPE_CONFIGS_GROUP:
992 ret = pinconf_map_to_setting(map, setting);
993 break;
994 default:
995 ret = -EINVAL;
996 break;
997 }
998 if (ret < 0) {
999 kfree(setting);
1000 return ret;
1001 }
1002
1003 list_add_tail(&setting->node, &state->settings);
1004
1005 return 0;
1006 }
1007
find_pinctrl(struct device * dev)1008 static struct pinctrl *find_pinctrl(struct device *dev)
1009 {
1010 struct pinctrl *p;
1011
1012 mutex_lock(&pinctrl_list_mutex);
1013 list_for_each_entry(p, &pinctrl_list, node)
1014 if (p->dev == dev) {
1015 mutex_unlock(&pinctrl_list_mutex);
1016 return p;
1017 }
1018
1019 mutex_unlock(&pinctrl_list_mutex);
1020 return NULL;
1021 }
1022
1023 static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1025 static struct pinctrl *create_pinctrl(struct device *dev,
1026 struct pinctrl_dev *pctldev)
1027 {
1028 struct pinctrl *p;
1029 const char *devname;
1030 struct pinctrl_maps *maps_node;
1031 int i;
1032 const struct pinctrl_map *map;
1033 int ret;
1034
1035 /*
1036 * create the state cookie holder struct pinctrl for each
1037 * mapping, this is what consumers will get when requesting
1038 * a pin control handle with pinctrl_get()
1039 */
1040 p = kzalloc(sizeof(*p), GFP_KERNEL);
1041 if (!p)
1042 return ERR_PTR(-ENOMEM);
1043 p->dev = dev;
1044 INIT_LIST_HEAD(&p->states);
1045 INIT_LIST_HEAD(&p->dt_maps);
1046
1047 ret = pinctrl_dt_to_map(p, pctldev);
1048 if (ret < 0) {
1049 kfree(p);
1050 return ERR_PTR(ret);
1051 }
1052
1053 devname = dev_name(dev);
1054
1055 mutex_lock(&pinctrl_maps_mutex);
1056 /* Iterate over the pin control maps to locate the right ones */
1057 for_each_maps(maps_node, i, map) {
1058 /* Map must be for this device */
1059 if (strcmp(map->dev_name, devname))
1060 continue;
1061 /*
1062 * If pctldev is not null, we are claiming hog for it,
1063 * that means, setting that is served by pctldev by itself.
1064 *
1065 * Thus we must skip map that is for this device but is served
1066 * by other device.
1067 */
1068 if (pctldev &&
1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070 continue;
1071
1072 ret = add_setting(p, pctldev, map);
1073 /*
1074 * At this point the adding of a setting may:
1075 *
1076 * - Defer, if the pinctrl device is not yet available
1077 * - Fail, if the pinctrl device is not yet available,
1078 * AND the setting is a hog. We cannot defer that, since
1079 * the hog will kick in immediately after the device
1080 * is registered.
1081 *
1082 * If the error returned was not -EPROBE_DEFER then we
1083 * accumulate the errors to see if we end up with
1084 * an -EPROBE_DEFER later, as that is the worst case.
1085 */
1086 if (ret == -EPROBE_DEFER) {
1087 pinctrl_free(p, false);
1088 mutex_unlock(&pinctrl_maps_mutex);
1089 return ERR_PTR(ret);
1090 }
1091 }
1092 mutex_unlock(&pinctrl_maps_mutex);
1093
1094 if (ret < 0) {
1095 /* If some other error than deferral occurred, return here */
1096 pinctrl_free(p, false);
1097 return ERR_PTR(ret);
1098 }
1099
1100 kref_init(&p->users);
1101
1102 /* Add the pinctrl handle to the global list */
1103 mutex_lock(&pinctrl_list_mutex);
1104 list_add_tail(&p->node, &pinctrl_list);
1105 mutex_unlock(&pinctrl_list_mutex);
1106
1107 return p;
1108 }
1109
1110 /**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
pinctrl_get(struct device * dev)1114 struct pinctrl *pinctrl_get(struct device *dev)
1115 {
1116 struct pinctrl *p;
1117
1118 if (WARN_ON(!dev))
1119 return ERR_PTR(-EINVAL);
1120
1121 /*
1122 * See if somebody else (such as the device core) has already
1123 * obtained a handle to the pinctrl for this device. In that case,
1124 * return another pointer to it.
