1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
get_task_root(struct task_struct * task,struct path * root)172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
proc_cwd_link(struct dentry * dentry,struct path * path)185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
proc_root_link(struct dentry * dentry,struct path * path)202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
lock_trace(struct task_struct * task)406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		mutex_unlock(&task->signal->exec_update_mutex);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
unlock_trace(struct task_struct * task)418 static void unlock_trace(struct task_struct *task)
419 {
420 	mutex_unlock(&task->signal->exec_update_mutex);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	unsigned long *entries;
431 	int err;
432 
433 	/*
434 	 * The ability to racily run the kernel stack unwinder on a running task
435 	 * and then observe the unwinder output is scary; while it is useful for
436 	 * debugging kernel issues, it can also allow an attacker to leak kernel
437 	 * stack contents.
438 	 * Doing this in a manner that is at least safe from races would require
439 	 * some work to ensure that the remote task can not be scheduled; and
440 	 * even then, this would still expose the unwinder as local attack
441 	 * surface.
442 	 * Therefore, this interface is restricted to root.
443 	 */
444 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 				GFP_KERNEL);
449 	if (!entries)
450 		return -ENOMEM;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i, nr_entries;
455 
456 		nr_entries = stack_trace_save_tsk(task, entries,
457 						  MAX_STACK_TRACE_DEPTH, 0);
458 
459 		for (i = 0; i < nr_entries; i++) {
460 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 		}
462 
463 		unlock_trace(task);
464 	}
465 	kfree(entries);
466 
467 	return err;
468 }
469 #endif
470 
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 			      struct pid *pid, struct task_struct *task)
477 {
478 	if (unlikely(!sched_info_on()))
479 		seq_puts(m, "0 0 0\n");
480 	else
481 		seq_printf(m, "%llu %llu %lu\n",
482 		   (unsigned long long)task->se.sum_exec_runtime,
483 		   (unsigned long long)task->sched_info.run_delay,
484 		   task->sched_info.pcount);
485 
486 	return 0;
487 }
488 #endif
489 
490 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 	int i;
494 	struct inode *inode = m->private;
495 	struct task_struct *task = get_proc_task(inode);
496 
497 	if (!task)
498 		return -ESRCH;
499 	seq_puts(m, "Latency Top version : v0.1\n");
500 	for (i = 0; i < LT_SAVECOUNT; i++) {
501 		struct latency_record *lr = &task->latency_record[i];
502 		if (lr->backtrace[0]) {
503 			int q;
504 			seq_printf(m, "%i %li %li",
505 				   lr->count, lr->time, lr->max);
506 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 				unsigned long bt = lr->backtrace[q];
508 
509 				if (!bt)
510 					break;
511 				seq_printf(m, " %ps", (void *)bt);
512 			}
513 			seq_putc(m, '\n');
514 		}
515 
516 	}
517 	put_task_struct(task);
518 	return 0;
519 }
520 
lstats_open(struct inode * inode,struct file * file)521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, lstats_show_proc, inode);
524 }
525 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 			    size_t count, loff_t *offs)
528 {
529 	struct task_struct *task = get_proc_task(file_inode(file));
530 
531 	if (!task)
532 		return -ESRCH;
533 	clear_tsk_latency_tracing(task);
534 	put_task_struct(task);
535 
536 	return count;
537 }
538 
539 static const struct file_operations proc_lstats_operations = {
540 	.open		= lstats_open,
541 	.read		= seq_read,
542 	.write		= lstats_write,
543 	.llseek		= seq_lseek,
544 	.release	= single_release,
545 };
546 
547 #endif
548 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 			  struct pid *pid, struct task_struct *task)
551 {
552 	unsigned long totalpages = totalram_pages() + total_swap_pages;
553 	unsigned long points = 0;
554 	long badness;
555 
556 	badness = oom_badness(task, totalpages);
557 	/*
558 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 	 * badness value into [0, 2000] range which we have been
560 	 * exporting for a long time so userspace might depend on it.
561 	 */
562 	if (badness != LONG_MIN)
563 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564 
565 	seq_printf(m, "%lu\n", points);
566 
567 	return 0;
568 }
569 
570 struct limit_names {
571 	const char *name;
572 	const char *unit;
573 };
574 
575 static const struct limit_names lnames[RLIM_NLIMITS] = {
576 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 	[RLIMIT_DATA] = {"Max data size", "bytes"},
579 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
580 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
581 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
582 	[RLIMIT_NPROC] = {"Max processes", "processes"},
583 	[RLIMIT_NOFILE] = {"Max open files", "files"},
584 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 	[RLIMIT_AS] = {"Max address space", "bytes"},
586 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 	[RLIMIT_NICE] = {"Max nice priority", NULL},
590 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592 };
593 
594 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 			   struct pid *pid, struct task_struct *task)
597 {
598 	unsigned int i;
599 	unsigned long flags;
600 
601 	struct rlimit rlim[RLIM_NLIMITS];
602 
603 	if (!lock_task_sighand(task, &flags))
604 		return 0;
605 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 	unlock_task_sighand(task, &flags);
607 
608 	/*
609 	 * print the file header
610 	 */
611 	seq_puts(m, "Limit                     "
612 		"Soft Limit           "
613 		"Hard Limit           "
614 		"Units     \n");
615 
616 	for (i = 0; i < RLIM_NLIMITS; i++) {
617 		if (rlim[i].rlim_cur == RLIM_INFINITY)
618 			seq_printf(m, "%-25s %-20s ",
619 				   lnames[i].name, "unlimited");
620 		else
621 			seq_printf(m, "%-25s %-20lu ",
622 				   lnames[i].name, rlim[i].rlim_cur);
623 
624 		if (rlim[i].rlim_max == RLIM_INFINITY)
625 			seq_printf(m, "%-20s ", "unlimited");
626 		else
627 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628 
629 		if (lnames[i].unit)
630 			seq_printf(m, "%-10s\n", lnames[i].unit);
631 		else
632 			seq_putc(m, '\n');
633 	}
634 
635 	return 0;
636 }
637 
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 			    struct pid *pid, struct task_struct *task)
641 {
642 	struct syscall_info info;
643 	u64 *args = &info.data.args[0];
644 	int res;
645 
646 	res = lock_trace(task);
647 	if (res)
648 		return res;
649 
650 	if (task_current_syscall(task, &info))
651 		seq_puts(m, "running\n");
652 	else if (info.data.nr < 0)
653 		seq_printf(m, "%d 0x%llx 0x%llx\n",
654 			   info.data.nr, info.sp, info.data.instruction_pointer);
655 	else
656 		seq_printf(m,
657 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 		       info.data.nr,
659 		       args[0], args[1], args[2], args[3], args[4], args[5],
660 		       info.sp, info.data.instruction_pointer);
661 	unlock_trace(task);
662 
663 	return 0;
664 }
665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666 
667 /************************************************************************/
668 /*                       Here the fs part begins                        */
669 /************************************************************************/
670 
671 /* permission checks */
proc_fd_access_allowed(struct inode * inode)672 static int proc_fd_access_allowed(struct inode *inode)
673 {
674 	struct task_struct *task;
675 	int allowed = 0;
676 	/* Allow access to a task's file descriptors if it is us or we
677 	 * may use ptrace attach to the process and find out that
678 	 * information.
679 	 */
680 	task = get_proc_task(inode);
681 	if (task) {
682 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 		put_task_struct(task);
684 	}
685 	return allowed;
686 }
687 
proc_setattr(struct dentry * dentry,struct iattr * attr)688 int proc_setattr(struct dentry *dentry, struct iattr *attr)
689 {
690 	int error;
691 	struct inode *inode = d_inode(dentry);
692 
693 	if (attr->ia_valid & ATTR_MODE)
694 		return -EPERM;
695 
696 	error = setattr_prepare(dentry, attr);
697 	if (error)
698 		return error;
699 
700 	setattr_copy(inode, attr);
701 	mark_inode_dirty(inode);
702 	return 0;
703 }
704 
705 /*
706  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
707  * or euid/egid (for hide_pid_min=2)?
708  */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)709 static bool has_pid_permissions(struct proc_fs_info *fs_info,
710 				 struct task_struct *task,
711 				 enum proc_hidepid hide_pid_min)
712 {
713 	/*
714 	 * If 'hidpid' mount option is set force a ptrace check,
715 	 * we indicate that we are using a filesystem syscall
716 	 * by passing PTRACE_MODE_READ_FSCREDS
717 	 */
718 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
719 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720 
721 	if (fs_info->hide_pid < hide_pid_min)
722 		return true;
723 	if (in_group_p(fs_info->pid_gid))
724 		return true;
725 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
726 }
727 
728 
proc_pid_permission(struct inode * inode,int mask)729 static int proc_pid_permission(struct inode *inode, int mask)
730 {
731 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
732 	struct task_struct *task;
733 	bool has_perms;
734 
735 	task = get_proc_task(inode);
736 	if (!task)
737 		return -ESRCH;
738 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
739 	put_task_struct(task);
740 
741 	if (!has_perms) {
742 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
743 			/*
744 			 * Let's make getdents(), stat(), and open()
745 			 * consistent with each other.  If a process
746 			 * may not stat() a file, it shouldn't be seen
747 			 * in procfs at all.
