1  /* SPDX-License-Identifier: GPL-2.0
2   *
3   * Copyright 2016-2022 HabanaLabs, Ltd.
4   * All Rights Reserved.
5   *
6   */
7  
8  #ifndef HABANALABSP_H_
9  #define HABANALABSP_H_
10  
11  #include "../include/common/cpucp_if.h"
12  #include "../include/common/qman_if.h"
13  #include "../include/hw_ip/mmu/mmu_general.h"
14  #include <uapi/misc/habanalabs.h>
15  
16  #include <linux/cdev.h>
17  #include <linux/iopoll.h>
18  #include <linux/irqreturn.h>
19  #include <linux/dma-direction.h>
20  #include <linux/scatterlist.h>
21  #include <linux/hashtable.h>
22  #include <linux/debugfs.h>
23  #include <linux/rwsem.h>
24  #include <linux/eventfd.h>
25  #include <linux/bitfield.h>
26  #include <linux/genalloc.h>
27  #include <linux/sched/signal.h>
28  #include <linux/io-64-nonatomic-lo-hi.h>
29  #include <linux/coresight.h>
30  #include <linux/dma-buf.h>
31  
32  #define HL_NAME				"habanalabs"
33  
34  struct hl_device;
35  struct hl_fpriv;
36  
37  /* Use upper bits of mmap offset to store habana driver specific information.
38   * bits[63:59] - Encode mmap type
39   * bits[45:0]  - mmap offset value
40   *
41   * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
42   *  defines are w.r.t to PAGE_SIZE
43   */
44  #define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
45  #define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
46  #define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
47  #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
48  #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
49  
50  #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
51  #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
52  
53  #define HL_PENDING_RESET_PER_SEC	10
54  #define HL_PENDING_RESET_MAX_TRIALS	60 /* 10 minutes */
55  #define HL_PENDING_RESET_LONG_SEC	60
56  
57  #define HL_HARD_RESET_MAX_TIMEOUT	120
58  #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
59  
60  #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
61  
62  #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
63  
64  #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
65  
66  #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
67  #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
68  #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
69  #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
70  
71  #define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
72  #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */
73  
74  #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
75  
76  #define HL_SIM_MAX_TIMEOUT_US		100000000 /* 100s */
77  
78  #define HL_INVALID_QUEUE		UINT_MAX
79  
80  #define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
81  #define HL_COMMON_DEC_INTERRUPT_ID	0xFFE
82  
83  #define HL_STATE_DUMP_HIST_LEN		5
84  
85  /* Default value for device reset trigger , an invalid value */
86  #define HL_RESET_TRIGGER_DEFAULT	0xFF
87  
88  #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
89  #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
90  
91  /* Memory */
92  #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
93  
94  /* MMU */
95  #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
96  
97  /**
98   * enum hl_mmu_page_table_location - mmu page table location
99   * @MMU_DR_PGT: page-table is located on device DRAM.
100   * @MMU_HR_PGT: page-table is located on host memory.
101   * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
102   */
103  enum hl_mmu_page_table_location {
104  	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
105  	MMU_HR_PGT,		/* host resident MMU PGT */
106  	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
107  };
108  
109  /**
110   * enum hl_mmu_enablement - what mmu modules to enable
111   * @MMU_EN_NONE: mmu disabled.
112   * @MMU_EN_ALL: enable all.
113   * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
114   */
115  enum hl_mmu_enablement {
116  	MMU_EN_NONE = 0,
117  	MMU_EN_ALL = 1,
118  	MMU_EN_PMMU_ONLY = 3,	/* N/A for Goya/Gaudi */
119  };
120  
121  /*
122   * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
123   * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
124   */
125  #define HL_RSVD_SOBS			2
126  #define HL_RSVD_MONS			1
127  
128  /*
129   * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
130   */
131  #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
132  
133  #define HL_MAX_SOB_VAL			(1 << 15)
134  
135  #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
136  #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
137  
138  #define HL_PCI_NUM_BARS			6
139  
140  /* Completion queue entry relates to completed job */
141  #define HL_COMPLETION_MODE_JOB		0
142  /* Completion queue entry relates to completed command submission */
143  #define HL_COMPLETION_MODE_CS		1
144  
145  #define HL_MAX_DCORES			8
146  
147  /* DMA alloc/free wrappers */
148  #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
149  	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
150  
151  #define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \
152  	hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__)
153  
154  #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
155  	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
156  
157  #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
158  	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
159  
160  #define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \
161  	hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__)
162  
163  #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
164  	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
165  
166  /*
167   * Reset Flags
168   *
169   * - HL_DRV_RESET_HARD
170   *       If set do hard reset to all engines. If not set reset just
171   *       compute/DMA engines.
172   *
173   * - HL_DRV_RESET_FROM_RESET_THR
174   *       Set if the caller is the hard-reset thread
175   *
176   * - HL_DRV_RESET_HEARTBEAT
177   *       Set if reset is due to heartbeat
178   *
179   * - HL_DRV_RESET_TDR
180   *       Set if reset is due to TDR
181   *
182   * - HL_DRV_RESET_DEV_RELEASE
183   *       Set if reset is due to device release
184   *
185   * - HL_DRV_RESET_BYPASS_REQ_TO_FW
186   *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
187   *       only when running with secured f/w
188   *
189   * - HL_DRV_RESET_FW_FATAL_ERR
190   *       Set if reset is due to a fatal error from FW
191   *
192   * - HL_DRV_RESET_DELAY
193   *       Set if a delay should be added before the reset
194   */
195  
196  #define HL_DRV_RESET_HARD		(1 << 0)
197  #define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
198  #define HL_DRV_RESET_HEARTBEAT		(1 << 2)
199  #define HL_DRV_RESET_TDR		(1 << 3)
200  #define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
201  #define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
202  #define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
203  #define HL_DRV_RESET_DELAY		(1 << 7)
204  
205  /*
206   * Security
207   */
208  
209  #define HL_PB_SHARED		1
210  #define HL_PB_NA		0
211  #define HL_PB_SINGLE_INSTANCE	1
212  #define HL_BLOCK_SIZE		0x1000
213  #define HL_BLOCK_GLBL_ERR_MASK	0xF40
214  #define HL_BLOCK_GLBL_ERR_ADDR	0xF44
215  #define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
216  #define HL_BLOCK_GLBL_SEC_OFFS	0xF80
217  #define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
218  #define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
219  #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
220  
221  enum hl_protection_levels {
222  	SECURED_LVL,
223  	PRIVILEGED_LVL,
224  	NON_SECURED_LVL
225  };
226  
227  /**
228   * struct iterate_module_ctx - HW module iterator
229   * @fn: function to apply to each HW module instance
230   * @data: optional internal data to the function iterator
231   * @rc: return code for optional use of iterator/iterator-caller
232   */
233  struct iterate_module_ctx {
234  	/*
235  	 * callback for the HW module iterator
236  	 * @hdev: pointer to the habanalabs device structure
237  	 * @block: block (ASIC specific definition can be dcore/hdcore)
238  	 * @inst: HW module instance within the block
239  	 * @offset: current HW module instance offset from the 1-st HW module instance
240  	 *          in the 1-st block
241  	 * @ctx: the iterator context.
242  	 */
243  	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
244  			struct iterate_module_ctx *ctx);
245  	void *data;
246  	int rc;
247  };
248  
249  struct hl_block_glbl_sec {
250  	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
251  };
252  
253  #define HL_MAX_SOBS_PER_MONITOR	8
254  
255  /**
256   * struct hl_gen_wait_properties - properties for generating a wait CB
257   * @data: command buffer
258   * @q_idx: queue id is used to extract fence register address
259   * @size: offset in command buffer
260   * @sob_base: SOB base to use in this wait CB
261   * @sob_val: SOB value to wait for
262   * @mon_id: monitor to use in this wait CB
263   * @sob_mask: each bit represents a SOB offset from sob_base to be used
264   */
265  struct hl_gen_wait_properties {
266  	void	*data;
267  	u32	q_idx;
268  	u32	size;
269  	u16	sob_base;
270  	u16	sob_val;
271  	u16	mon_id;
272  	u8	sob_mask;
273  };
274  
275  /**
276   * struct pgt_info - MMU hop page info.
277   * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
278   *        actual pgts for host resident MMU).
279   * @phys_addr: physical address of the pgt.
280   * @virt_addr: host virtual address of the pgt (see above device/host resident).
281   * @shadow_addr: shadow hop in the host for device resident MMU.
282   * @ctx: pointer to the owner ctx.
283   * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
284   *               allocated HOPs (all HOPs but HOP0)
285   *
286   * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
287   * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
288   *
289   * When a new level (hop) is needed during mapping this structure will be used to describe
290   * the newly allocated hop as well as to track number of PTEs in it.
291   * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
292   * freed with its pgt_info structure.
293   */
294  struct pgt_info {
295  	struct hlist_node	node;
296  	u64			phys_addr;
297  	u64			virt_addr;
298  	u64			shadow_addr;
299  	struct hl_ctx		*ctx;
300  	int			num_of_ptes;
301  };
302  
303  /**
304   * enum hl_pci_match_mode - pci match mode per region
305   * @PCI_ADDRESS_MATCH_MODE: address match mode
306   * @PCI_BAR_MATCH_MODE: bar match mode
307   */
308  enum hl_pci_match_mode {
309  	PCI_ADDRESS_MATCH_MODE,
310  	PCI_BAR_MATCH_MODE
311  };
312  
313  /**
314   * enum hl_fw_component - F/W components to read version through registers.
315   * @FW_COMP_BOOT_FIT: boot fit.
316   * @FW_COMP_PREBOOT: preboot.
317   * @FW_COMP_LINUX: linux.
318   */
319  enum hl_fw_component {
320  	FW_COMP_BOOT_FIT,
321  	FW_COMP_PREBOOT,
322  	FW_COMP_LINUX,
323  };
324  
325  /**
326   * enum hl_fw_types - F/W types present in the system
327   * @FW_TYPE_NONE: no FW component indication
328   * @FW_TYPE_LINUX: Linux image for device CPU
329   * @FW_TYPE_BOOT_CPU: Boot image for device CPU
330   * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
331   *                       (preboot, ppboot etc...)
332   * @FW_TYPE_ALL_TYPES: Mask for all types
333   */
334  enum hl_fw_types {
335  	FW_TYPE_NONE = 0x0,
336  	FW_TYPE_LINUX = 0x1,
337  	FW_TYPE_BOOT_CPU = 0x2,
338  	FW_TYPE_PREBOOT_CPU = 0x4,
339  	FW_TYPE_ALL_TYPES =
340  		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
341  };
342  
343  /**
344   * enum hl_queue_type - Supported QUEUE types.
345   * @QUEUE_TYPE_NA: queue is not available.
346   * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
347   *                  host.
348   * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
349   *			memories and/or operates the compute engines.
350   * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
351   * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
352   *                 notifications are sent by H/W.
353   */
354  enum hl_queue_type {
355  	QUEUE_TYPE_NA,
356  	QUEUE_TYPE_EXT,
357  	QUEUE_TYPE_INT,
358  	QUEUE_TYPE_CPU,
359  	QUEUE_TYPE_HW
360  };
361  
362  enum hl_cs_type {
363  	CS_TYPE_DEFAULT,
364  	CS_TYPE_SIGNAL,
365  	CS_TYPE_WAIT,
366  	CS_TYPE_COLLECTIVE_WAIT,
367  	CS_RESERVE_SIGNALS,
368  	CS_UNRESERVE_SIGNALS,
369  	CS_TYPE_ENGINE_CORE
370  };
371  
372  /*
373   * struct hl_inbound_pci_region - inbound region descriptor
374   * @mode: pci match mode for this region
375   * @addr: region target address
376   * @size: region size in bytes
377   * @offset_in_bar: offset within bar (address match mode)
378   * @bar: bar id
379   */
380  struct hl_inbound_pci_region {
381  	enum hl_pci_match_mode	mode;
382  	u64			addr;
383  	u64			size;
384  	u64			offset_in_bar;
385  	u8			bar;
386  };
387  
388  /*
389   * struct hl_outbound_pci_region - outbound region descriptor
390   * @addr: region target address
391   * @size: region size in bytes
392   */
393  struct hl_outbound_pci_region {
394  	u64	addr;
395  	u64	size;
396  };
397  
398  /*
399   * enum queue_cb_alloc_flags - Indicates queue support for CBs that
400   * allocated by Kernel or by User
401   * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
402   * @CB_ALLOC_USER: support only CBs that allocated by User
403   */
404  enum queue_cb_alloc_flags {
405  	CB_ALLOC_KERNEL = 0x1,
406  	CB_ALLOC_USER   = 0x2
407  };
408  
409  /*
410   * struct hl_hw_sob - H/W SOB info.