1125 */
1126 p = find_pinctrl(dev);
1127 if (p) {
1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 kref_get(&p->users);
1130 return p;
1131 }
1132
1133 return create_pinctrl(dev, NULL);
1134 }
1135 EXPORT_SYMBOL_GPL(pinctrl_get);
1136
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1137 static void pinctrl_free_setting(bool disable_setting,
1138 struct pinctrl_setting *setting)
1139 {
1140 switch (setting->type) {
1141 case PIN_MAP_TYPE_MUX_GROUP:
1142 if (disable_setting)
1143 pinmux_disable_setting(setting);
1144 pinmux_free_setting(setting);
1145 break;
1146 case PIN_MAP_TYPE_CONFIGS_PIN:
1147 case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 pinconf_free_setting(setting);
1149 break;
1150 default:
1151 break;
1152 }
1153 }
1154
pinctrl_free(struct pinctrl * p,bool inlist)1155 static void pinctrl_free(struct pinctrl *p, bool inlist)
1156 {
1157 struct pinctrl_state *state, *n1;
1158 struct pinctrl_setting *setting, *n2;
1159
1160 mutex_lock(&pinctrl_list_mutex);
1161 list_for_each_entry_safe(state, n1, &p->states, node) {
1162 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 pinctrl_free_setting(state == p->state, setting);
1164 list_del(&setting->node);
1165 kfree(setting);
1166 }
1167 list_del(&state->node);
1168 kfree(state);
1169 }
1170
1171 pinctrl_dt_free_maps(p);
1172
1173 if (inlist)
1174 list_del(&p->node);
1175 kfree(p);
1176 mutex_unlock(&pinctrl_list_mutex);
1177 }
1178
1179 /**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
pinctrl_release(struct kref * kref)1183 static void pinctrl_release(struct kref *kref)
1184 {
1185 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187 pinctrl_free(p, true);
1188 }
1189
1190 /**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
pinctrl_put(struct pinctrl * p)1194 void pinctrl_put(struct pinctrl *p)
1195 {
1196 kref_put(&p->users, pinctrl_release);
1197 }
1198 EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200 /**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1205 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206 const char *name)
1207 {
1208 struct pinctrl_state *state;
1209
1210 state = find_state(p, name);
1211 if (!state) {
1212 if (pinctrl_dummy_state) {
1213 /* create dummy state */
1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215 name);
1216 state = create_state(p, name);
1217 } else
1218 state = ERR_PTR(-ENODEV);
1219 }
1220
1221 return state;
1222 }
1223 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1225 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 struct device *consumer)
1227 {
1228 if (pctldev->desc->link_consumers)
1229 device_link_add(consumer, pctldev->dev,
1230 DL_FLAG_PM_RUNTIME |
1231 DL_FLAG_AUTOREMOVE_CONSUMER);
1232 }
1233
1234 /**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1239 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240 {
1241 struct pinctrl_setting *setting, *setting2;
1242 struct pinctrl_state *old_state = p->state;
1243 int ret;
1244
1245 if (p->state) {
1246 /*
1247 * For each pinmux setting in the old state, forget SW's record
1248 * of mux owner for that pingroup. Any pingroups which are
1249 * still owned by the new state will be re-acquired by the call
1250 * to pinmux_enable_setting() in the loop below.
1251 */
1252 list_for_each_entry(setting, &p->state->settings, node) {
1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254 continue;
1255 pinmux_disable_setting(setting);
1256 }
1257 }
1258
1259 p->state = NULL;
1260
1261 /* Apply all the settings for the new state */
1262 list_for_each_entry(setting, &state->settings, node) {
1263 switch (setting->type) {
1264 case PIN_MAP_TYPE_MUX_GROUP:
1265 ret = pinmux_enable_setting(setting);
1266 break;
1267 case PIN_MAP_TYPE_CONFIGS_PIN:
1268 case PIN_MAP_TYPE_CONFIGS_GROUP:
1269 ret = pinconf_apply_setting(setting);
1270 break;
1271 default:
1272 ret = -EINVAL;
1273 break;
1274 }
1275
1276 if (ret < 0) {
1277 goto unapply_new_state;
1278 }
1279
1280 /* Do not link hogs (circular dependency) */
1281 if (p != setting->pctldev->p)
1282 pinctrl_link_add(setting->pctldev, p->dev);
1283 }
1284
1285 p->state = state;
1286
1287 return 0;
1288
1289 unapply_new_state:
1290 dev_err(p->dev, "Error applying setting, reverse things back\n");
1291
1292 list_for_each_entry(setting2, &state->settings, node) {
1293 if (&setting2->node == &setting->node)
1294 break;
1295 /*
1296 * All we can do here is pinmux_disable_setting.
1297 * That means that some pins are muxed differently now
1298 * than they were before applying the setting (We can't
1299 * "unmux a pin"!), but it's not a big deal since the pins
1300 * are free to be muxed by another apply_setting.