748 			 */
749 			return -ENOENT;
750 		}
751 
752 		return -EPERM;
753 	}
754 	return generic_permission(inode, mask);
755 }
756 
757 
758 
759 static const struct inode_operations proc_def_inode_operations = {
760 	.setattr	= proc_setattr,
761 };
762 
proc_single_show(struct seq_file * m,void * v)763 static int proc_single_show(struct seq_file *m, void *v)
764 {
765 	struct inode *inode = m->private;
766 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
767 	struct pid *pid = proc_pid(inode);
768 	struct task_struct *task;
769 	int ret;
770 
771 	task = get_pid_task(pid, PIDTYPE_PID);
772 	if (!task)
773 		return -ESRCH;
774 
775 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
776 
777 	put_task_struct(task);
778 	return ret;
779 }
780 
proc_single_open(struct inode * inode,struct file * filp)781 static int proc_single_open(struct inode *inode, struct file *filp)
782 {
783 	return single_open(filp, proc_single_show, inode);
784 }
785 
786 static const struct file_operations proc_single_file_operations = {
787 	.open		= proc_single_open,
788 	.read		= seq_read,
789 	.llseek		= seq_lseek,
790 	.release	= single_release,
791 };
792 
793 
proc_mem_open(struct inode * inode,unsigned int mode)794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
795 {
796 	struct task_struct *task = get_proc_task(inode);
797 	struct mm_struct *mm = ERR_PTR(-ESRCH);
798 
799 	if (task) {
800 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
801 		put_task_struct(task);
802 
803 		if (!IS_ERR_OR_NULL(mm)) {
804 			/* ensure this mm_struct can't be freed */
805 			mmgrab(mm);
806 			/* but do not pin its memory */
807 			mmput(mm);
808 		}
809 	}
810 
811 	return mm;
812 }
813 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
815 {
816 	struct mm_struct *mm = proc_mem_open(inode, mode);
817 
818 	if (IS_ERR(mm))
819 		return PTR_ERR(mm);
820 
821 	file->private_data = mm;
822 	return 0;
823 }
824 
mem_open(struct inode * inode,struct file * file)825 static int mem_open(struct inode *inode, struct file *file)
826 {
827 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
828 
829 	/* OK to pass negative loff_t, we can catch out-of-range */
830 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
831 
832 	return ret;
833 }
834 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)835 static ssize_t mem_rw(struct file *file, char __user *buf,
836 			size_t count, loff_t *ppos, int write)
837 {
838 	struct mm_struct *mm = file->private_data;
839 	unsigned long addr = *ppos;
840 	ssize_t copied;
841 	char *page;
842 	unsigned int flags;
843 
844 	if (!mm)
845 		return 0;
846 
847 	page = (char *)__get_free_page(GFP_KERNEL);
848 	if (!page)
849 		return -ENOMEM;
850 
851 	copied = 0;
852 	if (!mmget_not_zero(mm))
853 		goto free;
854 
855 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
856 
857 	while (count > 0) {
858 		int this_len = min_t(int, count, PAGE_SIZE);
859 
860 		if (write && copy_from_user(page, buf, this_len)) {
861 			copied = -EFAULT;
862 			break;
863 		}
864 
865 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
866 		if (!this_len) {
867 			if (!copied)
868 				copied = -EIO;
869 			break;
870 		}
871 
872 		if (!write && copy_to_user(buf, page, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 
877 		buf += this_len;
878 		addr += this_len;
879 		copied += this_len;
880 		count -= this_len;
881 	}
882 	*ppos = addr;
883 
884 	mmput(mm);
885 free:
886 	free_page((unsigned long) page);
887 	return copied;
888 }
889 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)890 static ssize_t mem_read(struct file *file, char __user *buf,
891 			size_t count, loff_t *ppos)
892 {
893 	return mem_rw(file, buf, count, ppos, 0);
894 }
895 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)896 static ssize_t mem_write(struct file *file, const char __user *buf,
897 			 size_t count, loff_t *ppos)
898 {
899 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
900 }
901 
mem_lseek(struct file * file,loff_t offset,int orig)902 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903 {
904 	switch (orig) {
905 	case 0:
906 		file->f_pos = offset;
907 		break;
908 	case 1:
909 		file->f_pos += offset;
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 	force_successful_syscall_return();
915 	return file->f_pos;
916 }
917 
mem_release(struct inode * inode,struct file * file)918 static int mem_release(struct inode *inode, struct file *file)
919 {
920 	struct mm_struct *mm = file->private_data;
921 	if (mm)
922 		mmdrop(mm);
923 	return 0;
924 }
925 
926 static const struct file_operations proc_mem_operations = {
927 	.llseek		= mem_lseek,
928 	.read		= mem_read,
929 	.write		= mem_write,
930 	.open		= mem_open,
931 	.release	= mem_release,
932 };
933 
environ_open(struct inode * inode,struct file * file)934 static int environ_open(struct inode *inode, struct file *file)
935 {
936 	return __mem_open(inode, file, PTRACE_MODE_READ);
937 }
938 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)939 static ssize_t environ_read(struct file *file, char __user *buf,
940 			size_t count, loff_t *ppos)
941 {
942 	char *page;
943 	unsigned long src = *ppos;
944 	int ret = 0;
945 	struct mm_struct *mm = file->private_data;
946 	unsigned long env_start, env_end;
947 
948 	/* Ensure the process spawned far enough to have an environment. */
949 	if (!mm || !mm->env_end)
950 		return 0;
951 
952 	page = (char *)__get_free_page(GFP_KERNEL);
953 	if (!page)
954 		return -ENOMEM;
955 
956 	ret = 0;
957 	if (!mmget_not_zero(mm))
958 		goto free;
959 
960 	spin_lock(&mm->arg_lock);
961 	env_start = mm->env_start;
962 	env_end = mm->env_end;
963 	spin_unlock(&mm->arg_lock);
964 
965 	while (count > 0) {
966 		size_t this_len, max_len;
967 		int retval;
968 
969 		if (src >= (env_end - env_start))
970 			break;
971 
972 		this_len = env_end - (env_start + src);
973 
974 		max_len = min_t(size_t, PAGE_SIZE, count);
975 		this_len = min(max_len, this_len);
976 
977 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
978 
979 		if (retval <= 0) {
980 			ret = retval;
981 			break;
982 		}
983 
984 		if (copy_to_user(buf, page, retval)) {
985 			ret = -EFAULT;
986 			break;
987 		}
988 
989 		ret += retval;
990 		src += retval;
991 		buf += retval;
992 		count -= retval;
993 	}
994 	*ppos = src;
995 	mmput(mm);
996 
997 free:
998 	free_page((unsigned long) page);
999 	return ret;
1000 }
1001 
1002 static const struct file_operations proc_environ_operations = {
1003 	.open		= environ_open,
1004 	.read		= environ_read,
1005 	.llseek		= generic_file_llseek,
1006 	.release	= mem_release,
1007 };
1008 
auxv_open(struct inode * inode,struct file * file)1009 static int auxv_open(struct inode *inode, struct file *file)
1010 {
1011 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012 }
1013 
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1014 static ssize_t auxv_read(struct file *file, char __user *buf,
1015 			size_t count, loff_t *ppos)
1016 {
1017 	struct mm_struct *mm = file->private_data;
1018 	unsigned int nwords = 0;
1019 
1020 	if (!mm)
1021 		return 0;
1022 	do {
1023 		nwords += 2;
1024 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026 				       nwords * sizeof(mm->saved_auxv[0]));
1027 }
1028 
1029 static const struct file_operations proc_auxv_operations = {
1030 	.open		= auxv_open,
1031 	.read		= auxv_read,
1032 	.llseek		= generic_file_llseek,
1033 	.release	= mem_release,
1034 };
1035 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037 			    loff_t *ppos)
1038 {
1039 	struct task_struct *task = get_proc_task(file_inode(file));
1040 	char buffer[PROC_NUMBUF];
1041 	int oom_adj = OOM_ADJUST_MIN;
1042 	size_t len;
1043 
1044 	if (!task)
1045 		return -ESRCH;
1046 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047 		oom_adj = OOM_ADJUST_MAX;
1048 	else
1049 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050 			  OOM_SCORE_ADJ_MAX;
1051 	put_task_struct(task);
1052 	if (oom_adj > OOM_ADJUST_MAX)
1053 		oom_adj = OOM_ADJUST_MAX;
1054 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1055 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1056 }
1057 
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1058 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1059 {
1060 	struct mm_struct *mm = NULL;
1061 	struct task_struct *task;
1062 	int err = 0;
1063 
1064 	task = get_proc_task(file_inode(file));
1065 	if (!task)
1066 		return -ESRCH;
1067 
1068 	mutex_lock(&oom_adj_mutex);
1069 	if (legacy) {
1070 		if (oom_adj < task->signal->oom_score_adj &&
1071 				!capable(CAP_SYS_RESOURCE)) {
1072 			err = -EACCES;
1073 			goto err_unlock;
1074 		}
1075 		/*
1076 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1077 		 * /proc/pid/oom_score_adj instead.
1078 		 */
1079 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1080 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1081 			  task_pid_nr(task));
1082 	} else {
1083 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1084 				!capable(CAP_SYS_RESOURCE)) {
1085 			err = -EACCES;
1086 			goto err_unlock;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Make sure we will check other processes sharing the mm if this is
1092 	 * not vfrok which wants its own oom_score_adj.
1093 	 * pin the mm so it doesn't go away and get reused after task_unlock
1094 	 */
1095 	if (!task->vfork_done) {
1096 		struct task_struct *p = find_lock_task_mm(task);
1097 
1098 		if (p) {
1099 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1100 				mm = p->mm;
1101 				mmgrab(mm);
1102 			}
1103 			task_unlock(p);
1104 		}
1105 	}
1106 
1107 	task->signal->oom_score_adj = oom_adj;
1108 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1109 		task->signal->oom_score_adj_min = (short)oom_adj;
1110 	trace_oom_score_adj_update(task);
1111 
1112 	if (mm) {
1113 		struct task_struct *p;
1114 
1115 		rcu_read_lock();
1116 		for_each_process(p) {
1117 			if (same_thread_group(task, p))
1118 				continue;
1119 
1120 			/* do not touch kernel threads or the global init */
1121 			if (p->flags & PF_KTHREAD || is_global_init(p))
1122 				continue;
1123 
1124 			task_lock(p);
1125 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1126 				p->signal->oom_score_adj = oom_adj;
1127 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1128 					p->signal->oom_score_adj_min = (short)oom_adj;
1129 			}
1130 			task_unlock(p);
1131 		}
1132 		rcu_read_unlock();
1133 		mmdrop(mm);
1134 	}
1135 err_unlock:
1136 	mutex_unlock(&oom_adj_mutex);
1137 	put_task_struct(task);
1138 	return err;
1139 }
1140 
1141 /*
1142  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1143  * kernels.  The effective policy is defined by oom_score_adj, which has a
1144  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1145  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1146  * Processes that become oom disabled via oom_adj will still be oom disabled
1147  * with this implementation.
1148  *
1149  * oom_adj cannot be removed since existing userspace binaries use it.
1150  */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1151 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1152 			     size_t count, loff_t *ppos)
1153 {
1154 	char buffer[PROC_NUMBUF];
1155 	int oom_adj;
1156 	int err;
1157 
1158 	memset(buffer, 0, sizeof(buffer));
1159 	if (count > sizeof(buffer) - 1)
1160 		count = sizeof(buffer) - 1;
1161 	if (copy_from_user(buffer, buf, count)) {
1162 		err = -EFAULT;
1163 		goto out;
1164 	}
1165 
1166 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1167 	if (err)
1168 		goto out;
1169 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1170 	     oom_adj != OOM_DISABLE) {
1171 		err = -EINVAL;
1172 		goto out;
1173 	}
1174 
1175 	/*
1176 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1177 	 * value is always attainable.
1178 	 */
1179 	if (oom_adj == OOM_ADJUST_MAX)
1180 		oom_adj = OOM_SCORE_ADJ_MAX;
1181 	else
1182 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1183 
1184 	err = __set_oom_adj(file, oom_adj, true);
1185 out:
1186 	return err < 0 ? err : count;
1187 }
1188 
1189 static const struct file_operations proc_oom_adj_operations = {
1190 	.read		= oom_adj_read,
1191 	.write		= oom_adj_write,
1192 	.llseek		= generic_file_llseek,
1193 };
1194 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1195 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1196 					size_t count, loff_t *ppos)
1197 {
1198 	struct task_struct *task = get_proc_task(file_inode(file));
1199 	char buffer[PROC_NUMBUF];
1200 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1201 	size_t len;
1202 
1203 	if (!task)
1204 		return -ESRCH;
1205 	oom_score_adj = task->signal->oom_score_adj;
1206 	put_task_struct(task);
1207 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1208 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1209 }
1210 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1211 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1212 					size_t count, loff_t *ppos)
1213 {
1214 	char buffer[PROC_NUMBUF];
1215 	int oom_score_adj;
1216 	int err;
1217 
1218 	memset(buffer, 0, sizeof(buffer));
1219 	if (count > sizeof(buffer) - 1)
1220 		count = sizeof(buffer) - 1;
1221 	if (copy_from_user(buffer, buf, count)) {
1222 		err = -EFAULT;
1223 		goto out;
1224 	}
1225 
1226 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1227 	if (err)
1228 		goto out;
1229 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1230 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1231 		err = -EINVAL;
1232 		goto out;
1233 	}
1234 
1235 	err = __set_oom_adj(file, oom_score_adj, false);
1236 out:
1237 	return err < 0 ? err : count;
1238 }
1239 
1240 static const struct file_operations proc_oom_score_adj_operations = {
1241 	.read		= oom_score_adj_read,
1242 	.write		= oom_score_adj_write,
1243 	.llseek		= default_llseek,
1244 };
1245 
1246 #ifdef CONFIG_AUDIT
1247 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1248 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1249 				  size_t count, loff_t *ppos)
1250 {
1251 	struct inode * inode = file_inode(file);
1252 	struct task_struct *task = get_proc_task(inode);
1253 	ssize_t length;
1254 	char tmpbuf[TMPBUFLEN];
1255 
1256 	if (!task)
1257 		return -ESRCH;
1258 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1259 			   from_kuid(file->f_cred->user_ns,
1260 				     audit_get_loginuid(task)));
1261 	put_task_struct(task);
1262 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263 }
1264 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266 				   size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file_inode(file);
1269 	uid_t loginuid;
1270 	kuid_t kloginuid;
1271 	int rv;
1272 
1273 	/* Don't let kthreads write their own loginuid */
1274 	if (current->flags & PF_KTHREAD)
1275 		return -EPERM;
1276 
1277 	rcu_read_lock();
1278 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1279 		rcu_read_unlock();
1280 		return -EPERM;
1281 	}
1282 	rcu_read_unlock();
1283 
