1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2022 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include "../include/common/cpucp_if.h" 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/misc/habanalabs.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #define HL_NAME "habanalabs" 33 34 struct hl_device; 35 struct hl_fpriv; 36 37 /* Use upper bits of mmap offset to store habana driver specific information. 38 * bits[63:59] - Encode mmap type 39 * bits[45:0] - mmap offset value 40 * 41 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 42 * defines are w.r.t to PAGE_SIZE 43 */ 44 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 45 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 46 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 47 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 48 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 49 50 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 51 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 52 53 #define HL_PENDING_RESET_PER_SEC 10 54 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 55 #define HL_PENDING_RESET_LONG_SEC 60 56 57 #define HL_HARD_RESET_MAX_TIMEOUT 120 58 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 59 60 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 61 62 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 63 64 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 65 66 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 67 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 68 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 69 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 70 71 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 72 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 73 74 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 75 76 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */ 77 78 #define HL_INVALID_QUEUE UINT_MAX 79 80 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 81 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 82 83 #define HL_STATE_DUMP_HIST_LEN 5 84 85 /* Default value for device reset trigger , an invalid value */ 86 #define HL_RESET_TRIGGER_DEFAULT 0xFF 87 88 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 89 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 90 91 /* Memory */ 92 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 93 94 /* MMU */ 95 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 96 97 /** 98 * enum hl_mmu_page_table_location - mmu page table location 99 * @MMU_DR_PGT: page-table is located on device DRAM. 100 * @MMU_HR_PGT: page-table is located on host memory. 101 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 102 */ 103 enum hl_mmu_page_table_location { 104 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 105 MMU_HR_PGT, /* host resident MMU PGT */ 106 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 107 }; 108 109 /** 110 * enum hl_mmu_enablement - what mmu modules to enable 111 * @MMU_EN_NONE: mmu disabled. 112 * @MMU_EN_ALL: enable all. 113 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled. 114 */ 115 enum hl_mmu_enablement { 116 MMU_EN_NONE = 0, 117 MMU_EN_ALL = 1, 118 MMU_EN_PMMU_ONLY = 3, /* N/A for Goya/Gaudi */ 119 }; 120 121 /* 122 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 123 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 124 */ 125 #define HL_RSVD_SOBS 2 126 #define HL_RSVD_MONS 1 127 128 /* 129 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 130 */ 131 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 132 133 #define HL_MAX_SOB_VAL (1 << 15) 134 135 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 136 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 137 138 #define HL_PCI_NUM_BARS 6 139 140 /* Completion queue entry relates to completed job */ 141 #define HL_COMPLETION_MODE_JOB 0 142 /* Completion queue entry relates to completed command submission */ 143 #define HL_COMPLETION_MODE_CS 1 144 145 #define HL_MAX_DCORES 8 146 147 /* DMA alloc/free wrappers */ 148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 149 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 150 151 #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \ 152 hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__) 153 154 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 155 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 156 157 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 158 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 159 160 #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \ 161 hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__) 162 163 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 164 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 165 166 /* 167 * Reset Flags 168 * 169 * - HL_DRV_RESET_HARD 170 * If set do hard reset to all engines. If not set reset just 171 * compute/DMA engines. 172 * 173 * - HL_DRV_RESET_FROM_RESET_THR 174 * Set if the caller is the hard-reset thread 175 * 176 * - HL_DRV_RESET_HEARTBEAT 177 * Set if reset is due to heartbeat 178 * 179 * - HL_DRV_RESET_TDR 180 * Set if reset is due to TDR 181 * 182 * - HL_DRV_RESET_DEV_RELEASE 183 * Set if reset is due to device release 184 * 185 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 186 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 187 * only when running with secured f/w 188 * 189 * - HL_DRV_RESET_FW_FATAL_ERR 190 * Set if reset is due to a fatal error from FW 191 * 192 * - HL_DRV_RESET_DELAY 193 * Set if a delay should be added before the reset 194 */ 195 196 #define HL_DRV_RESET_HARD (1 << 0) 197 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 198 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 199 #define HL_DRV_RESET_TDR (1 << 3) 200 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 201 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 202 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 203 #define HL_DRV_RESET_DELAY (1 << 7) 204 205 /* 206 * Security 207 */ 208 209 #define HL_PB_SHARED 1 210 #define HL_PB_NA 0 211 #define HL_PB_SINGLE_INSTANCE 1 212 #define HL_BLOCK_SIZE 0x1000 213 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 214 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 215 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 216 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 217 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 218 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 219 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 220 221 enum hl_protection_levels { 222 SECURED_LVL, 223 PRIVILEGED_LVL, 224 NON_SECURED_LVL 225 }; 226 227 /** 228 * struct iterate_module_ctx - HW module iterator 229 * @fn: function to apply to each HW module instance 230 * @data: optional internal data to the function iterator 231 * @rc: return code for optional use of iterator/iterator-caller 232 */ 233 struct iterate_module_ctx { 234 /* 235 * callback for the HW module iterator 236 * @hdev: pointer to the habanalabs device structure 237 * @block: block (ASIC specific definition can be dcore/hdcore) 238 * @inst: HW module instance within the block 239 * @offset: current HW module instance offset from the 1-st HW module instance 240 * in the 1-st block 241 * @ctx: the iterator context. 242 */ 243 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 244 struct iterate_module_ctx *ctx); 245 void *data; 246 int rc; 247 }; 248 249 struct hl_block_glbl_sec { 250 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 251 }; 252 253 #define HL_MAX_SOBS_PER_MONITOR 8 254 255 /** 256 * struct hl_gen_wait_properties - properties for generating a wait CB 257 * @data: command buffer 258 * @q_idx: queue id is used to extract fence register address 259 * @size: offset in command buffer 260 * @sob_base: SOB base to use in this wait CB 261 * @sob_val: SOB value to wait for 262 * @mon_id: monitor to use in this wait CB 263 * @sob_mask: each bit represents a SOB offset from sob_base to be used 264 */ 265 struct hl_gen_wait_properties { 266 void *data; 267 u32 q_idx; 268 u32 size; 269 u16 sob_base; 270 u16 sob_val; 271 u16 mon_id; 272 u8 sob_mask; 273 }; 274 275 /** 276 * struct pgt_info - MMU hop page info. 277 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 278 * actual pgts for host resident MMU). 279 * @phys_addr: physical address of the pgt. 280 * @virt_addr: host virtual address of the pgt (see above device/host resident). 281 * @shadow_addr: shadow hop in the host for device resident MMU. 282 * @ctx: pointer to the owner ctx. 283 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 284 * allocated HOPs (all HOPs but HOP0) 285 * 286 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 287 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 288 * 289 * When a new level (hop) is needed during mapping this structure will be used to describe 290 * the newly allocated hop as well as to track number of PTEs in it. 291 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 292 * freed with its pgt_info structure. 293 */ 294 struct pgt_info { 295 struct hlist_node node; 296 u64 phys_addr; 297 u64 virt_addr; 298 u64 shadow_addr; 299 struct hl_ctx *ctx; 300 int num_of_ptes; 301 }; 302 303 /** 304 * enum hl_pci_match_mode - pci match mode per region 305 * @PCI_ADDRESS_MATCH_MODE: address match mode 306 * @PCI_BAR_MATCH_MODE: bar match mode 307 */ 308 enum hl_pci_match_mode { 309 PCI_ADDRESS_MATCH_MODE, 310 PCI_BAR_MATCH_MODE 311 }; 312 313 /** 314 * enum hl_fw_component - F/W components to read version through registers. 315 * @FW_COMP_BOOT_FIT: boot fit. 316 * @FW_COMP_PREBOOT: preboot. 317 * @FW_COMP_LINUX: linux. 318 */ 319 enum hl_fw_component { 320 FW_COMP_BOOT_FIT, 321 FW_COMP_PREBOOT, 322 FW_COMP_LINUX, 323 }; 324 325 /** 326 * enum hl_fw_types - F/W types present in the system 327 * @FW_TYPE_NONE: no FW component indication 328 * @FW_TYPE_LINUX: Linux image for device CPU 329 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 330 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 331 * (preboot, ppboot etc...) 332 * @FW_TYPE_ALL_TYPES: Mask for all types 333 */ 334 enum hl_fw_types { 335 FW_TYPE_NONE = 0x0, 336 FW_TYPE_LINUX = 0x1, 337 FW_TYPE_BOOT_CPU = 0x2, 338 FW_TYPE_PREBOOT_CPU = 0x4, 339 FW_TYPE_ALL_TYPES = 340 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 341 }; 342 343 /** 344 * enum hl_queue_type - Supported QUEUE types. 345 * @QUEUE_TYPE_NA: queue is not available. 346 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 347 * host. 348 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 349 * memories and/or operates the compute engines. 350 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 351 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 352 * notifications are sent by H/W. 353 */ 354 enum hl_queue_type { 355 QUEUE_TYPE_NA, 356 QUEUE_TYPE_EXT, 357 QUEUE_TYPE_INT, 358 QUEUE_TYPE_CPU, 359 QUEUE_TYPE_HW 360 }; 361 362 enum hl_cs_type { 363 CS_TYPE_DEFAULT, 364 CS_TYPE_SIGNAL, 365 CS_TYPE_WAIT, 366 CS_TYPE_COLLECTIVE_WAIT, 367 CS_RESERVE_SIGNALS, 368 CS_UNRESERVE_SIGNALS, 369 CS_TYPE_ENGINE_CORE 370 }; 371 372 /* 373 * struct hl_inbound_pci_region - inbound region descriptor 374 * @mode: pci match mode for this region 375 * @addr: region target address 376 * @size: region size in bytes 377 * @offset_in_bar: offset within bar (address match mode) 378 * @bar: bar id 379 */ 380 struct hl_inbound_pci_region { 381 enum hl_pci_match_mode mode; 382 u64 addr; 383 u64 size; 384 u64 offset_in_bar; 385 u8 bar; 386 }; 387 388 /* 389 * struct hl_outbound_pci_region - outbound region descriptor 390 * @addr: region target address 391 * @size: region size in bytes 392 */ 393 struct hl_outbound_pci_region { 394 u64 addr; 395 u64 size; 396 }; 397 398 /* 399 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 400 * allocated by Kernel or by User 401 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 402 * @CB_ALLOC_USER: support only CBs that allocated by User 403 */ 404 enum queue_cb_alloc_flags { 405 CB_ALLOC_KERNEL = 0x1, 406 CB_ALLOC_USER = 0x2 407 }; 408 409 /* 410 * struct hl_hw_sob - H/W SOB info. 411 * @hdev: habanalabs device structure. 412 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 413 * @sob_id: id of this SOB. 414 * @sob_addr: the sob offset from the base address. 415 * @q_idx: the H/W queue that uses this SOB. 416 * @need_reset: reset indication set when switching to the other sob. 417 */ 418 struct hl_hw_sob { 419 struct hl_device *hdev; 420 struct kref kref; 421 u32 sob_id; 422 u32 sob_addr; 423 u32 q_idx; 424 bool need_reset; 425 }; 426 427 enum hl_collective_mode { 428 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 429 HL_COLLECTIVE_MASTER = 0x1, 430 HL_COLLECTIVE_SLAVE = 0x2 431 }; 432 433 /** 434 * struct hw_queue_properties - queue information. 435 * @type: queue type. 436 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 437 * that allocated by the Kernel driver and therefore, 438 * a CB handle can be provided for jobs on this queue. 439 * Otherwise, a CB address must be provided. 440 * @collective_mode: collective mode of current queue 441 * @driver_only: true if only the driver is allowed to send a job to this queue, 442 * false otherwise. 443 * @binned: True if the queue is binned out and should not be used 444 * @supports_sync_stream: True if queue supports sync stream 445 */ 446 struct hw_queue_properties { 447 enum hl_queue_type type; 448 enum queue_cb_alloc_flags cb_alloc_flags; 449 enum hl_collective_mode collective_mode; 450 u8 driver_only; 451 u8 binned; 452 u8 supports_sync_stream; 453 }; 454 455 /** 456 * enum vm_type - virtual memory mapping request information. 457 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 458 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 459 */ 460 enum vm_type { 461 VM_TYPE_USERPTR = 0x1, 462 VM_TYPE_PHYS_PACK = 0x2 463 }; 464 465 /** 466 * enum mmu_op_flags - mmu operation relevant information. 467 * @MMU_OP_USERPTR: operation on user memory (host resident). 468 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 469 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 470 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 471 */ 472 enum mmu_op_flags { 473 MMU_OP_USERPTR = 0x1, 474 MMU_OP_PHYS_PACK = 0x2, 475 MMU_OP_CLEAR_MEMCACHE = 0x4, 476 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 477 }; 478 479 480 /** 481 * enum hl_device_hw_state - H/W device state. use this to understand whether 482 * to do reset before hw_init or not 483 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 484 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 485 * hw_init 486 */ 487 enum hl_device_hw_state { 488 HL_DEVICE_HW_STATE_CLEAN = 0, 489 HL_DEVICE_HW_STATE_DIRTY 490 }; 491 492 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 493 494 /** 495 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 496 * @start_addr: virtual start address of the memory region. 497 * @end_addr: virtual end address of the memory region. 498 * @hop_shifts: array holds HOPs shifts. 499 * @hop_masks: array holds HOPs masks. 500 * @last_mask: mask to get the bit indicating this is the last hop. 501 * @pgt_size: size for page tables. 502 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 503 * supporting multiple page size). 504 * @page_size: default page size used to allocate memory. 505 * @num_hops: The amount of hops supported by the translation table. 506 * @hop_table_size: HOP table size. 507 * @hop0_tables_total_size: total size for all HOP0 tables. 508 * @host_resident: Should the MMU page table reside in host memory or in the 509 * device DRAM. 510 */ 511 struct hl_mmu_properties { 512 u64 start_addr; 513 u64 end_addr; 514 u64 hop_shifts[MMU_HOP_MAX]; 515 u64 hop_masks[MMU_HOP_MAX]; 516 u64 last_mask; 517 u64 pgt_size; 518 u64 supported_pages_mask; 519 u32 page_size; 520 u32 num_hops; 521 u32 hop_table_size; 522 u32 hop0_tables_total_size; 523 u8 host_resident; 524 }; 525 526 /** 527 * struct hl_hints_range - hint addresses reserved va range. 528 * @start_addr: start address of the va range. 529 * @end_addr: end address of the va range. 530 */ 531 struct hl_hints_range { 532 u64 start_addr; 533 u64 end_addr; 534 }; 535 536 /** 537 * struct asic_fixed_properties - ASIC specific immutable properties. 538 * @hw_queues_props: H/W queues properties. 539 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 540 * available sensors. 541 * @uboot_ver: F/W U-boot version. 542 * @preboot_ver: F/W Preboot version. 543 * @dmmu: DRAM MMU address translation properties. 544 * @pmmu: PCI (host) MMU address translation properties. 545 * @pmmu_huge: PCI (host) MMU address translation properties for memory 546 * allocated with huge pages. 547 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 548 * @hints_host_reserved_va_range: host hint addresses reserved range. 549 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved 550 * range. 551 * @sram_base_address: SRAM physical start address. 552 * @sram_end_address: SRAM physical end address. 553 * @sram_user_base_address - SRAM physical start address for user access. 554 * @dram_base_address: DRAM physical start address. 555 * @dram_end_address: DRAM physical end address. 556 * @dram_user_base_address: DRAM physical start address for user access. 557 * @dram_size: DRAM total size. 558 * @dram_pci_bar_size: size of PCI bar towards DRAM. 559 * @max_power_default: max power of the device after reset. 560 * @dc_power_default: power consumed by the device in mode idle. 561 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 562 * fault. 563 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 564 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 565 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 566 * @mmu_dram_default_page_addr: DRAM default page physical address. 567 * @tpc_enabled_mask: which TPCs are enabled. 568 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 569 * @dram_enabled_mask: which DRAMs are enabled. 570 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 571 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 572 * for hints validity check. 573 * @cfg_base_address: config space base address. 574 * @mmu_cache_mng_addr: address of the MMU cache. 575 * @mmu_cache_mng_size: size of the MMU cache. 576 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 577 * to enable the device to access them. 578 * @host_base_address: host physical start address for host DMA from device 579 * @host_end_address: host physical end address for host DMA from device 580 * @max_freq_value: current max clk frequency. 