1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/debugfs.h>
25 #include <linux/seq_file.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/pinctrl/pinctrl.h>
28 #include <linux/pinctrl/machine.h>
29
30 #ifdef CONFIG_GPIOLIB
31 #include <asm-generic/gpio.h>
32 #endif
33
34 #include "core.h"
35 #include "devicetree.h"
36 #include "pinmux.h"
37 #include "pinconf.h"
38
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev = NULL;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (pctldev->dev->of_node == np) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name_from_id() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @name: the name of the pin to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180
181 /**
182 * pin_is_valid() - check if pin exists on controller
183 * @pctldev: the pin control device to check the pin on
184 * @pin: pin to check, use the local pin controller index number
185 *
186 * This tells us whether a certain pin exist on a certain pin controller or
187 * not. Pin lists may be sparse, so some pins may not exist.
188 */
pin_is_valid(struct pinctrl_dev * pctldev,int pin)189 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
190 {
191 struct pin_desc *pindesc;
192
193 if (pin < 0)
194 return false;
195
196 mutex_lock(&pctldev->mutex);
197 pindesc = pin_desc_get(pctldev, pin);
198 mutex_unlock(&pctldev->mutex);
199
200 return pindesc != NULL;
201 }
202 EXPORT_SYMBOL_GPL(pin_is_valid);
203
204 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)205 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
206 const struct pinctrl_pin_desc *pins,
207 unsigned num_pins)
208 {
209 int i;
210
211 for (i = 0; i < num_pins; i++) {
212 struct pin_desc *pindesc;
213
214 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
215 pins[i].number);
216 if (pindesc) {
217 radix_tree_delete(&pctldev->pin_desc_tree,
218 pins[i].number);
219 if (pindesc->dynamic_name)
220 kfree(pindesc->name);
221 }
222 kfree(pindesc);
223 }
224 }
225
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)226 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
227 const struct pinctrl_pin_desc *pin)
228 {
229 struct pin_desc *pindesc;
230
231 pindesc = pin_desc_get(pctldev, pin->number);
232 if (pindesc) {
233 dev_err(pctldev->dev, "pin %d already registered\n",
234 pin->number);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (!pindesc)
240 return -ENOMEM;
241
242 /* Set owner */
243 pindesc->pctldev = pctldev;
244
245 /* Copy basic pin info */
246 if (pin->name) {
247 pindesc->name = pin->name;
248 } else {
249 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
250 if (!pindesc->name) {
251 kfree(pindesc);
252 return -ENOMEM;
253 }
254 pindesc->dynamic_name = true;
255 }
256
257 pindesc->drv_data = pin->drv_data;
258
259 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 pin->number, pindesc->name, pctldev->desc->name);
262 return 0;
263 }
264
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 const struct pinctrl_pin_desc *pins,
267 unsigned num_descs)
268 {
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
274 if (ret)
275 return ret;
276 }
277
278 return 0;
279 }
280
281 /**
282 * gpio_to_pin() - GPIO range GPIO number to pin number translation
283 * @range: GPIO range used for the translation
284 * @gpio: gpio pin to translate to a pin number
285 *
286 * Finds the pin number for a given GPIO using the specified GPIO range
287 * as a base for translation. The distinction between linear GPIO ranges
288 * and pin list based GPIO ranges is managed correctly by this function.
289 *
290 * This function assumes the gpio is part of the specified GPIO range, use
291 * only after making sure this is the case (e.g. by calling it on the
292 * result of successful pinctrl_get_device_gpio_range calls)!
293 */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)294 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
295 unsigned int gpio)
296 {
297 unsigned int offset = gpio - range->base;
298 if (range->pins)
299 return range->pins[offset];
300 else
301 return range->pin_base + offset;
302 }
303
304 /**
305 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
306 * @pctldev: pin controller device to check
307 * @gpio: gpio pin to check taken from the global GPIO pin space
308 *
309 * Tries to match a GPIO pin number to the ranges handled by a certain pin
310 * controller, return the range or NULL
311 */
312 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)313 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
314 {
315 struct pinctrl_gpio_range *range = NULL;
316
317 mutex_lock(&pctldev->mutex);
318 /* Loop over the ranges */
319 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
320 /* Check if we're in the valid range */
321 if (gpio >= range->base &&
322 gpio < range->base + range->npins) {
323 mutex_unlock(&pctldev->mutex);
324 return range;
325 }
326 }
327 mutex_unlock(&pctldev->mutex);
328 return NULL;
329 }
330
331 /**
332 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
333 * the same GPIO chip are in range
334 * @gpio: gpio pin to check taken from the global GPIO pin space
335 *
336 * This function is complement of pinctrl_match_gpio_range(). If the return
337 * value of pinctrl_match_gpio_range() is NULL, this function could be used
338 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
339 * of the same GPIO chip don't have back-end pinctrl interface.
340 * If the return value is true, it means that pinctrl device is ready & the
341 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
342 * is false, it means that pinctrl device may not be ready.
343 */
344 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)345 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
346 {
347 struct pinctrl_dev *pctldev;
348 struct pinctrl_gpio_range *range = NULL;
349 struct gpio_chip *chip = gpio_to_chip(gpio);
350
351 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
352 return false;
353
354 mutex_lock(&pinctrldev_list_mutex);
355
356 /* Loop over the pin controllers */
357 list_for_each_entry(pctldev, &pinctrldev_list, node) {
358 /* Loop over the ranges */
359 mutex_lock(&pctldev->mutex);
360 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
361 /* Check if any gpio range overlapped with gpio chip */
362 if (range->base + range->npins - 1 < chip->base ||
363 range->base > chip->base + chip->ngpio - 1)
364 continue;
365 mutex_unlock(&pctldev->mutex);
366 mutex_unlock(&pinctrldev_list_mutex);
367 return true;
368 }
369 mutex_unlock(&pctldev->mutex);
370 }
371
372 mutex_unlock(&pinctrldev_list_mutex);
373
374 return false;
375 }
376 #else
pinctrl_ready_for_gpio_range(unsigned gpio)377 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
378 #endif
379
380 /**
381 * pinctrl_get_device_gpio_range() - find device for GPIO range
382 * @gpio: the pin to locate the pin controller for
383 * @outdev: the pin control device if found
384 * @outrange: the GPIO range if found
385 *
386 * Find the pin controller handling a certain GPIO pin from the pinspace of
387 * the GPIO subsystem, return the device and the matching GPIO range. Returns
388 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
389 * may still have not been registered.
390 */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)391 static int pinctrl_get_device_gpio_range(unsigned gpio,
392 struct pinctrl_dev **outdev,
393 struct pinctrl_gpio_range **outrange)
394 {
395 struct pinctrl_dev *pctldev = NULL;
396
397 mutex_lock(&pinctrldev_list_mutex);
398
399 /* Loop over the pin controllers */
400 list_for_each_entry(pctldev, &pinctrldev_list, node) {
401 struct pinctrl_gpio_range *range;
402
403 range = pinctrl_match_gpio_range(pctldev, gpio);
404 if (range) {
405 *outdev = pctldev;
406 *outrange = range;
407 mutex_unlock(&pinctrldev_list_mutex);
408 return 0;
409 }
410 }
411
412 mutex_unlock(&pinctrldev_list_mutex);
413
414 return -EPROBE_DEFER;
415 }
416
417 /**
418 * pinctrl_add_gpio_range() - register a GPIO range for a controller
419 * @pctldev: pin controller device to add the range to
420 * @range: the GPIO range to add
421 *
422 * This adds a range of GPIOs to be handled by a certain pin controller. Call
423 * this to register handled ranges after registering your pin controller.