1284 	if (*ppos != 0) {
1285 		/* No partial writes. */
1286 		return -EINVAL;
1287 	}
1288 
1289 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1290 	if (rv < 0)
1291 		return rv;
1292 
1293 	/* is userspace tring to explicitly UNSET the loginuid? */
1294 	if (loginuid == AUDIT_UID_UNSET) {
1295 		kloginuid = INVALID_UID;
1296 	} else {
1297 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1298 		if (!uid_valid(kloginuid))
1299 			return -EINVAL;
1300 	}
1301 
1302 	rv = audit_set_loginuid(kloginuid);
1303 	if (rv < 0)
1304 		return rv;
1305 	return count;
1306 }
1307 
1308 static const struct file_operations proc_loginuid_operations = {
1309 	.read		= proc_loginuid_read,
1310 	.write		= proc_loginuid_write,
1311 	.llseek		= generic_file_llseek,
1312 };
1313 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1314 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1315 				  size_t count, loff_t *ppos)
1316 {
1317 	struct inode * inode = file_inode(file);
1318 	struct task_struct *task = get_proc_task(inode);
1319 	ssize_t length;
1320 	char tmpbuf[TMPBUFLEN];
1321 
1322 	if (!task)
1323 		return -ESRCH;
1324 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1325 				audit_get_sessionid(task));
1326 	put_task_struct(task);
1327 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1328 }
1329 
1330 static const struct file_operations proc_sessionid_operations = {
1331 	.read		= proc_sessionid_read,
1332 	.llseek		= generic_file_llseek,
1333 };
1334 #endif
1335 
1336 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1337 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1338 				      size_t count, loff_t *ppos)
1339 {
1340 	struct task_struct *task = get_proc_task(file_inode(file));
1341 	char buffer[PROC_NUMBUF];
1342 	size_t len;
1343 	int make_it_fail;
1344 
1345 	if (!task)
1346 		return -ESRCH;
1347 	make_it_fail = task->make_it_fail;
1348 	put_task_struct(task);
1349 
1350 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1351 
1352 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1353 }
1354 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1355 static ssize_t proc_fault_inject_write(struct file * file,
1356 			const char __user * buf, size_t count, loff_t *ppos)
1357 {
1358 	struct task_struct *task;
1359 	char buffer[PROC_NUMBUF];
1360 	int make_it_fail;
1361 	int rv;
1362 
1363 	if (!capable(CAP_SYS_RESOURCE))
1364 		return -EPERM;
1365 	memset(buffer, 0, sizeof(buffer));
1366 	if (count > sizeof(buffer) - 1)
1367 		count = sizeof(buffer) - 1;
1368 	if (copy_from_user(buffer, buf, count))
1369 		return -EFAULT;
1370 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1371 	if (rv < 0)
1372 		return rv;
1373 	if (make_it_fail < 0 || make_it_fail > 1)
1374 		return -EINVAL;
1375 
1376 	task = get_proc_task(file_inode(file));
1377 	if (!task)
1378 		return -ESRCH;
1379 	task->make_it_fail = make_it_fail;
1380 	put_task_struct(task);
1381 
1382 	return count;
1383 }
1384 
1385 static const struct file_operations proc_fault_inject_operations = {
1386 	.read		= proc_fault_inject_read,
1387 	.write		= proc_fault_inject_write,
1388 	.llseek		= generic_file_llseek,
1389 };
1390 
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1391 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1392 				   size_t count, loff_t *ppos)
1393 {
1394 	struct task_struct *task;
1395 	int err;
1396 	unsigned int n;
1397 
1398 	err = kstrtouint_from_user(buf, count, 0, &n);
1399 	if (err)
1400 		return err;
1401 
1402 	task = get_proc_task(file_inode(file));
1403 	if (!task)
1404 		return -ESRCH;
1405 	task->fail_nth = n;
1406 	put_task_struct(task);
1407 
1408 	return count;
1409 }
1410 
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1411 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1412 				  size_t count, loff_t *ppos)
1413 {
1414 	struct task_struct *task;
1415 	char numbuf[PROC_NUMBUF];
1416 	ssize_t len;
1417 
1418 	task = get_proc_task(file_inode(file));
1419 	if (!task)
1420 		return -ESRCH;
1421 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1422 	put_task_struct(task);
1423 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1424 }
1425 
1426 static const struct file_operations proc_fail_nth_operations = {
1427 	.read		= proc_fail_nth_read,
1428 	.write		= proc_fail_nth_write,
1429 };
1430 #endif
1431 
1432 
1433 #ifdef CONFIG_SCHED_DEBUG
1434 /*
1435  * Print out various scheduling related per-task fields:
1436  */
sched_show(struct seq_file * m,void * v)1437 static int sched_show(struct seq_file *m, void *v)
1438 {
1439 	struct inode *inode = m->private;
1440 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1441 	struct task_struct *p;
1442 
1443 	p = get_proc_task(inode);
1444 	if (!p)
1445 		return -ESRCH;
1446 	proc_sched_show_task(p, ns, m);
1447 
1448 	put_task_struct(p);
1449 
1450 	return 0;
1451 }
1452 
1453 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1454 sched_write(struct file *file, const char __user *buf,
1455 	    size_t count, loff_t *offset)
1456 {
1457 	struct inode *inode = file_inode(file);
1458 	struct task_struct *p;
1459 
1460 	p = get_proc_task(inode);
1461 	if (!p)
1462 		return -ESRCH;
1463 	proc_sched_set_task(p);
1464 
1465 	put_task_struct(p);
1466 
1467 	return count;
1468 }
1469 
sched_open(struct inode * inode,struct file * filp)1470 static int sched_open(struct inode *inode, struct file *filp)
1471 {
1472 	return single_open(filp, sched_show, inode);
1473 }
1474 
1475 static const struct file_operations proc_pid_sched_operations = {
1476 	.open		= sched_open,
1477 	.read		= seq_read,
1478 	.write		= sched_write,
1479 	.llseek		= seq_lseek,
1480 	.release	= single_release,
1481 };
1482 
1483 #endif
1484 
1485 #ifdef CONFIG_SCHED_AUTOGROUP
1486 /*
1487  * Print out autogroup related information:
1488  */
sched_autogroup_show(struct seq_file * m,void * v)1489 static int sched_autogroup_show(struct seq_file *m, void *v)
1490 {
1491 	struct inode *inode = m->private;
1492 	struct task_struct *p;
1493 
1494 	p = get_proc_task(inode);
1495 	if (!p)
1496 		return -ESRCH;
1497 	proc_sched_autogroup_show_task(p, m);
1498 
1499 	put_task_struct(p);
1500 
1501 	return 0;
1502 }
1503 
1504 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1505 sched_autogroup_write(struct file *file, const char __user *buf,
1506 	    size_t count, loff_t *offset)
1507 {
1508 	struct inode *inode = file_inode(file);
1509 	struct task_struct *p;
1510 	char buffer[PROC_NUMBUF];
1511 	int nice;
1512 	int err;
1513 
1514 	memset(buffer, 0, sizeof(buffer));
1515 	if (count > sizeof(buffer) - 1)
1516 		count = sizeof(buffer) - 1;
1517 	if (copy_from_user(buffer, buf, count))
1518 		return -EFAULT;
1519 
1520 	err = kstrtoint(strstrip(buffer), 0, &nice);
1521 	if (err < 0)
1522 		return err;
1523 
1524 	p = get_proc_task(inode);
1525 	if (!p)
1526 		return -ESRCH;
1527 
1528 	err = proc_sched_autogroup_set_nice(p, nice);
1529 	if (err)
1530 		count = err;
1531 
1532 	put_task_struct(p);
1533 
1534 	return count;
1535 }
1536 
sched_autogroup_open(struct inode * inode,struct file * filp)1537 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1538 {
1539 	int ret;
1540 
1541 	ret = single_open(filp, sched_autogroup_show, NULL);
1542 	if (!ret) {
1543 		struct seq_file *m = filp->private_data;
1544 
1545 		m->private = inode;
1546 	}
1547 	return ret;
1548 }
1549 
1550 static const struct file_operations proc_pid_sched_autogroup_operations = {
1551 	.open		= sched_autogroup_open,
1552 	.read		= seq_read,
1553 	.write		= sched_autogroup_write,
1554 	.llseek		= seq_lseek,
1555 	.release	= single_release,
1556 };
1557 
1558 #endif /* CONFIG_SCHED_AUTOGROUP */
1559 
1560 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1561 static int timens_offsets_show(struct seq_file *m, void *v)
1562 {
1563 	struct task_struct *p;
1564 
1565 	p = get_proc_task(file_inode(m->file));
1566 	if (!p)
1567 		return -ESRCH;
1568 	proc_timens_show_offsets(p, m);
1569 
1570 	put_task_struct(p);
1571 
1572 	return 0;
1573 }
1574 
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1575 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1576 				    size_t count, loff_t *ppos)
1577 {
1578 	struct inode *inode = file_inode(file);
1579 	struct proc_timens_offset offsets[2];
1580 	char *kbuf = NULL, *pos, *next_line;
1581 	struct task_struct *p;
1582 	int ret, noffsets;
1583 
1584 	/* Only allow < page size writes at the beginning of the file */
1585 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1586 		return -EINVAL;
1587 
1588 	/* Slurp in the user data */
1589 	kbuf = memdup_user_nul(buf, count);
1590 	if (IS_ERR(kbuf))
1591 		return PTR_ERR(kbuf);
1592 
1593 	/* Parse the user data */
1594 	ret = -EINVAL;
1595 	noffsets = 0;
1596 	for (pos = kbuf; pos; pos = next_line) {
1597 		struct proc_timens_offset *off = &offsets[noffsets];
1598 		char clock[10];
1599 		int err;
1600 
1601 		/* Find the end of line and ensure we don't look past it */
1602 		next_line = strchr(pos, '\n');
1603 		if (next_line) {
1604 			*next_line = '\0';
1605 			next_line++;
1606 			if (*next_line == '\0')
1607 				next_line = NULL;
1608 		}
1609 
1610 		err = sscanf(pos, "%9s %lld %lu", clock,
1611 				&off->val.tv_sec, &off->val.tv_nsec);
1612 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1613 			goto out;
1614 
1615 		clock[sizeof(clock) - 1] = 0;
1616 		if (strcmp(clock, "monotonic") == 0 ||
1617 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1618 			off->clockid = CLOCK_MONOTONIC;
1619 		else if (strcmp(clock, "boottime") == 0 ||
1620 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1621 			off->clockid = CLOCK_BOOTTIME;
1622 		else
1623 			goto out;
1624 
1625 		noffsets++;
1626 		if (noffsets == ARRAY_SIZE(offsets)) {
1627 			if (next_line)
1628 				count = next_line - kbuf;
1629 			break;
1630 		}
1631 	}
1632 
1633 	ret = -ESRCH;
1634 	p = get_proc_task(inode);
1635 	if (!p)
1636 		goto out;
1637 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1638 	put_task_struct(p);
1639 	if (ret)
1640 		goto out;
1641 
1642 	ret = count;
1643 out:
1644 	kfree(kbuf);
1645 	return ret;
1646 }
1647 
timens_offsets_open(struct inode * inode,struct file * filp)1648 static int timens_offsets_open(struct inode *inode, struct file *filp)
1649 {
1650 	return single_open(filp, timens_offsets_show, inode);
1651 }
1652 
1653 static const struct file_operations proc_timens_offsets_operations = {
1654 	.open		= timens_offsets_open,
1655 	.read		= seq_read,
1656 	.write		= timens_offsets_write,
1657 	.llseek		= seq_lseek,
1658 	.release	= single_release,
1659 };
1660 #endif /* CONFIG_TIME_NS */
1661 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1662 static ssize_t comm_write(struct file *file, const char __user *buf,
1663 				size_t count, loff_t *offset)
1664 {
1665 	struct inode *inode = file_inode(file);
1666 	struct task_struct *p;
1667 	char buffer[TASK_COMM_LEN];
1668 	const size_t maxlen = sizeof(buffer) - 1;
1669 
1670 	memset(buffer, 0, sizeof(buffer));
1671 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1672 		return -EFAULT;
1673 
1674 	p = get_proc_task(inode);
1675 	if (!p)
1676 		return -ESRCH;
1677 
1678 	if (same_thread_group(current, p))
1679 		set_task_comm(p, buffer);
1680 	else
1681 		count = -EINVAL;
1682 
1683 	put_task_struct(p);
1684 
1685 	return count;
1686 }
1687 
comm_show(struct seq_file * m,void * v)1688 static int comm_show(struct seq_file *m, void *v)
1689 {
1690 	struct inode *inode = m->private;
1691 	struct task_struct *p;
1692 
1693 	p = get_proc_task(inode);
1694 	if (!p)
1695 		return -ESRCH;
1696 
1697 	proc_task_name(m, p, false);
1698 	seq_putc(m, '\n');
1699 
1700 	put_task_struct(p);
1701 
1702 	return 0;
1703 }
1704 
comm_open(struct inode * inode,struct file * filp)1705 static int comm_open(struct inode *inode, struct file *filp)
1706 {
1707 	return single_open(filp, comm_show, inode);
1708 }
1709 
1710 static const struct file_operations proc_pid_set_comm_operations = {
1711 	.open		= comm_open,
1712 	.read		= seq_read,
1713 	.write		= comm_write,
1714 	.llseek		= seq_lseek,
1715 	.release	= single_release,
1716 };
1717 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1718 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1719 {
1720 	struct task_struct *task;
1721 	struct file *exe_file;
1722 
1723 	task = get_proc_task(d_inode(dentry));
1724 	if (!task)
1725 		return -ENOENT;
1726 	exe_file = get_task_exe_file(task);
1727 	put_task_struct(task);
1728 	if (exe_file) {
1729 		*exe_path = exe_file->f_path;
1730 		path_get(&exe_file->f_path);
1731 		fput(exe_file);
1732 		return 0;
1733 	} else
1734 		return -ENOENT;
1735 }
1736 
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1737 static const char *proc_pid_get_link(struct dentry *dentry,
1738 				     struct inode *inode,
1739 				     struct delayed_call *done)
1740 {
1741 	struct path path;
1742 	int error = -EACCES;
1743 
1744 	if (!dentry)
1745 		return ERR_PTR(-ECHILD);
1746 
1747 	/* Are we allowed to snoop on the tasks file descriptors? */
1748 	if (!proc_fd_access_allowed(inode))
1749 		goto out;
1750 
1751 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1752 	if (error)
1753 		goto out;
1754 
1755 	error = nd_jump_link(&path);
1756 out:
1757 	return ERR_PTR(error);
1758 }
1759 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1760 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1761 {
1762 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1763 	char *pathname;
1764 	int len;
1765 
1766 	if (!tmp)
1767 		return -ENOMEM;
1768 
1769 	pathname = d_path(path, tmp, PAGE_SIZE);
1770 	len = PTR_ERR(pathname);
1771 	if (IS_ERR(pathname))
1772 		goto out;
1773 	len = tmp + PAGE_SIZE - 1 - pathname;
1774 
1775 	if (len > buflen)
1776 		len = buflen;
1777 	if (copy_to_user(buffer, pathname, len))
1778 		len = -EFAULT;
1779  out:
1780 	free_page((unsigned long)tmp);
1781 	return len;
1782 }
1783 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1784 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1785 {
1786 	int error = -EACCES;
1787 	struct inode *inode = d_inode(dentry);
1788 	struct path path;
1789 
1790 	/* Are we allowed to snoop on the tasks file descriptors? */
1791 	if (!proc_fd_access_allowed(inode))
1792 		goto out;
1793 
1794 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1795 	if (error)
1796 		goto out;
1797 
1798 	error = do_proc_readlink(&path, buffer, buflen);
1799 	path_put(&path);
1800 out:
1801 	return error;
1802 }
1803 
1804 const struct inode_operations proc_pid_link_inode_operations = {
1805 	.readlink	= proc_pid_readlink,
1806 	.get_link	= proc_pid_get_link,
1807 	.setattr	= proc_setattr,
1808 };
1809 
1810 
1811 /* building an inode */
1812 
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1813 void task_dump_owner(struct task_struct *task, umode_t mode,
1814 		     kuid_t *ruid, kgid_t *rgid)
1815 {
1816 	/* Depending on the state of dumpable compute who should own a
1817 	 * proc file for a task.