1301 */
1302 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1303 pinmux_disable_setting(setting2);
1304 }
1305
1306 /* There's no infinite recursive loop here because p->state is NULL */
1307 if (old_state)
1308 pinctrl_select_state(p, old_state);
1309
1310 return ret;
1311 }
1312
1313 /**
1314 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1315 * @p: the pinctrl handle for the device that requests configuration
1316 * @state: the state handle to select/activate/program
1317 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1318 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1319 {
1320 if (p->state == state)
1321 return 0;
1322
1323 return pinctrl_commit_state(p, state);
1324 }
1325 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1326
devm_pinctrl_release(struct device * dev,void * res)1327 static void devm_pinctrl_release(struct device *dev, void *res)
1328 {
1329 pinctrl_put(*(struct pinctrl **)res);
1330 }
1331
1332 /**
1333 * devm_pinctrl_get() - Resource managed pinctrl_get()
1334 * @dev: the device to obtain the handle for
1335 *
1336 * If there is a need to explicitly destroy the returned struct pinctrl,
1337 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1338 */
devm_pinctrl_get(struct device * dev)1339 struct pinctrl *devm_pinctrl_get(struct device *dev)
1340 {
1341 struct pinctrl **ptr, *p;
1342
1343 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1344 if (!ptr)
1345 return ERR_PTR(-ENOMEM);
1346
1347 p = pinctrl_get(dev);
1348 if (!IS_ERR(p)) {
1349 *ptr = p;
1350 devres_add(dev, ptr);
1351 } else {
1352 devres_free(ptr);
1353 }
1354
1355 return p;
1356 }
1357 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1358
devm_pinctrl_match(struct device * dev,void * res,void * data)1359 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1360 {
1361 struct pinctrl **p = res;
1362
1363 return *p == data;
1364 }
1365
1366 /**
1367 * devm_pinctrl_put() - Resource managed pinctrl_put()
1368 * @p: the pinctrl handle to release
1369 *
1370 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1371 * this function will not need to be called and the resource management
1372 * code will ensure that the resource is freed.
1373 */
devm_pinctrl_put(struct pinctrl * p)1374 void devm_pinctrl_put(struct pinctrl *p)
1375 {
1376 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1377 devm_pinctrl_match, p));
1378 }
1379 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1380
1381 /**
1382 * pinctrl_register_mappings() - register a set of pin controller mappings
1383 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1384 * keeps a reference to the passed in maps, so they should _not_ be
1385 * marked with __initdata.
1386 * @num_maps: the number of maps in the mapping table
1387 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1388 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1389 unsigned num_maps)
1390 {
1391 int i, ret;
1392 struct pinctrl_maps *maps_node;
1393
1394 pr_debug("add %u pinctrl maps\n", num_maps);
1395
1396 /* First sanity check the new mapping */
1397 for (i = 0; i < num_maps; i++) {
1398 if (!maps[i].dev_name) {
1399 pr_err("failed to register map %s (%d): no device given\n",
1400 maps[i].name, i);
1401 return -EINVAL;
1402 }
1403
1404 if (!maps[i].name) {
1405 pr_err("failed to register map %d: no map name given\n",
1406 i);
1407 return -EINVAL;
1408 }
1409
1410 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1411 !maps[i].ctrl_dev_name) {
1412 pr_err("failed to register map %s (%d): no pin control device given\n",
1413 maps[i].name, i);
1414 return -EINVAL;
1415 }
1416
1417 switch (maps[i].type) {
1418 case PIN_MAP_TYPE_DUMMY_STATE:
1419 break;
1420 case PIN_MAP_TYPE_MUX_GROUP:
1421 ret = pinmux_validate_map(&maps[i], i);
1422 if (ret < 0)
1423 return ret;
1424 break;
1425 case PIN_MAP_TYPE_CONFIGS_PIN:
1426 case PIN_MAP_TYPE_CONFIGS_GROUP:
1427 ret = pinconf_validate_map(&maps[i], i);
1428 if (ret < 0)
1429 return ret;
1430 break;
1431 default:
1432 pr_err("failed to register map %s (%d): invalid type given\n",
1433 maps[i].name, i);
1434 return -EINVAL;
1435 }
1436 }
1437
1438 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1439 if (!maps_node)
1440 return -ENOMEM;
1441
1442 maps_node->maps = maps;
1443 maps_node->num_maps = num_maps;
1444
1445 mutex_lock(&pinctrl_maps_mutex);
1446 list_add_tail(&maps_node->node, &pinctrl_maps);
1447 mutex_unlock(&pinctrl_maps_mutex);
1448
1449 return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1452
1453 /**
1454 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1455 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1456 * when registering the mappings.
1457 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1458 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1459 {
1460 struct pinctrl_maps *maps_node;
1461
1462 mutex_lock(&pinctrl_maps_mutex);
1463 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1464 if (maps_node->maps == map) {
1465 list_del(&maps_node->node);
1466 kfree(maps_node);
1467 mutex_unlock(&pinctrl_maps_mutex);
1468 return;
1469 }
1470 }
1471 mutex_unlock(&pinctrl_maps_mutex);
1472 }
1473 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1474
1475 /**
1476 * pinctrl_force_sleep() - turn a given controller device into sleep state
1477 * @pctldev: pin controller device
1478 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1479 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1480 {
1481 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1482 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1483 return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1486
1487 /**
1488 * pinctrl_force_default() - turn a given controller device into default state
1489 * @pctldev: pin controller device
1490 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1491 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1492 {
1493 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1494 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1495 return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1498
1499 /**
1500 * pinctrl_init_done() - tell pinctrl probe is done
1501 *
1502 * We'll use this time to switch the pins from "init" to "default" unless the
1503 * driver selected some other state.