424 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)425 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
426 struct pinctrl_gpio_range *range)
427 {
428 mutex_lock(&pctldev->mutex);
429 list_add_tail(&range->node, &pctldev->gpio_ranges);
430 mutex_unlock(&pctldev->mutex);
431 }
432 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
433
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)434 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
435 struct pinctrl_gpio_range *ranges,
436 unsigned nranges)
437 {
438 int i;
439
440 for (i = 0; i < nranges; i++)
441 pinctrl_add_gpio_range(pctldev, &ranges[i]);
442 }
443 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
444
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)445 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
446 struct pinctrl_gpio_range *range)
447 {
448 struct pinctrl_dev *pctldev;
449
450 pctldev = get_pinctrl_dev_from_devname(devname);
451
452 /*
453 * If we can't find this device, let's assume that is because
454 * it has not probed yet, so the driver trying to register this
455 * range need to defer probing.
456 */
457 if (!pctldev) {
458 return ERR_PTR(-EPROBE_DEFER);
459 }
460 pinctrl_add_gpio_range(pctldev, range);
461
462 return pctldev;
463 }
464 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
465
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)466 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
467 const unsigned **pins, unsigned *num_pins)
468 {
469 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
470 int gs;
471
472 if (!pctlops->get_group_pins)
473 return -EINVAL;
474
475 gs = pinctrl_get_group_selector(pctldev, pin_group);
476 if (gs < 0)
477 return gs;
478
479 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
480 }
481 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
482
483 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)484 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
485 unsigned int pin)
486 {
487 struct pinctrl_gpio_range *range;
488
489 /* Loop over the ranges */
490 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
491 /* Check if we're in the valid range */
492 if (range->pins) {
493 int a;
494 for (a = 0; a < range->npins; a++) {
495 if (range->pins[a] == pin)
496 return range;
497 }
498 } else if (pin >= range->pin_base &&
499 pin < range->pin_base + range->npins)
500 return range;
501 }
502
503 return NULL;
504 }
505 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
506
507 /**
508 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
509 * @pctldev: the pin controller device to look in
510 * @pin: a controller-local number to find the range for
511 */
512 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)513 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
514 unsigned int pin)
515 {
516 struct pinctrl_gpio_range *range;
517
518 mutex_lock(&pctldev->mutex);
519 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
520 mutex_unlock(&pctldev->mutex);
521
522 return range;
523 }
524 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
525
526 /**
527 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
528 * @pctldev: pin controller device to remove the range from
529 * @range: the GPIO range to remove
530 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)531 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
532 struct pinctrl_gpio_range *range)
533 {
534 mutex_lock(&pctldev->mutex);
535 list_del(&range->node);
536 mutex_unlock(&pctldev->mutex);
537 }
538 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
539
540 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
541
542 /**
543 * pinctrl_generic_get_group_count() - returns the number of pin groups
544 * @pctldev: pin controller device
545 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)546 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
547 {
548 return pctldev->num_groups;
549 }
550 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
551
552 /**
553 * pinctrl_generic_get_group_name() - returns the name of a pin group
554 * @pctldev: pin controller device
555 * @selector: group number
556 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)557 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
558 unsigned int selector)
559 {
560 struct group_desc *group;
561
562 group = radix_tree_lookup(&pctldev->pin_group_tree,
563 selector);
564 if (!group)
565 return NULL;
566
567 return group->name;
568 }
569 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
570
571 /**
572 * pinctrl_generic_get_group_pins() - gets the pin group pins
573 * @pctldev: pin controller device
574 * @selector: group number
575 * @pins: pins in the group
576 * @num_pins: number of pins in the group
577 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)578 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
579 unsigned int selector,
580 const unsigned int **pins,
581 unsigned int *num_pins)
582 {
583 struct group_desc *group;
584
585 group = radix_tree_lookup(&pctldev->pin_group_tree,
586 selector);
587 if (!group) {
588 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
589 __func__, selector);
590 return -EINVAL;
591 }
592
593 *pins = group->pins;
594 *num_pins = group->num_pins;
595
596 return 0;
597 }
598 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
599
600 /**
601 * pinctrl_generic_get_group() - returns a pin group based on the number
602 * @pctldev: pin controller device
603 * @gselector: group number
604 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)605 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
606 unsigned int selector)
607 {
608 struct group_desc *group;
609
610 group = radix_tree_lookup(&pctldev->pin_group_tree,
611 selector);
612 if (!group)
613 return NULL;
614
615 return group;
616 }
617 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
618
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)619 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
620 const char *function)
621 {
622 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
623 int ngroups = ops->get_groups_count(pctldev);
624 int selector = 0;
625
626 /* See if this pctldev has this group */
627 while (selector < ngroups) {
628 const char *gname = ops->get_group_name(pctldev, selector);
629
630 if (!strcmp(function, gname))
631 return selector;
632
633 selector++;
634 }
635
636 return -EINVAL;
637 }
638
639 /**
640 * pinctrl_generic_add_group() - adds a new pin group
641 * @pctldev: pin controller device
642 * @name: name of the pin group
643 * @pins: pins in the pin group
644 * @num_pins: number of pins in the pin group
645 * @data: pin controller driver specific data
646 *
647 * Note that the caller must take care of locking.
648 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)649 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
650 int *pins, int num_pins, void *data)
651 {
652 struct group_desc *group;
653 int selector;
654
655 if (!name)
656 return -EINVAL;
657
658 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
659 if (selector >= 0)
660 return selector;
661
662 selector = pctldev->num_groups;
663
664 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
665 if (!group)
666 return -ENOMEM;
667
668 group->name = name;
669 group->pins = pins;
670 group->num_pins = num_pins;
671 group->data = data;
672
673 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
674
675 pctldev->num_groups++;
676
677 return selector;
678 }
679 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
680
681 /**
682 * pinctrl_generic_remove_group() - removes a numbered pin group
683 * @pctldev: pin controller device
684 * @selector: group number
685 *
686 * Note that the caller must take care of locking.
687 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)688 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
689 unsigned int selector)
690 {
691 struct group_desc *group;
692
693 group = radix_tree_lookup(&pctldev->pin_group_tree,
694 selector);
695 if (!group)
696 return -ENOENT;
697
698 radix_tree_delete(&pctldev->pin_group_tree, selector);
699 devm_kfree(pctldev->dev, group);
700
701 pctldev->num_groups--;
702
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
706
707 /**
708 * pinctrl_generic_free_groups() - removes all pin groups
709 * @pctldev: pin controller device
710 *
711 * Note that the caller must take care of locking. The pinctrl groups
712 * are allocated with devm_kzalloc() so no need to free them here.
713 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)714 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
715 {
716 struct radix_tree_iter iter;
717 void __rcu **slot;
718
719 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
720 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
721
722 pctldev->num_groups = 0;
723 }
724
725 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)726 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
727 {
728 }
729 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
730
731 /**
732 * pinctrl_get_group_selector() - returns the group selector for a group
733 * @pctldev: the pin controller handling the group
734 * @pin_group: the pin group to look up
735 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)736 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
737 const char *pin_group)
738 {
739 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
740 unsigned ngroups = pctlops->get_groups_count(pctldev);
741 unsigned group_selector = 0;
742
743 while (group_selector < ngroups) {
744 const char *gname = pctlops->get_group_name(pctldev,
745 group_selector);
746 if (!strcmp(gname, pin_group)) {
747 dev_dbg(pctldev->dev,
748 "found group selector %u for %s\n",
749 group_selector,
750 pin_group);
751 return group_selector;
752 }
753
754 group_selector++;
755 }
756
757 dev_err(pctldev->dev, "does not have pin group %s\n",
758 pin_group);
759
760 return -EINVAL;
761 }
762
763 /**
764 * pinctrl_gpio_request() - request a single pin to be used as GPIO
765 * @gpio: the GPIO pin number from the GPIO subsystem number space
766 *
767 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
768 * as part of their gpio_request() semantics, platforms and individual drivers
769 * shall *NOT* request GPIO pins to be muxed in.