1818 	 */
1819 	const struct cred *cred;
1820 	kuid_t uid;
1821 	kgid_t gid;
1822 
1823 	if (unlikely(task->flags & PF_KTHREAD)) {
1824 		*ruid = GLOBAL_ROOT_UID;
1825 		*rgid = GLOBAL_ROOT_GID;
1826 		return;
1827 	}
1828 
1829 	/* Default to the tasks effective ownership */
1830 	rcu_read_lock();
1831 	cred = __task_cred(task);
1832 	uid = cred->euid;
1833 	gid = cred->egid;
1834 	rcu_read_unlock();
1835 
1836 	/*
1837 	 * Before the /proc/pid/status file was created the only way to read
1838 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1839 	 * /proc/pid/status is slow enough that procps and other packages
1840 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1841 	 * made this apply to all per process world readable and executable
1842 	 * directories.
1843 	 */
1844 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1845 		struct mm_struct *mm;
1846 		task_lock(task);
1847 		mm = task->mm;
1848 		/* Make non-dumpable tasks owned by some root */
1849 		if (mm) {
1850 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1851 				struct user_namespace *user_ns = mm->user_ns;
1852 
1853 				uid = make_kuid(user_ns, 0);
1854 				if (!uid_valid(uid))
1855 					uid = GLOBAL_ROOT_UID;
1856 
1857 				gid = make_kgid(user_ns, 0);
1858 				if (!gid_valid(gid))
1859 					gid = GLOBAL_ROOT_GID;
1860 			}
1861 		} else {
1862 			uid = GLOBAL_ROOT_UID;
1863 			gid = GLOBAL_ROOT_GID;
1864 		}
1865 		task_unlock(task);
1866 	}
1867 	*ruid = uid;
1868 	*rgid = gid;
1869 }
1870 
proc_pid_evict_inode(struct proc_inode * ei)1871 void proc_pid_evict_inode(struct proc_inode *ei)
1872 {
1873 	struct pid *pid = ei->pid;
1874 
1875 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1876 		spin_lock(&pid->lock);
1877 		hlist_del_init_rcu(&ei->sibling_inodes);
1878 		spin_unlock(&pid->lock);
1879 	}
1880 
1881 	put_pid(pid);
1882 }
1883 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1884 struct inode *proc_pid_make_inode(struct super_block * sb,
1885 				  struct task_struct *task, umode_t mode)
1886 {
1887 	struct inode * inode;
1888 	struct proc_inode *ei;
1889 	struct pid *pid;
1890 
1891 	/* We need a new inode */
1892 
1893 	inode = new_inode(sb);
1894 	if (!inode)
1895 		goto out;
1896 
1897 	/* Common stuff */
1898 	ei = PROC_I(inode);
1899 	inode->i_mode = mode;
1900 	inode->i_ino = get_next_ino();
1901 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1902 	inode->i_op = &proc_def_inode_operations;
1903 
1904 	/*
1905 	 * grab the reference to task.
1906 	 */
1907 	pid = get_task_pid(task, PIDTYPE_PID);
1908 	if (!pid)
1909 		goto out_unlock;
1910 
1911 	/* Let the pid remember us for quick removal */
1912 	ei->pid = pid;
1913 	if (S_ISDIR(mode)) {
1914 		spin_lock(&pid->lock);
1915 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1916 		spin_unlock(&pid->lock);
1917 	}
1918 
1919 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1920 	security_task_to_inode(task, inode);
1921 
1922 out:
1923 	return inode;
1924 
1925 out_unlock:
1926 	iput(inode);
1927 	return NULL;
1928 }
1929 
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1930 int pid_getattr(const struct path *path, struct kstat *stat,
1931 		u32 request_mask, unsigned int query_flags)
1932 {
1933 	struct inode *inode = d_inode(path->dentry);
1934 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1935 	struct task_struct *task;
1936 
1937 	generic_fillattr(inode, stat);
1938 
1939 	stat->uid = GLOBAL_ROOT_UID;
1940 	stat->gid = GLOBAL_ROOT_GID;
1941 	rcu_read_lock();
1942 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1943 	if (task) {
1944 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1945 			rcu_read_unlock();
1946 			/*
1947 			 * This doesn't prevent learning whether PID exists,
1948 			 * it only makes getattr() consistent with readdir().
1949 			 */
1950 			return -ENOENT;
1951 		}
1952 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1953 	}
1954 	rcu_read_unlock();
1955 	return 0;
1956 }
1957 
1958 /* dentry stuff */
1959 
1960 /*
1961  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1962  */
pid_update_inode(struct task_struct * task,struct inode * inode)1963 void pid_update_inode(struct task_struct *task, struct inode *inode)
1964 {
1965 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1966 
1967 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1968 	security_task_to_inode(task, inode);
1969 }
1970 
1971 /*
1972  * Rewrite the inode's ownerships here because the owning task may have
1973  * performed a setuid(), etc.
1974  *
1975  */
pid_revalidate(struct dentry * dentry,unsigned int flags)1976 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1977 {
1978 	struct inode *inode;
1979 	struct task_struct *task;
1980 
1981 	if (flags & LOOKUP_RCU)
1982 		return -ECHILD;
1983 
1984 	inode = d_inode(dentry);
1985 	task = get_proc_task(inode);
1986 
1987 	if (task) {
1988 		pid_update_inode(task, inode);
1989 		put_task_struct(task);
1990 		return 1;
1991 	}
1992 	return 0;
1993 }
1994 
proc_inode_is_dead(struct inode * inode)1995 static inline bool proc_inode_is_dead(struct inode *inode)
1996 {
1997 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1998 }
1999 
pid_delete_dentry(const struct dentry * dentry)2000 int pid_delete_dentry(const struct dentry *dentry)
2001 {
2002 	/* Is the task we represent dead?
2003 	 * If so, then don't put the dentry on the lru list,
2004 	 * kill it immediately.
2005 	 */
2006 	return proc_inode_is_dead(d_inode(dentry));
2007 }
2008 
2009 const struct dentry_operations pid_dentry_operations =
2010 {
2011 	.d_revalidate	= pid_revalidate,
2012 	.d_delete	= pid_delete_dentry,
2013 };
2014 
2015 /* Lookups */
2016 
2017 /*
2018  * Fill a directory entry.
2019  *
2020  * If possible create the dcache entry and derive our inode number and
2021  * file type from dcache entry.
2022  *
2023  * Since all of the proc inode numbers are dynamically generated, the inode
2024  * numbers do not exist until the inode is cache.  This means creating the
2025  * the dcache entry in readdir is necessary to keep the inode numbers
2026  * reported by readdir in sync with the inode numbers reported
2027  * by stat.
2028  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2029 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2030 	const char *name, unsigned int len,
2031 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2032 {
2033 	struct dentry *child, *dir = file->f_path.dentry;
2034 	struct qstr qname = QSTR_INIT(name, len);
2035 	struct inode *inode;
2036 	unsigned type = DT_UNKNOWN;
2037 	ino_t ino = 1;
2038 
2039 	child = d_hash_and_lookup(dir, &qname);
2040 	if (!child) {
2041 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2042 		child = d_alloc_parallel(dir, &qname, &wq);
2043 		if (IS_ERR(child))
2044 			goto end_instantiate;
2045 		if (d_in_lookup(child)) {
2046 			struct dentry *res;
2047 			res = instantiate(child, task, ptr);
2048 			d_lookup_done(child);
2049 			if (unlikely(res)) {
2050 				dput(child);
2051 				child = res;
2052 				if (IS_ERR(child))
2053 					goto end_instantiate;
2054 			}
2055 		}
2056 	}
2057 	inode = d_inode(child);
2058 	ino = inode->i_ino;
2059 	type = inode->i_mode >> 12;
2060 	dput(child);
2061 end_instantiate:
2062 	return dir_emit(ctx, name, len, ino, type);
2063 }
2064 
2065 /*
2066  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2067  * which represent vma start and end addresses.
2068  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2069 static int dname_to_vma_addr(struct dentry *dentry,
2070 			     unsigned long *start, unsigned long *end)
2071 {
2072 	const char *str = dentry->d_name.name;
2073 	unsigned long long sval, eval;
2074 	unsigned int len;
2075 
2076 	if (str[0] == '0' && str[1] != '-')
2077 		return -EINVAL;
2078 	len = _parse_integer(str, 16, &sval);
2079 	if (len & KSTRTOX_OVERFLOW)
2080 		return -EINVAL;
2081 	if (sval != (unsigned long)sval)
2082 		return -EINVAL;
2083 	str += len;
2084 
2085 	if (*str != '-')
2086 		return -EINVAL;
2087 	str++;
2088 
2089 	if (str[0] == '0' && str[1])
2090 		return -EINVAL;
2091 	len = _parse_integer(str, 16, &eval);
2092 	if (len & KSTRTOX_OVERFLOW)
2093 		return -EINVAL;
2094 	if (eval != (unsigned long)eval)
2095 		return -EINVAL;
2096 	str += len;
2097 
2098 	if (*str != '\0')
2099 		return -EINVAL;
2100 
2101 	*start = sval;
2102 	*end = eval;
2103 
2104 	return 0;
2105 }
2106 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2107 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2108 {
2109 	unsigned long vm_start, vm_end;
2110 	bool exact_vma_exists = false;
2111 	struct mm_struct *mm = NULL;
2112 	struct task_struct *task;
2113 	struct inode *inode;
2114 	int status = 0;
2115 
2116 	if (flags & LOOKUP_RCU)
2117 		return -ECHILD;
2118 
2119 	inode = d_inode(dentry);
2120 	task = get_proc_task(inode);
2121 	if (!task)
2122 		goto out_notask;
2123 
2124 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2125 	if (IS_ERR_OR_NULL(mm))
2126 		goto out;
2127 
2128 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2129 		status = mmap_read_lock_killable(mm);
2130 		if (!status) {
2131 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2132 							    vm_end);
2133 			mmap_read_unlock(mm);
2134 		}
2135 	}
2136 
2137 	mmput(mm);
2138 
2139 	if (exact_vma_exists) {
2140 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2141 
2142 		security_task_to_inode(task, inode);
2143 		status = 1;
2144 	}
2145 
2146 out:
2147 	put_task_struct(task);
2148 
2149 out_notask:
2150 	return status;
2151 }
2152 
2153 static const struct dentry_operations tid_map_files_dentry_operations = {
2154 	.d_revalidate	= map_files_d_revalidate,
2155 	.d_delete	= pid_delete_dentry,
2156 };
2157 
map_files_get_link(struct dentry * dentry,struct path * path)2158 static int map_files_get_link(struct dentry *dentry, struct path *path)
2159 {
2160 	unsigned long vm_start, vm_end;
2161 	struct vm_area_struct *vma;
2162 	struct task_struct *task;
2163 	struct mm_struct *mm;
2164 	int rc;
2165 
2166 	rc = -ENOENT;
2167 	task = get_proc_task(d_inode(dentry));
2168 	if (!task)
2169 		goto out;
2170 
2171 	mm = get_task_mm(task);
2172 	put_task_struct(task);
2173 	if (!mm)
2174 		goto out;
2175 
2176 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2177 	if (rc)
2178 		goto out_mmput;
2179 
2180 	rc = mmap_read_lock_killable(mm);
2181 	if (rc)
2182 		goto out_mmput;
2183 
2184 	rc = -ENOENT;
2185 	vma = find_exact_vma(mm, vm_start, vm_end);
2186 	if (vma && vma->vm_file) {
2187 		*path = vma->vm_file->f_path;
2188 		path_get(path);
2189 		rc = 0;
2190 	}
2191 	mmap_read_unlock(mm);
2192 
2193 out_mmput:
2194 	mmput(mm);
2195 out:
2196 	return rc;
2197 }
2198 
2199 struct map_files_info {
2200 	unsigned long	start;
2201 	unsigned long	end;
2202 	fmode_t		mode;
2203 };
2204 
2205 /*
2206  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2207  * to concerns about how the symlinks may be used to bypass permissions on
2208  * ancestor directories in the path to the file in question.