1504 *
1505 * @dev: device to that's done probing
1506 */
pinctrl_init_done(struct device * dev)1507 int pinctrl_init_done(struct device *dev)
1508 {
1509 struct dev_pin_info *pins = dev->pins;
1510 int ret;
1511
1512 if (!pins)
1513 return 0;
1514
1515 if (IS_ERR(pins->init_state))
1516 return 0; /* No such state */
1517
1518 if (pins->p->state != pins->init_state)
1519 return 0; /* Not at init anyway */
1520
1521 if (IS_ERR(pins->default_state))
1522 return 0; /* No default state */
1523
1524 ret = pinctrl_select_state(pins->p, pins->default_state);
1525 if (ret)
1526 dev_err(dev, "failed to activate default pinctrl state\n");
1527
1528 return ret;
1529 }
1530
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1531 static int pinctrl_select_bound_state(struct device *dev,
1532 struct pinctrl_state *state)
1533 {
1534 struct dev_pin_info *pins = dev->pins;
1535 int ret;
1536
1537 if (IS_ERR(state))
1538 return 0; /* No such state */
1539 ret = pinctrl_select_state(pins->p, state);
1540 if (ret)
1541 dev_err(dev, "failed to activate pinctrl state %s\n",
1542 state->name);
1543 return ret;
1544 }
1545
1546 /**
1547 * pinctrl_select_default_state() - select default pinctrl state
1548 * @dev: device to select default state for
1549 */
pinctrl_select_default_state(struct device * dev)1550 int pinctrl_select_default_state(struct device *dev)
1551 {
1552 if (!dev->pins)
1553 return 0;
1554
1555 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1556 }
1557 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1558
1559 #ifdef CONFIG_PM
1560
1561 /**
1562 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1563 * @dev: device to select default state for
1564 */
pinctrl_pm_select_default_state(struct device * dev)1565 int pinctrl_pm_select_default_state(struct device *dev)
1566 {
1567 return pinctrl_select_default_state(dev);
1568 }
1569 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1570
1571 /**
1572 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1573 * @dev: device to select sleep state for
1574 */
pinctrl_pm_select_sleep_state(struct device * dev)1575 int pinctrl_pm_select_sleep_state(struct device *dev)
1576 {
1577 if (!dev->pins)
1578 return 0;
1579
1580 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1581 }
1582 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1583
1584 /**
1585 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1586 * @dev: device to select idle state for
1587 */
pinctrl_pm_select_idle_state(struct device * dev)1588 int pinctrl_pm_select_idle_state(struct device *dev)
1589 {
1590 if (!dev->pins)
1591 return 0;
1592
1593 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1594 }
1595 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1596 #endif
1597
1598 #ifdef CONFIG_DEBUG_FS
1599
pinctrl_pins_show(struct seq_file * s,void * what)1600 static int pinctrl_pins_show(struct seq_file *s, void *what)
1601 {
1602 struct pinctrl_dev *pctldev = s->private;
1603 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1604 unsigned i, pin;
1605 struct pinctrl_gpio_range *range;
1606 unsigned int gpio_num;
1607 struct gpio_chip *chip;
1608
1609 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1610
1611 mutex_lock(&pctldev->mutex);
1612
1613 /* The pin number can be retrived from the pin controller descriptor */
1614 for (i = 0; i < pctldev->desc->npins; i++) {
1615 struct pin_desc *desc;
1616
1617 pin = pctldev->desc->pins[i].number;
1618 desc = pin_desc_get(pctldev, pin);
1619 /* Pin space may be sparse */
1620 if (!desc)
1621 continue;
1622
1623 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1624
1625 #ifdef CONFIG_GPIOLIB
1626 gpio_num = 0;
1627 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1628 if ((pin >= range->pin_base) &&
1629 (pin < (range->pin_base + range->npins))) {
1630 gpio_num = range->base + (pin - range->pin_base);
1631 break;
1632 }
1633 }
1634 chip = gpio_to_chip(gpio_num);
1635 if (chip && chip->gpiodev && chip->gpiodev->base)
1636 seq_printf(s, "%u:%s ", gpio_num -
1637 chip->gpiodev->base, chip->label);
1638 else
1639 seq_puts(s, "0:? ");
1640 #endif
1641
1642 /* Driver-specific info per pin */
1643 if (ops->pin_dbg_show)
1644 ops->pin_dbg_show(pctldev, s, pin);
1645
1646 seq_puts(s, "\n");
1647 }
1648
1649 mutex_unlock(&pctldev->mutex);
1650
1651 return 0;
1652 }
1653 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1654
pinctrl_groups_show(struct seq_file * s,void * what)1655 static int pinctrl_groups_show(struct seq_file *s, void *what)
1656 {
1657 struct pinctrl_dev *pctldev = s->private;
1658 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1659 unsigned ngroups, selector = 0;