770 */
pinctrl_gpio_request(unsigned gpio)771 int pinctrl_gpio_request(unsigned gpio)
772 {
773 struct pinctrl_dev *pctldev;
774 struct pinctrl_gpio_range *range;
775 int ret;
776 int pin;
777
778 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
779 if (ret) {
780 if (pinctrl_ready_for_gpio_range(gpio))
781 ret = 0;
782 return ret;
783 }
784
785 mutex_lock(&pctldev->mutex);
786
787 /* Convert to the pin controllers number space */
788 pin = gpio_to_pin(range, gpio);
789
790 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
791
792 mutex_unlock(&pctldev->mutex);
793
794 return ret;
795 }
796 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
797
798 /**
799 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
800 * @gpio: the GPIO pin number from the GPIO subsystem number space
801 *
802 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
803 * as part of their gpio_free() semantics, platforms and individual drivers
804 * shall *NOT* request GPIO pins to be muxed out.
805 */
pinctrl_gpio_free(unsigned gpio)806 void pinctrl_gpio_free(unsigned gpio)
807 {
808 struct pinctrl_dev *pctldev;
809 struct pinctrl_gpio_range *range;
810 int ret;
811 int pin;
812
813 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
814 if (ret) {
815 return;
816 }
817 mutex_lock(&pctldev->mutex);
818
819 /* Convert to the pin controllers number space */
820 pin = gpio_to_pin(range, gpio);
821
822 pinmux_free_gpio(pctldev, pin, range);
823
824 mutex_unlock(&pctldev->mutex);
825 }
826 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
827
pinctrl_gpio_direction(unsigned gpio,bool input)828 static int pinctrl_gpio_direction(unsigned gpio, bool input)
829 {
830 struct pinctrl_dev *pctldev;
831 struct pinctrl_gpio_range *range;
832 int ret;
833 int pin;
834
835 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
836 if (ret) {
837 return ret;
838 }
839
840 mutex_lock(&pctldev->mutex);
841
842 /* Convert to the pin controllers number space */
843 pin = gpio_to_pin(range, gpio);
844 ret = pinmux_gpio_direction(pctldev, range, pin, input);
845
846 mutex_unlock(&pctldev->mutex);
847
848 return ret;
849 }
850
851 /**
852 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
853 * @gpio: the GPIO pin number from the GPIO subsystem number space
854 *
855 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
856 * as part of their gpio_direction_input() semantics, platforms and individual
857 * drivers shall *NOT* touch pin control GPIO calls.
858 */
pinctrl_gpio_direction_input(unsigned gpio)859 int pinctrl_gpio_direction_input(unsigned gpio)
860 {
861 return pinctrl_gpio_direction(gpio, true);
862 }
863 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
864
865 /**
866 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
867 * @gpio: the GPIO pin number from the GPIO subsystem number space
868 *
869 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
870 * as part of their gpio_direction_output() semantics, platforms and individual
871 * drivers shall *NOT* touch pin control GPIO calls.
872 */
pinctrl_gpio_direction_output(unsigned gpio)873 int pinctrl_gpio_direction_output(unsigned gpio)
874 {
875 return pinctrl_gpio_direction(gpio, false);
876 }
877 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
878
879 /**
880 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
881 * @gpio: the GPIO pin number from the GPIO subsystem number space
882 * @config: the configuration to apply to the GPIO
883 *
884 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
885 * they need to call the underlying pin controller to change GPIO config
886 * (for example set debounce time).
887 */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)888 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
889 {
890 unsigned long configs[] = { config };
891 struct pinctrl_gpio_range *range;
892 struct pinctrl_dev *pctldev;
893 int ret, pin;
894
895 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
896 if (ret)
897 return ret;
898
899 mutex_lock(&pctldev->mutex);
900 pin = gpio_to_pin(range, gpio);
901 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
902 mutex_unlock(&pctldev->mutex);
903
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
907
find_state(struct pinctrl * p,const char * name)908 static struct pinctrl_state *find_state(struct pinctrl *p,
909 const char *name)
910 {
911 struct pinctrl_state *state;
912
913 list_for_each_entry(state, &p->states, node)
914 if (!strcmp(state->name, name))
915 return state;
916
917 return NULL;
918 }
919
create_state(struct pinctrl * p,const char * name)920 static struct pinctrl_state *create_state(struct pinctrl *p,
921 const char *name)
922 {
923 struct pinctrl_state *state;
924
925 state = kzalloc(sizeof(*state), GFP_KERNEL);
926 if (!state)
927 return ERR_PTR(-ENOMEM);
928
929 state->name = name;
930 INIT_LIST_HEAD(&state->settings);
931
932 list_add_tail(&state->node, &p->states);
933
934 return state;
935 }
936
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)937 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
938 const struct pinctrl_map *map)
939 {
940 struct pinctrl_state *state;
941 struct pinctrl_setting *setting;
942 int ret;
943
944 state = find_state(p, map->name);
945 if (!state)
946 state = create_state(p, map->name);
947 if (IS_ERR(state))
948 return PTR_ERR(state);
949
950 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
951 return 0;
952
953 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
954 if (!setting)
955 return -ENOMEM;
956
957 setting->type = map->type;
958
959 if (pctldev)
960 setting->pctldev = pctldev;
961 else
962 setting->pctldev =
963 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
964 if (!setting->pctldev) {
965 kfree(setting);
966 /* Do not defer probing of hogs (circular loop) */
967 if (!strcmp(map->ctrl_dev_name, map->dev_name))
968 return -ENODEV;
969 /*
970 * OK let us guess that the driver is not there yet, and
971 * let's defer obtaining this pinctrl handle to later...
972 */
973 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
974 map->ctrl_dev_name);
975 return -EPROBE_DEFER;
976 }
977
978 setting->dev_name = map->dev_name;
979
980 switch (map->type) {
981 case PIN_MAP_TYPE_MUX_GROUP:
982 ret = pinmux_map_to_setting(map, setting);
983 break;
984 case PIN_MAP_TYPE_CONFIGS_PIN:
985 case PIN_MAP_TYPE_CONFIGS_GROUP:
986 ret = pinconf_map_to_setting(map, setting);
987 break;
988 default:
989 ret = -EINVAL;
990 break;
991 }
992 if (ret < 0) {
993 kfree(setting);
994 return ret;
995 }
996
997 list_add_tail(&setting->node, &state->settings);
998
999 return 0;
1000 }
1001
find_pinctrl(struct device * dev)1002 static struct pinctrl *find_pinctrl(struct device *dev)
1003 {
1004 struct pinctrl *p;
1005
1006 mutex_lock(&pinctrl_list_mutex);
1007 list_for_each_entry(p, &pinctrl_list, node)
1008 if (p->dev == dev) {
1009 mutex_unlock(&pinctrl_list_mutex);
1010 return p;
1011 }
1012
1013 mutex_unlock(&pinctrl_list_mutex);
1014 return NULL;
1015 }
1016
1017 static void pinctrl_free(struct pinctrl *p, bool inlist);
1018
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1019 static struct pinctrl *create_pinctrl(struct device *dev,
1020 struct pinctrl_dev *pctldev)
1021 {
1022 struct pinctrl *p;
1023 const char *devname;
1024 struct pinctrl_maps *maps_node;
1025 int i;
1026 const struct pinctrl_map *map;
1027 int ret;
1028
1029 /*
1030 * create the state cookie holder struct pinctrl for each
1031 * mapping, this is what consumers will get when requesting
1032 * a pin control handle with pinctrl_get()
1033 */
1034 p = kzalloc(sizeof(*p), GFP_KERNEL);
1035 if (!p)
1036 return ERR_PTR(-ENOMEM);
1037 p->dev = dev;
1038 INIT_LIST_HEAD(&p->states);
1039 INIT_LIST_HEAD(&p->dt_maps);
1040
1041 ret = pinctrl_dt_to_map(p, pctldev);
1042 if (ret < 0) {
1043 kfree(p);
1044 return ERR_PTR(ret);
1045 }
1046
1047 devname = dev_name(dev);
1048
1049 mutex_lock(&pinctrl_maps_mutex);
1050 /* Iterate over the pin control maps to locate the right ones */
1051 for_each_maps(maps_node, i, map) {
1052 /* Map must be for this device */
1053 if (strcmp(map->dev_name, devname))
1054 continue;
1055 /*
1056 * If pctldev is not null, we are claiming hog for it,
1057 * that means, setting that is served by pctldev by itself.