2209  */
2210 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2211 proc_map_files_get_link(struct dentry *dentry,
2212 			struct inode *inode,
2213 		        struct delayed_call *done)
2214 {
2215 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2216 		return ERR_PTR(-EPERM);
2217 
2218 	return proc_pid_get_link(dentry, inode, done);
2219 }
2220 
2221 /*
2222  * Identical to proc_pid_link_inode_operations except for get_link()
2223  */
2224 static const struct inode_operations proc_map_files_link_inode_operations = {
2225 	.readlink	= proc_pid_readlink,
2226 	.get_link	= proc_map_files_get_link,
2227 	.setattr	= proc_setattr,
2228 };
2229 
2230 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2231 proc_map_files_instantiate(struct dentry *dentry,
2232 			   struct task_struct *task, const void *ptr)
2233 {
2234 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2235 	struct proc_inode *ei;
2236 	struct inode *inode;
2237 
2238 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2239 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2240 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2241 	if (!inode)
2242 		return ERR_PTR(-ENOENT);
2243 
2244 	ei = PROC_I(inode);
2245 	ei->op.proc_get_link = map_files_get_link;
2246 
2247 	inode->i_op = &proc_map_files_link_inode_operations;
2248 	inode->i_size = 64;
2249 
2250 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2251 	return d_splice_alias(inode, dentry);
2252 }
2253 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2254 static struct dentry *proc_map_files_lookup(struct inode *dir,
2255 		struct dentry *dentry, unsigned int flags)
2256 {
2257 	unsigned long vm_start, vm_end;
2258 	struct vm_area_struct *vma;
2259 	struct task_struct *task;
2260 	struct dentry *result;
2261 	struct mm_struct *mm;
2262 
2263 	result = ERR_PTR(-ENOENT);
2264 	task = get_proc_task(dir);
2265 	if (!task)
2266 		goto out;
2267 
2268 	result = ERR_PTR(-EACCES);
2269 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2270 		goto out_put_task;
2271 
2272 	result = ERR_PTR(-ENOENT);
2273 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2274 		goto out_put_task;
2275 
2276 	mm = get_task_mm(task);
2277 	if (!mm)
2278 		goto out_put_task;
2279 
2280 	result = ERR_PTR(-EINTR);
2281 	if (mmap_read_lock_killable(mm))
2282 		goto out_put_mm;
2283 
2284 	result = ERR_PTR(-ENOENT);
2285 	vma = find_exact_vma(mm, vm_start, vm_end);
2286 	if (!vma)
2287 		goto out_no_vma;
2288 
2289 	if (vma->vm_file)
2290 		result = proc_map_files_instantiate(dentry, task,
2291 				(void *)(unsigned long)vma->vm_file->f_mode);
2292 
2293 out_no_vma:
2294 	mmap_read_unlock(mm);
2295 out_put_mm:
2296 	mmput(mm);
2297 out_put_task:
2298 	put_task_struct(task);
2299 out:
2300 	return result;
2301 }
2302 
2303 static const struct inode_operations proc_map_files_inode_operations = {
2304 	.lookup		= proc_map_files_lookup,
2305 	.permission	= proc_fd_permission,
2306 	.setattr	= proc_setattr,
2307 };
2308 
2309 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2310 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2311 {
2312 	struct vm_area_struct *vma;
2313 	struct task_struct *task;
2314 	struct mm_struct *mm;
2315 	unsigned long nr_files, pos, i;
2316 	GENRADIX(struct map_files_info) fa;
2317 	struct map_files_info *p;
2318 	int ret;
2319 
2320 	genradix_init(&fa);
2321 
2322 	ret = -ENOENT;
2323 	task = get_proc_task(file_inode(file));
2324 	if (!task)
2325 		goto out;
2326 
2327 	ret = -EACCES;
2328 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2329 		goto out_put_task;
2330 
2331 	ret = 0;
2332 	if (!dir_emit_dots(file, ctx))
2333 		goto out_put_task;
2334 
2335 	mm = get_task_mm(task);
2336 	if (!mm)
2337 		goto out_put_task;
2338 
2339 	ret = mmap_read_lock_killable(mm);
2340 	if (ret) {
2341 		mmput(mm);
2342 		goto out_put_task;
2343 	}
2344 
2345 	nr_files = 0;
2346 
2347 	/*
2348 	 * We need two passes here:
2349 	 *
2350 	 *  1) Collect vmas of mapped files with mmap_lock taken
2351 	 *  2) Release mmap_lock and instantiate entries
2352 	 *
2353 	 * otherwise we get lockdep complained, since filldir()
2354 	 * routine might require mmap_lock taken in might_fault().
2355 	 */
2356 
2357 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2358 		if (!vma->vm_file)
2359 			continue;
2360 		if (++pos <= ctx->pos)
2361 			continue;
2362 
2363 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2364 		if (!p) {
2365 			ret = -ENOMEM;
2366 			mmap_read_unlock(mm);
2367 			mmput(mm);
2368 			goto out_put_task;
2369 		}
2370 
2371 		p->start = vma->vm_start;
2372 		p->end = vma->vm_end;
2373 		p->mode = vma->vm_file->f_mode;
2374 	}
2375 	mmap_read_unlock(mm);
2376 	mmput(mm);
2377 
2378 	for (i = 0; i < nr_files; i++) {
2379 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2380 		unsigned int len;
2381 
2382 		p = genradix_ptr(&fa, i);
2383 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2384 		if (!proc_fill_cache(file, ctx,
2385 				      buf, len,
2386 				      proc_map_files_instantiate,
2387 				      task,
2388 				      (void *)(unsigned long)p->mode))
2389 			break;
2390 		ctx->pos++;
2391 	}
2392 
2393 out_put_task:
2394 	put_task_struct(task);
2395 out:
2396 	genradix_free(&fa);
2397 	return ret;
2398 }
2399 
2400 static const struct file_operations proc_map_files_operations = {
2401 	.read		= generic_read_dir,
2402 	.iterate_shared	= proc_map_files_readdir,
2403 	.llseek		= generic_file_llseek,
2404 };
2405 
2406 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2407 struct timers_private {
2408 	struct pid *pid;
2409 	struct task_struct *task;
2410 	struct sighand_struct *sighand;
2411 	struct pid_namespace *ns;
2412 	unsigned long flags;
2413 };
2414 
timers_start(struct seq_file * m,loff_t * pos)2415 static void *timers_start(struct seq_file *m, loff_t *pos)
2416 {
2417 	struct timers_private *tp = m->private;
2418 
2419 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2420 	if (!tp->task)
2421 		return ERR_PTR(-ESRCH);
2422 
2423 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2424 	if (!tp->sighand)
2425 		return ERR_PTR(-ESRCH);
2426 
2427 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2428 }
2429 
timers_next(struct seq_file * m,void * v,loff_t * pos)2430 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2431 {
2432 	struct timers_private *tp = m->private;
2433 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2434 }
2435 
timers_stop(struct seq_file * m,void * v)2436 static void timers_stop(struct seq_file *m, void *v)
2437 {
2438 	struct timers_private *tp = m->private;
2439 
2440 	if (tp->sighand) {
2441 		unlock_task_sighand(tp->task, &tp->flags);
2442 		tp->sighand = NULL;
2443 	}
2444 
2445 	if (tp->task) {
2446 		put_task_struct(tp->task);
2447 		tp->task = NULL;
2448 	}
2449 }
2450 
show_timer(struct seq_file * m,void * v)2451 static int show_timer(struct seq_file *m, void *v)
2452 {
2453 	struct k_itimer *timer;
2454 	struct timers_private *tp = m->private;
2455 	int notify;
2456 	static const char * const nstr[] = {
2457 		[SIGEV_SIGNAL] = "signal",
2458 		[SIGEV_NONE] = "none",
2459 		[SIGEV_THREAD] = "thread",
2460 	};
2461 
2462 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2463 	notify = timer->it_sigev_notify;
2464 
2465 	seq_printf(m, "ID: %d\n", timer->it_id);
2466 	seq_printf(m, "signal: %d/%px\n",
2467 		   timer->sigq->info.si_signo,
2468 		   timer->sigq->info.si_value.sival_ptr);
2469 	seq_printf(m, "notify: %s/%s.%d\n",
2470 		   nstr[notify & ~SIGEV_THREAD_ID],
2471 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2472 		   pid_nr_ns(timer->it_pid, tp->ns));
2473 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2474 
2475 	return 0;
2476 }
2477 
2478 static const struct seq_operations proc_timers_seq_ops = {
2479 	.start	= timers_start,
2480 	.next	= timers_next,
2481 	.stop	= timers_stop,
2482 	.show	= show_timer,
2483 };
2484 
proc_timers_open(struct inode * inode,struct file * file)2485 static int proc_timers_open(struct inode *inode, struct file *file)
2486 {
2487 	struct timers_private *tp;
2488 
2489 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2490 			sizeof(struct timers_private));
2491 	if (!tp)
2492 		return -ENOMEM;
2493 
2494 	tp->pid = proc_pid(inode);
2495 	tp->ns = proc_pid_ns(inode->i_sb);
2496 	return 0;
2497 }
2498 
2499 static const struct file_operations proc_timers_operations = {
2500 	.open		= proc_timers_open,
2501 	.read		= seq_read,
2502 	.llseek		= seq_lseek,
2503 	.release	= seq_release_private,
2504 };
2505 #endif
2506 
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2507 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2508 					size_t count, loff_t *offset)
2509 {
2510 	struct inode *inode = file_inode(file);
2511 	struct task_struct *p;
2512 	u64 slack_ns;
2513 	int err;
2514 
2515 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2516 	if (err < 0)
2517 		return err;
2518 
2519 	p = get_proc_task(inode);
2520 	if (!p)
2521 		return -ESRCH;
2522 
2523 	if (p != current) {
2524 		rcu_read_lock();
2525 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2526 			rcu_read_unlock();
2527 			count = -EPERM;
2528 			goto out;
2529 		}
2530 		rcu_read_unlock();
2531 
2532 		err = security_task_setscheduler(p);
2533 		if (err) {
2534 			count = err;
2535 			goto out;
2536 		}
2537 	}
2538 
2539 	task_lock(p);
2540 	if (slack_ns == 0)
2541 		p->timer_slack_ns = p->default_timer_slack_ns;
2542 	else
2543 		p->timer_slack_ns = slack_ns;
2544 	task_unlock(p);
2545 
2546 out:
2547 	put_task_struct(p);
2548 
2549 	return count;
2550 }
2551 
timerslack_ns_show(struct seq_file * m,void * v)2552 static int timerslack_ns_show(struct seq_file *m, void *v)
2553 {
2554 	struct inode *inode = m->private;
2555 	struct task_struct *p;
2556 	int err = 0;
2557 
2558 	p = get_proc_task(inode);
2559 	if (!p)
2560 		return -ESRCH;
2561 
2562 	if (p != current) {
2563 		rcu_read_lock();
2564 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2565 			rcu_read_unlock();
2566 			err = -EPERM;
2567 			goto out;
2568 		}
2569 		rcu_read_unlock();
2570 
2571 		err = security_task_getscheduler(p);
2572 		if (err)
2573 			goto out;
2574 	}
2575 
2576 	task_lock(p);
2577 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2578 	task_unlock(p);
2579 
2580 out:
2581 	put_task_struct(p);
2582 
2583 	return err;
2584 }
2585 
timerslack_ns_open(struct inode * inode,struct file * filp)2586 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2587 {
2588 	return single_open(filp, timerslack_ns_show, inode);
2589 }
2590 
2591 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2592 	.open		= timerslack_ns_open,
2593 	.read		= seq_read,
2594 	.write		= timerslack_ns_write,
2595 	.llseek		= seq_lseek,
2596 	.release	= single_release,
2597 };
2598 
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2599 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2600 	struct task_struct *task, const void *ptr)
2601 {
2602 	const struct pid_entry *p = ptr;
2603 	struct inode *inode;
2604 	struct proc_inode *ei;
2605 
2606 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2607 	if (!inode)
2608 		return ERR_PTR(-ENOENT);
2609 
2610 	ei = PROC_I(inode);
2611 	if (S_ISDIR(inode->i_mode))
2612 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2613 	if (p->iop)
2614 		inode->i_op = p->iop;
2615 	if (p->fop)
2616 		inode->i_fop = p->fop;
2617 	ei->op = p->op;
2618 	pid_update_inode(task, inode);
2619 	d_set_d_op(dentry, &pid_dentry_operations);
2620 	return d_splice_alias(inode, dentry);
2621 }
2622 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2623 static struct dentry *proc_pident_lookup(struct inode *dir,
2624 					 struct dentry *dentry,
2625 					 const struct pid_entry *p,
2626 					 const struct pid_entry *end)
2627 {
2628 	struct task_struct *task = get_proc_task(dir);
2629 	struct dentry *res = ERR_PTR(-ENOENT);
2630 
2631 	if (!task)
2632 		goto out_no_task;
2633 
2634 	/*
2635 	 * Yes, it does not scale. And it should not. Don't add
2636 	 * new entries into /proc/<tgid>/ without very good reasons.