581 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 582 * we display to the user 583 * @mmu_pgt_size: MMU page tables total size. 584 * @mmu_pte_size: PTE size in MMU page tables. 585 * @mmu_hop_table_size: MMU hop table size. 586 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 587 * @dram_page_size: page size for MMU DRAM allocation. 588 * @cfg_size: configuration space size on SRAM. 589 * @sram_size: total size of SRAM. 590 * @max_asid: maximum number of open contexts (ASIDs). 591 * @num_of_events: number of possible internal H/W IRQs. 592 * @psoc_pci_pll_nr: PCI PLL NR value. 593 * @psoc_pci_pll_nf: PCI PLL NF value. 594 * @psoc_pci_pll_od: PCI PLL OD value. 595 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 596 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 597 * @high_pll: high PLL frequency used by the device. 598 * @cb_pool_cb_cnt: number of CBs in the CB pool. 599 * @cb_pool_cb_size: size of each CB in the CB pool. 600 * @decoder_enabled_mask: which decoders are enabled. 601 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 602 * means binned (at most one binned decoder per dcore). 603 * @edma_enabled_mask: which EDMAs are enabled. 604 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 605 * binned (at most one binned DMA). 606 * @max_pending_cs: maximum of concurrent pending command submissions 607 * @max_queues: maximum amount of queues in the system 608 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 609 * capabilities reported by FW, bit description 610 * can be found in CPU_BOOT_DEV_STS0 611 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 612 * capabilities reported by FW, bit description 613 * can be found in CPU_BOOT_DEV_STS1 614 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 615 * status reported by FW, bit description can be 616 * found in CPU_BOOT_DEV_STS0 617 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 618 * status reported by FW, bit description can be 619 * found in CPU_BOOT_DEV_STS1 620 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 621 * status reported by FW, bit description can be 622 * found in CPU_BOOT_DEV_STS0 623 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 624 * status reported by FW, bit description can be 625 * found in CPU_BOOT_DEV_STS1 626 * @max_dec: maximum number of decoders 627 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 628 * 1- enabled, 0- isolated. 629 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 630 * 1- faulty cluster, 0- good cluster. 631 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 632 * 1- enabled, 0- isolated. 633 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 634 * which the property supports_user_set_page_size is true 635 * (i.e. the DRAM supports multiple page sizes), otherwise 636 * it will shall be equal to dram_page_size. 637 * @num_engine_cores: number of engine cpu cores 638 * @collective_first_sob: first sync object available for collective use 639 * @collective_first_mon: first monitor available for collective use 640 * @sync_stream_first_sob: first sync object available for sync stream use 641 * @sync_stream_first_mon: first monitor available for sync stream use 642 * @first_available_user_sob: first sob available for the user 643 * @first_available_user_mon: first monitor available for the user 644 * @first_available_user_interrupt: first available interrupt reserved for the user 645 * @first_available_cq: first available CQ for the user. 646 * @user_interrupt_count: number of user interrupts. 647 * @user_dec_intr_count: number of decoder interrupts exposed to user. 648 * @cache_line_size: device cache line size. 649 * @server_type: Server type that the ASIC is currently installed in. 650 * The value is according to enum hl_server_type in uapi file. 651 * @completion_queues_count: number of completion queues. 652 * @completion_mode: 0 - job based completion, 1 - cs based completion 653 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 654 * in Master/Slave mode 655 * @fw_security_enabled: true if security measures are enabled in firmware, 656 * false otherwise 657 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 658 * BOOT_DEV_STS0 659 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 660 * BOOT_DEV_STS1 661 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 662 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 663 * @num_functional_hbms: number of functional HBMs in each DCORE. 664 * @hints_range_reservation: device support hint addresses range reservation. 665 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 666 * @dynamic_fw_load: is dynamic FW load is supported. 667 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 668 * false otherwise. 669 * @use_get_power_for_reset_history: To support backward compatibility for Goya 670 * and Gaudi 671 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 672 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 673 * initiated by user or TDR. This is only true 674 * in inference ASICs, as there is no real-world 675 * use-case of doing soft-reset in training (due 676 * to the fact that training runs on multiple 677 * devices) 678 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 679 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 680 * @supports_user_set_page_size: true if user can set the allocation page size. 681 * @dma_mask: the dma mask to be set for this device 682 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 683 */ 684 struct asic_fixed_properties { 685 struct hw_queue_properties *hw_queues_props; 686 struct cpucp_info cpucp_info; 687 char uboot_ver[VERSION_MAX_LEN]; 688 char preboot_ver[VERSION_MAX_LEN]; 689 struct hl_mmu_properties dmmu; 690 struct hl_mmu_properties pmmu; 691 struct hl_mmu_properties pmmu_huge; 692 struct hl_hints_range hints_dram_reserved_va_range; 693 struct hl_hints_range hints_host_reserved_va_range; 694 struct hl_hints_range hints_host_hpage_reserved_va_range; 695 u64 sram_base_address; 696 u64 sram_end_address; 697 u64 sram_user_base_address; 698 u64 dram_base_address; 699 u64 dram_end_address; 700 u64 dram_user_base_address; 701 u64 dram_size; 702 u64 dram_pci_bar_size; 703 u64 max_power_default; 704 u64 dc_power_default; 705 u64 dram_size_for_default_page_mapping; 706 u64 pcie_dbi_base_address; 707 u64 pcie_aux_dbi_reg_addr; 708 u64 mmu_pgt_addr; 709 u64 mmu_dram_default_page_addr; 710 u64 tpc_enabled_mask; 711 u64 tpc_binning_mask; 712 u64 dram_enabled_mask; 713 u64 dram_binning_mask; 714 u64 dram_hints_align_mask; 715 u64 cfg_base_address; 716 u64 mmu_cache_mng_addr; 717 u64 mmu_cache_mng_size; 718 u64 device_dma_offset_for_host_access; 719 u64 host_base_address; 720 u64 host_end_address; 721 u64 max_freq_value; 722 u32 clk_pll_index; 723 u32 mmu_pgt_size; 724 u32 mmu_pte_size; 725 u32 mmu_hop_table_size; 726 u32 mmu_hop0_tables_total_size; 727 u32 dram_page_size; 728 u32 cfg_size; 729 u32 sram_size; 730 u32 max_asid; 731 u32 num_of_events; 732 u32 psoc_pci_pll_nr; 733 u32 psoc_pci_pll_nf; 734 u32 psoc_pci_pll_od; 735 u32 psoc_pci_pll_div_factor; 736 u32 psoc_timestamp_frequency; 737 u32 high_pll; 738 u32 cb_pool_cb_cnt; 739 u32 cb_pool_cb_size; 740 u32 decoder_enabled_mask; 741 u32 decoder_binning_mask; 742 u32 edma_enabled_mask; 743 u32 edma_binning_mask; 744 u32 max_pending_cs; 745 u32 max_queues; 746 u32 fw_preboot_cpu_boot_dev_sts0; 747 u32 fw_preboot_cpu_boot_dev_sts1; 748 u32 fw_bootfit_cpu_boot_dev_sts0; 749 u32 fw_bootfit_cpu_boot_dev_sts1; 750 u32 fw_app_cpu_boot_dev_sts0; 751 u32 fw_app_cpu_boot_dev_sts1; 752 u32 max_dec; 753 u32 hmmu_hif_enabled_mask; 754 u32 faulty_dram_cluster_map; 755 u32 xbar_edge_enabled_mask; 756 u32 device_mem_alloc_default_page_size; 757 u32 num_engine_cores; 758 u16 collective_first_sob; 759 u16 collective_first_mon; 760 u16 sync_stream_first_sob; 761 u16 sync_stream_first_mon; 762 u16 first_available_user_sob[HL_MAX_DCORES]; 763 u16 first_available_user_mon[HL_MAX_DCORES]; 764 u16 first_available_user_interrupt; 765 u16 first_available_cq[HL_MAX_DCORES]; 766 u16 user_interrupt_count; 767 u16 user_dec_intr_count; 768 u16 cache_line_size; 769 u16 server_type; 770 u8 completion_queues_count; 771 u8 completion_mode; 772 u8 mme_master_slave_mode; 773 u8 fw_security_enabled; 774 u8 fw_cpu_boot_dev_sts0_valid; 775 u8 fw_cpu_boot_dev_sts1_valid; 776 u8 dram_supports_virtual_memory; 777 u8 hard_reset_done_by_fw; 778 u8 num_functional_hbms; 779 u8 hints_range_reservation; 780 u8 iatu_done_by_fw; 781 u8 dynamic_fw_load; 782 u8 gic_interrupts_enable; 783 u8 use_get_power_for_reset_history; 784 u8 supports_compute_reset; 785 u8 allow_inference_soft_reset; 786 u8 configurable_stop_on_err; 787 u8 set_max_power_on_device_init; 788 u8 supports_user_set_page_size; 789 u8 dma_mask; 790 u8 supports_advanced_cpucp_rc; 791 }; 792 793 /** 794 * struct hl_fence - software synchronization primitive 795 * @completion: fence is implemented using completion 796 * @refcount: refcount for this fence 797 * @cs_sequence: sequence of the corresponding command submission 798 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 799 * masters QIDs that multi cs is waiting on 800 * @error: mark this fence with error 801 * @timestamp: timestamp upon completion 802 * @mcs_handling_done: indicates that corresponding command submission has 803 * finished msc handling, this does not mean it was part 804 * of the mcs 805 */ 806 struct hl_fence { 807 struct completion completion; 808 struct kref refcount; 809 u64 cs_sequence; 810 u32 stream_master_qid_map; 811 int error; 812 ktime_t timestamp; 813 u8 mcs_handling_done; 814 }; 815 816 /** 817 * struct hl_cs_compl - command submission completion object. 818 * @base_fence: hl fence object. 819 * @lock: spinlock to protect fence. 820 * @hdev: habanalabs device structure. 821 * @hw_sob: the H/W SOB used in this signal/wait CS. 822 * @encaps_sig_hdl: encaps signals handler. 823 * @cs_seq: command submission sequence number. 824 * @type: type of the CS - signal/wait. 825 * @sob_val: the SOB value that is used in this signal/wait CS. 826 * @sob_group: the SOB group that is used in this collective wait CS. 827 * @encaps_signals: indication whether it's a completion object of cs with 828 * encaps signals or not. 829 */ 830 struct hl_cs_compl { 831 struct hl_fence base_fence; 832 spinlock_t lock; 833 struct hl_device *hdev; 834 struct hl_hw_sob *hw_sob; 835 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 836 u64 cs_seq; 837 enum hl_cs_type type; 838 u16 sob_val; 839 u16 sob_group; 840 bool encaps_signals; 841 }; 842 843 /* 844 * Command Buffers 845 */ 846 847 /** 848 * struct hl_ts_buff - describes a timestamp buffer. 849 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 850 * @user_buff_address: Holds the user buffer's kernel virtual address. 851 * @kernel_buff_size: Holds the internal kernel buffer size. 852 */ 853 struct hl_ts_buff { 854 void *kernel_buff_address; 855 void *user_buff_address; 856 u32 kernel_buff_size; 857 }; 858 859 struct hl_mmap_mem_buf; 860 861 /** 862 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 863 * @dev: back pointer to the owning device 864 * @lock: protects handles 865 * @handles: an idr holding all active handles to the memory buffers in the system. 866 */ 867 struct hl_mem_mgr { 868 struct device *dev; 869 spinlock_t lock; 870 struct idr handles; 871 }; 872 873 /** 874 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 875 * @topic: string identifier used for logging 876 * @mem_id: memory type identifier, embedded in the handle and used to identify 877 * the memory type by handle. 878 * @alloc: callback executed on buffer allocation, shall allocate the memory, 879 * set it under buffer private, and set mappable size. 880 * @mmap: callback executed on mmap, must map the buffer to vma 881 * @release: callback executed on release, must free the resources used by the buffer 882 */ 883 struct hl_mmap_mem_buf_behavior { 884 const char *topic; 885 u64 mem_id; 886 887 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 888 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 889 void (*release)(struct hl_mmap_mem_buf *buf); 890 }; 891 892 /** 893 * struct hl_mmap_mem_buf - describes a single unified memory buffer 894 * @behavior: buffer behavior 895 * @mmg: back pointer to the unified memory manager 896 * @refcount: reference counter for buffer users 897 * @private: pointer to buffer behavior private data 898 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 899 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 900 * may change at runtime. 901 * @mappable_size: the original mappable size of the buffer, does not change after 902 * the allocation. 903 * @handle: the buffer id in mmg handles store 904 */ 905 struct hl_mmap_mem_buf { 906 struct hl_mmap_mem_buf_behavior *behavior; 907 struct hl_mem_mgr *mmg; 908 struct kref refcount; 909 void *private; 910 atomic_t mmap; 911 u64 real_mapped_size; 912 u64 mappable_size; 913 u64 handle; 914 }; 915 916 /** 917 * struct hl_cb - describes a Command Buffer. 918 * @hdev: pointer to device this CB belongs to. 919 * @ctx: pointer to the CB owner's context. 920 * @buf: back pointer to the parent mappable memory buffer 921 * @debugfs_list: node in debugfs list of command buffers. 922 * @pool_list: node in pool list of command buffers. 923 * @kernel_address: Holds the CB's kernel virtual address. 924 * @virtual_addr: Holds the CB's virtual address. 925 * @bus_address: Holds the CB's DMA address. 926 * @size: holds the CB's size. 927 * @roundup_size: holds the cb size after roundup to page size. 928 * @cs_cnt: holds number of CS that this CB participates in. 929 * @is_pool: true if CB was acquired from the pool, false otherwise. 930 * @is_internal: internally allocated 931 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 932 */ 933 struct hl_cb { 934 struct hl_device *hdev; 935 struct hl_ctx *ctx; 936 struct hl_mmap_mem_buf *buf; 937 struct list_head debugfs_list; 938 struct list_head pool_list; 939 void *kernel_address; 940 u64 virtual_addr; 941 dma_addr_t bus_address; 942 u32 size; 943 u32 roundup_size; 944 atomic_t cs_cnt; 945 u8 is_pool; 946 u8 is_internal; 947 u8 is_mmu_mapped; 948 }; 949 950 951 /* 952 * QUEUES 953 */ 954 955 struct hl_cs_job; 956 957 /* Queue length of external and HW queues */ 958 #define HL_QUEUE_LENGTH 4096 959 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 960 961 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 962 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 963 #endif 964 965 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 966 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 967 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 968 969 /* Must be power of 2 */ 970 #define HL_EQ_LENGTH 64 971 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 972 973 /* Host <-> CPU-CP shared memory size */ 974 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 975 976 /** 977 * struct hl_sync_stream_properties - 978 * describes a H/W queue sync stream properties 979 * @hw_sob: array of the used H/W SOBs by this H/W queue. 980 * @next_sob_val: the next value to use for the currently used SOB. 981 * @base_sob_id: the base SOB id of the SOBs used by this queue. 982 * @base_mon_id: the base MON id of the MONs used by this queue. 983 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 984 * in order to sync with all slave queues. 985 * @collective_slave_mon_id: the MON id used by this slave queue in order to 986 * sync with its master queue. 987 * @collective_sob_id: current SOB id used by this collective slave queue 988 * to signal its collective master queue upon completion. 989 * @curr_sob_offset: the id offset to the currently used SOB from the 990 * HL_RSVD_SOBS that are being used by this queue. 991 */ 992 struct hl_sync_stream_properties { 993 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 994 u16 next_sob_val; 995 u16 base_sob_id; 996 u16 base_mon_id; 997 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 998 u16 collective_slave_mon_id; 999 u16 collective_sob_id; 1000 u8 curr_sob_offset; 1001 }; 1002 1003 /** 1004 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1005 * handlers manager 1006 * @lock: protects handles. 1007 * @handles: an idr to hold all encapsulated signals handles. 1008 */ 1009 struct hl_encaps_signals_mgr { 1010 spinlock_t lock; 1011 struct idr handles; 1012 }; 1013 1014 /** 1015 * struct hl_hw_queue - describes a H/W transport queue. 1016 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1017 * @sync_stream_prop: sync stream queue properties 1018 * @queue_type: type of queue. 1019 * @collective_mode: collective mode of current queue 1020 * @kernel_address: holds the queue's kernel virtual address. 1021 * @bus_address: holds the queue's DMA address. 1022 * @pi: holds the queue's pi value. 1023 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1024 * @hw_queue_id: the id of the H/W queue. 1025 * @cq_id: the id for the corresponding CQ for this H/W queue. 1026 * @msi_vec: the IRQ number of the H/W queue. 1027 * @int_queue_len: length of internal queue (number of entries). 1028 * @valid: is the queue valid (we have array of 32 queues, not all of them 1029 * exist). 1030 * @supports_sync_stream: True if queue supports sync stream 1031 */ 1032 struct hl_hw_queue { 1033 struct hl_cs_job **shadow_queue; 1034 struct hl_sync_stream_properties sync_stream_prop; 1035 enum hl_queue_type queue_type; 1036 enum hl_collective_mode collective_mode; 1037 void *kernel_address; 1038 dma_addr_t bus_address; 1039 u32 pi; 1040 atomic_t ci; 1041 u32 hw_queue_id; 1042 u32 cq_id; 1043 u32 msi_vec; 1044 u16 int_queue_len; 1045 u8 valid; 1046 u8 supports_sync_stream; 1047 }; 1048 1049 /** 1050 * struct hl_cq - describes a completion queue 1051 * @hdev: pointer to the device structure 1052 * @kernel_address: holds the queue's kernel virtual address 1053 * @bus_address: holds the queue's DMA address 1054 * @cq_idx: completion queue index in array 1055 * @hw_queue_id: the id of the matching H/W queue 1056 * @ci: ci inside the queue 1057 * @pi: pi inside the queue 1058 * @free_slots_cnt: counter of free slots in queue 1059 */ 1060 struct hl_cq { 1061 struct hl_device *hdev; 1062 void *kernel_address; 1063 dma_addr_t bus_address; 1064 u32 cq_idx; 1065 u32 hw_queue_id; 1066 u32 ci; 1067 u32 pi; 1068 atomic_t free_slots_cnt; 1069 }; 1070 1071 /** 1072 * struct hl_user_interrupt - holds user interrupt information 1073 * @hdev: pointer to the device structure 1074 * @wait_list_head: head to the list of user threads pending on this interrupt 1075 * @wait_list_lock: protects wait_list_head 1076 * @interrupt_id: msix interrupt id 1077 * @is_decoder: whether this entry represents a decoder interrupt 1078 */ 1079 struct hl_user_interrupt { 1080 struct hl_device *hdev; 1081 struct list_head wait_list_head; 1082 spinlock_t wait_list_lock; 1083 u32 interrupt_id; 1084 bool is_decoder; 1085 }; 1086 1087 /** 1088 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1089 * @free_objects_node: node in the list free_obj_jobs 1090 * @cq_cb: pointer to cq command buffer to be freed 1091 * @buf: pointer to timestamp buffer to be freed 1092 */ 1093 struct timestamp_reg_free_node { 1094 struct list_head free_objects_node; 1095 struct hl_cb *cq_cb; 1096 struct hl_mmap_mem_buf *buf; 1097 }; 1098 1099 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1100 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1101 * in each node of the list 1102 * @free_obj: workqueue object to free timestamp registration node objects 1103 * @hdev: pointer to the device structure 1104 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1105 */ 1106 struct timestamp_reg_work_obj { 1107 struct work_struct free_obj; 1108 struct hl_device *hdev; 1109 struct list_head *free_obj_head; 1110 }; 1111 1112 /* struct timestamp_reg_info - holds the timestamp registration related data. 1113 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1114 * relevant only when doing timestamps records registration. 