1058 *
1059 * Thus we must skip map that is for this device but is served
1060 * by other device.
1061 */
1062 if (pctldev &&
1063 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1064 continue;
1065
1066 ret = add_setting(p, pctldev, map);
1067 /*
1068 * At this point the adding of a setting may:
1069 *
1070 * - Defer, if the pinctrl device is not yet available
1071 * - Fail, if the pinctrl device is not yet available,
1072 * AND the setting is a hog. We cannot defer that, since
1073 * the hog will kick in immediately after the device
1074 * is registered.
1075 *
1076 * If the error returned was not -EPROBE_DEFER then we
1077 * accumulate the errors to see if we end up with
1078 * an -EPROBE_DEFER later, as that is the worst case.
1079 */
1080 if (ret == -EPROBE_DEFER) {
1081 pinctrl_free(p, false);
1082 mutex_unlock(&pinctrl_maps_mutex);
1083 return ERR_PTR(ret);
1084 }
1085 }
1086 mutex_unlock(&pinctrl_maps_mutex);
1087
1088 if (ret < 0) {
1089 /* If some other error than deferral occurred, return here */
1090 pinctrl_free(p, false);
1091 return ERR_PTR(ret);
1092 }
1093
1094 kref_init(&p->users);
1095
1096 /* Add the pinctrl handle to the global list */
1097 mutex_lock(&pinctrl_list_mutex);
1098 list_add_tail(&p->node, &pinctrl_list);
1099 mutex_unlock(&pinctrl_list_mutex);
1100
1101 return p;
1102 }
1103
1104 /**
1105 * pinctrl_get() - retrieves the pinctrl handle for a device
1106 * @dev: the device to obtain the handle for
1107 */
pinctrl_get(struct device * dev)1108 struct pinctrl *pinctrl_get(struct device *dev)
1109 {
1110 struct pinctrl *p;
1111
1112 if (WARN_ON(!dev))
1113 return ERR_PTR(-EINVAL);
1114
1115 /*
1116 * See if somebody else (such as the device core) has already
1117 * obtained a handle to the pinctrl for this device. In that case,
1118 * return another pointer to it.
1119 */
1120 p = find_pinctrl(dev);
1121 if (p) {
1122 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1123 kref_get(&p->users);
1124 return p;
1125 }
1126
1127 return create_pinctrl(dev, NULL);
1128 }
1129 EXPORT_SYMBOL_GPL(pinctrl_get);
1130
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1131 static void pinctrl_free_setting(bool disable_setting,
1132 struct pinctrl_setting *setting)
1133 {
1134 switch (setting->type) {
1135 case PIN_MAP_TYPE_MUX_GROUP:
1136 if (disable_setting)
1137 pinmux_disable_setting(setting);
1138 pinmux_free_setting(setting);
1139 break;
1140 case PIN_MAP_TYPE_CONFIGS_PIN:
1141 case PIN_MAP_TYPE_CONFIGS_GROUP:
1142 pinconf_free_setting(setting);
1143 break;
1144 default:
1145 break;
1146 }
1147 }
1148
pinctrl_free(struct pinctrl * p,bool inlist)1149 static void pinctrl_free(struct pinctrl *p, bool inlist)
1150 {
1151 struct pinctrl_state *state, *n1;
1152 struct pinctrl_setting *setting, *n2;
1153
1154 mutex_lock(&pinctrl_list_mutex);
1155 list_for_each_entry_safe(state, n1, &p->states, node) {
1156 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1157 pinctrl_free_setting(state == p->state, setting);
1158 list_del(&setting->node);
1159 kfree(setting);
1160 }
1161 list_del(&state->node);
1162 kfree(state);
1163 }
1164
1165 pinctrl_dt_free_maps(p);
1166
1167 if (inlist)
1168 list_del(&p->node);
1169 kfree(p);
1170 mutex_unlock(&pinctrl_list_mutex);
1171 }
1172
1173 /**
1174 * pinctrl_release() - release the pinctrl handle
1175 * @kref: the kref in the pinctrl being released
1176 */
pinctrl_release(struct kref * kref)1177 static void pinctrl_release(struct kref *kref)
1178 {
1179 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1180
1181 pinctrl_free(p, true);
1182 }
1183
1184 /**
1185 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1186 * @p: the pinctrl handle to release
1187 */
pinctrl_put(struct pinctrl * p)1188 void pinctrl_put(struct pinctrl *p)
1189 {
1190 kref_put(&p->users, pinctrl_release);
1191 }
1192 EXPORT_SYMBOL_GPL(pinctrl_put);
1193
1194 /**
1195 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1196 * @p: the pinctrl handle to retrieve the state from
1197 * @name: the state name to retrieve
1198 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1199 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1200 const char *name)
1201 {
1202 struct pinctrl_state *state;
1203
1204 state = find_state(p, name);
1205 if (!state) {
1206 if (pinctrl_dummy_state) {
1207 /* create dummy state */
1208 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1209 name);
1210 state = create_state(p, name);
1211 } else
1212 state = ERR_PTR(-ENODEV);
1213 }
1214
1215 return state;
1216 }
1217 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1218
1219 /**
1220 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1221 * @p: the pinctrl handle for the device that requests configuration
1222 * @state: the state handle to select/activate/program
1223 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1224 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1225 {
1226 struct pinctrl_setting *setting, *setting2;
1227 struct pinctrl_state *old_state = p->state;
1228 int ret;
1229
1230 if (p->state) {
1231 /*
1232 * For each pinmux setting in the old state, forget SW's record
1233 * of mux owner for that pingroup. Any pingroups which are
1234 * still owned by the new state will be re-acquired by the call
1235 * to pinmux_enable_setting() in the loop below.