2637 	 */
2638 	for (; p < end; p++) {
2639 		if (p->len != dentry->d_name.len)
2640 			continue;
2641 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2642 			res = proc_pident_instantiate(dentry, task, p);
2643 			break;
2644 		}
2645 	}
2646 	put_task_struct(task);
2647 out_no_task:
2648 	return res;
2649 }
2650 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2651 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2652 		const struct pid_entry *ents, unsigned int nents)
2653 {
2654 	struct task_struct *task = get_proc_task(file_inode(file));
2655 	const struct pid_entry *p;
2656 
2657 	if (!task)
2658 		return -ENOENT;
2659 
2660 	if (!dir_emit_dots(file, ctx))
2661 		goto out;
2662 
2663 	if (ctx->pos >= nents + 2)
2664 		goto out;
2665 
2666 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2667 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2668 				proc_pident_instantiate, task, p))
2669 			break;
2670 		ctx->pos++;
2671 	}
2672 out:
2673 	put_task_struct(task);
2674 	return 0;
2675 }
2676 
2677 #ifdef CONFIG_SECURITY
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2678 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2679 				  size_t count, loff_t *ppos)
2680 {
2681 	struct inode * inode = file_inode(file);
2682 	char *p = NULL;
2683 	ssize_t length;
2684 	struct task_struct *task = get_proc_task(inode);
2685 
2686 	if (!task)
2687 		return -ESRCH;
2688 
2689 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2690 				      (char*)file->f_path.dentry->d_name.name,
2691 				      &p);
2692 	put_task_struct(task);
2693 	if (length > 0)
2694 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2695 	kfree(p);
2696 	return length;
2697 }
2698 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2699 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2700 				   size_t count, loff_t *ppos)
2701 {
2702 	struct inode * inode = file_inode(file);
2703 	struct task_struct *task;
2704 	void *page;
2705 	int rv;
2706 
2707 	rcu_read_lock();
2708 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2709 	if (!task) {
2710 		rcu_read_unlock();
2711 		return -ESRCH;
2712 	}
2713 	/* A task may only write its own attributes. */
2714 	if (current != task) {
2715 		rcu_read_unlock();
2716 		return -EACCES;
2717 	}
2718 	/* Prevent changes to overridden credentials. */
2719 	if (current_cred() != current_real_cred()) {
2720 		rcu_read_unlock();
2721 		return -EBUSY;
2722 	}
2723 	rcu_read_unlock();
2724 
2725 	if (count > PAGE_SIZE)
2726 		count = PAGE_SIZE;
2727 
2728 	/* No partial writes. */
2729 	if (*ppos != 0)
2730 		return -EINVAL;
2731 
2732 	page = memdup_user(buf, count);
2733 	if (IS_ERR(page)) {
2734 		rv = PTR_ERR(page);
2735 		goto out;
2736 	}
2737 
2738 	/* Guard against adverse ptrace interaction */
2739 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2740 	if (rv < 0)
2741 		goto out_free;
2742 
2743 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2744 				  file->f_path.dentry->d_name.name, page,
2745 				  count);
2746 	mutex_unlock(&current->signal->cred_guard_mutex);
2747 out_free:
2748 	kfree(page);
2749 out:
2750 	return rv;
2751 }
2752 
2753 static const struct file_operations proc_pid_attr_operations = {
2754 	.read		= proc_pid_attr_read,
2755 	.write		= proc_pid_attr_write,
2756 	.llseek		= generic_file_llseek,
2757 };
2758 
2759 #define LSM_DIR_OPS(LSM) \
2760 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2761 			     struct dir_context *ctx) \
2762 { \
2763 	return proc_pident_readdir(filp, ctx, \
2764 				   LSM##_attr_dir_stuff, \
2765 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2766 } \
2767 \
2768 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2769 	.read		= generic_read_dir, \
2770 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2771 	.llseek		= default_llseek, \
2772 }; \
2773 \
2774 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2775 				struct dentry *dentry, unsigned int flags) \
2776 { \
2777 	return proc_pident_lookup(dir, dentry, \
2778 				  LSM##_attr_dir_stuff, \
2779 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2780 } \
2781 \
2782 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2783 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2784 	.getattr	= pid_getattr, \
2785 	.setattr	= proc_setattr, \
2786 }
2787 
2788 #ifdef CONFIG_SECURITY_SMACK
2789 static const struct pid_entry smack_attr_dir_stuff[] = {
2790 	ATTR("smack", "current",	0666),
2791 };
2792 LSM_DIR_OPS(smack);
2793 #endif
2794 
2795 #ifdef CONFIG_SECURITY_APPARMOR
2796 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2797 	ATTR("apparmor", "current",	0666),
2798 	ATTR("apparmor", "prev",	0444),
2799 	ATTR("apparmor", "exec",	0666),
2800 };
2801 LSM_DIR_OPS(apparmor);
2802 #endif
2803 
2804 static const struct pid_entry attr_dir_stuff[] = {
2805 	ATTR(NULL, "current",		0666),
2806 	ATTR(NULL, "prev",		0444),
2807 	ATTR(NULL, "exec",		0666),
2808 	ATTR(NULL, "fscreate",		0666),
2809 	ATTR(NULL, "keycreate",		0666),
2810 	ATTR(NULL, "sockcreate",	0666),
2811 #ifdef CONFIG_SECURITY_SMACK
2812 	DIR("smack",			0555,
2813 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2814 #endif
2815 #ifdef CONFIG_SECURITY_APPARMOR
2816 	DIR("apparmor",			0555,
2817 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2818 #endif
2819 };
2820 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2821 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2822 {
2823 	return proc_pident_readdir(file, ctx,
2824 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2825 }
2826 
2827 static const struct file_operations proc_attr_dir_operations = {
2828 	.read		= generic_read_dir,
2829 	.iterate_shared	= proc_attr_dir_readdir,
2830 	.llseek		= generic_file_llseek,
2831 };
2832 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2833 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2834 				struct dentry *dentry, unsigned int flags)
2835 {
2836 	return proc_pident_lookup(dir, dentry,
2837 				  attr_dir_stuff,
2838 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2839 }
2840 
2841 static const struct inode_operations proc_attr_dir_inode_operations = {
2842 	.lookup		= proc_attr_dir_lookup,
2843 	.getattr	= pid_getattr,
2844 	.setattr	= proc_setattr,
2845 };
2846 
2847 #endif
2848 
2849 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2850 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2851 					 size_t count, loff_t *ppos)
2852 {
2853 	struct task_struct *task = get_proc_task(file_inode(file));
2854 	struct mm_struct *mm;
2855 	char buffer[PROC_NUMBUF];
2856 	size_t len;
2857 	int ret;
2858 
2859 	if (!task)
2860 		return -ESRCH;
2861 
2862 	ret = 0;
2863 	mm = get_task_mm(task);
2864 	if (mm) {
2865 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2866 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2867 				MMF_DUMP_FILTER_SHIFT));
2868 		mmput(mm);
2869 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2870 	}
2871 
2872 	put_task_struct(task);
2873 
2874 	return ret;
2875 }
2876 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2877 static ssize_t proc_coredump_filter_write(struct file *file,
2878 					  const char __user *buf,
2879 					  size_t count,
2880 					  loff_t *ppos)
2881 {
2882 	struct task_struct *task;
2883 	struct mm_struct *mm;
2884 	unsigned int val;
2885 	int ret;
2886 	int i;
2887 	unsigned long mask;
2888 
2889 	ret = kstrtouint_from_user(buf, count, 0, &val);
2890 	if (ret < 0)
2891 		return ret;
2892 
2893 	ret = -ESRCH;
2894 	task = get_proc_task(file_inode(file));
2895 	if (!task)
2896 		goto out_no_task;
2897 
2898 	mm = get_task_mm(task);
2899 	if (!mm)
2900 		goto out_no_mm;
2901 	ret = 0;
2902 
2903 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2904 		if (val & mask)
2905 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2906 		else
2907 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2908 	}
2909 
2910 	mmput(mm);
2911  out_no_mm:
2912 	put_task_struct(task);
2913  out_no_task:
2914 	if (ret < 0)
2915 		return ret;
2916 	return count;
2917 }
2918 
2919 static const struct file_operations proc_coredump_filter_operations = {
2920 	.read		= proc_coredump_filter_read,
2921 	.write		= proc_coredump_filter_write,
2922 	.llseek		= generic_file_llseek,
2923 };
2924 #endif
2925 
2926 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2927 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2928 {
2929 	struct task_io_accounting acct = task->ioac;
2930 	unsigned long flags;
2931 	int result;
2932 
2933 	result = mutex_lock_killable(&task->signal->exec_update_mutex);
2934 	if (result)
2935 		return result;
2936 
2937 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2938 		result = -EACCES;
2939 		goto out_unlock;
2940 	}
2941 
2942 	if (whole && lock_task_sighand(task, &flags)) {
2943 		struct task_struct *t = task;
2944 
2945 		task_io_accounting_add(&acct, &task->signal->ioac);
2946 		while_each_thread(task, t)
2947 			task_io_accounting_add(&acct, &t->ioac);
2948 
2949 		unlock_task_sighand(task, &flags);
2950 	}
2951 	seq_printf(m,
2952 		   "rchar: %llu\n"
2953 		   "wchar: %llu\n"
2954 		   "syscr: %llu\n"
2955 		   "syscw: %llu\n"
2956 		   "read_bytes: %llu\n"
2957 		   "write_bytes: %llu\n"
2958 		   "cancelled_write_bytes: %llu\n",
2959 		   (unsigned long long)acct.rchar,
2960 		   (unsigned long long)acct.wchar,
2961 		   (unsigned long long)acct.syscr,
2962 		   (unsigned long long)acct.syscw,
2963 		   (unsigned long long)acct.read_bytes,
2964 		   (unsigned long long)acct.write_bytes,
2965 		   (unsigned long long)acct.cancelled_write_bytes);
2966 	result = 0;
2967 
2968 out_unlock:
2969 	mutex_unlock(&task->signal->exec_update_mutex);
2970 	return result;
2971 }
2972 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2973 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2974 				  struct pid *pid, struct task_struct *task)
2975 {
2976 	return do_io_accounting(task, m, 0);
2977 }
2978 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2979 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2980 				   struct pid *pid, struct task_struct *task)
2981 {
2982 	return do_io_accounting(task, m, 1);
2983 }
2984 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2985 
2986 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)2987 static int proc_id_map_open(struct inode *inode, struct file *file,
2988 	const struct seq_operations *seq_ops)
2989 {
2990 	struct user_namespace *ns = NULL;
2991 	struct task_struct *task;
2992 	struct seq_file *seq;
2993 	int ret = -EINVAL;
2994 
2995 	task = get_proc_task(inode);
2996 	if (task) {
2997 		rcu_read_lock();
2998 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2999 		rcu_read_unlock();
3000 		put_task_struct(task);
3001 	}
3002 	if (!ns)
3003 		goto err;
3004 
3005 	ret = seq_open(file, seq_ops);
3006 	if (ret)
3007 		goto err_put_ns;
3008 
3009 	seq = file->private_data;
3010 	seq->private = ns;
3011 
3012 	return 0;
3013 err_put_ns:
3014 	put_user_ns(ns);
3015 err:
3016 	return ret;
3017 }
3018 
proc_id_map_release(struct inode * inode,struct file * file)3019 static int proc_id_map_release(struct inode *inode, struct file *file)
3020 {
3021 	struct seq_file *seq = file->private_data;
3022 	struct user_namespace *ns = seq->private;
3023 	put_user_ns(ns);
3024 	return seq_release(inode, file);
3025 }
3026 
proc_uid_map_open(struct inode * inode,struct file * file)3027 static int proc_uid_map_open(struct inode *inode, struct file *file)
3028 {
3029 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3030 }
3031 
proc_gid_map_open(struct inode * inode,struct file * file)3032 static int proc_gid_map_open(struct inode *inode, struct file *file)
3033 {
3034 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3035 }
3036 
proc_projid_map_open(struct inode * inode,struct file * file)3037 static int proc_projid_map_open(struct inode *inode, struct file *file)
3038 {
3039 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3040 }
3041 
3042 static const struct file_operations proc_uid_map_operations = {
3043 	.open		= proc_uid_map_open,
3044 	.write		= proc_uid_map_write,
3045 	.read		= seq_read,
3046 	.llseek		= seq_lseek,
3047 	.release	= proc_id_map_release,
3048 };
3049 
3050 static const struct file_operations proc_gid_map_operations = {
3051 	.open		= proc_gid_map_open,
3052 	.write		= proc_gid_map_write,
3053 	.read		= seq_read,
3054 	.llseek		= seq_lseek,
3055 	.release	= proc_id_map_release,
3056 };
3057 
3058 static const struct file_operations proc_projid_map_operations = {
3059 	.open		= proc_projid_map_open,
3060 	.write		= proc_projid_map_write,
3061 	.read		= seq_read,
3062 	.llseek		= seq_lseek,
3063 	.release	= proc_id_map_release,
3064 };
3065 
proc_setgroups_open(struct inode * inode,struct file * file)3066 static int proc_setgroups_open(struct inode *inode, struct file *file)
3067 {
3068 	struct user_namespace *ns = NULL;
3069 	struct task_struct *task;
3070 	int ret;
3071 
3072 	ret = -ESRCH;
3073 	task = get_proc_task(inode);
3074 	if (task) {
3075 		rcu_read_lock();
3076 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3077 		rcu_read_unlock();
3078 		put_task_struct(task);