1115 * @cq_cb: pointer to CQ counter CB. 1116 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1117 * relevant only when doing timestamps records 1118 * registration. 1119 * @in_use: indicates if the node already in use. relevant only when doing 1120 * timestamps records registration, since in this case the driver 1121 * will have it's own buffer which serve as a records pool instead of 1122 * allocating records dynamically. 1123 */ 1124 struct timestamp_reg_info { 1125 struct hl_mmap_mem_buf *buf; 1126 struct hl_cb *cq_cb; 1127 u64 *timestamp_kernel_addr; 1128 u8 in_use; 1129 }; 1130 1131 /** 1132 * struct hl_user_pending_interrupt - holds a context to a user thread 1133 * pending on an interrupt 1134 * @ts_reg_info: holds the timestamps registration nodes info 1135 * @wait_list_node: node in the list of user threads pending on an interrupt 1136 * @fence: hl fence object for interrupt completion 1137 * @cq_target_value: CQ target value 1138 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1139 * handler for target value comparison 1140 */ 1141 struct hl_user_pending_interrupt { 1142 struct timestamp_reg_info ts_reg_info; 1143 struct list_head wait_list_node; 1144 struct hl_fence fence; 1145 u64 cq_target_value; 1146 u64 *cq_kernel_addr; 1147 }; 1148 1149 /** 1150 * struct hl_eq - describes the event queue (single one per device) 1151 * @hdev: pointer to the device structure 1152 * @kernel_address: holds the queue's kernel virtual address 1153 * @bus_address: holds the queue's DMA address 1154 * @ci: ci inside the queue 1155 * @prev_eqe_index: the index of the previous event queue entry. The index of 1156 * the current entry's index must be +1 of the previous one. 1157 * @check_eqe_index: do we need to check the index of the current entry vs. the 1158 * previous one. This is for backward compatibility with older 1159 * firmwares 1160 */ 1161 struct hl_eq { 1162 struct hl_device *hdev; 1163 void *kernel_address; 1164 dma_addr_t bus_address; 1165 u32 ci; 1166 u32 prev_eqe_index; 1167 bool check_eqe_index; 1168 }; 1169 1170 /** 1171 * struct hl_dec - describes a decoder sw instance. 1172 * @hdev: pointer to the device structure. 1173 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt 1174 * @core_id: ID of the decoder. 1175 * @base_addr: base address of the decoder. 1176 */ 1177 struct hl_dec { 1178 struct hl_device *hdev; 1179 struct work_struct completion_abnrm_work; 1180 u32 core_id; 1181 u32 base_addr; 1182 }; 1183 1184 /** 1185 * enum hl_asic_type - supported ASIC types. 1186 * @ASIC_INVALID: Invalid ASIC type. 1187 * @ASIC_GOYA: Goya device (HL-1000). 1188 * @ASIC_GAUDI: Gaudi device (HL-2000). 1189 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1190 * @ASIC_GAUDI2: Gaudi2 device. 1191 * @ASIC_GAUDI2_SEC: Gaudi2 secured device. 1192 */ 1193 enum hl_asic_type { 1194 ASIC_INVALID, 1195 ASIC_GOYA, 1196 ASIC_GAUDI, 1197 ASIC_GAUDI_SEC, 1198 ASIC_GAUDI2, 1199 ASIC_GAUDI2_SEC, 1200 }; 1201 1202 struct hl_cs_parser; 1203 1204 /** 1205 * enum hl_pm_mng_profile - power management profile. 1206 * @PM_AUTO: internal clock is set by the Linux driver. 1207 * @PM_MANUAL: internal clock is set by the user. 1208 * @PM_LAST: last power management type. 1209 */ 1210 enum hl_pm_mng_profile { 1211 PM_AUTO = 1, 1212 PM_MANUAL, 1213 PM_LAST 1214 }; 1215 1216 /** 1217 * enum hl_pll_frequency - PLL frequency. 1218 * @PLL_HIGH: high frequency. 1219 * @PLL_LOW: low frequency. 1220 * @PLL_LAST: last frequency values that were configured by the user. 1221 */ 1222 enum hl_pll_frequency { 1223 PLL_HIGH = 1, 1224 PLL_LOW, 1225 PLL_LAST 1226 }; 1227 1228 #define PLL_REF_CLK 50 1229 1230 enum div_select_defs { 1231 DIV_SEL_REF_CLK = 0, 1232 DIV_SEL_PLL_CLK = 1, 1233 DIV_SEL_DIVIDED_REF = 2, 1234 DIV_SEL_DIVIDED_PLL = 3, 1235 }; 1236 1237 enum debugfs_access_type { 1238 DEBUGFS_READ8, 1239 DEBUGFS_WRITE8, 1240 DEBUGFS_READ32, 1241 DEBUGFS_WRITE32, 1242 DEBUGFS_READ64, 1243 DEBUGFS_WRITE64, 1244 }; 1245 1246 enum pci_region { 1247 PCI_REGION_CFG, 1248 PCI_REGION_SRAM, 1249 PCI_REGION_DRAM, 1250 PCI_REGION_SP_SRAM, 1251 PCI_REGION_NUMBER, 1252 }; 1253 1254 /** 1255 * struct pci_mem_region - describe memory region in a PCI bar 1256 * @region_base: region base address 1257 * @region_size: region size 1258 * @bar_size: size of the BAR 1259 * @offset_in_bar: region offset into the bar 1260 * @bar_id: bar ID of the region 1261 * @used: if used 1, otherwise 0 1262 */ 1263 struct pci_mem_region { 1264 u64 region_base; 1265 u64 region_size; 1266 u64 bar_size; 1267 u64 offset_in_bar; 1268 u8 bar_id; 1269 u8 used; 1270 }; 1271 1272 /** 1273 * struct static_fw_load_mgr - static FW load manager 1274 * @preboot_version_max_off: max offset to preboot version 1275 * @boot_fit_version_max_off: max offset to boot fit version 1276 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1277 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1278 * @cpu_boot_status_reg: boot status register 1279 * @cpu_boot_dev_status0_reg: boot device status register 0 1280 * @cpu_boot_dev_status1_reg: boot device status register 1 1281 * @boot_err0_reg: boot error register 0 1282 * @boot_err1_reg: boot error register 1 1283 * @preboot_version_offset_reg: SRAM offset to preboot version register 1284 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1285 * @sram_offset_mask: mask for getting offset into the SRAM 1286 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1287 */ 1288 struct static_fw_load_mgr { 1289 u64 preboot_version_max_off; 1290 u64 boot_fit_version_max_off; 1291 u32 kmd_msg_to_cpu_reg; 1292 u32 cpu_cmd_status_to_host_reg; 1293 u32 cpu_boot_status_reg; 1294 u32 cpu_boot_dev_status0_reg; 1295 u32 cpu_boot_dev_status1_reg; 1296 u32 boot_err0_reg; 1297 u32 boot_err1_reg; 1298 u32 preboot_version_offset_reg; 1299 u32 boot_fit_version_offset_reg; 1300 u32 sram_offset_mask; 1301 u32 cpu_reset_wait_msec; 1302 }; 1303 1304 /** 1305 * struct fw_response - FW response to LKD command 1306 * @ram_offset: descriptor offset into the RAM 1307 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1308 * @status: command status 1309 */ 1310 struct fw_response { 1311 u32 ram_offset; 1312 u8 ram_type; 1313 u8 status; 1314 }; 1315 1316 /** 1317 * struct dynamic_fw_load_mgr - dynamic FW load manager 1318 * @response: FW to LKD response 1319 * @comm_desc: the communication descriptor with FW 1320 * @image_region: region to copy the FW image to 1321 * @fw_image_size: size of FW image to load 1322 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1323 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1324 */ 1325 struct dynamic_fw_load_mgr { 1326 struct fw_response response; 1327 struct lkd_fw_comms_desc comm_desc; 1328 struct pci_mem_region *image_region; 1329 size_t fw_image_size; 1330 u32 wait_for_bl_timeout; 1331 bool fw_desc_valid; 1332 }; 1333 1334 /** 1335 * struct pre_fw_load_props - needed properties for pre-FW load 1336 * @cpu_boot_status_reg: cpu_boot_status register address 1337 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1338 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1339 * @boot_err0_reg: boot_err0 register address 1340 * @boot_err1_reg: boot_err1 register address 1341 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1342 */ 1343 struct pre_fw_load_props { 1344 u32 cpu_boot_status_reg; 1345 u32 sts_boot_dev_sts0_reg; 1346 u32 sts_boot_dev_sts1_reg; 1347 u32 boot_err0_reg; 1348 u32 boot_err1_reg; 1349 u32 wait_for_preboot_timeout; 1350 }; 1351 1352 /** 1353 * struct fw_image_props - properties of FW image 1354 * @image_name: name of the image 1355 * @src_off: offset in src FW to copy from 1356 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1357 */ 1358 struct fw_image_props { 1359 char *image_name; 1360 u32 src_off; 1361 u32 copy_size; 1362 }; 1363 1364 /** 1365 * struct fw_load_mgr - manager FW loading process 1366 * @dynamic_loader: specific structure for dynamic load 1367 * @static_loader: specific structure for static load 1368 * @pre_fw_load_props: parameter for pre FW load 1369 * @boot_fit_img: boot fit image properties 1370 * @linux_img: linux image properties 1371 * @cpu_timeout: CPU response timeout in usec 1372 * @boot_fit_timeout: Boot fit load timeout in usec 1373 * @skip_bmc: should BMC be skipped 1374 * @sram_bar_id: SRAM bar ID 1375 * @dram_bar_id: DRAM bar ID 1376 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1377 * component. values are set according to enum hl_fw_types. 1378 */ 1379 struct fw_load_mgr { 1380 union { 1381 struct dynamic_fw_load_mgr dynamic_loader; 1382 struct static_fw_load_mgr static_loader; 1383 }; 1384 struct pre_fw_load_props pre_fw_load; 1385 struct fw_image_props boot_fit_img; 1386 struct fw_image_props linux_img; 1387 u32 cpu_timeout; 1388 u32 boot_fit_timeout; 1389 u8 skip_bmc; 1390 u8 sram_bar_id; 1391 u8 dram_bar_id; 1392 u8 fw_comp_loaded; 1393 }; 1394 1395 struct hl_cs; 1396 1397 /** 1398 * struct engines_data - asic engines data 1399 * @buf: buffer for engines data in ascii 1400 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1401 * @allocated_buf_size: total size of allocated buffer 1402 */ 1403 struct engines_data { 1404 char *buf; 1405 int actual_size; 1406 u32 allocated_buf_size; 1407 }; 1408 1409 /** 1410 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1411 * common code. 1412 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1413 * @early_fini: tears down what was done in early_init. 1414 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1415 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1416 * @sw_init: sets up driver state, does not configure H/W. 1417 * @sw_fini: tears down driver state, does not configure H/W. 1418 * @hw_init: sets up the H/W state. 1419 * @hw_fini: tears down the H/W state. 1420 * @halt_engines: halt engines, needed for reset sequence. This also disables 1421 * interrupts from the device. Should be called before 1422 * hw_fini and before CS rollback. 1423 * @suspend: handles IP specific H/W or SW changes for suspend. 1424 * @resume: handles IP specific H/W or SW changes for resume. 1425 * @mmap: maps a memory. 1426 * @ring_doorbell: increment PI on a given QMAN. 1427 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1428 * function because the PQs are located in different memory areas 1429 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1430 * writing the PQE must match the destination memory area 1431 * properties. 1432 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1433 * dma_alloc_coherent(). This is ASIC function because 1434 * its implementation is not trivial when the driver 1435 * is loaded in simulation mode (not upstreamed). 1436 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1437 * dma_free_coherent(). This is ASIC function because 1438 * its implementation is not trivial when the driver 1439 * is loaded in simulation mode (not upstreamed). 1440 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1441 * @scrub_device_dram: Scrub the dram memory of the device. 1442 * @get_int_queue_base: get the internal queue base address. 1443 * @test_queues: run simple test on all queues for sanity check. 1444 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1445 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1446 * @asic_dma_pool_free: free small DMA allocation from pool. 1447 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1448 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1449 * @asic_dma_unmap_single: unmap a single DMA buffer 1450 * @asic_dma_map_single: map a single buffer to a DMA 1451 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table. 1452 * @cs_parser: parse Command Submission. 1453 * @asic_dma_map_sgtable: DMA map scatter-gather table. 1454 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1455 * @update_eq_ci: update event queue CI. 1456 * @context_switch: called upon ASID context switch. 1457 * @restore_phase_topology: clear all SOBs amd MONs. 1458 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1459 * internal memory via DMA engine. 1460 * @add_device_attr: add ASIC specific device attributes. 1461 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1462 * @get_events_stat: retrieve event queue entries histogram. 1463 * @read_pte: read MMU page table entry from DRAM. 1464 * @write_pte: write MMU page table entry to DRAM. 1465 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1466 * (L1 only) or hard (L0 & L1) flush. 1467 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1468 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1469 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1470 * @debug_coresight: perform certain actions on Coresight for debugging. 1471 * @is_device_idle: return true if device is idle, false otherwise. 1472 * @compute_reset_late_init: perform certain actions needed after a compute reset 1473 * @hw_queues_lock: acquire H/W queues lock. 1474 * @hw_queues_unlock: release H/W queues lock. 1475 * @get_pci_id: retrieve PCI ID. 1476 * @get_eeprom_data: retrieve EEPROM data from F/W. 1477 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1478 * @send_cpu_message: send message to F/W. If the message is timedout, the 1479 * driver will eventually reset the device. The timeout can 1480 * be determined by the calling function or it can be 0 and 1481 * then the timeout is the default timeout for the specific 1482 * ASIC 1483 * @get_hw_state: retrieve the H/W state 1484 * @pci_bars_map: Map PCI BARs. 1485 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1486 * @rreg: Read a register. Needed for simulator support. 1487 * @wreg: Write a register. Needed for simulator support. 1488 * @halt_coresight: stop the ETF and ETR traces. 1489 * @ctx_init: context dependent initialization. 1490 * @ctx_fini: context dependent cleanup. 1491 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1492 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1493 * @load_firmware_to_device: load the firmware to the device's memory 1494 * @load_boot_fit_to_device: load boot fit to device's memory 1495 * @get_signal_cb_size: Get signal CB size. 1496 * @get_wait_cb_size: Get wait CB size. 1497 * @gen_signal_cb: Generate a signal CB. 1498 * @gen_wait_cb: Generate a wait CB. 1499 * @reset_sob: Reset a SOB. 1500 * @reset_sob_group: Reset SOB group 1501 * @get_device_time: Get the device time. 1502 * @pb_print_security_errors: print security errors according block and cause 1503 * @collective_wait_init_cs: Generate collective master/slave packets 1504 * and place them in the relevant cs jobs 1505 * @collective_wait_create_jobs: allocate collective wait cs jobs 1506 * @get_dec_base_addr: get the base address of a given decoder. 1507 * @scramble_addr: Routine to scramble the address prior of mapping it 1508 * in the MMU. 1509 * @descramble_addr: Routine to de-scramble the address prior of 1510 * showing it to users. 1511 * @ack_protection_bits_errors: ack and dump all security violations 1512 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1513 * also returns the size of the block if caller supplies 1514 * a valid pointer for it 1515 * @hw_block_mmap: mmap a HW block with a given id. 1516 * @enable_events_from_fw: send interrupt to firmware to notify them the 1517 * driver is ready to receive asynchronous events. This 1518 * function should be called during the first init and 1519 * after every hard-reset of the device 1520 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1521 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1522 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1523 * generic f/w compatible PLL Indexes 1524 * @init_firmware_preload_params: initialize pre FW-load parameters. 1525 * @init_firmware_loader: initialize data for FW loader. 1526 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1527 * @state_dump_init: initialize constants required for state dump 1528 * @get_sob_addr: get SOB base address offset. 