1236 */
1237 list_for_each_entry(setting, &p->state->settings, node) {
1238 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1239 continue;
1240 pinmux_disable_setting(setting);
1241 }
1242 }
1243
1244 p->state = NULL;
1245
1246 /* Apply all the settings for the new state */
1247 list_for_each_entry(setting, &state->settings, node) {
1248 switch (setting->type) {
1249 case PIN_MAP_TYPE_MUX_GROUP:
1250 ret = pinmux_enable_setting(setting);
1251 break;
1252 case PIN_MAP_TYPE_CONFIGS_PIN:
1253 case PIN_MAP_TYPE_CONFIGS_GROUP:
1254 ret = pinconf_apply_setting(setting);
1255 break;
1256 default:
1257 ret = -EINVAL;
1258 break;
1259 }
1260
1261 if (ret < 0) {
1262 goto unapply_new_state;
1263 }
1264 }
1265
1266 p->state = state;
1267
1268 return 0;
1269
1270 unapply_new_state:
1271 dev_err(p->dev, "Error applying setting, reverse things back\n");
1272
1273 list_for_each_entry(setting2, &state->settings, node) {
1274 if (&setting2->node == &setting->node)
1275 break;
1276 /*
1277 * All we can do here is pinmux_disable_setting.
1278 * That means that some pins are muxed differently now
1279 * than they were before applying the setting (We can't
1280 * "unmux a pin"!), but it's not a big deal since the pins
1281 * are free to be muxed by another apply_setting.
1282 */
1283 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1284 pinmux_disable_setting(setting2);
1285 }
1286
1287 /* There's no infinite recursive loop here because p->state is NULL */
1288 if (old_state)
1289 pinctrl_select_state(p, old_state);
1290
1291 return ret;
1292 }
1293
1294 /**
1295 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1296 * @p: the pinctrl handle for the device that requests configuration
1297 * @state: the state handle to select/activate/program
1298 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1299 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1300 {
1301 if (p->state == state)
1302 return 0;
1303
1304 return pinctrl_commit_state(p, state);
1305 }
1306 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1307
devm_pinctrl_release(struct device * dev,void * res)1308 static void devm_pinctrl_release(struct device *dev, void *res)
1309 {
1310 pinctrl_put(*(struct pinctrl **)res);
1311 }
1312
1313 /**
1314 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1315 * @dev: the device to obtain the handle for
1316 *
1317 * If there is a need to explicitly destroy the returned struct pinctrl,
1318 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1319 */
devm_pinctrl_get(struct device * dev)1320 struct pinctrl *devm_pinctrl_get(struct device *dev)
1321 {
1322 struct pinctrl **ptr, *p;
1323
1324 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1325 if (!ptr)
1326 return ERR_PTR(-ENOMEM);
1327
1328 p = pinctrl_get(dev);
1329 if (!IS_ERR(p)) {
1330 *ptr = p;
1331 devres_add(dev, ptr);
1332 } else {
1333 devres_free(ptr);
1334 }
1335
1336 return p;
1337 }
1338 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1339
devm_pinctrl_match(struct device * dev,void * res,void * data)1340 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1341 {
1342 struct pinctrl **p = res;
1343
1344 return *p == data;
1345 }
1346
1347 /**
1348 * devm_pinctrl_put() - Resource managed pinctrl_put()
1349 * @p: the pinctrl handle to release
1350 *
1351 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1352 * this function will not need to be called and the resource management
1353 * code will ensure that the resource is freed.
1354 */
devm_pinctrl_put(struct pinctrl * p)1355 void devm_pinctrl_put(struct pinctrl *p)
1356 {
1357 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1358 devm_pinctrl_match, p));
1359 }
1360 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1361
pinctrl_register_map(const struct pinctrl_map * maps,unsigned num_maps,bool dup)1362 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1363 bool dup)
1364 {
1365 int i, ret;
1366 struct pinctrl_maps *maps_node;
1367
1368 pr_debug("add %u pinctrl maps\n", num_maps);
1369
1370 /* First sanity check the new mapping */
1371 for (i = 0; i < num_maps; i++) {
1372 if (!maps[i].dev_name) {
1373 pr_err("failed to register map %s (%d): no device given\n",
1374 maps[i].name, i);
1375 return -EINVAL;
1376 }
1377
1378 if (!maps[i].name) {
1379 pr_err("failed to register map %d: no map name given\n",
1380 i);
1381 return -EINVAL;
1382 }
1383
1384 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1385 !maps[i].ctrl_dev_name) {
1386 pr_err("failed to register map %s (%d): no pin control device given\n",
1387 maps[i].name, i);
1388 return -EINVAL;
1389 }
1390
1391 switch (maps[i].type) {
1392 case PIN_MAP_TYPE_DUMMY_STATE:
1393 break;
1394 case PIN_MAP_TYPE_MUX_GROUP:
1395 ret = pinmux_validate_map(&maps[i], i);
1396 if (ret < 0)
1397 return ret;
1398 break;
1399 case PIN_MAP_TYPE_CONFIGS_PIN:
1400 case PIN_MAP_TYPE_CONFIGS_GROUP:
1401 ret = pinconf_validate_map(&maps[i], i);
1402 if (ret < 0)
1403 return ret;
1404 break;
1405 default:
1406 pr_err("failed to register map %s (%d): invalid type given\n",
1407 maps[i].name, i);
1408 return -EINVAL;
1409 }
1410 }
1411
1412 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1413 if (!maps_node)
1414 return -ENOMEM;
1415
1416 maps_node->num_maps = num_maps;
1417 if (dup) {
1418 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1419 GFP_KERNEL);
1420 if (!maps_node->maps) {
1421 kfree(maps_node);
1422 return -ENOMEM;
1423 }
1424 } else {
1425 maps_node->maps = maps;
1426 }
1427
1428 mutex_lock(&pinctrl_maps_mutex);
1429 list_add_tail(&maps_node->node, &pinctrl_maps);
1430 mutex_unlock(&pinctrl_maps_mutex);
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * pinctrl_register_mappings() - register a set of pin controller mappings
1437 * @maps: the pincontrol mappings table to register. This should probably be
1438 * marked with __initdata so it can be discarded after boot. This
1439 * function will perform a shallow copy for the mapping entries.
1440 * @num_maps: the number of maps in the mapping table
1441 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1442 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1443 unsigned num_maps)
1444 {
1445 return pinctrl_register_map(maps, num_maps, true);
1446 }
1447 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1448
pinctrl_unregister_map(const struct pinctrl_map * map)1449 void pinctrl_unregister_map(const struct pinctrl_map *map)
1450 {
1451 struct pinctrl_maps *maps_node;
1452
1453 mutex_lock(&pinctrl_maps_mutex);
1454 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1455 if (maps_node->maps == map) {
1456 list_del(&maps_node->node);
1457 kfree(maps_node);
1458 mutex_unlock(&pinctrl_maps_mutex);
1459 return;
1460 }
1461 }
1462 mutex_unlock(&pinctrl_maps_mutex);
1463 }
1464
1465 /**
1466 * pinctrl_force_sleep() - turn a given controller device into sleep state
1467 * @pctldev: pin controller device
1468 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1469 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1470 {
1471 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1472 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1473 return 0;
1474 }
1475 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1476
1477 /**
1478 * pinctrl_force_default() - turn a given controller device into default state
1479 * @pctldev: pin controller device
1480 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1481 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1482 {
1483 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1484 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1488
1489 /**
1490 * pinctrl_init_done() - tell pinctrl probe is done
1491 *
1492 * We'll use this time to switch the pins from "init" to "default" unless the
1493 * driver selected some other state.