411   * @hdev: habanalabs device structure.
412   * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
413   * @sob_id: id of this SOB.
414   * @sob_addr: the sob offset from the base address.
415   * @q_idx: the H/W queue that uses this SOB.
416   * @need_reset: reset indication set when switching to the other sob.
417   */
418  struct hl_hw_sob {
419  	struct hl_device	*hdev;
420  	struct kref		kref;
421  	u32			sob_id;
422  	u32			sob_addr;
423  	u32			q_idx;
424  	bool			need_reset;
425  };
426  
427  enum hl_collective_mode {
428  	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
429  	HL_COLLECTIVE_MASTER = 0x1,
430  	HL_COLLECTIVE_SLAVE = 0x2
431  };
432  
433  /**
434   * struct hw_queue_properties - queue information.
435   * @type: queue type.
436   * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
437   *                  that allocated by the Kernel driver and therefore,
438   *                  a CB handle can be provided for jobs on this queue.
439   *                  Otherwise, a CB address must be provided.
440   * @collective_mode: collective mode of current queue
441   * @driver_only: true if only the driver is allowed to send a job to this queue,
442   *               false otherwise.
443   * @binned: True if the queue is binned out and should not be used
444   * @supports_sync_stream: True if queue supports sync stream
445   */
446  struct hw_queue_properties {
447  	enum hl_queue_type		type;
448  	enum queue_cb_alloc_flags	cb_alloc_flags;
449  	enum hl_collective_mode		collective_mode;
450  	u8				driver_only;
451  	u8				binned;
452  	u8				supports_sync_stream;
453  };
454  
455  /**
456   * enum vm_type - virtual memory mapping request information.
457   * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
458   * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
459   */
460  enum vm_type {
461  	VM_TYPE_USERPTR = 0x1,
462  	VM_TYPE_PHYS_PACK = 0x2
463  };
464  
465  /**
466   * enum mmu_op_flags - mmu operation relevant information.
467   * @MMU_OP_USERPTR: operation on user memory (host resident).
468   * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
469   * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
470   * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
471   */
472  enum mmu_op_flags {
473  	MMU_OP_USERPTR = 0x1,
474  	MMU_OP_PHYS_PACK = 0x2,
475  	MMU_OP_CLEAR_MEMCACHE = 0x4,
476  	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
477  };
478  
479  
480  /**
481   * enum hl_device_hw_state - H/W device state. use this to understand whether
482   *                           to do reset before hw_init or not
483   * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
484   * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
485   *                            hw_init
486   */
487  enum hl_device_hw_state {
488  	HL_DEVICE_HW_STATE_CLEAN = 0,
489  	HL_DEVICE_HW_STATE_DIRTY
490  };
491  
492  #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
493  
494  /**
495   * struct hl_mmu_properties - ASIC specific MMU address translation properties.
496   * @start_addr: virtual start address of the memory region.
497   * @end_addr: virtual end address of the memory region.
498   * @hop_shifts: array holds HOPs shifts.
499   * @hop_masks: array holds HOPs masks.
500   * @last_mask: mask to get the bit indicating this is the last hop.
501   * @pgt_size: size for page tables.
502   * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
503   *                        supporting multiple page size).
504   * @page_size: default page size used to allocate memory.
505   * @num_hops: The amount of hops supported by the translation table.
506   * @hop_table_size: HOP table size.
507   * @hop0_tables_total_size: total size for all HOP0 tables.
508   * @host_resident: Should the MMU page table reside in host memory or in the
509   *                 device DRAM.
510   */
511  struct hl_mmu_properties {
512  	u64	start_addr;
513  	u64	end_addr;
514  	u64	hop_shifts[MMU_HOP_MAX];
515  	u64	hop_masks[MMU_HOP_MAX];
516  	u64	last_mask;
517  	u64	pgt_size;
518  	u64	supported_pages_mask;
519  	u32	page_size;
520  	u32	num_hops;
521  	u32	hop_table_size;
522  	u32	hop0_tables_total_size;
523  	u8	host_resident;
524  };
525  
526  /**
527   * struct hl_hints_range - hint addresses reserved va range.
528   * @start_addr: start address of the va range.
529   * @end_addr: end address of the va range.
530   */
531  struct hl_hints_range {
532  	u64 start_addr;
533  	u64 end_addr;
534  };
535  
536  /**
537   * struct asic_fixed_properties - ASIC specific immutable properties.
538   * @hw_queues_props: H/W queues properties.
539   * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
540   *		available sensors.
541   * @uboot_ver: F/W U-boot version.
542   * @preboot_ver: F/W Preboot version.
543   * @dmmu: DRAM MMU address translation properties.
544   * @pmmu: PCI (host) MMU address translation properties.
545   * @pmmu_huge: PCI (host) MMU address translation properties for memory
546   *              allocated with huge pages.
547   * @hints_dram_reserved_va_range: dram hint addresses reserved range.
548   * @hints_host_reserved_va_range: host hint addresses reserved range.
549   * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
550   *                                      range.
551   * @sram_base_address: SRAM physical start address.
552   * @sram_end_address: SRAM physical end address.
553   * @sram_user_base_address - SRAM physical start address for user access.
554   * @dram_base_address: DRAM physical start address.
555   * @dram_end_address: DRAM physical end address.
556   * @dram_user_base_address: DRAM physical start address for user access.
557   * @dram_size: DRAM total size.
558   * @dram_pci_bar_size: size of PCI bar towards DRAM.
559   * @max_power_default: max power of the device after reset.
560   * @dc_power_default: power consumed by the device in mode idle.
561   * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
562   *                                      fault.
563   * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
564   * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
565   * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
566   * @mmu_dram_default_page_addr: DRAM default page physical address.
567   * @tpc_enabled_mask: which TPCs are enabled.
568   * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
569   * @dram_enabled_mask: which DRAMs are enabled.
570   * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
571   * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
572   *                  for hints validity check.
573   * @cfg_base_address: config space base address.
574   * @mmu_cache_mng_addr: address of the MMU cache.
575   * @mmu_cache_mng_size: size of the MMU cache.
576   * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
577   *                                     to enable the device to access them.
578   * @host_base_address: host physical start address for host DMA from device
579   * @host_end_address: host physical end address for host DMA from device
580   * @max_freq_value: current max clk frequency.
581   * @clk_pll_index: clock PLL index that specify which PLL determines the clock
582   *                 we display to the user
583   * @mmu_pgt_size: MMU page tables total size.
584   * @mmu_pte_size: PTE size in MMU page tables.
585   * @mmu_hop_table_size: MMU hop table size.
586   * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
587   * @dram_page_size: page size for MMU DRAM allocation.
588   * @cfg_size: configuration space size on SRAM.
589   * @sram_size: total size of SRAM.
590   * @max_asid: maximum number of open contexts (ASIDs).
591   * @num_of_events: number of possible internal H/W IRQs.
592   * @psoc_pci_pll_nr: PCI PLL NR value.
593   * @psoc_pci_pll_nf: PCI PLL NF value.
594   * @psoc_pci_pll_od: PCI PLL OD value.
595   * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
596   * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
597   * @high_pll: high PLL frequency used by the device.
598   * @cb_pool_cb_cnt: number of CBs in the CB pool.
599   * @cb_pool_cb_size: size of each CB in the CB pool.
600   * @decoder_enabled_mask: which decoders are enabled.
601   * @decoder_binning_mask: which decoders are binned, 0 means usable and 1
602   *                        means binned (at most one binned decoder per dcore).
603   * @edma_enabled_mask: which EDMAs are enabled.
604   * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
605   *                     binned (at most one binned DMA).
606   * @max_pending_cs: maximum of concurrent pending command submissions
607   * @max_queues: maximum amount of queues in the system
608   * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
609   *                                capabilities reported by FW, bit description
610   *                                can be found in CPU_BOOT_DEV_STS0
611   * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
612   *                                capabilities reported by FW, bit description
613   *                                can be found in CPU_BOOT_DEV_STS1
614   * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
615   *                                status reported by FW, bit description can be
616   *                                found in CPU_BOOT_DEV_STS0
617   * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
618   *                                status reported by FW, bit description can be
619   *                                found in CPU_BOOT_DEV_STS1
620   * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
621   *                            status reported by FW, bit description can be
622   *                            found in CPU_BOOT_DEV_STS0
623   * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
624   *                            status reported by FW, bit description can be
625   *                            found in CPU_BOOT_DEV_STS1
626   * @max_dec: maximum number of decoders
627   * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
628   *                         1- enabled, 0- isolated.
629   * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
630   *                         1- faulty cluster, 0- good cluster.
631   * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
632   *                          1- enabled, 0- isolated.
633   * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
634   *                                      which the property supports_user_set_page_size is true
635   *                                      (i.e. the DRAM supports multiple page sizes), otherwise
636   *                                      it will shall  be equal to dram_page_size.
637   * @num_engine_cores: number of engine cpu cores
638   * @collective_first_sob: first sync object available for collective use
639   * @collective_first_mon: first monitor available for collective use
640   * @sync_stream_first_sob: first sync object available for sync stream use
641   * @sync_stream_first_mon: first monitor available for sync stream use
642   * @first_available_user_sob: first sob available for the user
643   * @first_available_user_mon: first monitor available for the user
644   * @first_available_user_interrupt: first available interrupt reserved for the user
645   * @first_available_cq: first available CQ for the user.
646   * @user_interrupt_count: number of user interrupts.
647   * @user_dec_intr_count: number of decoder interrupts exposed to user.
648   * @cache_line_size: device cache line size.
649   * @server_type: Server type that the ASIC is currently installed in.
650   *               The value is according to enum hl_server_type in uapi file.
651   * @completion_queues_count: number of completion queues.
652   * @completion_mode: 0 - job based completion, 1 - cs based completion
653   * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
654   *                         in Master/Slave mode
655   * @fw_security_enabled: true if security measures are enabled in firmware,
656   *                       false otherwise
657   * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
658   *                              BOOT_DEV_STS0
659   * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
660   *                              BOOT_DEV_STS1
661   * @dram_supports_virtual_memory: is there an MMU towards the DRAM
662   * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
663   * @num_functional_hbms: number of functional HBMs in each DCORE.
664   * @hints_range_reservation: device support hint addresses range reservation.
665   * @iatu_done_by_fw: true if iATU configuration is being done by FW.
666   * @dynamic_fw_load: is dynamic FW load is supported.
667   * @gic_interrupts_enable: true if FW is not blocking GIC controller,
668   *                         false otherwise.
669   * @use_get_power_for_reset_history: To support backward compatibility for Goya
670   *                                   and Gaudi
671   * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
672   * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
673   *                              initiated by user or TDR. This is only true
674   *                              in inference ASICs, as there is no real-world
675   *                              use-case of doing soft-reset in training (due
676   *                              to the fact that training runs on multiple
677   *                              devices)
678   * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
679   * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
680   * @supports_user_set_page_size: true if user can set the allocation page size.