1660
1661 mutex_lock(&pctldev->mutex);
1662
1663 ngroups = ops->get_groups_count(pctldev);
1664
1665 seq_puts(s, "registered pin groups:\n");
1666 while (selector < ngroups) {
1667 const unsigned *pins = NULL;
1668 unsigned num_pins = 0;
1669 const char *gname = ops->get_group_name(pctldev, selector);
1670 const char *pname;
1671 int ret = 0;
1672 int i;
1673
1674 if (ops->get_group_pins)
1675 ret = ops->get_group_pins(pctldev, selector,
1676 &pins, &num_pins);
1677 if (ret)
1678 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1679 gname);
1680 else {
1681 seq_printf(s, "group: %s\n", gname);
1682 for (i = 0; i < num_pins; i++) {
1683 pname = pin_get_name(pctldev, pins[i]);
1684 if (WARN_ON(!pname)) {
1685 mutex_unlock(&pctldev->mutex);
1686 return -EINVAL;
1687 }
1688 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1689 }
1690 seq_puts(s, "\n");
1691 }
1692 selector++;
1693 }
1694
1695 mutex_unlock(&pctldev->mutex);
1696
1697 return 0;
1698 }
1699 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1700
pinctrl_gpioranges_show(struct seq_file * s,void * what)1701 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1702 {
1703 struct pinctrl_dev *pctldev = s->private;
1704 struct pinctrl_gpio_range *range;
1705
1706 seq_puts(s, "GPIO ranges handled:\n");
1707
1708 mutex_lock(&pctldev->mutex);
1709
1710 /* Loop over the ranges */
1711 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1712 if (range->pins) {
1713 int a;
1714 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1715 range->id, range->name,
1716 range->base, (range->base + range->npins - 1));
1717 for (a = 0; a < range->npins - 1; a++)
1718 seq_printf(s, "%u, ", range->pins[a]);
1719 seq_printf(s, "%u}\n", range->pins[a]);
1720 }
1721 else
1722 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1723 range->id, range->name,
1724 range->base, (range->base + range->npins - 1),
1725 range->pin_base,
1726 (range->pin_base + range->npins - 1));
1727 }
1728
1729 mutex_unlock(&pctldev->mutex);
1730
1731 return 0;
1732 }
1733 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1734
pinctrl_devices_show(struct seq_file * s,void * what)1735 static int pinctrl_devices_show(struct seq_file *s, void *what)
1736 {
1737 struct pinctrl_dev *pctldev;
1738
1739 seq_puts(s, "name [pinmux] [pinconf]\n");
1740
1741 mutex_lock(&pinctrldev_list_mutex);
1742
1743 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1744 seq_printf(s, "%s ", pctldev->desc->name);
1745 if (pctldev->desc->pmxops)
1746 seq_puts(s, "yes ");
1747 else
1748 seq_puts(s, "no ");
1749 if (pctldev->desc->confops)
1750 seq_puts(s, "yes");
1751 else
1752 seq_puts(s, "no");
1753 seq_puts(s, "\n");
1754 }
1755
1756 mutex_unlock(&pinctrldev_list_mutex);
1757
1758 return 0;
1759 }
1760 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1761
map_type(enum pinctrl_map_type type)1762 static inline const char *map_type(enum pinctrl_map_type type)
1763 {
1764 static const char * const names[] = {
1765 "INVALID",
1766 "DUMMY_STATE",
1767 "MUX_GROUP",
1768 "CONFIGS_PIN",
1769 "CONFIGS_GROUP",
1770 };
1771
1772 if (type >= ARRAY_SIZE(names))
1773 return "UNKNOWN";
1774
1775 return names[type];
1776 }
1777
pinctrl_maps_show(struct seq_file * s,void * what)1778 static int pinctrl_maps_show(struct seq_file *s, void *what)
1779 {
1780 struct pinctrl_maps *maps_node;
1781 int i;
1782 const struct pinctrl_map *map;
1783
1784 seq_puts(s, "Pinctrl maps:\n");
1785
1786 mutex_lock(&pinctrl_maps_mutex);
1787 for_each_maps(maps_node, i, map) {
1788 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1789 map->dev_name, map->name, map_type(map->type),
1790 map->type);
1791
1792 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1793 seq_printf(s, "controlling device %s\n",
1794 map->ctrl_dev_name);
1795
1796 switch (map->type) {
1797 case PIN_MAP_TYPE_MUX_GROUP:
1798 pinmux_show_map(s, map);
1799 break;
1800 case PIN_MAP_TYPE_CONFIGS_PIN:
1801 case PIN_MAP_TYPE_CONFIGS_GROUP:
1802 pinconf_show_map(s, map);
1803 break;
1804 default:
1805 break;
1806 }
1807
1808 seq_putc(s, '\n');
1809 }
1810 mutex_unlock(&pinctrl_maps_mutex);
1811
1812 return 0;
1813 }
1814 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1815
pinctrl_show(struct seq_file * s,void * what)1816 static int pinctrl_show(struct seq_file *s, void *what)
1817 {
1818 struct pinctrl *p;
1819 struct pinctrl_state *state;
1820 struct pinctrl_setting *setting;
1821
1822 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1823
1824 mutex_lock(&pinctrl_list_mutex);
1825
1826 list_for_each_entry(p, &pinctrl_list, node) {
1827 seq_printf(s, "device: %s current state: %s\n",