1494 *
1495 * @dev: device to that's done probing
1496 */
pinctrl_init_done(struct device * dev)1497 int pinctrl_init_done(struct device *dev)
1498 {
1499 struct dev_pin_info *pins = dev->pins;
1500 int ret;
1501
1502 if (!pins)
1503 return 0;
1504
1505 if (IS_ERR(pins->init_state))
1506 return 0; /* No such state */
1507
1508 if (pins->p->state != pins->init_state)
1509 return 0; /* Not at init anyway */
1510
1511 if (IS_ERR(pins->default_state))
1512 return 0; /* No default state */
1513
1514 ret = pinctrl_select_state(pins->p, pins->default_state);
1515 if (ret)
1516 dev_err(dev, "failed to activate default pinctrl state\n");
1517
1518 return ret;
1519 }
1520
1521 #ifdef CONFIG_PM
1522
1523 /**
1524 * pinctrl_pm_select_state() - select pinctrl state for PM
1525 * @dev: device to select default state for
1526 * @state: state to set
1527 */
pinctrl_pm_select_state(struct device * dev,struct pinctrl_state * state)1528 static int pinctrl_pm_select_state(struct device *dev,
1529 struct pinctrl_state *state)
1530 {
1531 struct dev_pin_info *pins = dev->pins;
1532 int ret;
1533
1534 if (IS_ERR(state))
1535 return 0; /* No such state */
1536 ret = pinctrl_select_state(pins->p, state);
1537 if (ret)
1538 dev_err(dev, "failed to activate pinctrl state %s\n",
1539 state->name);
1540 return ret;
1541 }
1542
1543 /**
1544 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1545 * @dev: device to select default state for
1546 */
pinctrl_pm_select_default_state(struct device * dev)1547 int pinctrl_pm_select_default_state(struct device *dev)
1548 {
1549 if (!dev->pins)
1550 return 0;
1551
1552 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1553 }
1554 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1555
1556 /**
1557 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1558 * @dev: device to select sleep state for
1559 */
pinctrl_pm_select_sleep_state(struct device * dev)1560 int pinctrl_pm_select_sleep_state(struct device *dev)
1561 {
1562 if (!dev->pins)
1563 return 0;
1564
1565 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1566 }
1567 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1568
1569 /**
1570 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1571 * @dev: device to select idle state for
1572 */
pinctrl_pm_select_idle_state(struct device * dev)1573 int pinctrl_pm_select_idle_state(struct device *dev)
1574 {
1575 if (!dev->pins)
1576 return 0;
1577
1578 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1579 }
1580 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1581 #endif
1582
1583 #ifdef CONFIG_DEBUG_FS
1584
pinctrl_pins_show(struct seq_file * s,void * what)1585 static int pinctrl_pins_show(struct seq_file *s, void *what)
1586 {
1587 struct pinctrl_dev *pctldev = s->private;
1588 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1589 unsigned i, pin;
1590
1591 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1592
1593 mutex_lock(&pctldev->mutex);
1594
1595 /* The pin number can be retrived from the pin controller descriptor */
1596 for (i = 0; i < pctldev->desc->npins; i++) {
1597 struct pin_desc *desc;
1598
1599 pin = pctldev->desc->pins[i].number;
1600 desc = pin_desc_get(pctldev, pin);
1601 /* Pin space may be sparse */
1602 if (!desc)
1603 continue;
1604
1605 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1606
1607 /* Driver-specific info per pin */
1608 if (ops->pin_dbg_show)
1609 ops->pin_dbg_show(pctldev, s, pin);
1610
1611 seq_puts(s, "\n");
1612 }
1613
1614 mutex_unlock(&pctldev->mutex);
1615
1616 return 0;
1617 }
1618 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1619
pinctrl_groups_show(struct seq_file * s,void * what)1620 static int pinctrl_groups_show(struct seq_file *s, void *what)
1621 {
1622 struct pinctrl_dev *pctldev = s->private;
1623 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1624 unsigned ngroups, selector = 0;
1625
1626 mutex_lock(&pctldev->mutex);
1627
1628 ngroups = ops->get_groups_count(pctldev);
1629
1630 seq_puts(s, "registered pin groups:\n");
1631 while (selector < ngroups) {
1632 const unsigned *pins = NULL;
1633 unsigned num_pins = 0;
1634 const char *gname = ops->get_group_name(pctldev, selector);
1635 const char *pname;
1636 int ret = 0;
1637 int i;
1638
1639 if (ops->get_group_pins)
1640 ret = ops->get_group_pins(pctldev, selector,
1641 &pins, &num_pins);
1642 if (ret)
1643 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1644 gname);
1645 else {
1646 seq_printf(s, "group: %s\n", gname);
1647 for (i = 0; i < num_pins; i++) {
1648 pname = pin_get_name(pctldev, pins[i]);
1649 if (WARN_ON(!pname)) {
1650 mutex_unlock(&pctldev->mutex);
1651 return -EINVAL;
1652 }
1653 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1654 }
1655 seq_puts(s, "\n");
1656 }
1657 selector++;
1658 }
1659
1660 mutex_unlock(&pctldev->mutex);
1661
1662 return 0;
1663 }
1664 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1665
pinctrl_gpioranges_show(struct seq_file * s,void * what)1666 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1667 {
1668 struct pinctrl_dev *pctldev = s->private;
1669 struct pinctrl_gpio_range *range = NULL;
1670
1671 seq_puts(s, "GPIO ranges handled:\n");
1672
1673 mutex_lock(&pctldev->mutex);
1674
1675 /* Loop over the ranges */
1676 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1677 if (range->pins) {
1678 int a;
1679 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1680 range->id, range->name,
1681 range->base, (range->base + range->npins - 1));
1682 for (a = 0; a < range->npins - 1; a++)
1683 seq_printf(s, "%u, ", range->pins[a]);
1684 seq_printf(s, "%u}\n", range->pins[a]);
1685 }
1686 else
1687 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1688 range->id, range->name,
1689 range->base, (range->base + range->npins - 1),
1690 range->pin_base,
1691 (range->pin_base + range->npins - 1));
1692 }
1693
1694 mutex_unlock(&pctldev->mutex);
1695
1696 return 0;
1697 }
1698 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1699
pinctrl_devices_show(struct seq_file * s,void * what)1700 static int pinctrl_devices_show(struct seq_file *s, void *what)
1701 {
1702 struct pinctrl_dev *pctldev;
1703
1704 seq_puts(s, "name [pinmux] [pinconf]\n");
1705
1706 mutex_lock(&pinctrldev_list_mutex);
1707
1708 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1709 seq_printf(s, "%s ", pctldev->desc->name);
1710 if (pctldev->desc->pmxops)
1711 seq_puts(s, "yes ");
1712 else
1713 seq_puts(s, "no ");
1714 if (pctldev->desc->confops)
1715 seq_puts(s, "yes");
1716 else
1717 seq_puts(s, "no");
1718 seq_puts(s, "\n");
1719 }
1720
1721 mutex_unlock(&pinctrldev_list_mutex);
1722
1723 return 0;
1724 }
1725 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1726
map_type(enum pinctrl_map_type type)1727 static inline const char *map_type(enum pinctrl_map_type type)
1728 {
1729 static const char * const names[] = {
1730 "INVALID",
1731 "DUMMY_STATE",
1732 "MUX_GROUP",
1733 "CONFIGS_PIN",
1734 "CONFIGS_GROUP",
1735 };
1736
1737 if (type >= ARRAY_SIZE(names))
1738 return "UNKNOWN";
1739
1740 return names[type];
1741 }
1742
pinctrl_maps_show(struct seq_file * s,void * what)1743 static int pinctrl_maps_show(struct seq_file *s, void *what)
1744 {
1745 struct pinctrl_maps *maps_node;
1746 int i;
1747 const struct pinctrl_map *map;
1748
1749 seq_puts(s, "Pinctrl maps:\n");
1750
1751 mutex_lock(&pinctrl_maps_mutex);
1752 for_each_maps(maps_node, i, map) {
1753 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1754 map->dev_name, map->name, map_type(map->type),
1755 map->type);
1756
1757 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1758 seq_printf(s, "controlling device %s\n",
1759 map->ctrl_dev_name);
1760
1761 switch (map->type) {
1762 case PIN_MAP_TYPE_MUX_GROUP:
1763 pinmux_show_map(s, map);
1764 break;
1765 case PIN_MAP_TYPE_CONFIGS_PIN:
1766 case PIN_MAP_TYPE_CONFIGS_GROUP:
1767 pinconf_show_map(s, map);
1768 break;
1769 default:
1770 break;
1771 }
1772
1773 seq_putc(s, '\n');
1774 }
1775 mutex_unlock(&pinctrl_maps_mutex);
1776
1777 return 0;
1778 }
1779 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1780
pinctrl_show(struct seq_file * s,void * what)1781 static int pinctrl_show(struct seq_file *s, void *what)
1782 {
1783 struct pinctrl *p;
1784 struct pinctrl_state *state;
1785 struct pinctrl_setting *setting;
1786
1787 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1788
1789 mutex_lock(&pinctrl_list_mutex);
1790