681   * @dma_mask: the dma mask to be set for this device
682   * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
683   */
684  struct asic_fixed_properties {
685  	struct hw_queue_properties	*hw_queues_props;
686  	struct cpucp_info		cpucp_info;
687  	char				uboot_ver[VERSION_MAX_LEN];
688  	char				preboot_ver[VERSION_MAX_LEN];
689  	struct hl_mmu_properties	dmmu;
690  	struct hl_mmu_properties	pmmu;
691  	struct hl_mmu_properties	pmmu_huge;
692  	struct hl_hints_range		hints_dram_reserved_va_range;
693  	struct hl_hints_range		hints_host_reserved_va_range;
694  	struct hl_hints_range		hints_host_hpage_reserved_va_range;
695  	u64				sram_base_address;
696  	u64				sram_end_address;
697  	u64				sram_user_base_address;
698  	u64				dram_base_address;
699  	u64				dram_end_address;
700  	u64				dram_user_base_address;
701  	u64				dram_size;
702  	u64				dram_pci_bar_size;
703  	u64				max_power_default;
704  	u64				dc_power_default;
705  	u64				dram_size_for_default_page_mapping;
706  	u64				pcie_dbi_base_address;
707  	u64				pcie_aux_dbi_reg_addr;
708  	u64				mmu_pgt_addr;
709  	u64				mmu_dram_default_page_addr;
710  	u64				tpc_enabled_mask;
711  	u64				tpc_binning_mask;
712  	u64				dram_enabled_mask;
713  	u64				dram_binning_mask;
714  	u64				dram_hints_align_mask;
715  	u64				cfg_base_address;
716  	u64				mmu_cache_mng_addr;
717  	u64				mmu_cache_mng_size;
718  	u64				device_dma_offset_for_host_access;
719  	u64				host_base_address;
720  	u64				host_end_address;
721  	u64				max_freq_value;
722  	u32				clk_pll_index;
723  	u32				mmu_pgt_size;
724  	u32				mmu_pte_size;
725  	u32				mmu_hop_table_size;
726  	u32				mmu_hop0_tables_total_size;
727  	u32				dram_page_size;
728  	u32				cfg_size;
729  	u32				sram_size;
730  	u32				max_asid;
731  	u32				num_of_events;
732  	u32				psoc_pci_pll_nr;
733  	u32				psoc_pci_pll_nf;
734  	u32				psoc_pci_pll_od;
735  	u32				psoc_pci_pll_div_factor;
736  	u32				psoc_timestamp_frequency;
737  	u32				high_pll;
738  	u32				cb_pool_cb_cnt;
739  	u32				cb_pool_cb_size;
740  	u32				decoder_enabled_mask;
741  	u32				decoder_binning_mask;
742  	u32				edma_enabled_mask;
743  	u32				edma_binning_mask;
744  	u32				max_pending_cs;
745  	u32				max_queues;
746  	u32				fw_preboot_cpu_boot_dev_sts0;
747  	u32				fw_preboot_cpu_boot_dev_sts1;
748  	u32				fw_bootfit_cpu_boot_dev_sts0;
749  	u32				fw_bootfit_cpu_boot_dev_sts1;
750  	u32				fw_app_cpu_boot_dev_sts0;
751  	u32				fw_app_cpu_boot_dev_sts1;
752  	u32				max_dec;
753  	u32				hmmu_hif_enabled_mask;
754  	u32				faulty_dram_cluster_map;
755  	u32				xbar_edge_enabled_mask;
756  	u32				device_mem_alloc_default_page_size;
757  	u32				num_engine_cores;
758  	u16				collective_first_sob;
759  	u16				collective_first_mon;
760  	u16				sync_stream_first_sob;
761  	u16				sync_stream_first_mon;
762  	u16				first_available_user_sob[HL_MAX_DCORES];
763  	u16				first_available_user_mon[HL_MAX_DCORES];
764  	u16				first_available_user_interrupt;
765  	u16				first_available_cq[HL_MAX_DCORES];
766  	u16				user_interrupt_count;
767  	u16				user_dec_intr_count;
768  	u16				cache_line_size;
769  	u16				server_type;
770  	u8				completion_queues_count;
771  	u8				completion_mode;
772  	u8				mme_master_slave_mode;
773  	u8				fw_security_enabled;
774  	u8				fw_cpu_boot_dev_sts0_valid;
775  	u8				fw_cpu_boot_dev_sts1_valid;
776  	u8				dram_supports_virtual_memory;
777  	u8				hard_reset_done_by_fw;
778  	u8				num_functional_hbms;
779  	u8				hints_range_reservation;
780  	u8				iatu_done_by_fw;
781  	u8				dynamic_fw_load;
782  	u8				gic_interrupts_enable;
783  	u8				use_get_power_for_reset_history;
784  	u8				supports_compute_reset;
785  	u8				allow_inference_soft_reset;
786  	u8				configurable_stop_on_err;
787  	u8				set_max_power_on_device_init;
788  	u8				supports_user_set_page_size;
789  	u8				dma_mask;
790  	u8				supports_advanced_cpucp_rc;
791  };
792  
793  /**
794   * struct hl_fence - software synchronization primitive
795   * @completion: fence is implemented using completion
796   * @refcount: refcount for this fence
797   * @cs_sequence: sequence of the corresponding command submission
798   * @stream_master_qid_map: streams masters QID bitmap to represent all streams
799   *                         masters QIDs that multi cs is waiting on
800   * @error: mark this fence with error
801   * @timestamp: timestamp upon completion
802   * @mcs_handling_done: indicates that corresponding command submission has
803   *                     finished msc handling, this does not mean it was part
804   *                     of the mcs
805   */
806  struct hl_fence {
807  	struct completion	completion;
808  	struct kref		refcount;
809  	u64			cs_sequence;
810  	u32			stream_master_qid_map;
811  	int			error;
812  	ktime_t			timestamp;
813  	u8			mcs_handling_done;
814  };
815  
816  /**
817   * struct hl_cs_compl - command submission completion object.
818   * @base_fence: hl fence object.
819   * @lock: spinlock to protect fence.
820   * @hdev: habanalabs device structure.
821   * @hw_sob: the H/W SOB used in this signal/wait CS.
822   * @encaps_sig_hdl: encaps signals handler.
823   * @cs_seq: command submission sequence number.
824   * @type: type of the CS - signal/wait.
825   * @sob_val: the SOB value that is used in this signal/wait CS.
826   * @sob_group: the SOB group that is used in this collective wait CS.
827   * @encaps_signals: indication whether it's a completion object of cs with
828   * encaps signals or not.
829   */
830  struct hl_cs_compl {
831  	struct hl_fence		base_fence;
832  	spinlock_t		lock;
833  	struct hl_device	*hdev;
834  	struct hl_hw_sob	*hw_sob;
835  	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
836  	u64			cs_seq;
837  	enum hl_cs_type		type;
838  	u16			sob_val;
839  	u16			sob_group;
840  	bool			encaps_signals;
841  };
842  
843  /*
844   * Command Buffers
845   */
846  
847  /**
848   * struct hl_ts_buff - describes a timestamp buffer.
849   * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
850   * @user_buff_address: Holds the user buffer's kernel virtual address.
851   * @kernel_buff_size: Holds the internal kernel buffer size.
852   */
853  struct hl_ts_buff {
854  	void			*kernel_buff_address;
855  	void			*user_buff_address;
856  	u32			kernel_buff_size;
857  };
858  
859  struct hl_mmap_mem_buf;
860  
861  /**
862   * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
863   * @dev: back pointer to the owning device
864   * @lock: protects handles
865   * @handles: an idr holding all active handles to the memory buffers in the system.
866   */
867  struct hl_mem_mgr {
868  	struct device *dev;
869  	spinlock_t lock;
870  	struct idr handles;
871  };
872  
873  /**
874   * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
875   * @topic: string identifier used for logging
876   * @mem_id: memory type identifier, embedded in the handle and used to identify
877   *          the memory type by handle.
878   * @alloc: callback executed on buffer allocation, shall allocate the memory,
879   *         set it under buffer private, and set mappable size.
880   * @mmap: callback executed on mmap, must map the buffer to vma
881   * @release: callback executed on release, must free the resources used by the buffer
882   */
883  struct hl_mmap_mem_buf_behavior {
884  	const char *topic;
885  	u64 mem_id;
886  
887  	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
888  	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
889  	void (*release)(struct hl_mmap_mem_buf *buf);
890  };
891  
892  /**
893   * struct hl_mmap_mem_buf - describes a single unified memory buffer
894   * @behavior: buffer behavior
895   * @mmg: back pointer to the unified memory manager
896   * @refcount: reference counter for buffer users
897   * @private: pointer to buffer behavior private data
898   * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
899   * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
900   *                   may change at runtime.
901   * @mappable_size: the original mappable size of the buffer, does not change after
902   *                 the allocation.
903   * @handle: the buffer id in mmg handles store
904   */
905  struct hl_mmap_mem_buf {
906  	struct hl_mmap_mem_buf_behavior *behavior;
907  	struct hl_mem_mgr *mmg;
908  	struct kref refcount;
909  	void *private;
910  	atomic_t mmap;
911  	u64 real_mapped_size;
912  	u64 mappable_size;
913  	u64 handle;
914  };
915  
916  /**
917   * struct hl_cb - describes a Command Buffer.
918   * @hdev: pointer to device this CB belongs to.
919   * @ctx: pointer to the CB owner's context.
920   * @buf: back pointer to the parent mappable memory buffer
921   * @debugfs_list: node in debugfs list of command buffers.
922   * @pool_list: node in pool list of command buffers.
923   * @kernel_address: Holds the CB's kernel virtual address.
924   * @virtual_addr: Holds the CB's virtual address.
925   * @bus_address: Holds the CB's DMA address.
926   * @size: holds the CB's size.
927   * @roundup_size: holds the cb size after roundup to page size.
928   * @cs_cnt: holds number of CS that this CB participates in.
929   * @is_pool: true if CB was acquired from the pool, false otherwise.
930   * @is_internal: internally allocated
931   * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
932   */
933  struct hl_cb {
934  	struct hl_device	*hdev;
935  	struct hl_ctx		*ctx;
936  	struct hl_mmap_mem_buf	*buf;
937  	struct list_head	debugfs_list;
938  	struct list_head	pool_list;
939  	void			*kernel_address;
940  	u64			virtual_addr;
941  	dma_addr_t		bus_address;
942  	u32			size;
943  	u32			roundup_size;
944  	atomic_t		cs_cnt;
945  	u8			is_pool;
946  	u8			is_internal;
947  	u8			is_mmu_mapped;
948  };
949  
950  
951  /*
952   * QUEUES
953   */
954  
955  struct hl_cs_job;
956  
957  /* Queue length of external and HW queues */
958  #define HL_QUEUE_LENGTH			4096
959  #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
960  
961  #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
962  #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
963  #endif
964  
965  /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
966  #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
967  #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
968  
969  /* Must be power of 2 */
970  #define HL_EQ_LENGTH			64
971  #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
972  
973  /* Host <-> CPU-CP shared memory size */
974  #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
975  
976  /**
977   * struct hl_sync_stream_properties -
978   *     describes a H/W queue sync stream properties
979   * @hw_sob: array of the used H/W SOBs by this H/W queue.
980   * @next_sob_val: the next value to use for the currently used SOB.
981   * @base_sob_id: the base SOB id of the SOBs used by this queue.
982   * @base_mon_id: the base MON id of the MONs used by this queue.
983   * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
984   *                          in order to sync with all slave queues.
985   * @collective_slave_mon_id: the MON id used by this slave queue in order to
986   *                           sync with its master queue.
987   * @collective_sob_id: current SOB id used by this collective slave queue
988   *                     to signal its collective master queue upon completion.
989   * @curr_sob_offset: the id offset to the currently used SOB from the
990   *                   HL_RSVD_SOBS that are being used by this queue.
991   */
992  struct hl_sync_stream_properties {
993  	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
994  	u16		next_sob_val;
995  	u16		base_sob_id;
996  	u16		base_mon_id;
997  	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
998  	u16		collective_slave_mon_id;
999  	u16		collective_sob_id;
1000  	u8		curr_sob_offset;
1001  };
1002  
1003  /**
1004   * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1005   * handlers manager
1006   * @lock: protects handles.
1007   * @handles: an idr to hold all encapsulated signals handles.
1008   */
1009  struct hl_encaps_signals_mgr {
1010  	spinlock_t		lock;
1011  	struct idr		handles;
1012  };
1013  
1014  /**
1015   * struct hl_hw_queue - describes a H/W transport queue.
1016   * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1017   * @sync_stream_prop: sync stream queue properties
1018   * @queue_type: type of queue.
1019   * @collective_mode: collective mode of current queue
1020   * @kernel_address: holds the queue's kernel virtual address.
1021   * @bus_address: holds the queue's DMA address.
1022   * @pi: holds the queue's pi value.
1023   * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1024   * @hw_queue_id: the id of the H/W queue.
1025   * @cq_id: the id for the corresponding CQ for this H/W queue.
1026   * @msi_vec: the IRQ number of the H/W queue.
1027   * @int_queue_len: length of internal queue (number of entries).
1028   * @valid: is the queue valid (we have array of 32 queues, not all of them
1029   *         exist).