1828 dev_name(p->dev),
1829 p->state ? p->state->name : "none");
1830
1831 list_for_each_entry(state, &p->states, node) {
1832 seq_printf(s, " state: %s\n", state->name);
1833
1834 list_for_each_entry(setting, &state->settings, node) {
1835 struct pinctrl_dev *pctldev = setting->pctldev;
1836
1837 seq_printf(s, " type: %s controller %s ",
1838 map_type(setting->type),
1839 pinctrl_dev_get_name(pctldev));
1840
1841 switch (setting->type) {
1842 case PIN_MAP_TYPE_MUX_GROUP:
1843 pinmux_show_setting(s, setting);
1844 break;
1845 case PIN_MAP_TYPE_CONFIGS_PIN:
1846 case PIN_MAP_TYPE_CONFIGS_GROUP:
1847 pinconf_show_setting(s, setting);
1848 break;
1849 default:
1850 break;
1851 }
1852 }
1853 }
1854 }
1855
1856 mutex_unlock(&pinctrl_list_mutex);
1857
1858 return 0;
1859 }
1860 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1861
1862 static struct dentry *debugfs_root;
1863
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1864 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1865 {
1866 struct dentry *device_root;
1867 const char *debugfs_name;
1868
1869 if (pctldev->desc->name &&
1870 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1871 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1872 "%s-%s", dev_name(pctldev->dev),
1873 pctldev->desc->name);
1874 if (!debugfs_name) {
1875 pr_warn("failed to determine debugfs dir name for %s\n",
1876 dev_name(pctldev->dev));
1877 return;
1878 }
1879 } else {
1880 debugfs_name = dev_name(pctldev->dev);
1881 }
1882
1883 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1884 pctldev->device_root = device_root;
1885
1886 if (IS_ERR(device_root) || !device_root) {
1887 pr_warn("failed to create debugfs directory for %s\n",
1888 dev_name(pctldev->dev));
1889 return;
1890 }
1891 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1892 device_root, pctldev, &pinctrl_pins_fops);
1893 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1894 device_root, pctldev, &pinctrl_groups_fops);
1895 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1896 device_root, pctldev, &pinctrl_gpioranges_fops);
1897 if (pctldev->desc->pmxops)
1898 pinmux_init_device_debugfs(device_root, pctldev);
1899 if (pctldev->desc->confops)
1900 pinconf_init_device_debugfs(device_root, pctldev);
1901 }
1902
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1903 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1904 {
1905 debugfs_remove_recursive(pctldev->device_root);
1906 }
1907
pinctrl_init_debugfs(void)1908 static void pinctrl_init_debugfs(void)
1909 {
1910 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1911 if (IS_ERR(debugfs_root) || !debugfs_root) {
1912 pr_warn("failed to create debugfs directory\n");
1913 debugfs_root = NULL;
1914 return;
1915 }
1916
1917 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1918 debugfs_root, NULL, &pinctrl_devices_fops);
1919 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1920 debugfs_root, NULL, &pinctrl_maps_fops);
1921 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1922 debugfs_root, NULL, &pinctrl_fops);
1923 }
1924
1925 #else /* CONFIG_DEBUG_FS */
1926
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1927 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1928 {
1929 }
1930
pinctrl_init_debugfs(void)1931 static void pinctrl_init_debugfs(void)
1932 {
1933 }
1934
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1935 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1936 {
1937 }
1938
1939 #endif
1940
pinctrl_check_ops(struct pinctrl_dev * pctldev)1941 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1942 {
1943 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1944
1945 if (!ops ||
1946 !ops->get_groups_count ||
1947 !ops->get_group_name)
1948 return -EINVAL;
1949
1950 return 0;
1951 }
1952
1953 /**
1954 * pinctrl_init_controller() - init a pin controller device
1955 * @pctldesc: descriptor for this pin controller
1956 * @dev: parent device for this pin controller
1957 * @driver_data: private pin controller data for this pin controller
1958 */
1959 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)1960 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1961 void *driver_data)
1962 {
1963 struct pinctrl_dev *pctldev;
1964 int ret;
1965
1966 if (!pctldesc)
1967 return ERR_PTR(-EINVAL);
1968 if (!pctldesc->name)
1969 return ERR_PTR(-EINVAL);
1970
1971 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1972 if (!pctldev)
1973 return ERR_PTR(-ENOMEM);
1974
1975 /* Initialize pin control device struct */
1976 pctldev->owner = pctldesc->owner;
1977 pctldev->desc = pctldesc;
1978 pctldev->driver_data = driver_data;