1791 list_for_each_entry(p, &pinctrl_list, node) {
1792 seq_printf(s, "device: %s current state: %s\n",
1793 dev_name(p->dev),
1794 p->state ? p->state->name : "none");
1795
1796 list_for_each_entry(state, &p->states, node) {
1797 seq_printf(s, " state: %s\n", state->name);
1798
1799 list_for_each_entry(setting, &state->settings, node) {
1800 struct pinctrl_dev *pctldev = setting->pctldev;
1801
1802 seq_printf(s, " type: %s controller %s ",
1803 map_type(setting->type),
1804 pinctrl_dev_get_name(pctldev));
1805
1806 switch (setting->type) {
1807 case PIN_MAP_TYPE_MUX_GROUP:
1808 pinmux_show_setting(s, setting);
1809 break;
1810 case PIN_MAP_TYPE_CONFIGS_PIN:
1811 case PIN_MAP_TYPE_CONFIGS_GROUP:
1812 pinconf_show_setting(s, setting);
1813 break;
1814 default:
1815 break;
1816 }
1817 }
1818 }
1819 }
1820
1821 mutex_unlock(&pinctrl_list_mutex);
1822
1823 return 0;
1824 }
1825 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1826
1827 static struct dentry *debugfs_root;
1828
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1829 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1830 {
1831 struct dentry *device_root;
1832 const char *debugfs_name;
1833
1834 if (pctldev->desc->name &&
1835 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1836 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1837 "%s-%s", dev_name(pctldev->dev),
1838 pctldev->desc->name);
1839 if (!debugfs_name) {
1840 pr_warn("failed to determine debugfs dir name for %s\n",
1841 dev_name(pctldev->dev));
1842 return;
1843 }
1844 } else {
1845 debugfs_name = dev_name(pctldev->dev);
1846 }
1847
1848 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1849 pctldev->device_root = device_root;
1850
1851 if (IS_ERR(device_root) || !device_root) {
1852 pr_warn("failed to create debugfs directory for %s\n",
1853 dev_name(pctldev->dev));
1854 return;
1855 }
1856 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1857 device_root, pctldev, &pinctrl_pins_fops);
1858 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1859 device_root, pctldev, &pinctrl_groups_fops);
1860 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1861 device_root, pctldev, &pinctrl_gpioranges_fops);
1862 if (pctldev->desc->pmxops)
1863 pinmux_init_device_debugfs(device_root, pctldev);
1864 if (pctldev->desc->confops)
1865 pinconf_init_device_debugfs(device_root, pctldev);
1866 }
1867
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1868 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1869 {
1870 debugfs_remove_recursive(pctldev->device_root);
1871 }
1872
pinctrl_init_debugfs(void)1873 static void pinctrl_init_debugfs(void)
1874 {
1875 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1876 if (IS_ERR(debugfs_root) || !debugfs_root) {
1877 pr_warn("failed to create debugfs directory\n");
1878 debugfs_root = NULL;
1879 return;
1880 }
1881
1882 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1883 debugfs_root, NULL, &pinctrl_devices_fops);
1884 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1885 debugfs_root, NULL, &pinctrl_maps_fops);
1886 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1887 debugfs_root, NULL, &pinctrl_fops);
1888 }
1889
1890 #else /* CONFIG_DEBUG_FS */
1891
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1892 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1893 {
1894 }
1895
pinctrl_init_debugfs(void)1896 static void pinctrl_init_debugfs(void)
1897 {
1898 }
1899
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1900 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1901 {
1902 }
1903
1904 #endif
1905
pinctrl_check_ops(struct pinctrl_dev * pctldev)1906 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1907 {
1908 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1909
1910 if (!ops ||
1911 !ops->get_groups_count ||
1912 !ops->get_group_name)
1913 return -EINVAL;
1914
1915 return 0;
1916 }
1917
1918 /**
1919 * pinctrl_init_controller() - init a pin controller device
1920 * @pctldesc: descriptor for this pin controller
1921 * @dev: parent device for this pin controller
1922 * @driver_data: private pin controller data for this pin controller
1923 */
1924 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)1925 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1926 void *driver_data)
1927 {
1928 struct pinctrl_dev *pctldev;
1929 int ret;
1930
1931 if (!pctldesc)
1932 return ERR_PTR(-EINVAL);
1933 if (!pctldesc->name)
1934 return ERR_PTR(-EINVAL);
1935
1936 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1937 if (!pctldev)
1938 return ERR_PTR(-ENOMEM);
1939
1940 /* Initialize pin control device struct */
1941 pctldev->owner = pctldesc->owner;
1942 pctldev->desc = pctldesc;
1943 pctldev->driver_data = driver_data;
1944 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1945 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1946 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1947 #endif
1948 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1949 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1950 #endif
1951 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1952 INIT_LIST_HEAD(&pctldev->node);
1953 pctldev->dev = dev;
1954 mutex_init(&pctldev->mutex);
1955
1956 /* check core ops for sanity */
1957 ret = pinctrl_check_ops(pctldev);
1958 if (ret) {
1959 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1960 goto out_err;
1961 }
1962
1963 /* If we're implementing pinmuxing, check the ops for sanity */
1964 if (pctldesc->pmxops) {
1965 ret = pinmux_check_ops(pctldev);
1966 if (ret)
1967 goto out_err;
1968 }
1969
1970 /* If we're implementing pinconfig, check the ops for sanity */
1971 if (pctldesc->confops) {
1972 ret = pinconf_check_ops(pctldev);
1973 if (ret)
1974 goto out_err;
1975 }
1976
1977 /* Register all the pins */
1978 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1979 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1980 if (ret) {
1981 dev_err(dev, "error during pin registration\n");
1982 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1983 pctldesc->npins);
1984 goto out_err;
1985 }
1986
1987 return pctldev;
1988
1989 out_err:
1990 mutex_destroy(&pctldev->mutex);
1991 kfree(pctldev);
1992 return ERR_PTR(ret);
1993 }
1994
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)1995 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1996 {
1997 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1998 if (PTR_ERR(pctldev->p) == -ENODEV) {
1999 dev_dbg(pctldev->dev, "no hogs found\n");
2000
2001 return 0;
2002 }
2003
2004 if (IS_ERR(pctldev->p)) {
2005 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2006 PTR_ERR(pctldev->p));
2007
2008 return PTR_ERR(pctldev->p);
2009 }
2010
2011 kref_get(&pctldev->p->users);
2012 pctldev->hog_default =
2013 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2014 if (IS_ERR(pctldev->hog_default)) {
2015 dev_dbg(pctldev->dev,
2016 "failed to lookup the default state\n");
2017 } else {
2018 if (pinctrl_select_state(pctldev->p,
2019 pctldev->hog_default))
2020 dev_err(pctldev->dev,
2021 "failed to select default state\n");
2022 }
2023
2024 pctldev->hog_sleep =
2025 pinctrl_lookup_state(pctldev->p,
2026 PINCTRL_STATE_SLEEP);
2027 if (IS_ERR(pctldev->hog_sleep))
2028 dev_dbg(pctldev->dev,
2029 "failed to lookup the sleep state\n");
2030
2031 return 0;
2032 }
2033
pinctrl_enable(struct pinctrl_dev * pctldev)2034 int pinctrl_enable(struct pinctrl_dev *pctldev)
2035 {
2036 int error;
2037
2038 error = pinctrl_claim_hogs(pctldev);
2039 if (error) {
2040 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2041 error);
2042 mutex_destroy(&pctldev->mutex);
2043 kfree(pctldev);
2044
2045 return error;
2046 }
2047
2048 mutex_lock(&pinctrldev_list_mutex);
2049 list_add_tail(&pctldev->node, &pinctrldev_list);
2050 mutex_unlock(&pinctrldev_list_mutex);
2051
2052 pinctrl_init_device_debugfs(pctldev);
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(pinctrl_enable);
2057
2058 /**
2059 * pinctrl_register() - register a pin controller device
2060 * @pctldesc: descriptor for this pin controller
2061 * @dev: parent device for this pin controller
2062 * @driver_data: private pin controller data for this pin controller
2063 *
2064 * Note that pinctrl_register() is known to have problems as the pin
2065 * controller driver functions are called before the driver has a
2066 * struct pinctrl_dev handle. To avoid issues later on, please use the
2067 * new pinctrl_register_and_init() below instead.