1529 * @set_pci_memory_regions: setting properties of PCI memory regions 1530 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1531 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1532 * @access_dev_mem: access device memory 1533 * @set_dram_bar_base: set the base of the DRAM BAR 1534 * @set_engine_cores: set a config command to enigne cores 1535 * @send_device_activity: indication to FW about device availability 1536 */ 1537 struct hl_asic_funcs { 1538 int (*early_init)(struct hl_device *hdev); 1539 int (*early_fini)(struct hl_device *hdev); 1540 int (*late_init)(struct hl_device *hdev); 1541 void (*late_fini)(struct hl_device *hdev); 1542 int (*sw_init)(struct hl_device *hdev); 1543 int (*sw_fini)(struct hl_device *hdev); 1544 int (*hw_init)(struct hl_device *hdev); 1545 void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1546 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1547 int (*suspend)(struct hl_device *hdev); 1548 int (*resume)(struct hl_device *hdev); 1549 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1550 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1551 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1552 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1553 struct hl_bd *bd); 1554 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1555 dma_addr_t *dma_handle, gfp_t flag); 1556 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1557 void *cpu_addr, dma_addr_t dma_handle); 1558 int (*scrub_device_mem)(struct hl_device *hdev); 1559 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1560 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1561 dma_addr_t *dma_handle, u16 *queue_len); 1562 int (*test_queues)(struct hl_device *hdev); 1563 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1564 gfp_t mem_flags, dma_addr_t *dma_handle); 1565 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1566 dma_addr_t dma_addr); 1567 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1568 size_t size, dma_addr_t *dma_handle); 1569 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1570 size_t size, void *vaddr); 1571 void (*asic_dma_unmap_single)(struct hl_device *hdev, 1572 dma_addr_t dma_addr, int len, 1573 enum dma_data_direction dir); 1574 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev, 1575 void *addr, int len, 1576 enum dma_data_direction dir); 1577 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev, 1578 struct sg_table *sgt, 1579 enum dma_data_direction dir); 1580 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1581 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1582 enum dma_data_direction dir); 1583 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1584 void *kernel_address, u32 len, 1585 u32 original_len, 1586 u64 cq_addr, u32 cq_val, u32 msix_num, 1587 bool eb); 1588 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1589 int (*context_switch)(struct hl_device *hdev, u32 asid); 1590 void (*restore_phase_topology)(struct hl_device *hdev); 1591 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1592 void *blob_addr); 1593 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1594 struct attribute_group *dev_vrm_attr_grp); 1595 void (*handle_eqe)(struct hl_device *hdev, 1596 struct hl_eq_entry *eq_entry); 1597 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1598 u32 *size); 1599 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1600 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1601 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1602 u32 flags); 1603 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1604 u32 flags, u32 asid, u64 va, u64 size); 1605 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1606 int (*send_heartbeat)(struct hl_device *hdev); 1607 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1608 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1609 struct engines_data *e); 1610 int (*compute_reset_late_init)(struct hl_device *hdev); 1611 void (*hw_queues_lock)(struct hl_device *hdev); 1612 void (*hw_queues_unlock)(struct hl_device *hdev); 1613 u32 (*get_pci_id)(struct hl_device *hdev); 1614 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1615 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1616 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1617 u16 len, u32 timeout, u64 *result); 1618 int (*pci_bars_map)(struct hl_device *hdev); 1619 int (*init_iatu)(struct hl_device *hdev); 1620 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1621 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1622 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1623 int (*ctx_init)(struct hl_ctx *ctx); 1624 void (*ctx_fini)(struct hl_ctx *ctx); 1625 int (*pre_schedule_cs)(struct hl_cs *cs); 1626 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1627 int (*load_firmware_to_device)(struct hl_device *hdev); 1628 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1629 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1630 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1631 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1632 u32 size, bool eb); 1633 u32 (*gen_wait_cb)(struct hl_device *hdev, 1634 struct hl_gen_wait_properties *prop); 1635 void (*reset_sob)(struct hl_device *hdev, void *data); 1636 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1637 u64 (*get_device_time)(struct hl_device *hdev); 1638 void (*pb_print_security_errors)(struct hl_device *hdev, 1639 u32 block_addr, u32 cause, u32 offended_addr); 1640 int (*collective_wait_init_cs)(struct hl_cs *cs); 1641 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1642 struct hl_ctx *ctx, struct hl_cs *cs, 1643 u32 wait_queue_id, u32 collective_engine_id, 1644 u32 encaps_signal_offset); 1645 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1646 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1647 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1648 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1649 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1650 u32 *block_size, u32 *block_id); 1651 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1652 u32 block_id, u32 block_size); 1653 void (*enable_events_from_fw)(struct hl_device *hdev); 1654 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1655 void (*get_msi_info)(__le32 *table); 1656 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1657 void (*init_firmware_preload_params)(struct hl_device *hdev); 1658 void (*init_firmware_loader)(struct hl_device *hdev); 1659 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1660 void (*state_dump_init)(struct hl_device *hdev); 1661 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1662 void (*set_pci_memory_regions)(struct hl_device *hdev); 1663 u32* (*get_stream_master_qid_arr)(void); 1664 void (*check_if_razwi_happened)(struct hl_device *hdev); 1665 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1666 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1667 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1668 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1669 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1670 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1671 u32 num_cores, u32 core_command); 1672 int (*send_device_activity)(struct hl_device *hdev, bool open); 1673 }; 1674 1675 1676 /* 1677 * CONTEXTS 1678 */ 1679 1680 #define HL_KERNEL_ASID_ID 0 1681 1682 /** 1683 * enum hl_va_range_type - virtual address range type. 1684 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1685 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1686 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1687 */ 1688 enum hl_va_range_type { 1689 HL_VA_RANGE_TYPE_HOST, 1690 HL_VA_RANGE_TYPE_HOST_HUGE, 1691 HL_VA_RANGE_TYPE_DRAM, 1692 HL_VA_RANGE_TYPE_MAX 1693 }; 1694 1695 /** 1696 * struct hl_va_range - virtual addresses range. 1697 * @lock: protects the virtual addresses list. 1698 * @list: list of virtual addresses blocks available for mappings. 1699 * @start_addr: range start address. 1700 * @end_addr: range end address. 1701 * @page_size: page size of this va range. 1702 */ 1703 struct hl_va_range { 1704 struct mutex lock; 1705 struct list_head list; 1706 u64 start_addr; 1707 u64 end_addr; 1708 u32 page_size; 1709 }; 1710 1711 /** 1712 * struct hl_cs_counters_atomic - command submission counters 1713 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1714 * @parsing_drop_cnt: dropped due to error in packet parsing 1715 * @queue_full_drop_cnt: dropped due to queue full 1716 * @device_in_reset_drop_cnt: dropped due to device in reset 1717 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1718 * @validation_drop_cnt: dropped due to error in validation 1719 */ 1720 struct hl_cs_counters_atomic { 1721 atomic64_t out_of_mem_drop_cnt; 1722 atomic64_t parsing_drop_cnt; 1723 atomic64_t queue_full_drop_cnt; 1724 atomic64_t device_in_reset_drop_cnt; 1725 atomic64_t max_cs_in_flight_drop_cnt; 1726 atomic64_t validation_drop_cnt; 1727 }; 1728 1729 /** 1730 * struct hl_dmabuf_priv - a dma-buf private object. 1731 * @dmabuf: pointer to dma-buf object. 1732 * @ctx: pointer to the dma-buf owner's context. 1733 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for 1734 * memory allocation handle. 1735 * @device_address: physical address of the device's memory. Relevant only 1736 * if phys_pg_pack is NULL (dma-buf was exported from address). 1737 * The total size can be taken from the dmabuf object. 1738 */ 1739 struct hl_dmabuf_priv { 1740 struct dma_buf *dmabuf; 1741 struct hl_ctx *ctx; 1742 struct hl_vm_phys_pg_pack *phys_pg_pack; 1743 uint64_t device_address; 1744 }; 1745 1746 #define HL_CS_OUTCOME_HISTORY_LEN 256 1747 1748 /** 1749 * struct hl_cs_outcome - represents a single completed CS outcome 1750 * @list_link: link to either container's used list or free list 1751 * @map_link: list to the container hash map 1752 * @ts: completion ts 1753 * @seq: the original cs sequence 1754 * @error: error code cs completed with, if any 1755 */ 1756 struct hl_cs_outcome { 1757 struct list_head list_link; 1758 struct hlist_node map_link; 1759 ktime_t ts; 1760 u64 seq; 1761 int error; 1762 }; 1763 1764 /** 1765 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1766 * @outcome_map: index of completed CS searchable by sequence number 1767 * @used_list: list of outcome objects currently in use 1768 * @free_list: list of outcome objects currently not in use 1769 * @nodes_pool: a static pool of pre-allocated outcome objects 1770 * @db_lock: any operation on the store must take this lock 1771 */ 1772 struct hl_cs_outcome_store { 1773 DECLARE_HASHTABLE(outcome_map, 8); 1774 struct list_head used_list; 1775 struct list_head free_list; 1776 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1777 spinlock_t db_lock; 1778 }; 1779 1780 /** 1781 * struct hl_ctx - user/kernel context. 1782 * @mem_hash: holds mapping from virtual address to virtual memory area 1783 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1784 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1785 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1786 * MMU-hop-page physical address to its host-resident 1787 * pgt_info structure. 1788 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1789 * @hdev: pointer to the device structure. 1790 * @refcount: reference counter for the context. Context is released only when 1791 * this hits 0l. It is incremented on CS and CS_WAIT. 1792 * @cs_pending: array of hl fence objects representing pending CS. 1793 * @outcome_store: storage data structure used to remember outcomes of completed 1794 * command submissions for a long time after CS id wraparound. 1795 * @va_range: holds available virtual addresses for host and dram mappings. 1796 * @mem_hash_lock: protects the mem_hash. 1797 * @hw_block_list_lock: protects the HW block memory list. 1798 * @debugfs_list: node in debugfs list of contexts. 1799 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1800 * @cs_counters: context command submission counters. 1801 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1802 * device's MMU. 1803 * @sig_mgr: encaps signals handle manager. 1804 * @cb_va_pool_base: the base address for the device VA pool 1805 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1806 * to user so user could inquire about CS. It is used as 1807 * index to cs_pending array. 1808 * @dram_default_hops: array that holds all hops addresses needed for default 1809 * DRAM mapping. 1810 * @cs_lock: spinlock to protect cs_sequence. 1811 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1812 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1813 * context from running the context switch phase. 1814 * Only a single thread should run it. 1815 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1816 * the context switch phase from moving to their 1817 * execution phase before the context switch phase 1818 * has finished. 1819 * @asid: context's unique address space ID in the device's MMU. 1820 * @handle: context's opaque handle for user 1821 */ 1822 struct hl_ctx { 1823 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1824 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1825 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1826 struct hl_fpriv *hpriv; 1827 struct hl_device *hdev; 1828 struct kref refcount; 1829 struct hl_fence **cs_pending; 1830 struct hl_cs_outcome_store outcome_store; 1831 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1832 struct mutex mem_hash_lock; 1833 struct mutex hw_block_list_lock; 1834 struct list_head debugfs_list; 1835 struct list_head hw_block_mem_list; 1836 struct hl_cs_counters_atomic cs_counters; 1837 struct gen_pool *cb_va_pool; 1838 struct hl_encaps_signals_mgr sig_mgr; 1839 u64 cb_va_pool_base; 1840 u64 cs_sequence; 1841 u64 *dram_default_hops; 1842 spinlock_t cs_lock; 1843 atomic64_t dram_phys_mem; 1844 atomic_t thread_ctx_switch_token; 1845 u32 thread_ctx_switch_wait_token; 1846 u32 asid; 1847 u32 handle; 1848 }; 1849 1850 /** 1851 * struct hl_ctx_mgr - for handling multiple contexts. 1852 * @lock: protects ctx_handles. 1853 * @handles: idr to hold all ctx handles. 1854 */ 1855 struct hl_ctx_mgr { 1856 struct mutex lock; 1857 struct idr handles; 1858 }; 1859 1860 1861 /* 1862 * COMMAND SUBMISSIONS 1863 */ 1864 1865 /** 1866 * struct hl_userptr - memory mapping chunk information 1867 * @vm_type: type of the VM. 1868 * @job_node: linked-list node for hanging the object on the Job's list. 1869 * @pages: pointer to struct page array 1870 * @npages: size of @pages array 1871 * @sgt: pointer to the scatter-gather table that holds the pages. 1872 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1873 * @debugfs_list: node in debugfs list of command submissions. 1874 * @pid: the pid of the user process owning the memory 1875 * @addr: user-space virtual address of the start of the memory area. 1876 * @size: size of the memory area to pin & map. 1877 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1878 */ 1879 struct hl_userptr { 1880 enum vm_type vm_type; /* must be first */ 1881 struct list_head job_node; 1882 struct page **pages; 1883 unsigned int npages; 1884 struct sg_table *sgt; 1885 enum dma_data_direction dir; 1886 struct list_head debugfs_list; 1887 pid_t pid; 1888 u64 addr; 1889 u64 size; 1890 u8 dma_mapped; 1891 }; 1892 1893 /** 1894 * struct hl_cs - command submission. 1895 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1896 * @ctx: the context this CS belongs to. 1897 * @job_list: list of the CS's jobs in the various queues. 1898 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1899 * @refcount: reference counter for usage of the CS. 1900 * @fence: pointer to the fence object of this CS. 1901 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1902 * CS only). 1903 * @finish_work: workqueue object to run when CS is completed by H/W. 1904 * @work_tdr: delayed work node for TDR. 1905 * @mirror_node : node in device mirror list of command submissions. 1906 * @staged_cs_node: node in the staged cs list. 1907 * @debugfs_list: node in debugfs list of command submissions. 1908 * @encaps_sig_hdl: holds the encaps signals handle. 1909 * @sequence: the sequence number of this CS. 1910 * @staged_sequence: the sequence of the staged submission this CS is part of, 1911 * relevant only if staged_cs is set. 1912 * @timeout_jiffies: cs timeout in jiffies. 1913 * @submission_time_jiffies: submission time of the cs 1914 * @type: CS_TYPE_*. 1915 * @jobs_cnt: counter of submitted jobs on all queues. 1916 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 1917 * @sob_addr_offset: sob offset from the configuration base address. 1918 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 1919 * cs with encaps signals. 1920 * @submitted: true if CS was submitted to H/W. 1921 * @completed: true if CS was completed by device. 1922 * @timedout : true if CS was timedout. 1923 * @tdr_active: true if TDR was activated for this CS (to prevent 1924 * double TDR activation). 1925 * @aborted: true if CS was aborted due to some device error. 1926 * @timestamp: true if a timestamp must be captured upon completion. 1927 * @staged_last: true if this is the last staged CS and needs completion. 1928 * @staged_first: true if this is the first staged CS and we need to receive 1929 * timeout for this CS. 1930 * @staged_cs: true if this CS is part of a staged submission. 1931 * @skip_reset_on_timeout: true if we shall not reset the device in case 1932 * timeout occurs (debug scenario). 1933 * @encaps_signals: true if this CS has encaps reserved signals. 1934 */ 1935 struct hl_cs { 1936 u16 *jobs_in_queue_cnt; 1937 struct hl_ctx *ctx; 1938 struct list_head job_list; 1939 spinlock_t job_lock; 1940 struct kref refcount; 1941 struct hl_fence *fence; 1942 struct hl_fence *signal_fence; 1943 struct work_struct finish_work; 1944 struct delayed_work work_tdr; 1945 struct list_head mirror_node; 1946 struct list_head staged_cs_node; 1947 struct list_head debugfs_list; 1948 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 1949 u64 sequence; 1950 u64 staged_sequence; 1951 u64 timeout_jiffies; 1952 u64 submission_time_jiffies; 1953 enum hl_cs_type type; 1954 u32 jobs_cnt; 1955 u32 encaps_sig_hdl_id; 1956 u32 sob_addr_offset; 1957 u16 initial_sob_count; 1958 u8 submitted; 1959 u8 completed; 1960 u8 timedout; 1961 u8 tdr_active; 1962 u8 aborted; 1963 u8 timestamp; 1964 u8 staged_last; 1965 u8 staged_first; 1966 u8 staged_cs; 1967 u8 skip_reset_on_timeout; 1968 u8 encaps_signals; 1969 }; 1970 1971 /** 1972 * struct hl_cs_job - command submission job. 1973 * @cs_node: the node to hang on the CS jobs list. 1974 * @cs: the CS this job belongs to. 1975 * @user_cb: the CB we got from the user. 1976 * @patched_cb: in case of patching, this is internal CB which is submitted on 1977 * the queue instead of the CB we got from the IOCTL. 1978 * @finish_work: workqueue object to run when job is completed. 1979 * @userptr_list: linked-list of userptr mappings that belong to this job and 1980 * wait for completion. 1981 * @debugfs_list: node in debugfs list of command submission jobs. 1982 * @refcount: reference counter for usage of the CS job. 1983 * @queue_type: the type of the H/W queue this job is submitted to. 1984 * @id: the id of this job inside a CS. 1985 * @hw_queue_id: the id of the H/W queue this job is submitted to. 1986 * @user_cb_size: the actual size of the CB we got from the user. 1987 * @job_cb_size: the actual size of the CB that we put on the queue. 1988 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 1989 * to wait on part of the reserved signals. 1990 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 1991 * handle to a kernel-allocated CB object, false 1992 * otherwise (SRAM/DRAM/host address). 1993 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 1994 * info is needed later, when adding the 2xMSG_PROT at the 1995 * end of the JOB, to know which barriers to put in the 1996 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 1997 * have streams so the engine can't be busy by another 1998 * stream. 