1030   * @supports_sync_stream: True if queue supports sync stream
1031   */
1032  struct hl_hw_queue {
1033  	struct hl_cs_job			**shadow_queue;
1034  	struct hl_sync_stream_properties	sync_stream_prop;
1035  	enum hl_queue_type			queue_type;
1036  	enum hl_collective_mode			collective_mode;
1037  	void					*kernel_address;
1038  	dma_addr_t				bus_address;
1039  	u32					pi;
1040  	atomic_t				ci;
1041  	u32					hw_queue_id;
1042  	u32					cq_id;
1043  	u32					msi_vec;
1044  	u16					int_queue_len;
1045  	u8					valid;
1046  	u8					supports_sync_stream;
1047  };
1048  
1049  /**
1050   * struct hl_cq - describes a completion queue
1051   * @hdev: pointer to the device structure
1052   * @kernel_address: holds the queue's kernel virtual address
1053   * @bus_address: holds the queue's DMA address
1054   * @cq_idx: completion queue index in array
1055   * @hw_queue_id: the id of the matching H/W queue
1056   * @ci: ci inside the queue
1057   * @pi: pi inside the queue
1058   * @free_slots_cnt: counter of free slots in queue
1059   */
1060  struct hl_cq {
1061  	struct hl_device	*hdev;
1062  	void			*kernel_address;
1063  	dma_addr_t		bus_address;
1064  	u32			cq_idx;
1065  	u32			hw_queue_id;
1066  	u32			ci;
1067  	u32			pi;
1068  	atomic_t		free_slots_cnt;
1069  };
1070  
1071  /**
1072   * struct hl_user_interrupt - holds user interrupt information
1073   * @hdev: pointer to the device structure
1074   * @wait_list_head: head to the list of user threads pending on this interrupt
1075   * @wait_list_lock: protects wait_list_head
1076   * @interrupt_id: msix interrupt id
1077   * @is_decoder: whether this entry represents a decoder interrupt
1078   */
1079  struct hl_user_interrupt {
1080  	struct hl_device	*hdev;
1081  	struct list_head	wait_list_head;
1082  	spinlock_t		wait_list_lock;
1083  	u32			interrupt_id;
1084  	bool			is_decoder;
1085  };
1086  
1087  /**
1088   * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1089   * @free_objects_node: node in the list free_obj_jobs
1090   * @cq_cb: pointer to cq command buffer to be freed
1091   * @buf: pointer to timestamp buffer to be freed
1092   */
1093  struct timestamp_reg_free_node {
1094  	struct list_head	free_objects_node;
1095  	struct hl_cb		*cq_cb;
1096  	struct hl_mmap_mem_buf	*buf;
1097  };
1098  
1099  /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1100   * the job will be to pass over the free_obj_jobs list and put refcount to objects
1101   * in each node of the list
1102   * @free_obj: workqueue object to free timestamp registration node objects
1103   * @hdev: pointer to the device structure
1104   * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1105   */
1106  struct timestamp_reg_work_obj {
1107  	struct work_struct	free_obj;
1108  	struct hl_device	*hdev;
1109  	struct list_head	*free_obj_head;
1110  };
1111  
1112  /* struct timestamp_reg_info - holds the timestamp registration related data.
1113   * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1114   *       relevant only when doing timestamps records registration.
1115   * @cq_cb: pointer to CQ counter CB.
1116   * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1117   *                         relevant only when doing timestamps records
1118   *                         registration.
1119   * @in_use: indicates if the node already in use. relevant only when doing
1120   *          timestamps records registration, since in this case the driver
1121   *          will have it's own buffer which serve as a records pool instead of
1122   *          allocating records dynamically.
1123   */
1124  struct timestamp_reg_info {
1125  	struct hl_mmap_mem_buf	*buf;
1126  	struct hl_cb		*cq_cb;
1127  	u64			*timestamp_kernel_addr;
1128  	u8			in_use;
1129  };
1130  
1131  /**
1132   * struct hl_user_pending_interrupt - holds a context to a user thread
1133   *                                    pending on an interrupt
1134   * @ts_reg_info: holds the timestamps registration nodes info
1135   * @wait_list_node: node in the list of user threads pending on an interrupt
1136   * @fence: hl fence object for interrupt completion
1137   * @cq_target_value: CQ target value
1138   * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1139   *                  handler for target value comparison
1140   */
1141  struct hl_user_pending_interrupt {
1142  	struct timestamp_reg_info	ts_reg_info;
1143  	struct list_head		wait_list_node;
1144  	struct hl_fence			fence;
1145  	u64				cq_target_value;
1146  	u64				*cq_kernel_addr;
1147  };
1148  
1149  /**
1150   * struct hl_eq - describes the event queue (single one per device)
1151   * @hdev: pointer to the device structure
1152   * @kernel_address: holds the queue's kernel virtual address
1153   * @bus_address: holds the queue's DMA address
1154   * @ci: ci inside the queue
1155   * @prev_eqe_index: the index of the previous event queue entry. The index of
1156   *                  the current entry's index must be +1 of the previous one.
1157   * @check_eqe_index: do we need to check the index of the current entry vs. the
1158   *                   previous one. This is for backward compatibility with older
1159   *                   firmwares
1160   */
1161  struct hl_eq {
1162  	struct hl_device	*hdev;
1163  	void			*kernel_address;
1164  	dma_addr_t		bus_address;
1165  	u32			ci;
1166  	u32			prev_eqe_index;
1167  	bool			check_eqe_index;
1168  };
1169  
1170  /**
1171   * struct hl_dec - describes a decoder sw instance.
1172   * @hdev: pointer to the device structure.
1173   * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
1174   * @core_id: ID of the decoder.
1175   * @base_addr: base address of the decoder.
1176   */
1177  struct hl_dec {
1178  	struct hl_device		*hdev;
1179  	struct work_struct		completion_abnrm_work;
1180  	u32				core_id;
1181  	u32				base_addr;
1182  };
1183  
1184  /**
1185   * enum hl_asic_type - supported ASIC types.
1186   * @ASIC_INVALID: Invalid ASIC type.
1187   * @ASIC_GOYA: Goya device (HL-1000).
1188   * @ASIC_GAUDI: Gaudi device (HL-2000).
1189   * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1190   * @ASIC_GAUDI2: Gaudi2 device.
1191   * @ASIC_GAUDI2_SEC: Gaudi2 secured device.
1192   */
1193  enum hl_asic_type {
1194  	ASIC_INVALID,
1195  	ASIC_GOYA,
1196  	ASIC_GAUDI,
1197  	ASIC_GAUDI_SEC,
1198  	ASIC_GAUDI2,
1199  	ASIC_GAUDI2_SEC,
1200  };
1201  
1202  struct hl_cs_parser;
1203  
1204  /**
1205   * enum hl_pm_mng_profile - power management profile.
1206   * @PM_AUTO: internal clock is set by the Linux driver.
1207   * @PM_MANUAL: internal clock is set by the user.
1208   * @PM_LAST: last power management type.
1209   */
1210  enum hl_pm_mng_profile {
1211  	PM_AUTO = 1,
1212  	PM_MANUAL,
1213  	PM_LAST
1214  };
1215  
1216  /**
1217   * enum hl_pll_frequency - PLL frequency.
1218   * @PLL_HIGH: high frequency.
1219   * @PLL_LOW: low frequency.
1220   * @PLL_LAST: last frequency values that were configured by the user.
1221   */
1222  enum hl_pll_frequency {
1223  	PLL_HIGH = 1,
1224  	PLL_LOW,
1225  	PLL_LAST
1226  };
1227  
1228  #define PLL_REF_CLK 50
1229  
1230  enum div_select_defs {
1231  	DIV_SEL_REF_CLK = 0,
1232  	DIV_SEL_PLL_CLK = 1,
1233  	DIV_SEL_DIVIDED_REF = 2,
1234  	DIV_SEL_DIVIDED_PLL = 3,
1235  };
1236  
1237  enum debugfs_access_type {
1238  	DEBUGFS_READ8,
1239  	DEBUGFS_WRITE8,
1240  	DEBUGFS_READ32,
1241  	DEBUGFS_WRITE32,
1242  	DEBUGFS_READ64,
1243  	DEBUGFS_WRITE64,
1244  };
1245  
1246  enum pci_region {
1247  	PCI_REGION_CFG,
1248  	PCI_REGION_SRAM,
1249  	PCI_REGION_DRAM,
1250  	PCI_REGION_SP_SRAM,
1251  	PCI_REGION_NUMBER,
1252  };
1253  
1254  /**
1255   * struct pci_mem_region - describe memory region in a PCI bar
1256   * @region_base: region base address
1257   * @region_size: region size
1258   * @bar_size: size of the BAR
1259   * @offset_in_bar: region offset into the bar
1260   * @bar_id: bar ID of the region
1261   * @used: if used 1, otherwise 0
1262   */
1263  struct pci_mem_region {
1264  	u64 region_base;
1265  	u64 region_size;
1266  	u64 bar_size;
1267  	u64 offset_in_bar;
1268  	u8 bar_id;
1269  	u8 used;
1270  };
1271  
1272  /**
1273   * struct static_fw_load_mgr - static FW load manager
1274   * @preboot_version_max_off: max offset to preboot version
1275   * @boot_fit_version_max_off: max offset to boot fit version
1276   * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1277   * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1278   * @cpu_boot_status_reg: boot status register
1279   * @cpu_boot_dev_status0_reg: boot device status register 0
1280   * @cpu_boot_dev_status1_reg: boot device status register 1
1281   * @boot_err0_reg: boot error register 0
1282   * @boot_err1_reg: boot error register 1
1283   * @preboot_version_offset_reg: SRAM offset to preboot version register
1284   * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1285   * @sram_offset_mask: mask for getting offset into the SRAM
1286   * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1287   */
1288  struct static_fw_load_mgr {
1289  	u64 preboot_version_max_off;
1290  	u64 boot_fit_version_max_off;
1291  	u32 kmd_msg_to_cpu_reg;
1292  	u32 cpu_cmd_status_to_host_reg;
1293  	u32 cpu_boot_status_reg;
1294  	u32 cpu_boot_dev_status0_reg;
1295  	u32 cpu_boot_dev_status1_reg;
1296  	u32 boot_err0_reg;
1297  	u32 boot_err1_reg;
1298  	u32 preboot_version_offset_reg;
1299  	u32 boot_fit_version_offset_reg;
1300  	u32 sram_offset_mask;
1301  	u32 cpu_reset_wait_msec;
1302  };
1303  
1304  /**
1305   * struct fw_response - FW response to LKD command
1306   * @ram_offset: descriptor offset into the RAM
1307   * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1308   * @status: command status
1309   */
1310  struct fw_response {
1311  	u32 ram_offset;
1312  	u8 ram_type;
1313  	u8 status;
1314  };
1315  
1316  /**
1317   * struct dynamic_fw_load_mgr - dynamic FW load manager
1318   * @response: FW to LKD response
1319   * @comm_desc: the communication descriptor with FW
1320   * @image_region: region to copy the FW image to
1321   * @fw_image_size: size of FW image to load
1322   * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1323   * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1324   */
1325  struct dynamic_fw_load_mgr {
1326  	struct fw_response response;
1327  	struct lkd_fw_comms_desc comm_desc;
1328  	struct pci_mem_region *image_region;
1329  	size_t fw_image_size;
1330  	u32 wait_for_bl_timeout;
1331  	bool fw_desc_valid;
1332  };
1333  
1334  /**
1335   * struct pre_fw_load_props - needed properties for pre-FW load
1336   * @cpu_boot_status_reg: cpu_boot_status register address
1337   * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1338   * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1339   * @boot_err0_reg: boot_err0 register address
1340   * @boot_err1_reg: boot_err1 register address
1341   * @wait_for_preboot_timeout: timeout to poll for preboot ready
1342   */
1343  struct pre_fw_load_props {
1344  	u32 cpu_boot_status_reg;
1345  	u32 sts_boot_dev_sts0_reg;
1346  	u32 sts_boot_dev_sts1_reg;
1347  	u32 boot_err0_reg;
1348  	u32 boot_err1_reg;
1349  	u32 wait_for_preboot_timeout;
1350  };
1351  
1352  /**
1353   * struct fw_image_props - properties of FW image
1354   * @image_name: name of the image
1355   * @src_off: offset in src FW to copy from
1356   * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1357   */
1358  struct fw_image_props {
1359  	char *image_name;
1360  	u32 src_off;
1361  	u32 copy_size;
1362  };
1363  
1364  /**
1365   * struct fw_load_mgr - manager FW loading process
1366   * @dynamic_loader: specific structure for dynamic load
1367   * @static_loader: specific structure for static load
1368   * @pre_fw_load_props: parameter for pre FW load
1369   * @boot_fit_img: boot fit image properties
1370   * @linux_img: linux image properties
1371   * @cpu_timeout: CPU response timeout in usec
1372   * @boot_fit_timeout: Boot fit load timeout in usec
1373   * @skip_bmc: should BMC be skipped
1374   * @sram_bar_id: SRAM bar ID
1375   * @dram_bar_id: DRAM bar ID
1376   * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1377   *                  component. values are set according to enum hl_fw_types.