1979 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1980 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1981 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1982 #endif
1983 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1984 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1985 #endif
1986 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1987 INIT_LIST_HEAD(&pctldev->node);
1988 pctldev->dev = dev;
1989 mutex_init(&pctldev->mutex);
1990
1991 /* check core ops for sanity */
1992 ret = pinctrl_check_ops(pctldev);
1993 if (ret) {
1994 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1995 goto out_err;
1996 }
1997
1998 /* If we're implementing pinmuxing, check the ops for sanity */
1999 if (pctldesc->pmxops) {
2000 ret = pinmux_check_ops(pctldev);
2001 if (ret)
2002 goto out_err;
2003 }
2004
2005 /* If we're implementing pinconfig, check the ops for sanity */
2006 if (pctldesc->confops) {
2007 ret = pinconf_check_ops(pctldev);
2008 if (ret)
2009 goto out_err;
2010 }
2011
2012 /* Register all the pins */
2013 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2014 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2015 if (ret) {
2016 dev_err(dev, "error during pin registration\n");
2017 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2018 pctldesc->npins);
2019 goto out_err;
2020 }
2021
2022 return pctldev;
2023
2024 out_err:
2025 mutex_destroy(&pctldev->mutex);
2026 kfree(pctldev);
2027 return ERR_PTR(ret);
2028 }
2029
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2030 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2031 {
2032 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2033 if (PTR_ERR(pctldev->p) == -ENODEV) {
2034 dev_dbg(pctldev->dev, "no hogs found\n");
2035
2036 return 0;
2037 }
2038
2039 if (IS_ERR(pctldev->p)) {
2040 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2041 PTR_ERR(pctldev->p));
2042
2043 return PTR_ERR(pctldev->p);
2044 }
2045
2046 pctldev->hog_default =
2047 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2048 if (IS_ERR(pctldev->hog_default)) {
2049 dev_dbg(pctldev->dev,
2050 "failed to lookup the default state\n");
2051 } else {
2052 if (pinctrl_select_state(pctldev->p,
2053 pctldev->hog_default))
2054 dev_err(pctldev->dev,
2055 "failed to select default state\n");
2056 }
2057
2058 pctldev->hog_sleep =
2059 pinctrl_lookup_state(pctldev->p,
2060 PINCTRL_STATE_SLEEP);
2061 if (IS_ERR(pctldev->hog_sleep))
2062 dev_dbg(pctldev->dev,
2063 "failed to lookup the sleep state\n");
2064
2065 return 0;
2066 }
2067
pinctrl_enable(struct pinctrl_dev * pctldev)2068 int pinctrl_enable(struct pinctrl_dev *pctldev)
2069 {
2070 int error;
2071
2072 error = pinctrl_claim_hogs(pctldev);
2073 if (error) {
2074 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2075 error);
2076 mutex_destroy(&pctldev->mutex);
2077 kfree(pctldev);
2078
2079 return error;
2080 }
2081
2082 mutex_lock(&pinctrldev_list_mutex);
2083 list_add_tail(&pctldev->node, &pinctrldev_list);
2084 mutex_unlock(&pinctrldev_list_mutex);
2085
2086 pinctrl_init_device_debugfs(pctldev);
2087
2088 return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(pinctrl_enable);
2091
2092 /**
2093 * pinctrl_register() - register a pin controller device
2094 * @pctldesc: descriptor for this pin controller
2095 * @dev: parent device for this pin controller
2096 * @driver_data: private pin controller data for this pin controller
2097 *
2098 * Note that pinctrl_register() is known to have problems as the pin
2099 * controller driver functions are called before the driver has a
2100 * struct pinctrl_dev handle. To avoid issues later on, please use the
2101 * new pinctrl_register_and_init() below instead.
2102 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2103 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2104 struct device *dev, void *driver_data)
2105 {
2106 struct pinctrl_dev *pctldev;
2107 int error;
2108
2109 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2110 if (IS_ERR(pctldev))
2111 return pctldev;
2112
2113 error = pinctrl_enable(pctldev);
2114 if (error)
2115 return ERR_PTR(error);
2116
2117 return pctldev;
2118
2119 }
2120 EXPORT_SYMBOL_GPL(pinctrl_register);
2121
2122 /**
2123 * pinctrl_register_and_init() - register and init pin controller device
2124 * @pctldesc: descriptor for this pin controller
2125 * @dev: parent device for this pin controller
2126 * @driver_data: private pin controller data for this pin controller
2127 * @pctldev: pin controller device
2128 *
2129 * Note that pinctrl_enable() still needs to be manually called after
2130 * this once the driver is ready.