1999 */ 2000 struct hl_cs_job { 2001 struct list_head cs_node; 2002 struct hl_cs *cs; 2003 struct hl_cb *user_cb; 2004 struct hl_cb *patched_cb; 2005 struct work_struct finish_work; 2006 struct list_head userptr_list; 2007 struct list_head debugfs_list; 2008 struct kref refcount; 2009 enum hl_queue_type queue_type; 2010 u32 id; 2011 u32 hw_queue_id; 2012 u32 user_cb_size; 2013 u32 job_cb_size; 2014 u32 encaps_sig_wait_offset; 2015 u8 is_kernel_allocated_cb; 2016 u8 contains_dma_pkt; 2017 }; 2018 2019 /** 2020 * struct hl_cs_parser - command submission parser properties. 2021 * @user_cb: the CB we got from the user. 2022 * @patched_cb: in case of patching, this is internal CB which is submitted on 2023 * the queue instead of the CB we got from the IOCTL. 2024 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2025 * job and wait for completion. 2026 * @cs_sequence: the sequence number of the related CS. 2027 * @queue_type: the type of the H/W queue this job is submitted to. 2028 * @ctx_id: the ID of the context the related CS belongs to. 2029 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2030 * @user_cb_size: the actual size of the CB we got from the user. 2031 * @patched_cb_size: the size of the CB after parsing. 2032 * @job_id: the id of the related job inside the related CS. 2033 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2034 * handle to a kernel-allocated CB object, false 2035 * otherwise (SRAM/DRAM/host address). 2036 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2037 * info is needed later, when adding the 2xMSG_PROT at the 2038 * end of the JOB, to know which barriers to put in the 2039 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2040 * have streams so the engine can't be busy by another 2041 * stream. 2042 * @completion: true if we need completion for this CS. 2043 */ 2044 struct hl_cs_parser { 2045 struct hl_cb *user_cb; 2046 struct hl_cb *patched_cb; 2047 struct list_head *job_userptr_list; 2048 u64 cs_sequence; 2049 enum hl_queue_type queue_type; 2050 u32 ctx_id; 2051 u32 hw_queue_id; 2052 u32 user_cb_size; 2053 u32 patched_cb_size; 2054 u8 job_id; 2055 u8 is_kernel_allocated_cb; 2056 u8 contains_dma_pkt; 2057 u8 completion; 2058 }; 2059 2060 /* 2061 * MEMORY STRUCTURE 2062 */ 2063 2064 /** 2065 * struct hl_vm_hash_node - hash element from virtual address to virtual 2066 * memory area descriptor (hl_vm_phys_pg_list or 2067 * hl_userptr). 2068 * @node: node to hang on the hash table in context object. 2069 * @vaddr: key virtual address. 2070 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2071 */ 2072 struct hl_vm_hash_node { 2073 struct hlist_node node; 2074 u64 vaddr; 2075 void *ptr; 2076 }; 2077 2078 /** 2079 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2080 * HW block id. 2081 * @node: node to hang on the list in context object. 2082 * @ctx: the context this node belongs to. 2083 * @vaddr: virtual address of the HW block. 2084 * @block_size: size of the block. 2085 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2086 * @id: HW block id (handle). 2087 */ 2088 struct hl_vm_hw_block_list_node { 2089 struct list_head node; 2090 struct hl_ctx *ctx; 2091 unsigned long vaddr; 2092 u32 block_size; 2093 u32 mapped_size; 2094 u32 id; 2095 }; 2096 2097 /** 2098 * struct hl_vm_phys_pg_pack - physical page pack. 2099 * @vm_type: describes the type of the virtual area descriptor. 2100 * @pages: the physical page array. 2101 * @npages: num physical pages in the pack. 2102 * @total_size: total size of all the pages in this list. 2103 * @node: used to attach to deletion list that is used when all the allocations are cleared 2104 * at the teardown of the context. 2105 * @mapping_cnt: number of shared mappings. 2106 * @exporting_cnt: number of dma-buf exporting. 2107 * @asid: the context related to this list. 2108 * @page_size: size of each page in the pack. 2109 * @flags: HL_MEM_* flags related to this list. 2110 * @handle: the provided handle related to this list. 2111 * @offset: offset from the first page. 2112 * @contiguous: is contiguous physical memory. 2113 * @created_from_userptr: is product of host virtual address. 2114 */ 2115 struct hl_vm_phys_pg_pack { 2116 enum vm_type vm_type; /* must be first */ 2117 u64 *pages; 2118 u64 npages; 2119 u64 total_size; 2120 struct list_head node; 2121 atomic_t mapping_cnt; 2122 u32 exporting_cnt; 2123 u32 asid; 2124 u32 page_size; 2125 u32 flags; 2126 u32 handle; 2127 u32 offset; 2128 u8 contiguous; 2129 u8 created_from_userptr; 2130 }; 2131 2132 /** 2133 * struct hl_vm_va_block - virtual range block information. 2134 * @node: node to hang on the virtual range list in context object. 2135 * @start: virtual range start address. 2136 * @end: virtual range end address. 2137 * @size: virtual range size. 2138 */ 2139 struct hl_vm_va_block { 2140 struct list_head node; 2141 u64 start; 2142 u64 end; 2143 u64 size; 2144 }; 2145 2146 /** 2147 * struct hl_vm - virtual memory manager for MMU. 2148 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2149 * @dram_pg_pool_refcount: reference counter for the pool usage. 2150 * @idr_lock: protects the phys_pg_list_handles. 2151 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2152 * @init_done: whether initialization was done. We need this because VM 2153 * initialization might be skipped during device initialization. 2154 */ 2155 struct hl_vm { 2156 struct gen_pool *dram_pg_pool; 2157 struct kref dram_pg_pool_refcount; 2158 spinlock_t idr_lock; 2159 struct idr phys_pg_pack_handles; 2160 u8 init_done; 2161 }; 2162 2163 2164 /* 2165 * DEBUG, PROFILING STRUCTURE 2166 */ 2167 2168 /** 2169 * struct hl_debug_params - Coresight debug parameters. 2170 * @input: pointer to component specific input parameters. 2171 * @output: pointer to component specific output parameters. 2172 * @output_size: size of output buffer. 2173 * @reg_idx: relevant register ID. 2174 * @op: component operation to execute. 2175 * @enable: true if to enable component debugging, false otherwise. 2176 */ 2177 struct hl_debug_params { 2178 void *input; 2179 void *output; 2180 u32 output_size; 2181 u32 reg_idx; 2182 u32 op; 2183 bool enable; 2184 }; 2185 2186 /** 2187 * struct hl_notifier_event - holds the notifier data structure 2188 * @eventfd: the event file descriptor to raise the notifications 2189 * @lock: mutex lock to protect the notifier data flows 2190 * @events_mask: indicates the bitmap events 2191 */ 2192 struct hl_notifier_event { 2193 struct eventfd_ctx *eventfd; 2194 struct mutex lock; 2195 u64 events_mask; 2196 }; 2197 2198 /* 2199 * FILE PRIVATE STRUCTURE 2200 */ 2201 2202 /** 2203 * struct hl_fpriv - process information stored in FD private data. 2204 * @hdev: habanalabs device structure. 2205 * @filp: pointer to the given file structure. 2206 * @taskpid: current process ID. 2207 * @ctx: current executing context. TODO: remove for multiple ctx per process 2208 * @ctx_mgr: context manager to handle multiple context for this FD. 2209 * @mem_mgr: manager descriptor for memory exportable via mmap 2210 * @notifier_event: notifier eventfd towards user process 2211 * @debugfs_list: list of relevant ASIC debugfs. 2212 * @dev_node: node in the device list of file private data 2213 * @refcount: number of related contexts. 2214 * @restore_phase_mutex: lock for context switch and restore phase. 2215 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2216 * ctx per process. 2217 */ 2218 struct hl_fpriv { 2219 struct hl_device *hdev; 2220 struct file *filp; 2221 struct pid *taskpid; 2222 struct hl_ctx *ctx; 2223 struct hl_ctx_mgr ctx_mgr; 2224 struct hl_mem_mgr mem_mgr; 2225 struct hl_notifier_event notifier_event; 2226 struct list_head debugfs_list; 2227 struct list_head dev_node; 2228 struct kref refcount; 2229 struct mutex restore_phase_mutex; 2230 struct mutex ctx_lock; 2231 }; 2232 2233 2234 /* 2235 * DebugFS 2236 */ 2237 2238 /** 2239 * struct hl_info_list - debugfs file ops. 2240 * @name: file name. 2241 * @show: function to output information. 2242 * @write: function to write to the file. 2243 */ 2244 struct hl_info_list { 2245 const char *name; 2246 int (*show)(struct seq_file *s, void *data); 2247 ssize_t (*write)(struct file *file, const char __user *buf, 2248 size_t count, loff_t *f_pos); 2249 }; 2250 2251 /** 2252 * struct hl_debugfs_entry - debugfs dentry wrapper. 2253 * @info_ent: dentry related ops. 2254 * @dev_entry: ASIC specific debugfs manager. 2255 */ 2256 struct hl_debugfs_entry { 2257 const struct hl_info_list *info_ent; 2258 struct hl_dbg_device_entry *dev_entry; 2259 }; 2260 2261 /** 2262 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2263 * @root: root dentry. 2264 * @hdev: habanalabs device structure. 2265 * @entry_arr: array of available hl_debugfs_entry. 2266 * @file_list: list of available debugfs files. 2267 * @file_mutex: protects file_list. 2268 * @cb_list: list of available CBs. 2269 * @cb_spinlock: protects cb_list. 2270 * @cs_list: list of available CSs. 2271 * @cs_spinlock: protects cs_list. 2272 * @cs_job_list: list of available CB jobs. 2273 * @cs_job_spinlock: protects cs_job_list. 2274 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2275 * @userptr_spinlock: protects userptr_list. 2276 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2277 * @ctx_mem_hash_spinlock: protects cb_list. 2278 * @data_dma_blob_desc: data DMA descriptor of blob. 2279 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2280 * @state_dump: data of the system states in case of a bad cs. 2281 * @state_dump_sem: protects state_dump. 2282 * @addr: next address to read/write from/to in read/write32. 2283 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2284 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2285 * @userptr_lookup: the target user ptr to look up for on demand. 2286 * @mmu_asid: ASID to use while translating in mmu_show. 2287 * @state_dump_head: index of the latest state dump 2288 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2289 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2290 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2291 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2292 */ 2293 struct hl_dbg_device_entry { 2294 struct dentry *root; 2295 struct hl_device *hdev; 2296 struct hl_debugfs_entry *entry_arr; 2297 struct list_head file_list; 2298 struct mutex file_mutex; 2299 struct list_head cb_list; 2300 spinlock_t cb_spinlock; 2301 struct list_head cs_list; 2302 spinlock_t cs_spinlock; 2303 struct list_head cs_job_list; 2304 spinlock_t cs_job_spinlock; 2305 struct list_head userptr_list; 2306 spinlock_t userptr_spinlock; 2307 struct list_head ctx_mem_hash_list; 2308 spinlock_t ctx_mem_hash_spinlock; 2309 struct debugfs_blob_wrapper data_dma_blob_desc; 2310 struct debugfs_blob_wrapper mon_dump_blob_desc; 2311 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2312 struct rw_semaphore state_dump_sem; 2313 u64 addr; 2314 u64 mmu_addr; 2315 u64 mmu_cap_mask; 2316 u64 userptr_lookup; 2317 u32 mmu_asid; 2318 u32 state_dump_head; 2319 u8 i2c_bus; 2320 u8 i2c_addr; 2321 u8 i2c_reg; 2322 u8 i2c_len; 2323 }; 2324 2325 /** 2326 * struct hl_hw_obj_name_entry - single hw object name, member of 2327 * hl_state_dump_specs 2328 * @node: link to the containing hash table 2329 * @name: hw object name 2330 * @id: object identifier 2331 */ 2332 struct hl_hw_obj_name_entry { 2333 struct hlist_node node; 2334 const char *name; 2335 u32 id; 2336 }; 2337 2338 enum hl_state_dump_specs_props { 2339 SP_SYNC_OBJ_BASE_ADDR, 2340 SP_NEXT_SYNC_OBJ_ADDR, 2341 SP_SYNC_OBJ_AMOUNT, 2342 SP_MON_OBJ_WR_ADDR_LOW, 2343 SP_MON_OBJ_WR_ADDR_HIGH, 2344 SP_MON_OBJ_WR_DATA, 2345 SP_MON_OBJ_ARM_DATA, 2346 SP_MON_OBJ_STATUS, 2347 SP_MONITORS_AMOUNT, 2348 SP_TPC0_CMDQ, 2349 SP_TPC0_CFG_SO, 2350 SP_NEXT_TPC, 2351 SP_MME_CMDQ, 2352 SP_MME_CFG_SO, 2353 SP_NEXT_MME, 2354 SP_DMA_CMDQ, 2355 SP_DMA_CFG_SO, 2356 SP_DMA_QUEUES_OFFSET, 2357 SP_NUM_OF_MME_ENGINES, 2358 SP_SUB_MME_ENG_NUM, 2359 SP_NUM_OF_DMA_ENGINES, 2360 SP_NUM_OF_TPC_ENGINES, 2361 SP_ENGINE_NUM_OF_QUEUES, 2362 SP_ENGINE_NUM_OF_STREAMS, 2363 SP_ENGINE_NUM_OF_FENCES, 2364 SP_FENCE0_CNT_OFFSET, 2365 SP_FENCE0_RDATA_OFFSET, 2366 SP_CP_STS_OFFSET, 2367 SP_NUM_CORES, 2368 2369 SP_MAX 2370 }; 2371 2372 enum hl_sync_engine_type { 2373 ENGINE_TPC, 2374 ENGINE_DMA, 2375 ENGINE_MME, 2376 }; 2377 2378 /** 2379 * struct hl_mon_state_dump - represents a state dump of a single monitor 2380 * @id: monitor id 2381 * @wr_addr_low: address monitor will write to, low bits 2382 * @wr_addr_high: address monitor will write to, high bits 2383 * @wr_data: data monitor will write 2384 * @arm_data: register value containing monitor configuration 2385 * @status: monitor status 2386 */ 2387 struct hl_mon_state_dump { 2388 u32 id; 2389 u32 wr_addr_low; 2390 u32 wr_addr_high; 2391 u32 wr_data; 2392 u32 arm_data; 2393 u32 status; 2394 }; 2395 2396 /** 2397 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2398 * @engine_type: type of the engine 2399 * @engine_id: id of the engine 2400 * @sync_id: id of the sync object 2401 */ 2402 struct hl_sync_to_engine_map_entry { 2403 struct hlist_node node; 2404 enum hl_sync_engine_type engine_type; 2405 u32 engine_id; 2406 u32 sync_id; 2407 }; 2408 2409 /** 2410 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2411 * @tb: hash table containing the mapping, each element is of type 2412 * struct hl_sync_to_engine_map_entry 2413 */ 2414 struct hl_sync_to_engine_map { 2415 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2416 }; 2417 2418 /** 2419 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2420 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2421 * @print_single_monitor: format monitor data as string 2422 * @monitor_valid: return true if given monitor dump is valid 2423 * @print_fences_single_engine: format fences data as string 2424 */ 2425 struct hl_state_dump_specs_funcs { 2426 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2427 struct hl_sync_to_engine_map *map); 2428 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2429 struct hl_device *hdev, 2430 struct hl_mon_state_dump *mon); 2431 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2432 int (*print_fences_single_engine)(struct hl_device *hdev, 2433 u64 base_offset, 2434 u64 status_base_offset, 2435 enum hl_sync_engine_type engine_type, 2436 u32 engine_id, char **buf, 2437 size_t *size, size_t *offset); 2438 }; 2439 2440 /** 2441 * struct hl_state_dump_specs - defines ASIC known hw objects names 2442 * @so_id_to_str_tb: sync objects names index table 2443 * @monitor_id_to_str_tb: monitors names index table 2444 * @funcs: virtual functions used for state dump 2445 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2446 * @props: pointer to a per asic const props array required for state dump 2447 */ 2448 struct hl_state_dump_specs { 2449 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2450 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2451 struct hl_state_dump_specs_funcs funcs; 2452 const char * const *sync_namager_names; 2453 s64 *props; 2454 }; 2455 2456 2457 /* 2458 * DEVICES 2459 */ 2460 2461 #define HL_STR_MAX 32 2462 2463 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2464 2465 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2466 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2467 */ 2468 #define HL_MAX_MINORS 256 2469 2470 /* 2471 * Registers read & write functions. 2472 */ 2473 2474 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2475 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2476 2477 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2478 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2479 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2480 hdev->asic_funcs->rreg(hdev, (reg))) 2481 2482 #define WREG32_P(reg, val, mask) \ 2483 do { \ 2484 u32 tmp_ = RREG32(reg); \ 2485 tmp_ &= (mask); \ 2486 tmp_ |= ((val) & ~(mask)); \ 2487 WREG32(reg, tmp_); \ 2488 } while (0) 2489 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2490 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2491 2492 #define RMWREG32(reg, val, mask) \ 2493 do { \ 2494 u32 tmp_ = RREG32(reg); \ 2495 tmp_ &= ~(mask); \ 2496 tmp_ |= ((val) << __ffs(mask)); \ 2497 WREG32(reg, tmp_); \ 2498 } while (0) 2499 2500 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2501 2502 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2503 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2504 #define WREG32_FIELD(reg, offset, field, val) \ 2505 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2506 ~REG_FIELD_MASK(reg, field)) | \ 2507 (val) << REG_FIELD_SHIFT(reg, field)) 2508 2509 /* Timeout should be longer when working with simulator but cap the 2510 * increased timeout to some maximum 2511 */ 2512 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2513 ({ \ 2514 ktime_t __timeout; \ 2515 u32 __elbi_read; \ 2516 int __rc = 0; \ 2517 if (hdev->pdev) \ 2518 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2519 else \ 2520 __timeout = ktime_add_us(ktime_get(),\ 2521 min((u64)(timeout_us * 10), \ 2522 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2523 might_sleep_if(sleep_us); \ 2524 for (;;) { \ 2525 if (elbi) { \ 2526 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2527 if (__rc) \ 2528 break; \ 2529 (val) = __elbi_read; \ 2530 } else {\ 2531 (val) = RREG32((u32)(addr)); \ 2532 } \ 2533 if (cond) \ 2534 break; \ 2535 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2536 if (elbi) { \ 2537 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2538 if (__rc) \ 2539 break; \ 2540 (val) = __elbi_read; \ 2541 } else {\ 2542 (val) = RREG32((u32)(addr)); \ 2543 } \ 2544 break; \ 2545 } \ 2546 if (sleep_us) \ 2547 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2548 } \ 2549 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2550 }) 2551 2552 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2553 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2554 2555 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2556 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2557 2558 /* 2559 * poll array of register addresses. 2560 * condition is satisfied if all registers values match the expected value. 2561 * once some register in the array satisfies the condition it will not be polled again, 2562 * this is done both for efficiency and due to some registers are "clear on read". 