1378   */
1379  struct fw_load_mgr {
1380  	union {
1381  		struct dynamic_fw_load_mgr dynamic_loader;
1382  		struct static_fw_load_mgr static_loader;
1383  	};
1384  	struct pre_fw_load_props pre_fw_load;
1385  	struct fw_image_props boot_fit_img;
1386  	struct fw_image_props linux_img;
1387  	u32 cpu_timeout;
1388  	u32 boot_fit_timeout;
1389  	u8 skip_bmc;
1390  	u8 sram_bar_id;
1391  	u8 dram_bar_id;
1392  	u8 fw_comp_loaded;
1393  };
1394  
1395  struct hl_cs;
1396  
1397  /**
1398   * struct engines_data - asic engines data
1399   * @buf: buffer for engines data in ascii
1400   * @actual_size: actual size of data that was written by the driver to the allocated buffer
1401   * @allocated_buf_size: total size of allocated buffer
1402   */
1403  struct engines_data {
1404  	char *buf;
1405  	int actual_size;
1406  	u32 allocated_buf_size;
1407  };
1408  
1409  /**
1410   * struct hl_asic_funcs - ASIC specific functions that are can be called from
1411   *                        common code.
1412   * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1413   * @early_fini: tears down what was done in early_init.
1414   * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1415   * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1416   * @sw_init: sets up driver state, does not configure H/W.
1417   * @sw_fini: tears down driver state, does not configure H/W.
1418   * @hw_init: sets up the H/W state.
1419   * @hw_fini: tears down the H/W state.
1420   * @halt_engines: halt engines, needed for reset sequence. This also disables
1421   *                interrupts from the device. Should be called before
1422   *                hw_fini and before CS rollback.
1423   * @suspend: handles IP specific H/W or SW changes for suspend.
1424   * @resume: handles IP specific H/W or SW changes for resume.
1425   * @mmap: maps a memory.
1426   * @ring_doorbell: increment PI on a given QMAN.
1427   * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1428   *             function because the PQs are located in different memory areas
1429   *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1430   *             writing the PQE must match the destination memory area
1431   *             properties.
1432   * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1433   *                           dma_alloc_coherent(). This is ASIC function because
1434   *                           its implementation is not trivial when the driver
1435   *                           is loaded in simulation mode (not upstreamed).
1436   * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1437   *                           dma_free_coherent(). This is ASIC function because
1438   *                           its implementation is not trivial when the driver
1439   *                           is loaded in simulation mode (not upstreamed).
1440   * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1441   * @scrub_device_dram: Scrub the dram memory of the device.
1442   * @get_int_queue_base: get the internal queue base address.
1443   * @test_queues: run simple test on all queues for sanity check.
1444   * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1445   *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1446   * @asic_dma_pool_free: free small DMA allocation from pool.
1447   * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1448   * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1449   * @asic_dma_unmap_single: unmap a single DMA buffer
1450   * @asic_dma_map_single: map a single buffer to a DMA
1451   * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1452   * @cs_parser: parse Command Submission.
1453   * @asic_dma_map_sgtable: DMA map scatter-gather table.
1454   * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1455   * @update_eq_ci: update event queue CI.
1456   * @context_switch: called upon ASID context switch.
1457   * @restore_phase_topology: clear all SOBs amd MONs.
1458   * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1459   *                    internal memory via DMA engine.
1460   * @add_device_attr: add ASIC specific device attributes.
1461   * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1462   * @get_events_stat: retrieve event queue entries histogram.
1463   * @read_pte: read MMU page table entry from DRAM.
1464   * @write_pte: write MMU page table entry to DRAM.
1465   * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1466   *                        (L1 only) or hard (L0 & L1) flush.
1467   * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1468   * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1469   * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1470   * @debug_coresight: perform certain actions on Coresight for debugging.
1471   * @is_device_idle: return true if device is idle, false otherwise.
1472   * @compute_reset_late_init: perform certain actions needed after a compute reset
1473   * @hw_queues_lock: acquire H/W queues lock.
1474   * @hw_queues_unlock: release H/W queues lock.
1475   * @get_pci_id: retrieve PCI ID.
1476   * @get_eeprom_data: retrieve EEPROM data from F/W.
1477   * @get_monitor_dump: retrieve monitor registers dump from F/W.
1478   * @send_cpu_message: send message to F/W. If the message is timedout, the
1479   *                    driver will eventually reset the device. The timeout can
1480   *                    be determined by the calling function or it can be 0 and
1481   *                    then the timeout is the default timeout for the specific
1482   *                    ASIC
1483   * @get_hw_state: retrieve the H/W state
1484   * @pci_bars_map: Map PCI BARs.
1485   * @init_iatu: Initialize the iATU unit inside the PCI controller.
1486   * @rreg: Read a register. Needed for simulator support.
1487   * @wreg: Write a register. Needed for simulator support.
1488   * @halt_coresight: stop the ETF and ETR traces.
1489   * @ctx_init: context dependent initialization.
1490   * @ctx_fini: context dependent cleanup.
1491   * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1492   * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1493   * @load_firmware_to_device: load the firmware to the device's memory
1494   * @load_boot_fit_to_device: load boot fit to device's memory
1495   * @get_signal_cb_size: Get signal CB size.
1496   * @get_wait_cb_size: Get wait CB size.
1497   * @gen_signal_cb: Generate a signal CB.
1498   * @gen_wait_cb: Generate a wait CB.
1499   * @reset_sob: Reset a SOB.
1500   * @reset_sob_group: Reset SOB group
1501   * @get_device_time: Get the device time.
1502   * @pb_print_security_errors: print security errors according block and cause
1503   * @collective_wait_init_cs: Generate collective master/slave packets
1504   *                           and place them in the relevant cs jobs
1505   * @collective_wait_create_jobs: allocate collective wait cs jobs
1506   * @get_dec_base_addr: get the base address of a given decoder.
1507   * @scramble_addr: Routine to scramble the address prior of mapping it
1508   *                 in the MMU.
1509   * @descramble_addr: Routine to de-scramble the address prior of
1510   *                   showing it to users.
1511   * @ack_protection_bits_errors: ack and dump all security violations
1512   * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1513   *                   also returns the size of the block if caller supplies
1514   *                   a valid pointer for it
1515   * @hw_block_mmap: mmap a HW block with a given id.
1516   * @enable_events_from_fw: send interrupt to firmware to notify them the
1517   *                         driver is ready to receive asynchronous events. This
1518   *                         function should be called during the first init and
1519   *                         after every hard-reset of the device
1520   * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1521   * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1522   * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1523   *                         generic f/w compatible PLL Indexes
1524   * @init_firmware_preload_params: initialize pre FW-load parameters.
1525   * @init_firmware_loader: initialize data for FW loader.
1526   * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1527   * @state_dump_init: initialize constants required for state dump
1528   * @get_sob_addr: get SOB base address offset.
1529   * @set_pci_memory_regions: setting properties of PCI memory regions
1530   * @get_stream_master_qid_arr: get pointer to stream masters QID array
1531   * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1532   * @access_dev_mem: access device memory
1533   * @set_dram_bar_base: set the base of the DRAM BAR
1534   * @set_engine_cores: set a config command to enigne cores
1535   * @send_device_activity: indication to FW about device availability
1536   */
1537  struct hl_asic_funcs {
1538  	int (*early_init)(struct hl_device *hdev);
1539  	int (*early_fini)(struct hl_device *hdev);
1540  	int (*late_init)(struct hl_device *hdev);
1541  	void (*late_fini)(struct hl_device *hdev);
1542  	int (*sw_init)(struct hl_device *hdev);
1543  	int (*sw_fini)(struct hl_device *hdev);
1544  	int (*hw_init)(struct hl_device *hdev);
1545  	void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1546  	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1547  	int (*suspend)(struct hl_device *hdev);
1548  	int (*resume)(struct hl_device *hdev);
1549  	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1550  			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1551  	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1552  	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1553  			struct hl_bd *bd);
1554  	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1555  					dma_addr_t *dma_handle, gfp_t flag);
1556  	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1557  					void *cpu_addr, dma_addr_t dma_handle);
1558  	int (*scrub_device_mem)(struct hl_device *hdev);
1559  	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1560  	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1561  				dma_addr_t *dma_handle, u16 *queue_len);
1562  	int (*test_queues)(struct hl_device *hdev);
1563  	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1564  				gfp_t mem_flags, dma_addr_t *dma_handle);
1565  	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1566  				dma_addr_t dma_addr);
1567  	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1568  				size_t size, dma_addr_t *dma_handle);
1569  	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1570  				size_t size, void *vaddr);
1571  	void (*asic_dma_unmap_single)(struct hl_device *hdev,
1572  				dma_addr_t dma_addr, int len,
1573  				enum dma_data_direction dir);
1574  	dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1575  				void *addr, int len,
1576  				enum dma_data_direction dir);
1577  	void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1578  				struct sg_table *sgt,
1579  				enum dma_data_direction dir);
1580  	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1581  	int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1582  				enum dma_data_direction dir);
1583  	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1584  					void *kernel_address, u32 len,
1585  					u32 original_len,
1586  					u64 cq_addr, u32 cq_val, u32 msix_num,
1587  					bool eb);
1588  	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1589  	int (*context_switch)(struct hl_device *hdev, u32 asid);
1590  	void (*restore_phase_topology)(struct hl_device *hdev);
1591  	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1592  				void *blob_addr);
1593  	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1594  				struct attribute_group *dev_vrm_attr_grp);
1595  	void (*handle_eqe)(struct hl_device *hdev,
1596  				struct hl_eq_entry *eq_entry);
1597  	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1598  				u32 *size);
1599  	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1600  	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1601  	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1602  					u32 flags);
1603  	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1604  				u32 flags, u32 asid, u64 va, u64 size);
1605  	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1606  	int (*send_heartbeat)(struct hl_device *hdev);
1607  	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1608  	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1609  				struct engines_data *e);
1610  	int (*compute_reset_late_init)(struct hl_device *hdev);
1611  	void (*hw_queues_lock)(struct hl_device *hdev);
1612  	void (*hw_queues_unlock)(struct hl_device *hdev);
1613  	u32 (*get_pci_id)(struct hl_device *hdev);
1614  	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1615  	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1616  	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1617  				u16 len, u32 timeout, u64 *result);
1618  	int (*pci_bars_map)(struct hl_device *hdev);
1619  	int (*init_iatu)(struct hl_device *hdev);
1620  	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1621  	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1622  	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1623  	int (*ctx_init)(struct hl_ctx *ctx);
1624  	void (*ctx_fini)(struct hl_ctx *ctx);
1625  	int (*pre_schedule_cs)(struct hl_cs *cs);
1626  	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1627  	int (*load_firmware_to_device)(struct hl_device *hdev);
1628  	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1629  	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1630  	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1631  	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1632  			u32 size, bool eb);
1633  	u32 (*gen_wait_cb)(struct hl_device *hdev,
1634  			struct hl_gen_wait_properties *prop);
1635  	void (*reset_sob)(struct hl_device *hdev, void *data);
1636  	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1637  	u64 (*get_device_time)(struct hl_device *hdev);
1638  	void (*pb_print_security_errors)(struct hl_device *hdev,
1639  			u32 block_addr, u32 cause, u32 offended_addr);
1640  	int (*collective_wait_init_cs)(struct hl_cs *cs);
1641  	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1642  			struct hl_ctx *ctx, struct hl_cs *cs,
1643  			u32 wait_queue_id, u32 collective_engine_id,
1644  			u32 encaps_signal_offset);
1645  	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1646  	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1647  	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1648  	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1649  	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1650  				u32 *block_size, u32 *block_id);
1651  	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1652  			u32 block_id, u32 block_size);
1653  	void (*enable_events_from_fw)(struct hl_device *hdev);
1654  	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1655  	void (*get_msi_info)(__le32 *table);
1656  	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1657  	void (*init_firmware_preload_params)(struct hl_device *hdev);
1658  	void (*init_firmware_loader)(struct hl_device *hdev);
1659  	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1660  	void (*state_dump_init)(struct hl_device *hdev);
1661  	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1662  	void (*set_pci_memory_regions)(struct hl_device *hdev);
1663  	u32* (*get_stream_master_qid_arr)(void);
1664  	void (*check_if_razwi_happened)(struct hl_device *hdev);
1665  	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1666  					u32 page_size, u32 *real_page_size, bool is_dram_addr);
1667  	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1668  				u64 addr, u64 *val, enum debugfs_access_type acc_type);
1669  	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1670  	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1671  					u32 num_cores, u32 core_command);
1672  	int (*send_device_activity)(struct hl_device *hdev, bool open);
1673  };
1674  
1675  
1676  /*
1677   * CONTEXTS
1678   */
1679  
1680  #define HL_KERNEL_ASID_ID	0
1681  
1682  /**
1683   * enum hl_va_range_type - virtual address range type.