2131 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2132 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2133 struct device *dev, void *driver_data,
2134 struct pinctrl_dev **pctldev)
2135 {
2136 struct pinctrl_dev *p;
2137
2138 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2139 if (IS_ERR(p))
2140 return PTR_ERR(p);
2141
2142 /*
2143 * We have pinctrl_start() call functions in the pin controller
2144 * driver with create_pinctrl() for at least dt_node_to_map(). So
2145 * let's make sure pctldev is properly initialized for the
2146 * pin controller driver before we do anything.
2147 */
2148 *pctldev = p;
2149
2150 return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2153
2154 /**
2155 * pinctrl_unregister() - unregister pinmux
2156 * @pctldev: pin controller to unregister
2157 *
2158 * Called by pinmux drivers to unregister a pinmux.
2159 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2160 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2161 {
2162 struct pinctrl_gpio_range *range, *n;
2163
2164 if (!pctldev)
2165 return;
2166
2167 mutex_lock(&pctldev->mutex);
2168 pinctrl_remove_device_debugfs(pctldev);
2169 mutex_unlock(&pctldev->mutex);
2170
2171 if (!IS_ERR_OR_NULL(pctldev->p))
2172 pinctrl_put(pctldev->p);
2173
2174 mutex_lock(&pinctrldev_list_mutex);
2175 mutex_lock(&pctldev->mutex);
2176 /* TODO: check that no pinmuxes are still active? */
2177 list_del(&pctldev->node);
2178 pinmux_generic_free_functions(pctldev);
2179 pinctrl_generic_free_groups(pctldev);
2180 /* Destroy descriptor tree */
2181 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2182 pctldev->desc->npins);
2183 /* remove gpio ranges map */
2184 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2185 list_del(&range->node);
2186
2187 mutex_unlock(&pctldev->mutex);
2188 mutex_destroy(&pctldev->mutex);
2189 kfree(pctldev);
2190 mutex_unlock(&pinctrldev_list_mutex);
2191 }
2192 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2193
devm_pinctrl_dev_release(struct device * dev,void * res)2194 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2195 {
2196 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2197
2198 pinctrl_unregister(pctldev);
2199 }
2200
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2201 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2202 {
2203 struct pctldev **r = res;
2204
2205 if (WARN_ON(!r || !*r))
2206 return 0;
2207
2208 return *r == data;
2209 }
2210
2211 /**
2212 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2213 * @dev: parent device for this pin controller
2214 * @pctldesc: descriptor for this pin controller
2215 * @driver_data: private pin controller data for this pin controller
2216 *
2217 * Returns an error pointer if pincontrol register failed. Otherwise
2218 * it returns valid pinctrl handle.
2219 *
2220 * The pinctrl device will be automatically released when the device is unbound.
2221 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2222 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2223 struct pinctrl_desc *pctldesc,
2224 void *driver_data)
2225 {
2226 struct pinctrl_dev **ptr, *pctldev;
2227
2228 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2229 if (!ptr)
2230 return ERR_PTR(-ENOMEM);
2231
2232 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2233 if (IS_ERR(pctldev)) {
2234 devres_free(ptr);
2235 return pctldev;
2236 }
2237
2238 *ptr = pctldev;
2239 devres_add(dev, ptr);
2240
2241 return pctldev;
2242 }
2243 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2244
2245 /**
2246 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2247 * @dev: parent device for this pin controller
2248 * @pctldesc: descriptor for this pin controller
2249 * @driver_data: private pin controller data for this pin controller
2250 * @pctldev: pin controller device
2251 *
2252 * Returns zero on success or an error number on failure.
2253 *
2254 * The pinctrl device will be automatically released when the device is unbound.
2255 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2256 int devm_pinctrl_register_and_init(struct device *dev,
2257 struct pinctrl_desc *pctldesc,
2258 void *driver_data,
2259 struct pinctrl_dev **pctldev)
2260 {
2261 struct pinctrl_dev **ptr;
2262 int error;
2263
2264 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2265 if (!ptr)
2266 return -ENOMEM;
2267
2268 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2269 if (error) {
2270 devres_free(ptr);
2271 return error;
2272 }
2273
2274 *ptr = *pctldev;
2275 devres_add(dev, ptr);
2276
2277 return 0;
2278 }
2279 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2280
2281 /**
2282 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2283 * @dev: device for which which resource was allocated
2284 * @pctldev: the pinctrl device to unregister.
2285 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2286 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2287 {
2288 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2289 devm_pinctrl_dev_match, pctldev));
2290 }
2291 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2292
pinctrl_init(void)2293 static int __init pinctrl_init(void)
2294 {
2295 pr_info("initialized pinctrl subsystem\n");
2296 pinctrl_init_debugfs();
2297 return 0;
2298 }
2299
2300 /* init early since many drivers really need to initialized pinmux early */
2301 core_initcall(pinctrl_init);
2302