2563 * TODO: use read from PCI bar in other places in the code (SW-91406) 2564 */ 2565 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2566 timeout_us, elbi) \ 2567 ({ \ 2568 ktime_t __timeout; \ 2569 u64 __elem_bitmask; \ 2570 u32 __read_val; \ 2571 u8 __arr_idx; \ 2572 int __rc = 0; \ 2573 \ 2574 if (hdev->pdev) \ 2575 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2576 else \ 2577 __timeout = ktime_add_us(ktime_get(),\ 2578 min(((u64)timeout_us * 10), \ 2579 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2580 \ 2581 might_sleep_if(sleep_us); \ 2582 if (arr_size >= 64) \ 2583 __rc = -EINVAL; \ 2584 else \ 2585 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2586 for (;;) { \ 2587 if (__rc) \ 2588 break; \ 2589 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2590 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2591 continue; \ 2592 if (elbi) { \ 2593 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2594 if (__rc) \ 2595 break; \ 2596 } else { \ 2597 __read_val = RREG32((u32)(addr_arr)[__arr_idx]); \ 2598 } \ 2599 if (__read_val == (expected_val)) \ 2600 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2601 } \ 2602 if (__rc || (__elem_bitmask == 0)) \ 2603 break; \ 2604 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2605 break; \ 2606 if (sleep_us) \ 2607 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2608 } \ 2609 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2610 }) 2611 2612 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2613 timeout_us) \ 2614 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2615 timeout_us, false) 2616 2617 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2618 timeout_us) \ 2619 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2620 timeout_us, true) 2621 2622 /* 2623 * address in this macro points always to a memory location in the 2624 * host's (server's) memory. That location is updated asynchronously 2625 * either by the direct access of the device or by another core. 2626 * 2627 * To work both in LE and BE architectures, we need to distinguish between the 2628 * two states (device or another core updates the memory location). Therefore, 2629 * if mem_written_by_device is true, the host memory being polled will be 2630 * updated directly by the device. If false, the host memory being polled will 2631 * be updated by host CPU. Required so host knows whether or not the memory 2632 * might need to be byte-swapped before returning value to caller. 2633 */ 2634 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2635 mem_written_by_device) \ 2636 ({ \ 2637 ktime_t __timeout; \ 2638 if (hdev->pdev) \ 2639 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2640 else \ 2641 __timeout = ktime_add_us(ktime_get(),\ 2642 min((u64)(timeout_us * 100), \ 2643 (u64) HL_SIM_MAX_TIMEOUT_US)); \ 2644 might_sleep_if(sleep_us); \ 2645 for (;;) { \ 2646 /* Verify we read updates done by other cores or by device */ \ 2647 mb(); \ 2648 (val) = *((u32 *)(addr)); \ 2649 if (mem_written_by_device) \ 2650 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2651 if (cond) \ 2652 break; \ 2653 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2654 (val) = *((u32 *)(addr)); \ 2655 if (mem_written_by_device) \ 2656 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2657 break; \ 2658 } \ 2659 if (sleep_us) \ 2660 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2661 } \ 2662 (cond) ? 0 : -ETIMEDOUT; \ 2663 }) 2664 2665 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2666 ({ \ 2667 struct user_mapped_block *p = blk; \ 2668 \ 2669 p->address = base; \ 2670 p->size = sz; \ 2671 }) 2672 2673 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \ 2674 ({ \ 2675 usr_intr.hdev = hdev; \ 2676 usr_intr.interrupt_id = intr_id; \ 2677 usr_intr.is_decoder = decoder; \ 2678 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2679 spin_lock_init(&usr_intr.wait_list_lock); \ 2680 }) 2681 2682 struct hwmon_chip_info; 2683 2684 /** 2685 * struct hl_device_reset_work - reset workqueue task wrapper. 2686 * @wq: work queue for device reset procedure. 2687 * @reset_work: reset work to be done. 2688 * @hdev: habanalabs device structure. 2689 * @flags: reset flags. 2690 */ 2691 struct hl_device_reset_work { 2692 struct workqueue_struct *wq; 2693 struct delayed_work reset_work; 2694 struct hl_device *hdev; 2695 u32 flags; 2696 }; 2697 2698 /** 2699 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2700 * page-table internal information. 2701 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2702 * allocating hops. 2703 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2704 */ 2705 struct hl_mmu_hr_priv { 2706 struct gen_pool *mmu_pgt_pool; 2707 struct pgt_info *mmu_asid_hop0; 2708 }; 2709 2710 /** 2711 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2712 * page-table internal information. 2713 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2714 * @mmu_shadow_hop0: shadow array of hop0 tables. 2715 */ 2716 struct hl_mmu_dr_priv { 2717 struct gen_pool *mmu_pgt_pool; 2718 void *mmu_shadow_hop0; 2719 }; 2720 2721 /** 2722 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2723 * @dr: information on the device-resident MMU, when exists. 2724 * @hr: information on the host-resident MMU, when exists. 2725 */ 2726 struct hl_mmu_priv { 2727 struct hl_mmu_dr_priv dr; 2728 struct hl_mmu_hr_priv hr; 2729 }; 2730 2731 /** 2732 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2733 * that was created in order to translate a virtual address to a 2734 * physical one. 2735 * @hop_addr: The address of the hop. 2736 * @hop_pte_addr: The address of the hop entry. 2737 * @hop_pte_val: The value in the hop entry. 2738 */ 2739 struct hl_mmu_per_hop_info { 2740 u64 hop_addr; 2741 u64 hop_pte_addr; 2742 u64 hop_pte_val; 2743 }; 2744 2745 /** 2746 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2747 * hop-entries that were created in order to translate a virtual address to a 2748 * physical one. 2749 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2750 * address replaces the original virtual-address when mapped 2751 * in the MMU tables. 2752 * @unscrambled_paddr: The un-scrambled physical address. 2753 * @hop_info: Array holding the per-hop information used for the translation. 2754 * @used_hops: The number of hops used for the translation. 2755 * @range_type: virtual address range type. 2756 */ 2757 struct hl_mmu_hop_info { 2758 u64 scrambled_vaddr; 2759 u64 unscrambled_paddr; 2760 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2761 u32 used_hops; 2762 enum hl_va_range_type range_type; 2763 }; 2764 2765 /** 2766 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2767 * @get_hop0_pgt_info: get page table info structure for HOP0. 2768 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2769 * @add_pgt_info: add page table info structure to hash. 2770 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2771 */ 2772 struct hl_hr_mmu_funcs { 2773 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2774 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2775 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2776 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2777 struct hl_mmu_hop_info *hops, 2778 u64 virt_addr, bool *is_huge); 2779 }; 2780 2781 /** 2782 * struct hl_mmu_funcs - Device related MMU functions. 2783 * @init: initialize the MMU module. 2784 * @fini: release the MMU module. 2785 * @ctx_init: Initialize a context for using the MMU module. 2786 * @ctx_fini: disable a ctx from using the mmu module. 2787 * @map: maps a virtual address to physical address for a context. 2788 * @unmap: unmap a virtual address of a context. 2789 * @flush: flush all writes from all cores to reach device MMU. 2790 * @swap_out: marks all mapping of the given context as swapped out. 2791 * @swap_in: marks all mapping of the given context as swapped in. 2792 * @get_tlb_info: returns the list of hops and hop-entries used that were 2793 * created in order to translate the giver virtual address to a 2794 * physical one. 2795 * @hr_funcs: functions specific to host resident MMU. 2796 */ 2797 struct hl_mmu_funcs { 2798 int (*init)(struct hl_device *hdev); 2799 void (*fini)(struct hl_device *hdev); 2800 int (*ctx_init)(struct hl_ctx *ctx); 2801 void (*ctx_fini)(struct hl_ctx *ctx); 2802 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2803 bool is_dram_addr); 2804 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2805 void (*flush)(struct hl_ctx *ctx); 2806 void (*swap_out)(struct hl_ctx *ctx); 2807 void (*swap_in)(struct hl_ctx *ctx); 2808 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2809 struct hl_hr_mmu_funcs hr_funcs; 2810 }; 2811 2812 /** 2813 * struct hl_prefetch_work - prefetch work structure handler 2814 * @pf_work: actual work struct. 2815 * @ctx: compute context. 2816 * @va: virtual address to pre-fetch. 2817 * @size: pre-fetch size. 2818 * @flags: operation flags. 2819 * @asid: ASID for maintenance operation. 2820 */ 2821 struct hl_prefetch_work { 2822 struct work_struct pf_work; 2823 struct hl_ctx *ctx; 2824 u64 va; 2825 u64 size; 2826 u32 flags; 2827 u32 asid; 2828 }; 2829 2830 /* 2831 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2832 * parallel 2833 */ 2834 #define MULTI_CS_MAX_USER_CTX 2 2835 2836 /** 2837 * struct multi_cs_completion - multi CS wait completion. 2838 * @completion: completion of any of the CS in the list 2839 * @lock: spinlock for the completion structure 2840 * @timestamp: timestamp for the multi-CS completion 2841 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2842 * is waiting 2843 * @used: 1 if in use, otherwise 0 2844 */ 2845 struct multi_cs_completion { 2846 struct completion completion; 2847 spinlock_t lock; 2848 s64 timestamp; 2849 u32 stream_master_qid_map; 2850 u8 used; 2851 }; 2852 2853 /** 2854 * struct multi_cs_data - internal data for multi CS call 2855 * @ctx: pointer to the context structure 2856 * @fence_arr: array of fences of all CSs 2857 * @seq_arr: array of CS sequence numbers 2858 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2859 * @timestamp: timestamp of first completed CS 2860 * @wait_status: wait for CS status 2861 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2862 * @arr_len: fence_arr and seq_arr array length 2863 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2864 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2865 */ 2866 struct multi_cs_data { 2867 struct hl_ctx *ctx; 2868 struct hl_fence **fence_arr; 2869 u64 *seq_arr; 2870 s64 timeout_jiffies; 2871 s64 timestamp; 2872 long wait_status; 2873 u32 completion_bitmap; 2874 u8 arr_len; 2875 u8 gone_cs; 2876 u8 update_ts; 2877 }; 2878 2879 /** 2880 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2881 * @start: timestamp taken when 'start' event is received in driver 2882 * @end: timestamp taken when 'end' event is received in driver 2883 */ 2884 struct hl_clk_throttle_timestamp { 2885 ktime_t start; 2886 ktime_t end; 2887 }; 2888 2889 /** 2890 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2891 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2892 * index 1 refers to THERMAL 2893 * @lock: protects this structure as it can be accessed from both event queue 2894 * context and info_ioctl context 2895 * @current_reason: bitmask represents the current clk throttling reasons 2896 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2897 */ 2898 struct hl_clk_throttle { 2899 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2900 struct mutex lock; 2901 u32 current_reason; 2902 u32 aggregated_reason; 2903 }; 2904 2905 /** 2906 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2907 * @address: physical HW block address 2908 * @size: allowed size for mmap 2909 */ 2910 struct user_mapped_block { 2911 u32 address; 2912 u32 size; 2913 }; 2914 2915 /** 2916 * struct cs_timeout_info - info of last CS timeout occurred. 2917 * @timestamp: CS timeout timestamp. 2918 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2919 * so the first (root cause) CS timeout will not be overwritten. 2920 * @seq: CS timeout sequence number. 2921 */ 2922 struct cs_timeout_info { 2923 ktime_t timestamp; 2924 atomic_t write_enable; 2925 u64 seq; 2926 }; 2927 2928 /** 2929 * struct razwi_info - info about last razwi error occurred. 2930 * @timestamp: razwi timestamp. 2931 * @write_enable: if set writing to razwi parameters in the structure is enabled. 2932 * otherwise - disabled, so the first (root cause) razwi will not be overwritten. 2933 * @addr: address that caused razwi. 2934 * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does 2935 * not have engine id it will be set to U16_MAX. 2936 * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible 2937 * engines which one them caused the razwi. In that case, it will contain the 2938 * second possible engine id, otherwise it will be set to U16_MAX. 2939 * @non_engine_initiator: in case the initiator of the razwi does not have engine id. 2940 * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX. 2941 */ 2942 struct razwi_info { 2943 ktime_t timestamp; 2944 atomic_t write_enable; 2945 u64 addr; 2946 u16 engine_id_1; 2947 u16 engine_id_2; 2948 u8 non_engine_initiator; 2949 u8 type; 2950 }; 2951 2952 #define MAX_QMAN_STREAMS_INFO 4 2953 #define OPCODE_INFO_MAX_ADDR_SIZE 8 2954 /** 2955 * struct undefined_opcode_info - info about last undefined opcode error 2956 * @timestamp: timestamp of the undefined opcode error 2957 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 2958 * entries. In case all streams array entries are 2959 * filled with values, it means the execution was in Lower-CP. 2960 * @cq_addr: the address of the current handled command buffer 2961 * @cq_size: the size of the current handled command buffer 2962 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 2963 * should be equal to 1 incase of undefined opcode 2964 * in Upper-CP (specific stream) and equal to 4 incase 2965 * of undefined opcode in Lower-CP. 2966 * @engine_id: engine-id that the error occurred on 2967 * @stream_id: the stream id the error occurred on. In case the stream equals to 2968 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 2969 * @write_enable: if set, writing to undefined opcode parameters in the structure 2970 * is enable so the first (root cause) undefined opcode will not be 2971 * overwritten. 2972 */ 2973 struct undefined_opcode_info { 2974 ktime_t timestamp; 2975 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 2976 u64 cq_addr; 2977 u32 cq_size; 2978 u32 cb_addr_streams_len; 2979 u32 engine_id; 2980 u32 stream_id; 2981 bool write_enable; 2982 }; 2983 2984 /** 2985 * struct hl_error_info - holds information collected during an error. 2986 * @cs_timeout: CS timeout error information. 2987 * @razwi: razwi information. 2988 * @undef_opcode: undefined opcode information 2989 */ 2990 struct hl_error_info { 2991 struct cs_timeout_info cs_timeout; 2992 struct razwi_info razwi; 2993 struct undefined_opcode_info undef_opcode; 2994 }; 2995 2996 /** 2997 * struct hl_reset_info - holds current device reset information. 2998 * @lock: lock to protect critical reset flows. 2999 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3000 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3001 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3002 * here we hold the hard reset flags. 3003 * @in_reset: is device in reset flow. 3004 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3005 * @needs_reset: true if reset_on_lockup is false and device should be reset 3006 * due to lockup. 3007 * @hard_reset_pending: is there a hard reset work pending. 3008 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3009 * triggered, and cleared after it is shared with preboot. 3010 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3011 * with a new value on next reset 3012 * @reset_trigger_repeated: set if device reset is triggered more than once with 3013 * same cause. 3014 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3015 * complete instead. 3016 */ 3017 struct hl_reset_info { 3018 spinlock_t lock; 3019 u32 compute_reset_cnt; 3020 u32 hard_reset_cnt; 3021 u32 hard_reset_schedule_flags; 3022 u8 in_reset; 3023 u8 in_compute_reset; 3024 u8 needs_reset; 3025 u8 hard_reset_pending; 3026 3027 u8 curr_reset_cause; 3028 u8 prev_reset_trigger; 3029 u8 reset_trigger_repeated; 3030 3031 u8 skip_reset_on_timeout; 3032 }; 3033 3034 /** 3035 * struct hl_device - habanalabs device structure. 3036 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3037 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3038 * (required only for PCI address match mode) 3039 * @pcie_bar: array of available PCIe bars virtual addresses. 3040 * @rmmio: configuration area address on SRAM. 3041 * @cdev: related char device. 3042 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3043 * @dev: related kernel basic device structure. 3044 * @dev_ctrl: related kernel device structure for the control device 3045 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3046 * @device_reset_work: delayed work which performs hard reset 3047 * @asic_name: ASIC specific name. 3048 * @asic_type: ASIC specific type. 3049 * @completion_queue: array of hl_cq. 3050 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3051 * interrupt, driver will monitor the list of fences 3052 * registered to this interrupt. 3053 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3054 * upon any user CQ interrupt, driver will monitor the 3055 * list of fences registered to this common structure. 3056 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3057 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3058 * outstanding command submissions. 3059 * @cq_wq: work queues of completion queues for executing work in process 3060 * context. 3061 * @eq_wq: work queue of event queue for executing work in process context. 3062 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3063 * context. 3064 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3065 * @pf_wq: work queue for MMU pre-fetch operations. 3066 * @kernel_ctx: Kernel driver context structure. 3067 * @kernel_queues: array of hl_hw_queue. 3068 * @cs_mirror_list: CS mirror list for TDR. 3069 * @cs_mirror_lock: protects cs_mirror_list. 3070 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3071 * @event_queue: event queue for IRQ from CPU-CP. 3072 * @dma_pool: DMA pool for small allocations. 3073 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3074 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3075 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3076 * @asid_bitmap: holds used/available ASIDs. 3077 * @asid_mutex: protects asid_bitmap. 3078 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3079 * @debug_lock: protects critical section of setting debug mode for device 3080 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3081 * page tables are per context, the invalidation h/w is per MMU. 3082 * Therefore, we can't allow multiple contexts (we only have two, 3083 * user and kernel) to access the invalidation h/w at the same time. 3084 * In addition, any change to the PGT, modifying the MMU hash or 3085 * walking the PGT requires talking this lock. 3086 * @asic_prop: ASIC specific immutable properties. 