1684   * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1685   * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1686   * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1687   */
1688  enum hl_va_range_type {
1689  	HL_VA_RANGE_TYPE_HOST,
1690  	HL_VA_RANGE_TYPE_HOST_HUGE,
1691  	HL_VA_RANGE_TYPE_DRAM,
1692  	HL_VA_RANGE_TYPE_MAX
1693  };
1694  
1695  /**
1696   * struct hl_va_range - virtual addresses range.
1697   * @lock: protects the virtual addresses list.
1698   * @list: list of virtual addresses blocks available for mappings.
1699   * @start_addr: range start address.
1700   * @end_addr: range end address.
1701   * @page_size: page size of this va range.
1702   */
1703  struct hl_va_range {
1704  	struct mutex		lock;
1705  	struct list_head	list;
1706  	u64			start_addr;
1707  	u64			end_addr;
1708  	u32			page_size;
1709  };
1710  
1711  /**
1712   * struct hl_cs_counters_atomic - command submission counters
1713   * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1714   * @parsing_drop_cnt: dropped due to error in packet parsing
1715   * @queue_full_drop_cnt: dropped due to queue full
1716   * @device_in_reset_drop_cnt: dropped due to device in reset
1717   * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1718   * @validation_drop_cnt: dropped due to error in validation
1719   */
1720  struct hl_cs_counters_atomic {
1721  	atomic64_t out_of_mem_drop_cnt;
1722  	atomic64_t parsing_drop_cnt;
1723  	atomic64_t queue_full_drop_cnt;
1724  	atomic64_t device_in_reset_drop_cnt;
1725  	atomic64_t max_cs_in_flight_drop_cnt;
1726  	atomic64_t validation_drop_cnt;
1727  };
1728  
1729  /**
1730   * struct hl_dmabuf_priv - a dma-buf private object.
1731   * @dmabuf: pointer to dma-buf object.
1732   * @ctx: pointer to the dma-buf owner's context.
1733   * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
1734   *                memory allocation handle.
1735   * @device_address: physical address of the device's memory. Relevant only
1736   *                  if phys_pg_pack is NULL (dma-buf was exported from address).
1737   *                  The total size can be taken from the dmabuf object.
1738   */
1739  struct hl_dmabuf_priv {
1740  	struct dma_buf			*dmabuf;
1741  	struct hl_ctx			*ctx;
1742  	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1743  	uint64_t			device_address;
1744  };
1745  
1746  #define HL_CS_OUTCOME_HISTORY_LEN 256
1747  
1748  /**
1749   * struct hl_cs_outcome - represents a single completed CS outcome
1750   * @list_link: link to either container's used list or free list
1751   * @map_link: list to the container hash map
1752   * @ts: completion ts
1753   * @seq: the original cs sequence
1754   * @error: error code cs completed with, if any
1755   */
1756  struct hl_cs_outcome {
1757  	struct list_head list_link;
1758  	struct hlist_node map_link;
1759  	ktime_t ts;
1760  	u64 seq;
1761  	int error;
1762  };
1763  
1764  /**
1765   * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1766   * @outcome_map: index of completed CS searchable by sequence number
1767   * @used_list: list of outcome objects currently in use
1768   * @free_list: list of outcome objects currently not in use
1769   * @nodes_pool: a static pool of pre-allocated outcome objects
1770   * @db_lock: any operation on the store must take this lock
1771   */
1772  struct hl_cs_outcome_store {
1773  	DECLARE_HASHTABLE(outcome_map, 8);
1774  	struct list_head used_list;
1775  	struct list_head free_list;
1776  	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1777  	spinlock_t db_lock;
1778  };
1779  
1780  /**
1781   * struct hl_ctx - user/kernel context.
1782   * @mem_hash: holds mapping from virtual address to virtual memory area
1783   *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1784   * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1785   * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1786   *                    MMU-hop-page physical address to its host-resident
1787   *                    pgt_info structure.
1788   * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1789   * @hdev: pointer to the device structure.
1790   * @refcount: reference counter for the context. Context is released only when
1791   *		this hits 0l. It is incremented on CS and CS_WAIT.
1792   * @cs_pending: array of hl fence objects representing pending CS.
1793   * @outcome_store: storage data structure used to remember outcomes of completed
1794   *                 command submissions for a long time after CS id wraparound.
1795   * @va_range: holds available virtual addresses for host and dram mappings.
1796   * @mem_hash_lock: protects the mem_hash.
1797   * @hw_block_list_lock: protects the HW block memory list.
1798   * @debugfs_list: node in debugfs list of contexts.
1799   * @hw_block_mem_list: list of HW block virtual mapped addresses.
1800   * @cs_counters: context command submission counters.
1801   * @cb_va_pool: device VA pool for command buffers which are mapped to the
1802   *              device's MMU.
1803   * @sig_mgr: encaps signals handle manager.
1804   * @cb_va_pool_base: the base address for the device VA pool
1805   * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1806   *			to user so user could inquire about CS. It is used as
1807   *			index to cs_pending array.
1808   * @dram_default_hops: array that holds all hops addresses needed for default
1809   *                     DRAM mapping.
1810   * @cs_lock: spinlock to protect cs_sequence.
1811   * @dram_phys_mem: amount of used physical DRAM memory by this context.
1812   * @thread_ctx_switch_token: token to prevent multiple threads of the same
1813   *				context	from running the context switch phase.
1814   *				Only a single thread should run it.
1815   * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1816   *				the context switch phase from moving to their
1817   *				execution phase before the context switch phase
1818   *				has finished.
1819   * @asid: context's unique address space ID in the device's MMU.
1820   * @handle: context's opaque handle for user
1821   */
1822  struct hl_ctx {
1823  	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1824  	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1825  	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1826  	struct hl_fpriv			*hpriv;
1827  	struct hl_device		*hdev;
1828  	struct kref			refcount;
1829  	struct hl_fence			**cs_pending;
1830  	struct hl_cs_outcome_store	outcome_store;
1831  	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1832  	struct mutex			mem_hash_lock;
1833  	struct mutex			hw_block_list_lock;
1834  	struct list_head		debugfs_list;
1835  	struct list_head		hw_block_mem_list;
1836  	struct hl_cs_counters_atomic	cs_counters;
1837  	struct gen_pool			*cb_va_pool;
1838  	struct hl_encaps_signals_mgr	sig_mgr;
1839  	u64				cb_va_pool_base;
1840  	u64				cs_sequence;
1841  	u64				*dram_default_hops;
1842  	spinlock_t			cs_lock;
1843  	atomic64_t			dram_phys_mem;
1844  	atomic_t			thread_ctx_switch_token;
1845  	u32				thread_ctx_switch_wait_token;
1846  	u32				asid;
1847  	u32				handle;
1848  };
1849  
1850  /**
1851   * struct hl_ctx_mgr - for handling multiple contexts.
1852   * @lock: protects ctx_handles.
1853   * @handles: idr to hold all ctx handles.
1854   */
1855  struct hl_ctx_mgr {
1856  	struct mutex	lock;
1857  	struct idr	handles;
1858  };
1859  
1860  
1861  /*
1862   * COMMAND SUBMISSIONS
1863   */
1864  
1865  /**
1866   * struct hl_userptr - memory mapping chunk information
1867   * @vm_type: type of the VM.
1868   * @job_node: linked-list node for hanging the object on the Job's list.
1869   * @pages: pointer to struct page array
1870   * @npages: size of @pages array
1871   * @sgt: pointer to the scatter-gather table that holds the pages.
1872   * @dir: for DMA unmapping, the direction must be supplied, so save it.
1873   * @debugfs_list: node in debugfs list of command submissions.
1874   * @pid: the pid of the user process owning the memory
1875   * @addr: user-space virtual address of the start of the memory area.
1876   * @size: size of the memory area to pin & map.
1877   * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1878   */
1879  struct hl_userptr {
1880  	enum vm_type		vm_type; /* must be first */
1881  	struct list_head	job_node;
1882  	struct page		**pages;
1883  	unsigned int		npages;
1884  	struct sg_table		*sgt;
1885  	enum dma_data_direction dir;
1886  	struct list_head	debugfs_list;
1887  	pid_t			pid;
1888  	u64			addr;
1889  	u64			size;
1890  	u8			dma_mapped;
1891  };
1892  
1893  /**
1894   * struct hl_cs - command submission.
1895   * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1896   * @ctx: the context this CS belongs to.
1897   * @job_list: list of the CS's jobs in the various queues.
1898   * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1899   * @refcount: reference counter for usage of the CS.
1900   * @fence: pointer to the fence object of this CS.
1901   * @signal_fence: pointer to the fence object of the signal CS (used by wait
1902   *                CS only).
1903   * @finish_work: workqueue object to run when CS is completed by H/W.
1904   * @work_tdr: delayed work node for TDR.
1905   * @mirror_node : node in device mirror list of command submissions.
1906   * @staged_cs_node: node in the staged cs list.
1907   * @debugfs_list: node in debugfs list of command submissions.
1908   * @encaps_sig_hdl: holds the encaps signals handle.
1909   * @sequence: the sequence number of this CS.
1910   * @staged_sequence: the sequence of the staged submission this CS is part of,
1911   *                   relevant only if staged_cs is set.
1912   * @timeout_jiffies: cs timeout in jiffies.
1913   * @submission_time_jiffies: submission time of the cs
1914   * @type: CS_TYPE_*.
1915   * @jobs_cnt: counter of submitted jobs on all queues.
1916   * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1917   * @sob_addr_offset: sob offset from the configuration base address.
1918   * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1919   *                     cs with encaps signals.
1920   * @submitted: true if CS was submitted to H/W.
1921   * @completed: true if CS was completed by device.
1922   * @timedout : true if CS was timedout.
1923   * @tdr_active: true if TDR was activated for this CS (to prevent
1924   *		double TDR activation).
1925   * @aborted: true if CS was aborted due to some device error.
1926   * @timestamp: true if a timestamp must be captured upon completion.
1927   * @staged_last: true if this is the last staged CS and needs completion.
1928   * @staged_first: true if this is the first staged CS and we need to receive
1929   *                timeout for this CS.
1930   * @staged_cs: true if this CS is part of a staged submission.
1931   * @skip_reset_on_timeout: true if we shall not reset the device in case
1932   *                         timeout occurs (debug scenario).
1933   * @encaps_signals: true if this CS has encaps reserved signals.