2068 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2069 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2070 struct device *dev, void *driver_data)
2071 {
2072 struct pinctrl_dev *pctldev;
2073 int error;
2074
2075 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2076 if (IS_ERR(pctldev))
2077 return pctldev;
2078
2079 error = pinctrl_enable(pctldev);
2080 if (error)
2081 return ERR_PTR(error);
2082
2083 return pctldev;
2084
2085 }
2086 EXPORT_SYMBOL_GPL(pinctrl_register);
2087
2088 /**
2089 * pinctrl_register_and_init() - register and init pin controller device
2090 * @pctldesc: descriptor for this pin controller
2091 * @dev: parent device for this pin controller
2092 * @driver_data: private pin controller data for this pin controller
2093 * @pctldev: pin controller device
2094 *
2095 * Note that pinctrl_enable() still needs to be manually called after
2096 * this once the driver is ready.
2097 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2098 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2099 struct device *dev, void *driver_data,
2100 struct pinctrl_dev **pctldev)
2101 {
2102 struct pinctrl_dev *p;
2103
2104 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2105 if (IS_ERR(p))
2106 return PTR_ERR(p);
2107
2108 /*
2109 * We have pinctrl_start() call functions in the pin controller
2110 * driver with create_pinctrl() for at least dt_node_to_map(). So
2111 * let's make sure pctldev is properly initialized for the
2112 * pin controller driver before we do anything.
2113 */
2114 *pctldev = p;
2115
2116 return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2119
2120 /**
2121 * pinctrl_unregister() - unregister pinmux
2122 * @pctldev: pin controller to unregister
2123 *
2124 * Called by pinmux drivers to unregister a pinmux.
2125 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2126 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2127 {
2128 struct pinctrl_gpio_range *range, *n;
2129
2130 if (!pctldev)
2131 return;
2132
2133 mutex_lock(&pctldev->mutex);
2134 pinctrl_remove_device_debugfs(pctldev);
2135 mutex_unlock(&pctldev->mutex);
2136
2137 if (!IS_ERR_OR_NULL(pctldev->p))
2138 pinctrl_put(pctldev->p);
2139
2140 mutex_lock(&pinctrldev_list_mutex);
2141 mutex_lock(&pctldev->mutex);
2142 /* TODO: check that no pinmuxes are still active? */
2143 list_del(&pctldev->node);
2144 pinmux_generic_free_functions(pctldev);
2145 pinctrl_generic_free_groups(pctldev);
2146 /* Destroy descriptor tree */
2147 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2148 pctldev->desc->npins);
2149 /* remove gpio ranges map */
2150 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2151 list_del(&range->node);
2152
2153 mutex_unlock(&pctldev->mutex);
2154 mutex_destroy(&pctldev->mutex);
2155 kfree(pctldev);
2156 mutex_unlock(&pinctrldev_list_mutex);
2157 }
2158 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2159
devm_pinctrl_dev_release(struct device * dev,void * res)2160 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2161 {
2162 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2163
2164 pinctrl_unregister(pctldev);
2165 }
2166
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2167 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2168 {
2169 struct pctldev **r = res;
2170
2171 if (WARN_ON(!r || !*r))
2172 return 0;
2173
2174 return *r == data;
2175 }
2176
2177 /**
2178 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2179 * @dev: parent device for this pin controller
2180 * @pctldesc: descriptor for this pin controller
2181 * @driver_data: private pin controller data for this pin controller
2182 *
2183 * Returns an error pointer if pincontrol register failed. Otherwise
2184 * it returns valid pinctrl handle.
2185 *
2186 * The pinctrl device will be automatically released when the device is unbound.
2187 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2188 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2189 struct pinctrl_desc *pctldesc,
2190 void *driver_data)
2191 {
2192 struct pinctrl_dev **ptr, *pctldev;
2193
2194 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2195 if (!ptr)
2196 return ERR_PTR(-ENOMEM);
2197
2198 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2199 if (IS_ERR(pctldev)) {
2200 devres_free(ptr);
2201 return pctldev;
2202 }
2203
2204 *ptr = pctldev;
2205 devres_add(dev, ptr);
2206
2207 return pctldev;
2208 }
2209 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2210
2211 /**
2212 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2213 * @dev: parent device for this pin controller
2214 * @pctldesc: descriptor for this pin controller
2215 * @driver_data: private pin controller data for this pin controller
2216 *
2217 * Returns an error pointer if pincontrol register failed. Otherwise
2218 * it returns valid pinctrl handle.
2219 *
2220 * The pinctrl device will be automatically released when the device is unbound.
2221 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2222 int devm_pinctrl_register_and_init(struct device *dev,
2223 struct pinctrl_desc *pctldesc,
2224 void *driver_data,
2225 struct pinctrl_dev **pctldev)
2226 {
2227 struct pinctrl_dev **ptr;
2228 int error;
2229
2230 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2231 if (!ptr)
2232 return -ENOMEM;
2233
2234 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2235 if (error) {
2236 devres_free(ptr);
2237 return error;
2238 }
2239
2240 *ptr = *pctldev;
2241 devres_add(dev, ptr);
2242
2243 return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2246
2247 /**
2248 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2249 * @dev: device for which which resource was allocated
2250 * @pctldev: the pinctrl device to unregister.
2251 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2252 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2253 {
2254 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2255 devm_pinctrl_dev_match, pctldev));
2256 }
2257 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2258
pinctrl_init(void)2259 static int __init pinctrl_init(void)
2260 {
2261 pr_info("initialized pinctrl subsystem\n");
2262 pinctrl_init_debugfs();
2263 return 0;
2264 }
2265
2266 /* init early since many drivers really need to initialized pinmux early */
2267 core_initcall(pinctrl_init);
2268