3087 * @asic_funcs: ASIC specific functions. 3088 * @asic_specific: ASIC specific information to use only from ASIC files. 3089 * @vm: virtual memory manager for MMU. 3090 * @hwmon_dev: H/W monitor device. 3091 * @hl_chip_info: ASIC's sensors information. 3092 * @device_status_description: device status description. 3093 * @hl_debugfs: device's debugfs manager. 3094 * @cb_pool: list of pre allocated CBs. 3095 * @cb_pool_lock: protects the CB pool. 3096 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3097 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3098 * @internal_cb_pool: internal command buffer memory pool. 3099 * @internal_cb_va_base: internal cb pool mmu virtual address base 3100 * @fpriv_list: list of file private data structures. Each structure is created 3101 * when a user opens the device 3102 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3103 * when a user opens the control device 3104 * @fpriv_list_lock: protects the fpriv_list 3105 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3106 * @aggregated_cs_counters: aggregated cs counters among all contexts 3107 * @mmu_priv: device-specific MMU data. 3108 * @mmu_func: device-related MMU functions. 3109 * @dec: list of decoder sw instance 3110 * @fw_loader: FW loader manager. 3111 * @pci_mem_region: array of memory regions in the PCI 3112 * @state_dump_specs: constants and dictionaries needed to dump system state. 3113 * @multi_cs_completion: array of multi-CS completion. 3114 * @clk_throttling: holds information about current/previous clock throttling events 3115 * @captured_err_info: holds information about errors. 3116 * @reset_info: holds current device reset information. 3117 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3118 * @fw_major_version: major version of current loaded preboot. 3119 * @fw_minor_version: minor version of current loaded preboot. 3120 * @dram_used_mem: current DRAM memory consumption. 3121 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3122 * @timeout_jiffies: device CS timeout value. 3123 * @max_power: the max power of the device, as configured by the sysadmin. This 3124 * value is saved so in case of hard-reset, the driver will restore 3125 * this value and update the F/W after the re-initialization 3126 * @boot_error_status_mask: contains a mask of the device boot error status. 3127 * Each bit represents a different error, according to 3128 * the defines in hl_boot_if.h. If the bit is cleared, 3129 * the error will be ignored by the driver during 3130 * device initialization. Mainly used to debug and 3131 * workaround firmware bugs 3132 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3133 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3134 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3135 * device open. 3136 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3137 * session. 3138 * @open_counter: number of successful device open operations. 3139 * @fw_poll_interval_usec: FW status poll interval in usec. 3140 * used for CPU boot status 3141 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3142 * used for COMMs protocols cmds(COMMS_STS_*) 3143 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3144 * drams are binned-out 3145 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3146 * tpc engines are binned-out 3147 * @card_type: Various ASICs have several card types. This indicates the card 3148 * type of the current device. 3149 * @major: habanalabs kernel driver major. 3150 * @high_pll: high PLL profile frequency. 3151 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3152 * indicates which decoder engines are binned-out 3153 * @edma_binning: contains mask of edma engines that is received from the f/w which 3154 * indicates which edma engines are binned-out 3155 * @id: device minor. 3156 * @id_control: minor of the control device. 3157 * @cdev_idx: char device index. Used for setting its name. 3158 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3159 * addresses. 3160 * @is_in_dram_scrub: true if dram scrub operation is on going. 3161 * @disabled: is device disabled. 3162 * @late_init_done: is late init stage was done during initialization. 3163 * @hwmon_initialized: is H/W monitor sensors was initialized. 3164 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3165 * otherwise. 3166 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3167 * @memory_scrub: true to perform device memory scrub in various locations, 3168 * such as context-switch, context close, page free, etc. 3169 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3170 * huge pages. 3171 * @init_done: is the initialization of the device done. 3172 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3173 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3174 * can be used. This indication is needed because in some ASICs we need to do 3175 * specific operations to enable that infrastructure. 3176 * @cdev_sysfs_created: were char devices and sysfs nodes created. 3177 * @stop_on_err: true if engines should stop on error. 3178 * @supports_sync_stream: is sync stream supported. 3179 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3180 * @collective_mon_idx: helper index for collective initialization 3181 * @supports_coresight: is CoreSight supported. 3182 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3183 * @process_kill_trial_cnt: number of trials reset thread tried killing 3184 * user processes 3185 * @device_fini_pending: true if device_fini was called and might be 3186 * waiting for the reset thread to finish 3187 * @supports_staged_submission: true if staged submissions are supported 3188 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3189 * halted. We can't halt it again because the COMMS 3190 * protocol will throw an error. Relevant only for 3191 * cases where Linux was not loaded to device CPU 3192 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3193 * @is_compute_ctx_active: Whether there is an active compute context executing. 3194 * @compute_ctx_in_release: true if the current compute context is being released. 3195 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3196 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3197 * device. 3198 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3199 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3200 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3201 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing. 3202 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3203 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3204 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3205 * the f/w. Used only for testing. 3206 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3207 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3208 * Used only for testing. 3209 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3210 * that the f/w is always alive. Used only for testing. 3211 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3212 */ 3213 struct hl_device { 3214 struct pci_dev *pdev; 3215 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3216 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3217 void __iomem *rmmio; 3218 struct cdev cdev; 3219 struct cdev cdev_ctrl; 3220 struct device *dev; 3221 struct device *dev_ctrl; 3222 struct delayed_work work_heartbeat; 3223 struct hl_device_reset_work device_reset_work; 3224 char asic_name[HL_STR_MAX]; 3225 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3226 enum hl_asic_type asic_type; 3227 struct hl_cq *completion_queue; 3228 struct hl_user_interrupt *user_interrupt; 3229 struct hl_user_interrupt common_user_cq_interrupt; 3230 struct hl_user_interrupt common_decoder_interrupt; 3231 struct hl_cs **shadow_cs_queue; 3232 struct workqueue_struct **cq_wq; 3233 struct workqueue_struct *eq_wq; 3234 struct workqueue_struct *cs_cmplt_wq; 3235 struct workqueue_struct *ts_free_obj_wq; 3236 struct workqueue_struct *pf_wq; 3237 struct hl_ctx *kernel_ctx; 3238 struct hl_hw_queue *kernel_queues; 3239 struct list_head cs_mirror_list; 3240 spinlock_t cs_mirror_lock; 3241 struct hl_mem_mgr kernel_mem_mgr; 3242 struct hl_eq event_queue; 3243 struct dma_pool *dma_pool; 3244 void *cpu_accessible_dma_mem; 3245 dma_addr_t cpu_accessible_dma_address; 3246 struct gen_pool *cpu_accessible_dma_pool; 3247 unsigned long *asid_bitmap; 3248 struct mutex asid_mutex; 3249 struct mutex send_cpu_message_lock; 3250 struct mutex debug_lock; 3251 struct mutex mmu_lock; 3252 struct asic_fixed_properties asic_prop; 3253 const struct hl_asic_funcs *asic_funcs; 3254 void *asic_specific; 3255 struct hl_vm vm; 3256 struct device *hwmon_dev; 3257 struct hwmon_chip_info *hl_chip_info; 3258 3259 struct hl_dbg_device_entry hl_debugfs; 3260 3261 struct list_head cb_pool; 3262 spinlock_t cb_pool_lock; 3263 3264 void *internal_cb_pool_virt_addr; 3265 dma_addr_t internal_cb_pool_dma_addr; 3266 struct gen_pool *internal_cb_pool; 3267 u64 internal_cb_va_base; 3268 3269 struct list_head fpriv_list; 3270 struct list_head fpriv_ctrl_list; 3271 struct mutex fpriv_list_lock; 3272 struct mutex fpriv_ctrl_list_lock; 3273 3274 struct hl_cs_counters_atomic aggregated_cs_counters; 3275 3276 struct hl_mmu_priv mmu_priv; 3277 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3278 3279 struct hl_dec *dec; 3280 3281 struct fw_load_mgr fw_loader; 3282 3283 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3284 3285 struct hl_state_dump_specs state_dump_specs; 3286 3287 struct multi_cs_completion multi_cs_completion[ 3288 MULTI_CS_MAX_USER_CTX]; 3289 struct hl_clk_throttle clk_throttling; 3290 struct hl_error_info captured_err_info; 3291 3292 struct hl_reset_info reset_info; 3293 3294 u32 *stream_master_qid_arr; 3295 u32 fw_major_version; 3296 u32 fw_minor_version; 3297 atomic64_t dram_used_mem; 3298 u64 memory_scrub_val; 3299 u64 timeout_jiffies; 3300 u64 max_power; 3301 u64 boot_error_status_mask; 3302 u64 dram_pci_bar_start; 3303 u64 last_successful_open_jif; 3304 u64 last_open_session_duration_jif; 3305 u64 open_counter; 3306 u64 fw_poll_interval_usec; 3307 ktime_t last_successful_open_ktime; 3308 u64 fw_comms_poll_interval_usec; 3309 u64 dram_binning; 3310 u64 tpc_binning; 3311 3312 enum cpucp_card_types card_type; 3313 u32 major; 3314 u32 high_pll; 3315 u32 decoder_binning; 3316 u32 edma_binning; 3317 u16 id; 3318 u16 id_control; 3319 u16 cdev_idx; 3320 u16 cpu_pci_msb_addr; 3321 u8 is_in_dram_scrub; 3322 u8 disabled; 3323 u8 late_init_done; 3324 u8 hwmon_initialized; 3325 u8 reset_on_lockup; 3326 u8 dram_default_page_mapping; 3327 u8 memory_scrub; 3328 u8 pmmu_huge_range; 3329 u8 init_done; 3330 u8 device_cpu_disabled; 3331 u8 in_debug; 3332 u8 cdev_sysfs_created; 3333 u8 stop_on_err; 3334 u8 supports_sync_stream; 3335 u8 sync_stream_queue_idx; 3336 u8 collective_mon_idx; 3337 u8 supports_coresight; 3338 u8 supports_cb_mapping; 3339 u8 process_kill_trial_cnt; 3340 u8 device_fini_pending; 3341 u8 supports_staged_submission; 3342 u8 device_cpu_is_halted; 3343 u8 supports_wait_for_multi_cs; 3344 u8 stream_master_qid_arr_size; 3345 u8 is_compute_ctx_active; 3346 u8 compute_ctx_in_release; 3347 u8 supports_mmu_prefetch; 3348 u8 reset_upon_device_release; 3349 u8 supports_ctx_switch; 3350 3351 /* Parameters for bring-up */ 3352 u64 nic_ports_mask; 3353 u64 fw_components; 3354 u8 mmu_enable; 3355 u8 cpu_queues_enable; 3356 u8 pldm; 3357 u8 hard_reset_on_fw_events; 3358 u8 bmc_enable; 3359 u8 reset_on_preboot_fail; 3360 u8 heartbeat; 3361 }; 3362 3363 3364 /** 3365 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3366 * @refcount: refcount used to protect removing this id when several 3367 * wait cs are used to wait of the reserved encaps signals. 3368 * @hdev: pointer to habanalabs device structure. 3369 * @hw_sob: pointer to H/W SOB used in the reservation. 3370 * @ctx: pointer to the user's context data structure 3371 * @cs_seq: staged cs sequence which contains encapsulated signals 3372 * @id: idr handler id to be used to fetch the handler info 3373 * @q_idx: stream queue index 3374 * @pre_sob_val: current SOB value before reservation 3375 * @count: signals number 3376 */ 3377 struct hl_cs_encaps_sig_handle { 3378 struct kref refcount; 3379 struct hl_device *hdev; 3380 struct hl_hw_sob *hw_sob; 3381 struct hl_ctx *ctx; 3382 u64 cs_seq; 3383 u32 id; 3384 u32 q_idx; 3385 u32 pre_sob_val; 3386 u32 count; 3387 }; 3388 3389 /* 3390 * IOCTLs 3391 */ 3392 3393 /** 3394 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3395 * @hpriv: pointer to the FD's private data, which contains state of 3396 * user process 3397 * @data: pointer to the input/output arguments structure of the IOCTL 3398 * 3399 * Return: 0 for success, negative value for error 3400 */ 3401 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3402 3403 /** 3404 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3405 * @cmd: the IOCTL code as created by the kernel macros. 3406 * @func: pointer to the driver's function that should be called for this IOCTL. 3407 */ 3408 struct hl_ioctl_desc { 3409 unsigned int cmd; 3410 hl_ioctl_t *func; 3411 }; 3412 3413 3414 /* 3415 * Kernel module functions that can be accessed by entire module 3416 */ 3417 3418 /** 3419 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3420 * @sg: the SG list. 3421 * @dma_addr: pointer to DMA address to return. 3422 * 3423 * Calculate the number of consecutive pages described by the SG list. Take the 3424 * offset of the address in the first page, add to it the length and round it up 3425 * to the number of needed pages. 3426 */ hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3427 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3428 { 3429 *dma_addr = sg_dma_address(sg); 3430 3431 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3432 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3433 } 3434 3435 /** 3436 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3437 * @address: The start address of the area we want to validate. 3438 * @size: The size in bytes of the area we want to validate. 3439 * @range_start_address: The start address of the valid range. 3440 * @range_end_address: The end address of the valid range. 3441 * 3442 * Return: true if the area is inside the valid range, false otherwise. 3443 */ hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3444 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3445 u64 range_start_address, u64 range_end_address) 3446 { 3447 u64 end_address = address + size; 3448 3449 if ((address >= range_start_address) && 3450 (end_address <= range_end_address) && 3451 (end_address > address)) 3452 return true; 3453 3454 return false; 3455 } 3456 3457 /** 3458 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3459 * @address: The start address of the area we want to validate. 3460 * @size: The size in bytes of the area we want to validate. 3461 * @range_start_address: The start address of the valid range. 3462 * @range_end_address: The end address of the valid range. 3463 * 3464 * Return: true if the area overlaps part or all of the valid range, 3465 * false otherwise. 3466 */ hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3467 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3468 u64 range_start_address, u64 range_end_address) 3469 { 3470 u64 end_address = address + size - 1; 3471 3472 return ((address <= range_end_address) && (range_start_address <= end_address)); 3473 } 3474 3475 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3476 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3477 gfp_t flag, const char *caller); 3478 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3479 dma_addr_t dma_handle, const char *caller); 3480 void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size, 3481 dma_addr_t *dma_handle, const char *caller); 3482 void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr, 3483 const char *caller); 3484 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3485 dma_addr_t *dma_handle, const char *caller); 3486 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3487 const char *caller); 3488 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir); 3489 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3490 enum dma_data_direction dir); 3491 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3492 enum debugfs_access_type acc_type); 3493 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3494 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3495 int hl_device_open(struct inode *inode, struct file *filp); 3496 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3497 bool hl_device_operational(struct hl_device *hdev, 3498 enum hl_device_status *status); 3499 enum hl_device_status hl_device_status(struct hl_device *hdev); 3500 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3501 int hl_hw_queues_create(struct hl_device *hdev); 3502 void hl_hw_queues_destroy(struct hl_device *hdev); 3503 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3504 u32 cb_size, u64 cb_ptr); 3505 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3506 u32 ctl, u32 len, u64 ptr); 3507 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3508 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3509 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3510 void hl_hw_queue_update_ci(struct hl_cs *cs); 3511 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3512 3513 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3514 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3515 3516 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3517 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3518 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3519 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3520 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3521 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3522 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3523 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3524 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3525 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg); 3526 irqreturn_t hl_irq_handler_default(int irq, void *arg); 3527 u32 hl_cq_inc_ptr(u32 ptr); 3528 3529 int hl_asid_init(struct hl_device *hdev); 3530 void hl_asid_fini(struct hl_device *hdev); 3531 unsigned long hl_asid_alloc(struct hl_device *hdev); 3532 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3533 3534 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3535 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3536 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3537 