3079 	}
3080 	if (!ns)
3081 		goto err;
3082 
3083 	if (file->f_mode & FMODE_WRITE) {
3084 		ret = -EACCES;
3085 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3086 			goto err_put_ns;
3087 	}
3088 
3089 	ret = single_open(file, &proc_setgroups_show, ns);
3090 	if (ret)
3091 		goto err_put_ns;
3092 
3093 	return 0;
3094 err_put_ns:
3095 	put_user_ns(ns);
3096 err:
3097 	return ret;
3098 }
3099 
proc_setgroups_release(struct inode * inode,struct file * file)3100 static int proc_setgroups_release(struct inode *inode, struct file *file)
3101 {
3102 	struct seq_file *seq = file->private_data;
3103 	struct user_namespace *ns = seq->private;
3104 	int ret = single_release(inode, file);
3105 	put_user_ns(ns);
3106 	return ret;
3107 }
3108 
3109 static const struct file_operations proc_setgroups_operations = {
3110 	.open		= proc_setgroups_open,
3111 	.write		= proc_setgroups_write,
3112 	.read		= seq_read,
3113 	.llseek		= seq_lseek,
3114 	.release	= proc_setgroups_release,
3115 };
3116 #endif /* CONFIG_USER_NS */
3117 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3118 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3119 				struct pid *pid, struct task_struct *task)
3120 {
3121 	int err = lock_trace(task);
3122 	if (!err) {
3123 		seq_printf(m, "%08x\n", task->personality);
3124 		unlock_trace(task);
3125 	}
3126 	return err;
3127 }
3128 
3129 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3130 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3131 				struct pid *pid, struct task_struct *task)
3132 {
3133 	seq_printf(m, "%d\n", task->patch_state);
3134 	return 0;
3135 }
3136 #endif /* CONFIG_LIVEPATCH */
3137 
3138 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3139 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3140 				struct pid *pid, struct task_struct *task)
3141 {
3142 	unsigned long prev_depth = THREAD_SIZE -
3143 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3144 	unsigned long depth = THREAD_SIZE -
3145 				(task->lowest_stack & (THREAD_SIZE - 1));
3146 
3147 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3148 							prev_depth, depth);
3149 	return 0;
3150 }
3151 #endif /* CONFIG_STACKLEAK_METRICS */
3152 
3153 /*
3154  * Thread groups
3155  */
3156 static const struct file_operations proc_task_operations;
3157 static const struct inode_operations proc_task_inode_operations;
3158 
3159 static const struct pid_entry tgid_base_stuff[] = {
3160 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3161 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3162 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3163 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3164 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3165 #ifdef CONFIG_NET
3166 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3167 #endif
3168 	REG("environ",    S_IRUSR, proc_environ_operations),
3169 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3170 	ONE("status",     S_IRUGO, proc_pid_status),
3171 	ONE("personality", S_IRUSR, proc_pid_personality),
3172 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3173 #ifdef CONFIG_SCHED_DEBUG
3174 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3175 #endif
3176 #ifdef CONFIG_SCHED_AUTOGROUP
3177 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3178 #endif
3179 #ifdef CONFIG_TIME_NS
3180 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3181 #endif
3182 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3183 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3184 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3185 #endif
3186 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3187 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3188 	ONE("statm",      S_IRUGO, proc_pid_statm),
3189 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3190 #ifdef CONFIG_NUMA
3191 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3192 #endif
3193 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3194 	LNK("cwd",        proc_cwd_link),
3195 	LNK("root",       proc_root_link),
3196 	LNK("exe",        proc_exe_link),
3197 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3198 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3199 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3200 #ifdef CONFIG_PROC_PAGE_MONITOR
3201 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3202 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3203 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3204 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3205 #endif
3206 #ifdef CONFIG_SECURITY
3207 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3208 #endif
3209 #ifdef CONFIG_KALLSYMS
3210 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3211 #endif
3212 #ifdef CONFIG_STACKTRACE
3213 	ONE("stack",      S_IRUSR, proc_pid_stack),
3214 #endif
3215 #ifdef CONFIG_SCHED_INFO
3216 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3217 #endif
3218 #ifdef CONFIG_LATENCYTOP
3219 	REG("latency",  S_IRUGO, proc_lstats_operations),
3220 #endif
3221 #ifdef CONFIG_PROC_PID_CPUSET
3222 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3223 #endif
3224 #ifdef CONFIG_CGROUPS
3225 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3226 #endif
3227 #ifdef CONFIG_PROC_CPU_RESCTRL
3228 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3229 #endif
3230 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3231 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3232 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3233 #ifdef CONFIG_AUDIT
3234 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3235 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3236 #endif
3237 #ifdef CONFIG_FAULT_INJECTION
3238 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3239 	REG("fail-nth", 0644, proc_fail_nth_operations),
3240 #endif
3241 #ifdef CONFIG_ELF_CORE
3242 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3243 #endif
3244 #ifdef CONFIG_TASK_IO_ACCOUNTING
3245 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3246 #endif
3247 #ifdef CONFIG_USER_NS
3248 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3249 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3250 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3251 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3252 #endif
3253 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3254 	REG("timers",	  S_IRUGO, proc_timers_operations),
3255 #endif
3256 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3257 #ifdef CONFIG_LIVEPATCH
3258 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3259 #endif
3260 #ifdef CONFIG_STACKLEAK_METRICS
3261 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3262 #endif
3263 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3264 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3265 #endif
3266 };
3267 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3268 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3269 {
3270 	return proc_pident_readdir(file, ctx,
3271 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3272 }
3273 
3274 static const struct file_operations proc_tgid_base_operations = {
3275 	.read		= generic_read_dir,
3276 	.iterate_shared	= proc_tgid_base_readdir,
3277 	.llseek		= generic_file_llseek,
3278 };
3279 
tgid_pidfd_to_pid(const struct file * file)3280 struct pid *tgid_pidfd_to_pid(const struct file *file)
3281 {
3282 	if (file->f_op != &proc_tgid_base_operations)
3283 		return ERR_PTR(-EBADF);
3284 
3285 	return proc_pid(file_inode(file));
3286 }
3287 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3288 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3289 {
3290 	return proc_pident_lookup(dir, dentry,
3291 				  tgid_base_stuff,
3292 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3293 }
3294 
3295 static const struct inode_operations proc_tgid_base_inode_operations = {
3296 	.lookup		= proc_tgid_base_lookup,
3297 	.getattr	= pid_getattr,
3298 	.setattr	= proc_setattr,
3299 	.permission	= proc_pid_permission,
3300 };
3301 
3302 /**
3303  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3304  * @pid: pid that should be flushed.
3305  *
3306  * This function walks a list of inodes (that belong to any proc
3307  * filesystem) that are attached to the pid and flushes them from
3308  * the dentry cache.
3309  *
3310  * It is safe and reasonable to cache /proc entries for a task until
3311  * that task exits.  After that they just clog up the dcache with
3312  * useless entries, possibly causing useful dcache entries to be
3313  * flushed instead.  This routine is provided to flush those useless
3314  * dcache entries when a process is reaped.
3315  *
3316  * NOTE: This routine is just an optimization so it does not guarantee
3317  *       that no dcache entries will exist after a process is reaped
3318  *       it just makes it very unlikely that any will persist.
3319  */
3320 
proc_flush_pid(struct pid * pid)3321 void proc_flush_pid(struct pid *pid)
3322 {
3323 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3324 }
3325 
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3326 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3327 				   struct task_struct *task, const void *ptr)
3328 {
3329 	struct inode *inode;
3330 
3331 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3332 	if (!inode)
3333 		return ERR_PTR(-ENOENT);
3334 
3335 	inode->i_op = &proc_tgid_base_inode_operations;
3336 	inode->i_fop = &proc_tgid_base_operations;
3337 	inode->i_flags|=S_IMMUTABLE;
3338 
3339 	set_nlink(inode, nlink_tgid);
3340 	pid_update_inode(task, inode);
3341 
3342 	d_set_d_op(dentry, &pid_dentry_operations);
3343 	return d_splice_alias(inode, dentry);
3344 }
3345 
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3346 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3347 {
3348 	struct task_struct *task;
3349 	unsigned tgid;
3350 	struct proc_fs_info *fs_info;
3351 	struct pid_namespace *ns;
3352 	struct dentry *result = ERR_PTR(-ENOENT);
3353 
3354 	tgid = name_to_int(&dentry->d_name);
3355 	if (tgid == ~0U)
3356 		goto out;
3357 
3358 	fs_info = proc_sb_info(dentry->d_sb);
3359 	ns = fs_info->pid_ns;
3360 	rcu_read_lock();
3361 	task = find_task_by_pid_ns(tgid, ns);
3362 	if (task)
3363 		get_task_struct(task);
3364 	rcu_read_unlock();
3365 	if (!task)
3366 		goto out;
3367 
3368 	/* Limit procfs to only ptraceable tasks */
3369 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3370 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3371 			goto out_put_task;
3372 	}
3373 
3374 	result = proc_pid_instantiate(dentry, task, NULL);
3375 out_put_task:
3376 	put_task_struct(task);
3377 out:
3378 	return result;
3379 }
3380 
3381 /*
3382  * Find the first task with tgid >= tgid
3383  *
3384  */
3385 struct tgid_iter {
3386 	unsigned int tgid;
3387 	struct task_struct *task;
3388 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3389 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3390 {
3391 	struct pid *pid;
3392 
3393 	if (iter.task)
3394 		put_task_struct(iter.task);
3395 	rcu_read_lock();
3396 retry:
3397 	iter.task = NULL;
3398 	pid = find_ge_pid(iter.tgid, ns);
3399 	if (pid) {
3400 		iter.tgid = pid_nr_ns(pid, ns);
3401 		iter.task = pid_task(pid, PIDTYPE_TGID);
3402 		if (!iter.task) {
3403 			iter.tgid += 1;
3404 			goto retry;
3405 		}
3406 		get_task_struct(iter.task);
3407 	}
3408 	rcu_read_unlock();
3409 	return iter;
3410 }
3411 
3412 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3413 
3414 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3415 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3416 {
3417 	struct tgid_iter iter;
3418 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3419 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3420 	loff_t pos = ctx->pos;
3421 
3422 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3423 		return 0;
3424 
3425 	if (pos == TGID_OFFSET - 2) {
3426 		struct inode *inode = d_inode(fs_info->proc_self);
3427 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3428 			return 0;
3429 		ctx->pos = pos = pos + 1;
3430 	}
3431 	if (pos == TGID_OFFSET - 1) {
3432 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3433 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3434 			return 0;
3435 		ctx->pos = pos = pos + 1;
3436 	}
3437 	iter.tgid = pos - TGID_OFFSET;
3438 	iter.task = NULL;
3439 	for (iter = next_tgid(ns, iter);
3440 	     iter.task;
3441 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3442 		char name[10 + 1];
3443 		unsigned int len;
3444 
3445 		cond_resched();
3446 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3447 			continue;
3448 
3449 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3450 		ctx->pos = iter.tgid + TGID_OFFSET;
3451 		if (!proc_fill_cache(file, ctx, name, len,
3452 				     proc_pid_instantiate, iter.task, NULL)) {
3453 			put_task_struct(iter.task);
3454 			return 0;
3455 		}
3456 	}
3457 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3458 	return 0;
3459 }
3460 
3461 /*
3462  * proc_tid_comm_permission is a special permission function exclusively
3463  * used for the node /proc/<pid>/task/<tid>/comm.