1934   */
1935  struct hl_cs {
1936  	u16			*jobs_in_queue_cnt;
1937  	struct hl_ctx		*ctx;
1938  	struct list_head	job_list;
1939  	spinlock_t		job_lock;
1940  	struct kref		refcount;
1941  	struct hl_fence		*fence;
1942  	struct hl_fence		*signal_fence;
1943  	struct work_struct	finish_work;
1944  	struct delayed_work	work_tdr;
1945  	struct list_head	mirror_node;
1946  	struct list_head	staged_cs_node;
1947  	struct list_head	debugfs_list;
1948  	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1949  	u64			sequence;
1950  	u64			staged_sequence;
1951  	u64			timeout_jiffies;
1952  	u64			submission_time_jiffies;
1953  	enum hl_cs_type		type;
1954  	u32			jobs_cnt;
1955  	u32			encaps_sig_hdl_id;
1956  	u32			sob_addr_offset;
1957  	u16			initial_sob_count;
1958  	u8			submitted;
1959  	u8			completed;
1960  	u8			timedout;
1961  	u8			tdr_active;
1962  	u8			aborted;
1963  	u8			timestamp;
1964  	u8			staged_last;
1965  	u8			staged_first;
1966  	u8			staged_cs;
1967  	u8			skip_reset_on_timeout;
1968  	u8			encaps_signals;
1969  };
1970  
1971  /**
1972   * struct hl_cs_job - command submission job.
1973   * @cs_node: the node to hang on the CS jobs list.
1974   * @cs: the CS this job belongs to.
1975   * @user_cb: the CB we got from the user.
1976   * @patched_cb: in case of patching, this is internal CB which is submitted on
1977   *		the queue instead of the CB we got from the IOCTL.
1978   * @finish_work: workqueue object to run when job is completed.
1979   * @userptr_list: linked-list of userptr mappings that belong to this job and
1980   *			wait for completion.
1981   * @debugfs_list: node in debugfs list of command submission jobs.
1982   * @refcount: reference counter for usage of the CS job.
1983   * @queue_type: the type of the H/W queue this job is submitted to.
1984   * @id: the id of this job inside a CS.
1985   * @hw_queue_id: the id of the H/W queue this job is submitted to.
1986   * @user_cb_size: the actual size of the CB we got from the user.
1987   * @job_cb_size: the actual size of the CB that we put on the queue.
1988   * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1989   *                          to wait on part of the reserved signals.
1990   * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1991   *                          handle to a kernel-allocated CB object, false
1992   *                          otherwise (SRAM/DRAM/host address).
1993   * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1994   *                    info is needed later, when adding the 2xMSG_PROT at the
1995   *                    end of the JOB, to know which barriers to put in the
1996   *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1997   *                    have streams so the engine can't be busy by another
1998   *                    stream.
1999   */
2000  struct hl_cs_job {
2001  	struct list_head	cs_node;
2002  	struct hl_cs		*cs;
2003  	struct hl_cb		*user_cb;
2004  	struct hl_cb		*patched_cb;
2005  	struct work_struct	finish_work;
2006  	struct list_head	userptr_list;
2007  	struct list_head	debugfs_list;
2008  	struct kref		refcount;
2009  	enum hl_queue_type	queue_type;
2010  	u32			id;
2011  	u32			hw_queue_id;
2012  	u32			user_cb_size;
2013  	u32			job_cb_size;
2014  	u32			encaps_sig_wait_offset;
2015  	u8			is_kernel_allocated_cb;
2016  	u8			contains_dma_pkt;
2017  };
2018  
2019  /**
2020   * struct hl_cs_parser - command submission parser properties.
2021   * @user_cb: the CB we got from the user.
2022   * @patched_cb: in case of patching, this is internal CB which is submitted on
2023   *		the queue instead of the CB we got from the IOCTL.
2024   * @job_userptr_list: linked-list of userptr mappings that belong to the related
2025   *			job and wait for completion.
2026   * @cs_sequence: the sequence number of the related CS.
2027   * @queue_type: the type of the H/W queue this job is submitted to.
2028   * @ctx_id: the ID of the context the related CS belongs to.
2029   * @hw_queue_id: the id of the H/W queue this job is submitted to.
2030   * @user_cb_size: the actual size of the CB we got from the user.
2031   * @patched_cb_size: the size of the CB after parsing.
2032   * @job_id: the id of the related job inside the related CS.
2033   * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2034   *                          handle to a kernel-allocated CB object, false
2035   *                          otherwise (SRAM/DRAM/host address).
2036   * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2037   *                    info is needed later, when adding the 2xMSG_PROT at the
2038   *                    end of the JOB, to know which barriers to put in the
2039   *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2040   *                    have streams so the engine can't be busy by another
2041   *                    stream.
2042   * @completion: true if we need completion for this CS.
2043   */
2044  struct hl_cs_parser {
2045  	struct hl_cb		*user_cb;
2046  	struct hl_cb		*patched_cb;
2047  	struct list_head	*job_userptr_list;
2048  	u64			cs_sequence;
2049  	enum hl_queue_type	queue_type;
2050  	u32			ctx_id;
2051  	u32			hw_queue_id;
2052  	u32			user_cb_size;
2053  	u32			patched_cb_size;
2054  	u8			job_id;
2055  	u8			is_kernel_allocated_cb;
2056  	u8			contains_dma_pkt;
2057  	u8			completion;
2058  };
2059  
2060  /*
2061   * MEMORY STRUCTURE
2062   */
2063  
2064  /**
2065   * struct hl_vm_hash_node - hash element from virtual address to virtual
2066   *				memory area descriptor (hl_vm_phys_pg_list or
2067   *				hl_userptr).
2068   * @node: node to hang on the hash table in context object.
2069   * @vaddr: key virtual address.
2070   * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2071   */
2072  struct hl_vm_hash_node {
2073  	struct hlist_node	node;
2074  	u64			vaddr;
2075  	void			*ptr;
2076  };
2077  
2078  /**
2079   * struct hl_vm_hw_block_list_node - list element from user virtual address to
2080   *				HW block id.
2081   * @node: node to hang on the list in context object.
2082   * @ctx: the context this node belongs to.
2083   * @vaddr: virtual address of the HW block.
2084   * @block_size: size of the block.
2085   * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2086   * @id: HW block id (handle).
2087   */
2088  struct hl_vm_hw_block_list_node {
2089  	struct list_head	node;
2090  	struct hl_ctx		*ctx;
2091  	unsigned long		vaddr;
2092  	u32			block_size;
2093  	u32			mapped_size;
2094  	u32			id;
2095  };
2096  
2097  /**
2098   * struct hl_vm_phys_pg_pack - physical page pack.
2099   * @vm_type: describes the type of the virtual area descriptor.
2100   * @pages: the physical page array.
2101   * @npages: num physical pages in the pack.
2102   * @total_size: total size of all the pages in this list.
2103   * @node: used to attach to deletion list that is used when all the allocations are cleared
2104   *        at the teardown of the context.
2105   * @mapping_cnt: number of shared mappings.
2106   * @exporting_cnt: number of dma-buf exporting.
2107   * @asid: the context related to this list.
2108   * @page_size: size of each page in the pack.
2109   * @flags: HL_MEM_* flags related to this list.
2110   * @handle: the provided handle related to this list.
2111   * @offset: offset from the first page.
2112   * @contiguous: is contiguous physical memory.
2113   * @created_from_userptr: is product of host virtual address.
2114   */
2115  struct hl_vm_phys_pg_pack {
2116  	enum vm_type		vm_type; /* must be first */
2117  	u64			*pages;
2118  	u64			npages;
2119  	u64			total_size;
2120  	struct list_head	node;
2121  	atomic_t		mapping_cnt;
2122  	u32			exporting_cnt;
2123  	u32			asid;
2124  	u32			page_size;
2125  	u32			flags;
2126  	u32			handle;
2127  	u32			offset;
2128  	u8			contiguous;
2129  	u8			created_from_userptr;
2130  };
2131  
2132  /**
2133   * struct hl_vm_va_block - virtual range block information.
2134   * @node: node to hang on the virtual range list in context object.
2135   * @start: virtual range start address.
2136   * @end: virtual range end address.
2137   * @size: virtual range size.
2138   */
2139  struct hl_vm_va_block {
2140  	struct list_head	node;
2141  	u64			start;
2142  	u64			end;
2143  	u64			size;
2144  };
2145  
2146  /**
2147   * struct hl_vm - virtual memory manager for MMU.
2148   * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2149   * @dram_pg_pool_refcount: reference counter for the pool usage.
2150   * @idr_lock: protects the phys_pg_list_handles.
2151   * @phys_pg_pack_handles: idr to hold all device allocations handles.
2152   * @init_done: whether initialization was done. We need this because VM
2153   *		initialization might be skipped during device initialization.
2154   */
2155  struct hl_vm {
2156  	struct gen_pool		*dram_pg_pool;
2157  	struct kref		dram_pg_pool_refcount;
2158  	spinlock_t		idr_lock;
2159  	struct idr		phys_pg_pack_handles;
2160  	u8			init_done;
2161  };
2162  
2163  
2164  /*
2165   * DEBUG, PROFILING STRUCTURE
2166   */
2167  
2168  /**
2169   * struct hl_debug_params - Coresight debug parameters.
2170   * @input: pointer to component specific input parameters.
2171   * @output: pointer to component specific output parameters.
2172   * @output_size: size of output buffer.
2173   * @reg_idx: relevant register ID.
2174   * @op: component operation to execute.
2175   * @enable: true if to enable component debugging, false otherwise.
2176   */
2177  struct hl_debug_params {
2178  	void *input;
2179  	void *output;
2180  	u32 output_size;
2181  	u32 reg_idx;
2182  	u32 op;
2183  	bool enable;
2184  };
2185  
2186  /**
2187   * struct hl_notifier_event - holds the notifier data structure
2188   * @eventfd: the event file descriptor to raise the notifications
2189   * @lock: mutex lock to protect the notifier data flows
2190   * @events_mask: indicates the bitmap events
2191   */
2192  struct hl_notifier_event {
2193  	struct eventfd_ctx	*eventfd;
2194  	struct mutex		lock;
2195  	u64			events_mask;
2196  };
2197  
2198  /*
2199   * FILE PRIVATE STRUCTURE
2200   */
2201  
2202  /**
2203   * struct hl_fpriv - process information stored in FD private data.
2204   * @hdev: habanalabs device structure.
2205   * @filp: pointer to the given file structure.
2206   * @taskpid: current process ID.
2207   * @ctx: current executing context. TODO: remove for multiple ctx per process
2208   * @ctx_mgr: context manager to handle multiple context for this FD.
2209   * @mem_mgr: manager descriptor for memory exportable via mmap
2210   * @notifier_event: notifier eventfd towards user process
2211   * @debugfs_list: list of relevant ASIC debugfs.
2212   * @dev_node: node in the device list of file private data
2213   * @refcount: number of related contexts.
2214   * @restore_phase_mutex: lock for context switch and restore phase.
2215   * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2216   *            ctx per process.
2217   */
2218  struct hl_fpriv {
2219  	struct hl_device		*hdev;
2220  	struct file			*filp;
2221  	struct pid			*taskpid;
2222  	struct hl_ctx			*ctx;
2223  	struct hl_ctx_mgr		ctx_mgr;
2224  	struct hl_mem_mgr		mem_mgr;
2225  	struct hl_notifier_event	notifier_event;
2226  	struct list_head		debugfs_list;
2227  	struct list_head		dev_node;
2228  	struct kref			refcount;
2229  	struct mutex			restore_phase_mutex;
2230  	struct mutex			ctx_lock;
2231  };
2232  
2233  
2234  /*
2235   * DebugFS
2236   */
2237  
2238  /**
2239   * struct hl_info_list - debugfs file ops.
2240   * @name: file name.
2241   * @show: function to output information.
2242   * @write: function to write to the file.
2243   */
2244  struct hl_info_list {
2245  	const char	*name;
2246  	int		(*show)(struct seq_file *s, void *data);
2247  	ssize_t		(*write)(struct file *file, const char __user *buf,
2248  				size_t count, loff_t *f_pos);
2249  };
2250  
2251  /**
2252   * struct hl_debugfs_entry - debugfs dentry wrapper.
2253   * @info_ent: dentry related ops.
2254   * @dev_entry: ASIC specific debugfs manager.
2255   */
2256  struct hl_debugfs_entry {
2257  	const struct hl_info_list	*info_ent;
2258  	struct hl_dbg_device_entry	*dev_entry;
2259  };
2260  
2261  /**
2262   * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2263   * @root: root dentry.
2264   * @hdev: habanalabs device structure.
2265   * @entry_arr: array of available hl_debugfs_entry.
2266   * @file_list: list of available debugfs files.
2267   * @file_mutex: protects file_list.
2268   * @cb_list: list of available CBs.