void hl_ctx_do_release(struct kref *ref); 3538 void hl_ctx_get(struct hl_ctx *ctx); 3539 int hl_ctx_put(struct hl_ctx *ctx); 3540 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3541 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3542 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3543 struct hl_fence **fence, u32 arr_len); 3544 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3545 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3546 3547 int hl_device_init(struct hl_device *hdev, struct class *hclass); 3548 void hl_device_fini(struct hl_device *hdev); 3549 int hl_device_suspend(struct hl_device *hdev); 3550 int hl_device_resume(struct hl_device *hdev); 3551 int hl_device_reset(struct hl_device *hdev, u32 flags); 3552 void hl_hpriv_get(struct hl_fpriv *hpriv); 3553 int hl_hpriv_put(struct hl_fpriv *hpriv); 3554 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3555 3556 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3557 struct cpucp_sensor *sensors_arr); 3558 3559 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3560 3561 int hl_sysfs_init(struct hl_device *hdev); 3562 void hl_sysfs_fini(struct hl_device *hdev); 3563 3564 int hl_hwmon_init(struct hl_device *hdev); 3565 void hl_hwmon_fini(struct hl_device *hdev); 3566 void hl_hwmon_release_resources(struct hl_device *hdev); 3567 3568 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3569 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3570 bool map_cb, u64 *handle); 3571 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3572 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3573 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3574 void hl_cb_put(struct hl_cb *cb); 3575 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3576 bool internal_cb); 3577 int hl_cb_pool_init(struct hl_device *hdev); 3578 int hl_cb_pool_fini(struct hl_device *hdev); 3579 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3580 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3581 3582 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3583 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3584 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3585 void hl_sob_reset_error(struct kref *ref); 3586 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3587 void hl_fence_put(struct hl_fence *fence); 3588 void hl_fences_put(struct hl_fence **fence, int len); 3589 void hl_fence_get(struct hl_fence *fence); 3590 void cs_get(struct hl_cs *cs); 3591 bool cs_needs_completion(struct hl_cs *cs); 3592 bool cs_needs_timeout(struct hl_cs *cs); 3593 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3594 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3595 void hl_multi_cs_completion_init(struct hl_device *hdev); 3596 3597 void goya_set_asic_funcs(struct hl_device *hdev); 3598 void gaudi_set_asic_funcs(struct hl_device *hdev); 3599 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3600 3601 int hl_vm_ctx_init(struct hl_ctx *ctx); 3602 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3603 3604 int hl_vm_init(struct hl_device *hdev); 3605 void hl_vm_fini(struct hl_device *hdev); 3606 3607 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3608 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3609 3610 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3611 enum hl_va_range_type type, u64 size, u32 alignment); 3612 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3613 u64 start_addr, u64 size); 3614 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3615 struct hl_userptr *userptr); 3616 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3617 void hl_userptr_delete_list(struct hl_device *hdev, 3618 struct list_head *userptr_list); 3619 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3620 struct list_head *userptr_list, 3621 struct hl_userptr **userptr); 3622 3623 int hl_mmu_init(struct hl_device *hdev); 3624 void hl_mmu_fini(struct hl_device *hdev); 3625 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3626 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3627 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3628 u32 page_size, bool flush_pte); 3629 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3630 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3631 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3632 bool flush_pte); 3633 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3634 u64 phys_addr, u32 size); 3635 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3636 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3637 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3638 u32 flags, u32 asid, u64 va, u64 size); 3639 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3640 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3641 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3642 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3643 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3644 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3645 u64 pgt_size); 3646 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3647 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3648 u32 hop_table_size); 3649 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3650 u32 hop_table_size); 3651 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3652 u64 val, u32 hop_table_size); 3653 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3654 u32 hop_table_size); 3655 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3656 u32 hop_table_size); 3657 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3658 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3659 struct hl_hr_mmu_funcs *hr_func, 3660 u64 curr_pte); 3661 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3662 struct hl_hr_mmu_funcs *hr_func, 3663 struct hl_mmu_properties *mmu_prop); 3664 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3665 struct hl_mmu_hr_priv *hr_priv, 3666 struct hl_hr_mmu_funcs *hr_func, 3667 struct hl_mmu_properties *mmu_prop, 3668 u64 curr_pte, bool *is_new_hop); 3669 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3670 struct hl_hr_mmu_funcs *hr_func); 3671 void hl_mmu_swap_out(struct hl_ctx *ctx); 3672 void hl_mmu_swap_in(struct hl_ctx *ctx); 3673 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3674 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3675 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3676 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3677 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3678 struct hl_mmu_hop_info *hops); 3679 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3680 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3681 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3682 3683 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3684 void __iomem *dst, u32 src_offset, u32 size); 3685 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3686 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3687 u16 len, u32 timeout, u64 *result); 3688 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3689 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3690 size_t irq_arr_size); 3691 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3692 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3693 dma_addr_t *dma_handle); 3694 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3695 void *vaddr); 3696 int hl_fw_send_heartbeat(struct hl_device *hdev); 3697 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3698 u32 sts_boot_dev_sts0_reg, 3699 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3700 u32 boot_err1_reg); 3701 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3702 u32 sts_boot_dev_sts0_reg, 3703 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3704 u32 boot_err1_reg); 3705 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3706 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3707 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3708 struct hl_info_pci_counters *counters); 3709 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3710 u64 *total_energy); 3711 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3712 enum pll_index *pll_index); 3713 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3714 u16 *pll_freq_arr); 3715 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3716 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3717 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3718 int hl_fw_init_cpu(struct hl_device *hdev); 3719 int hl_fw_read_preboot_status(struct hl_device *hdev); 3720 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3721 struct fw_load_mgr *fw_loader, 3722 enum comms_cmd cmd, unsigned int size, 3723 bool wait_ok, u32 timeout); 3724 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3725 struct cpucp_hbm_row_info *info); 3726 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3727 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3728 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3729 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3730 bool is_wc[3]); 3731 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3732 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3733 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3734 struct hl_inbound_pci_region *pci_region); 3735 int hl_pci_set_outbound_region(struct hl_device *hdev, 3736 struct hl_outbound_pci_region *pci_region); 3737 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3738 int hl_pci_init(struct hl_device *hdev); 3739 void hl_pci_fini(struct hl_device *hdev); 3740 3741 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3742 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3743 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3744 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3745 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3746 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3747 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3748 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3749 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3750 long hl_fw_get_max_power(struct hl_device *hdev); 3751 void hl_fw_set_max_power(struct hl_device *hdev); 3752 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3753 u32 nonce); 3754 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3755 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3756 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3757 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3758 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3759 void hl_fw_set_pll_profile(struct hl_device *hdev); 3760 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3761 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3762 3763 void hw_sob_get(struct hl_hw_sob *hw_sob); 3764 void hw_sob_put(struct hl_hw_sob *hw_sob); 3765 void hl_encaps_handle_do_release(struct kref *ref); 3766 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3767 struct hl_cs *cs, struct hl_cs_job *job, 3768 struct hl_cs_compl *cs_cmpl); 3769 3770 int hl_dec_init(struct hl_device *hdev); 3771 void hl_dec_fini(struct hl_device *hdev); 3772 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3773 3774 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3775 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3776 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3777 3778 int hl_state_dump(struct hl_device *hdev); 3779 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 3780 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 3781 struct hl_mon_state_dump *mon); 3782 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 3783 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 3784 const char *format, ...); 3785 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 3786 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 3787 3788 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 3789 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 3790 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 3791 void *args); 3792 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 3793 u64 handle); 3794 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 3795 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 3796 struct hl_mmap_mem_buf * 3797 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 3798 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 3799 void *args); 3800 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 3801 3802 #ifdef CONFIG_DEBUG_FS 3803 3804 void hl_debugfs_init(void); 3805 void hl_debugfs_fini(void); 3806 void hl_debugfs_add_device(struct hl_device *hdev); 3807 void hl_debugfs_remove_device(struct hl_device *hdev); 3808 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 3809 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 3810 void hl_debugfs_add_cb(struct hl_cb *cb); 3811 void hl_debugfs_remove_cb(struct hl_cb *cb); 3812 void hl_debugfs_add_cs(struct hl_cs *cs); 3813 void hl_debugfs_remove_cs(struct hl_cs *cs); 3814 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 3815 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 3816 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 3817 void hl_debugfs_remove_userptr(struct hl_device *hdev, 3818 struct hl_userptr *userptr); 3819 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3820 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 3821 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 3822 unsigned long length); 3823 3824 #else 3825 hl_debugfs_init(void)3826 static inline void __init hl_debugfs_init(void) 3827 { 3828 } 3829 hl_debugfs_fini(void)3830 static inline void hl_debugfs_fini(void) 3831 { 3832 } 3833 hl_debugfs_add_device(struct hl_device * hdev)3834 static inline void hl_debugfs_add_device(struct hl_device *hdev) 3835 { 3836 } 3837 hl_debugfs_remove_device(struct hl_device * hdev)3838 static inline void hl_debugfs_remove_device(struct hl_device *hdev) 3839 { 3840 } 3841 hl_debugfs_add_file(struct hl_fpriv * hpriv)3842 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 3843 { 3844 } 3845 hl_debugfs_remove_file(struct hl_fpriv * hpriv)3846 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 3847 { 3848 } 3849 hl_debugfs_add_cb(struct hl_cb * cb)3850 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 3851 { 3852 } 3853 hl_debugfs_remove_cb(struct hl_cb * cb)3854 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 3855 { 3856 } 3857 hl_debugfs_add_cs(struct hl_cs * cs)3858 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 3859 { 3860 } 3861 hl_debugfs_remove_cs(struct hl_cs * cs)3862 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 3863 { 3864 } 3865 hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3866 static inline void hl_debugfs_add_job(struct hl_device *hdev, 3867 struct hl_cs_job *job) 3868 { 3869 } 3870 hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3871 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 3872 struct hl_cs_job *job) 3873 { 3874 } 3875 hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3876 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 3877 struct hl_userptr *userptr) 3878 { 3879 } 3880 hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3881 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 3882 struct hl_userptr *userptr) 3883 { 3884 } 3885 hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3886 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 3887 struct hl_ctx *ctx) 3888 { 3889 } 3890 hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3891 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 3892 struct hl_ctx *ctx) 3893 { 3894 } 3895 hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3896 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 3897 char *data, unsigned long length) 3898 { 3899 } 3900 3901 #endif 3902 3903 /* Security */ 3904 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 3905 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 3906 int array_size); 3907 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 3908 int mm_array_size, int offset, const u32 pb_blocks[], 3909 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 3910 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 3911 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 3912 int array_size); 3913 void hl_secure_block(struct hl_device *hdev, 3914 struct hl_block_glbl_sec sgs_array[], int array_size); 3915 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 3916 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3917 const u32 pb_blocks[], u32 blocks_array_size, 3918 const u32 *regs_array, u32 regs_array_size, u64 mask); 3919 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 3920 u32 num_instances, u32 instance_offset, 3921 const u32 pb_blocks[], u32 blocks_array_size, 3922 const u32 *regs_array, u32 regs_array_size); 3923 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 3924 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3925 const u32 pb_blocks[], u32 blocks_array_size, 3926 const struct range *regs_range_array, u32 regs_range_array_size, 3927 u64 mask); 3928 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 3929 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3930 const u32 pb_blocks[], u32 blocks_array_size, 3931 const struct range *regs_range_array, 3932 u32 regs_range_array_size); 3933 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 3934 u32 num_instances, u32 instance_offset, 3935 const u32 pb_blocks[], u32 blocks_array_size, 3936 const u32 *regs_array, u32 regs_array_size); 3937 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 3938 u32 num_instances, u32 instance_offset, 3939 const u32 pb_blocks[], u32 blocks_array_size, 3940 const struct range *regs_range_array, 3941 u32 regs_range_array_size); 3942 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 3943 u32 num_instances, u32 instance_offset, 3944 const u32 pb_blocks[], u32 blocks_array_size); 3945 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 3946 u32 dcore_offset, u32 num_instances, u32 instance_offset, 3947 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 3948 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 3949 u32 num_instances, u32 instance_offset, 3950 const u32 pb_blocks[], u32 blocks_array_size); 3951 3952 /* IOCTLs */ 3953 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); 3954 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 3955 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); 3956 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data); 3957 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data); 3958 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data); 3959 3960 #endif /* HABANALABSP_H_ */ 3961