3464  * It bypasses generic permission checks in the case where a task of the same
3465  * task group attempts to access the node.
3466  * The rationale behind this is that glibc and bionic access this node for
3467  * cross thread naming (pthread_set/getname_np(!self)). However, if
3468  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3469  * which locks out the cross thread naming implementation.
3470  * This function makes sure that the node is always accessible for members of
3471  * same thread group.
3472  */
proc_tid_comm_permission(struct inode * inode,int mask)3473 static int proc_tid_comm_permission(struct inode *inode, int mask)
3474 {
3475 	bool is_same_tgroup;
3476 	struct task_struct *task;
3477 
3478 	task = get_proc_task(inode);
3479 	if (!task)
3480 		return -ESRCH;
3481 	is_same_tgroup = same_thread_group(current, task);
3482 	put_task_struct(task);
3483 
3484 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3485 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3486 		 * read or written by the members of the corresponding
3487 		 * thread group.
3488 		 */
3489 		return 0;
3490 	}
3491 
3492 	return generic_permission(inode, mask);
3493 }
3494 
3495 static const struct inode_operations proc_tid_comm_inode_operations = {
3496 		.permission = proc_tid_comm_permission,
3497 };
3498 
3499 /*
3500  * Tasks
3501  */
3502 static const struct pid_entry tid_base_stuff[] = {
3503 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3504 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3505 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3506 #ifdef CONFIG_NET
3507 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3508 #endif
3509 	REG("environ",   S_IRUSR, proc_environ_operations),
3510 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3511 	ONE("status",    S_IRUGO, proc_pid_status),
3512 	ONE("personality", S_IRUSR, proc_pid_personality),
3513 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3514 #ifdef CONFIG_SCHED_DEBUG
3515 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3516 #endif
3517 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3518 			 &proc_tid_comm_inode_operations,
3519 			 &proc_pid_set_comm_operations, {}),
3520 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3521 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3522 #endif
3523 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3524 	ONE("stat",      S_IRUGO, proc_tid_stat),
3525 	ONE("statm",     S_IRUGO, proc_pid_statm),
3526 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3527 #ifdef CONFIG_PROC_CHILDREN
3528 	REG("children",  S_IRUGO, proc_tid_children_operations),
3529 #endif
3530 #ifdef CONFIG_NUMA
3531 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3532 #endif
3533 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3534 	LNK("cwd",       proc_cwd_link),
3535 	LNK("root",      proc_root_link),
3536 	LNK("exe",       proc_exe_link),
3537 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3538 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3539 #ifdef CONFIG_PROC_PAGE_MONITOR
3540 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3541 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3542 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3543 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3544 #endif
3545 #ifdef CONFIG_SECURITY
3546 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3547 #endif
3548 #ifdef CONFIG_KALLSYMS
3549 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3550 #endif
3551 #ifdef CONFIG_STACKTRACE
3552 	ONE("stack",      S_IRUSR, proc_pid_stack),
3553 #endif
3554 #ifdef CONFIG_SCHED_INFO
3555 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3556 #endif
3557 #ifdef CONFIG_LATENCYTOP
3558 	REG("latency",  S_IRUGO, proc_lstats_operations),
3559 #endif
3560 #ifdef CONFIG_PROC_PID_CPUSET
3561 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3562 #endif
3563 #ifdef CONFIG_CGROUPS
3564 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3565 #endif
3566 #ifdef CONFIG_PROC_CPU_RESCTRL
3567 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3568 #endif
3569 	ONE("oom_score", S_IRUGO, proc_oom_score),
3570 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3571 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3572 #ifdef CONFIG_AUDIT
3573 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3574 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3575 #endif
3576 #ifdef CONFIG_FAULT_INJECTION
3577 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3578 	REG("fail-nth", 0644, proc_fail_nth_operations),
3579 #endif
3580 #ifdef CONFIG_TASK_IO_ACCOUNTING
3581 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3582 #endif
3583 #ifdef CONFIG_USER_NS
3584 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3585 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3586 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3587 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3588 #endif
3589 #ifdef CONFIG_LIVEPATCH
3590 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3591 #endif
3592 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3593 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3594 #endif
3595 };
3596 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3597 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3598 {
3599 	return proc_pident_readdir(file, ctx,
3600 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3601 }
3602 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3603 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3604 {
3605 	return proc_pident_lookup(dir, dentry,
3606 				  tid_base_stuff,
3607 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3608 }
3609 
3610 static const struct file_operations proc_tid_base_operations = {
3611 	.read		= generic_read_dir,
3612 	.iterate_shared	= proc_tid_base_readdir,
3613 	.llseek		= generic_file_llseek,
3614 };
3615 
3616 static const struct inode_operations proc_tid_base_inode_operations = {
3617 	.lookup		= proc_tid_base_lookup,
3618 	.getattr	= pid_getattr,
3619 	.setattr	= proc_setattr,
3620 };
3621 
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3622 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3623 	struct task_struct *task, const void *ptr)
3624 {
3625 	struct inode *inode;
3626 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3627 	if (!inode)
3628 		return ERR_PTR(-ENOENT);
3629 
3630 	inode->i_op = &proc_tid_base_inode_operations;
3631 	inode->i_fop = &proc_tid_base_operations;
3632 	inode->i_flags |= S_IMMUTABLE;
3633 
3634 	set_nlink(inode, nlink_tid);
3635 	pid_update_inode(task, inode);
3636 
3637 	d_set_d_op(dentry, &pid_dentry_operations);
3638 	return d_splice_alias(inode, dentry);
3639 }
3640 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3641 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3642 {
3643 	struct task_struct *task;
3644 	struct task_struct *leader = get_proc_task(dir);
3645 	unsigned tid;
3646 	struct proc_fs_info *fs_info;
3647 	struct pid_namespace *ns;
3648 	struct dentry *result = ERR_PTR(-ENOENT);
3649 
3650 	if (!leader)
3651 		goto out_no_task;
3652 
3653 	tid = name_to_int(&dentry->d_name);
3654 	if (tid == ~0U)
3655 		goto out;
3656 
3657 	fs_info = proc_sb_info(dentry->d_sb);
3658 	ns = fs_info->pid_ns;
3659 	rcu_read_lock();
3660 	task = find_task_by_pid_ns(tid, ns);
3661 	if (task)
3662 		get_task_struct(task);
3663 	rcu_read_unlock();
3664 	if (!task)
3665 		goto out;
3666 	if (!same_thread_group(leader, task))
3667 		goto out_drop_task;
3668 
3669 	result = proc_task_instantiate(dentry, task, NULL);
3670 out_drop_task:
3671 	put_task_struct(task);
3672 out:
3673 	put_task_struct(leader);
3674 out_no_task:
3675 	return result;
3676 }
3677 
3678 /*
3679  * Find the first tid of a thread group to return to user space.
3680  *
3681  * Usually this is just the thread group leader, but if the users
3682  * buffer was too small or there was a seek into the middle of the
3683  * directory we have more work todo.
3684  *
3685  * In the case of a short read we start with find_task_by_pid.
3686  *
3687  * In the case of a seek we start with the leader and walk nr
3688  * threads past it.
3689  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3690 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3691 					struct pid_namespace *ns)
3692 {
3693 	struct task_struct *pos, *task;
3694 	unsigned long nr = f_pos;
3695 
3696 	if (nr != f_pos)	/* 32bit overflow? */
3697 		return NULL;
3698 
3699 	rcu_read_lock();
3700 	task = pid_task(pid, PIDTYPE_PID);
3701 	if (!task)
3702 		goto fail;
3703 
3704 	/* Attempt to start with the tid of a thread */
3705 	if (tid && nr) {
3706 		pos = find_task_by_pid_ns(tid, ns);
3707 		if (pos && same_thread_group(pos, task))
3708 			goto found;
3709 	}
3710 
3711 	/* If nr exceeds the number of threads there is nothing todo */
3712 	if (nr >= get_nr_threads(task))
3713 		goto fail;
3714 
3715 	/* If we haven't found our starting place yet start
3716 	 * with the leader and walk nr threads forward.
3717 	 */
3718 	pos = task = task->group_leader;
3719 	do {
3720 		if (!nr--)
3721 			goto found;
3722 	} while_each_thread(task, pos);
3723 fail:
3724 	pos = NULL;
3725 	goto out;
3726 found:
3727 	get_task_struct(pos);
3728 out:
3729 	rcu_read_unlock();
3730 	return pos;
3731 }
3732 
3733 /*
3734  * Find the next thread in the thread list.
3735  * Return NULL if there is an error or no next thread.
3736  *
3737  * The reference to the input task_struct is released.
3738  */
next_tid(struct task_struct * start)3739 static struct task_struct *next_tid(struct task_struct *start)
3740 {
3741 	struct task_struct *pos = NULL;
3742 	rcu_read_lock();
3743 	if (pid_alive(start)) {
3744 		pos = next_thread(start);
3745 		if (thread_group_leader(pos))
3746 			pos = NULL;
3747 		else
3748 			get_task_struct(pos);
3749 	}
3750 	rcu_read_unlock();
3751 	put_task_struct(start);
3752 	return pos;
3753 }
3754 
3755 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3756 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3757 {
3758 	struct inode *inode = file_inode(file);
3759 	struct task_struct *task;
3760 	struct pid_namespace *ns;
3761 	int tid;
3762 
3763 	if (proc_inode_is_dead(inode))
3764 		return -ENOENT;
3765 
3766 	if (!dir_emit_dots(file, ctx))
3767 		return 0;
3768 
3769 	/* f_version caches the tgid value that the last readdir call couldn't
3770 	 * return. lseek aka telldir automagically resets f_version to 0.
3771 	 */
3772 	ns = proc_pid_ns(inode->i_sb);
3773 	tid = (int)file->f_version;
3774 	file->f_version = 0;
3775 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3776 	     task;
3777 	     task = next_tid(task), ctx->pos++) {
3778 		char name[10 + 1];
3779 		unsigned int len;
3780 		tid = task_pid_nr_ns(task, ns);
3781 		len = snprintf(name, sizeof(name), "%u", tid);
3782 		if (!proc_fill_cache(file, ctx, name, len,
3783 				proc_task_instantiate, task, NULL)) {
3784 			/* returning this tgid failed, save it as the first
3785 			 * pid for the next readir call */
3786 			file->f_version = (u64)tid;
3787 			put_task_struct(task);
3788 			break;
3789 		}
3790 	}
3791 
3792 	return 0;
3793 }
3794 
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3795 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3796 			     u32 request_mask, unsigned int query_flags)
3797 {
3798 	struct inode *inode = d_inode(path->dentry);
3799 	struct task_struct *p = get_proc_task(inode);
3800 	generic_fillattr(inode, stat);
3801 
3802 	if (p) {
3803 		stat->nlink += get_nr_threads(p);
3804 		put_task_struct(p);
3805 	}
3806 
3807 	return 0;
3808 }
3809 
3810 static const struct inode_operations proc_task_inode_operations = {
3811 	.lookup		= proc_task_lookup,
3812 	.getattr	= proc_task_getattr,
3813 	.setattr	= proc_setattr,
3814 	.permission	= proc_pid_permission,
3815 };
3816 
3817 static const struct file_operations proc_task_operations = {
3818 	.read		= generic_read_dir,
3819 	.iterate_shared	= proc_task_readdir,
3820 	.llseek		= generic_file_llseek,
3821 };
3822 
set_proc_pid_nlink(void)3823 void __init set_proc_pid_nlink(void)
3824 {
3825 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3826 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3827 }
3828