2269   * @cb_spinlock: protects cb_list.
2270   * @cs_list: list of available CSs.
2271   * @cs_spinlock: protects cs_list.
2272   * @cs_job_list: list of available CB jobs.
2273   * @cs_job_spinlock: protects cs_job_list.
2274   * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2275   * @userptr_spinlock: protects userptr_list.
2276   * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2277   * @ctx_mem_hash_spinlock: protects cb_list.
2278   * @data_dma_blob_desc: data DMA descriptor of blob.
2279   * @mon_dump_blob_desc: monitor dump descriptor of blob.
2280   * @state_dump: data of the system states in case of a bad cs.
2281   * @state_dump_sem: protects state_dump.
2282   * @addr: next address to read/write from/to in read/write32.
2283   * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2284   * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2285   * @userptr_lookup: the target user ptr to look up for on demand.
2286   * @mmu_asid: ASID to use while translating in mmu_show.
2287   * @state_dump_head: index of the latest state dump
2288   * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2289   * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2290   * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2291   * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2292   */
2293  struct hl_dbg_device_entry {
2294  	struct dentry			*root;
2295  	struct hl_device		*hdev;
2296  	struct hl_debugfs_entry		*entry_arr;
2297  	struct list_head		file_list;
2298  	struct mutex			file_mutex;
2299  	struct list_head		cb_list;
2300  	spinlock_t			cb_spinlock;
2301  	struct list_head		cs_list;
2302  	spinlock_t			cs_spinlock;
2303  	struct list_head		cs_job_list;
2304  	spinlock_t			cs_job_spinlock;
2305  	struct list_head		userptr_list;
2306  	spinlock_t			userptr_spinlock;
2307  	struct list_head		ctx_mem_hash_list;
2308  	spinlock_t			ctx_mem_hash_spinlock;
2309  	struct debugfs_blob_wrapper	data_dma_blob_desc;
2310  	struct debugfs_blob_wrapper	mon_dump_blob_desc;
2311  	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
2312  	struct rw_semaphore		state_dump_sem;
2313  	u64				addr;
2314  	u64				mmu_addr;
2315  	u64				mmu_cap_mask;
2316  	u64				userptr_lookup;
2317  	u32				mmu_asid;
2318  	u32				state_dump_head;
2319  	u8				i2c_bus;
2320  	u8				i2c_addr;
2321  	u8				i2c_reg;
2322  	u8				i2c_len;
2323  };
2324  
2325  /**
2326   * struct hl_hw_obj_name_entry - single hw object name, member of
2327   * hl_state_dump_specs
2328   * @node: link to the containing hash table
2329   * @name: hw object name
2330   * @id: object identifier
2331   */
2332  struct hl_hw_obj_name_entry {
2333  	struct hlist_node	node;
2334  	const char		*name;
2335  	u32			id;
2336  };
2337  
2338  enum hl_state_dump_specs_props {
2339  	SP_SYNC_OBJ_BASE_ADDR,
2340  	SP_NEXT_SYNC_OBJ_ADDR,
2341  	SP_SYNC_OBJ_AMOUNT,
2342  	SP_MON_OBJ_WR_ADDR_LOW,
2343  	SP_MON_OBJ_WR_ADDR_HIGH,
2344  	SP_MON_OBJ_WR_DATA,
2345  	SP_MON_OBJ_ARM_DATA,
2346  	SP_MON_OBJ_STATUS,
2347  	SP_MONITORS_AMOUNT,
2348  	SP_TPC0_CMDQ,
2349  	SP_TPC0_CFG_SO,
2350  	SP_NEXT_TPC,
2351  	SP_MME_CMDQ,
2352  	SP_MME_CFG_SO,
2353  	SP_NEXT_MME,
2354  	SP_DMA_CMDQ,
2355  	SP_DMA_CFG_SO,
2356  	SP_DMA_QUEUES_OFFSET,
2357  	SP_NUM_OF_MME_ENGINES,
2358  	SP_SUB_MME_ENG_NUM,
2359  	SP_NUM_OF_DMA_ENGINES,
2360  	SP_NUM_OF_TPC_ENGINES,
2361  	SP_ENGINE_NUM_OF_QUEUES,
2362  	SP_ENGINE_NUM_OF_STREAMS,
2363  	SP_ENGINE_NUM_OF_FENCES,
2364  	SP_FENCE0_CNT_OFFSET,
2365  	SP_FENCE0_RDATA_OFFSET,
2366  	SP_CP_STS_OFFSET,
2367  	SP_NUM_CORES,
2368  
2369  	SP_MAX
2370  };
2371  
2372  enum hl_sync_engine_type {
2373  	ENGINE_TPC,
2374  	ENGINE_DMA,
2375  	ENGINE_MME,
2376  };
2377  
2378  /**
2379   * struct hl_mon_state_dump - represents a state dump of a single monitor
2380   * @id: monitor id
2381   * @wr_addr_low: address monitor will write to, low bits
2382   * @wr_addr_high: address monitor will write to, high bits
2383   * @wr_data: data monitor will write
2384   * @arm_data: register value containing monitor configuration
2385   * @status: monitor status
2386   */
2387  struct hl_mon_state_dump {
2388  	u32		id;
2389  	u32		wr_addr_low;
2390  	u32		wr_addr_high;
2391  	u32		wr_data;
2392  	u32		arm_data;
2393  	u32		status;
2394  };
2395  
2396  /**
2397   * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2398   * @engine_type: type of the engine
2399   * @engine_id: id of the engine
2400   * @sync_id: id of the sync object
2401   */
2402  struct hl_sync_to_engine_map_entry {
2403  	struct hlist_node		node;
2404  	enum hl_sync_engine_type	engine_type;
2405  	u32				engine_id;
2406  	u32				sync_id;
2407  };
2408  
2409  /**
2410   * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2411   * @tb: hash table containing the mapping, each element is of type
2412   *      struct hl_sync_to_engine_map_entry
2413   */
2414  struct hl_sync_to_engine_map {
2415  	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2416  };
2417  
2418  /**
2419   * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2420   * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2421   * @print_single_monitor: format monitor data as string
2422   * @monitor_valid: return true if given monitor dump is valid
2423   * @print_fences_single_engine: format fences data as string
2424   */
2425  struct hl_state_dump_specs_funcs {
2426  	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2427  				struct hl_sync_to_engine_map *map);
2428  	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2429  				    struct hl_device *hdev,
2430  				    struct hl_mon_state_dump *mon);
2431  	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2432  	int (*print_fences_single_engine)(struct hl_device *hdev,
2433  					u64 base_offset,
2434  					u64 status_base_offset,
2435  					enum hl_sync_engine_type engine_type,
2436  					u32 engine_id, char **buf,
2437  					size_t *size, size_t *offset);
2438  };
2439  
2440  /**
2441   * struct hl_state_dump_specs - defines ASIC known hw objects names
2442   * @so_id_to_str_tb: sync objects names index table
2443   * @monitor_id_to_str_tb: monitors names index table
2444   * @funcs: virtual functions used for state dump
2445   * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2446   * @props: pointer to a per asic const props array required for state dump
2447   */
2448  struct hl_state_dump_specs {
2449  	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2450  	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2451  	struct hl_state_dump_specs_funcs	funcs;
2452  	const char * const			*sync_namager_names;
2453  	s64					*props;
2454  };
2455  
2456  
2457  /*
2458   * DEVICES
2459   */
2460  
2461  #define HL_STR_MAX	32
2462  
2463  #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2464  
2465  /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2466   * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2467   */
2468  #define HL_MAX_MINORS	256
2469  
2470  /*
2471   * Registers read & write functions.
2472   */
2473  
2474  u32 hl_rreg(struct hl_device *hdev, u32 reg);
2475  void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2476  
2477  #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2478  #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2479  #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2480  			hdev->asic_funcs->rreg(hdev, (reg)))
2481  
2482  #define WREG32_P(reg, val, mask)				\
2483  	do {							\
2484  		u32 tmp_ = RREG32(reg);				\
2485  		tmp_ &= (mask);					\
2486  		tmp_ |= ((val) & ~(mask));			\
2487  		WREG32(reg, tmp_);				\
2488  	} while (0)
2489  #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2490  #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2491  
2492  #define RMWREG32(reg, val, mask)				\
2493  	do {							\
2494  		u32 tmp_ = RREG32(reg);				\
2495  		tmp_ &= ~(mask);				\
2496  		tmp_ |= ((val) << __ffs(mask));			\
2497  		WREG32(reg, tmp_);				\
2498  	} while (0)
2499  
2500  #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2501  
2502  #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2503  #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2504  #define WREG32_FIELD(reg, offset, field, val)	\
2505  	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2506  				~REG_FIELD_MASK(reg, field)) | \
2507  				(val) << REG_FIELD_SHIFT(reg, field))
2508  
2509  /* Timeout should be longer when working with simulator but cap the
2510   * increased timeout to some maximum
2511   */
2512  #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2513  ({ \
2514  	ktime_t __timeout; \
2515  	u32 __elbi_read; \
2516  	int __rc = 0; \
2517  	if (hdev->pdev) \
2518  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2519  	else \
2520  		__timeout = ktime_add_us(ktime_get(),\
2521  				min((u64)(timeout_us * 10), \
2522  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2523  	might_sleep_if(sleep_us); \
2524  	for (;;) { \
2525  		if (elbi) { \
2526  			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2527  			if (__rc) \
2528  				break; \
2529  			(val) = __elbi_read; \
2530  		} else {\
2531  			(val) = RREG32((u32)(addr)); \
2532  		} \
2533  		if (cond) \
2534  			break; \
2535  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2536  			if (elbi) { \
2537  				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2538  				if (__rc) \
2539  					break; \
2540  				(val) = __elbi_read; \
2541  			} else {\
2542  				(val) = RREG32((u32)(addr)); \
2543  			} \
2544  			break; \
2545  		} \
2546  		if (sleep_us) \
2547  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2548  	} \
2549  	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2550  })
2551  
2552  #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2553  		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2554  
2555  #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2556  		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2557  
2558  /*
2559   * poll array of register addresses.
2560   * condition is satisfied if all registers values match the expected value.
2561   * once some register in the array satisfies the condition it will not be polled again,
2562   * this is done both for efficiency and due to some registers are "clear on read".
2563   * TODO: use read from PCI bar in other places in the code (SW-91406)
2564   */
2565  #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2566  						timeout_us, elbi) \
2567  ({ \
2568  	ktime_t __timeout; \
2569  	u64 __elem_bitmask; \
2570  	u32 __read_val;	\
2571  	u8 __arr_idx;	\
2572  	int __rc = 0; \
2573  	\
2574  	if (hdev->pdev) \
2575  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2576  	else \
2577  		__timeout = ktime_add_us(ktime_get(),\
2578  				min(((u64)timeout_us * 10), \
2579  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2580  	\
2581  	might_sleep_if(sleep_us); \
2582  	if (arr_size >= 64) \
2583  		__rc = -EINVAL; \
2584  	else \
2585  		__elem_bitmask = BIT_ULL(arr_size) - 1; \
2586  	for (;;) { \
2587  		if (__rc) \
2588  			break; \
2589  		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
2590  			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
2591  				continue;	\
2592  			if (elbi) { \
2593  				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2594  				if (__rc) \
2595  					break; \
2596  			} else { \
2597  				__read_val = RREG32((u32)(addr_arr)[__arr_idx]); \
2598  			} \
2599  			if (__read_val == (expected_val))	\
2600  				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
2601  		}	\
2602  		if (__rc || (__elem_bitmask == 0)) \
2603  			break; \
2604  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2605  			break; \
2606  		if (sleep_us) \
2607  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2608  	} \
2609  	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2610  })
2611  
2612  #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2613  					timeout_us) \
2614  	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2615  						timeout_us, false)
2616  
2617  #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2618  					timeout_us) \
2619  	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2620  						timeout_us, true)
2621  
2622  /*
2623   * address in this macro points always to a memory location in the
2624   * host's (server's) memory. That location is updated asynchronously
2625   * either by the direct access of the device or by another core.
2626   *
2627   * To work both in LE and BE architectures, we need to distinguish between the
2628   * two states (device or another core updates the memory location). Therefore,
2629   * if mem_written_by_device is true, the host memory being polled will be
2630   * updated directly by the device. If false, the host memory being polled will
2631   * be updated by host CPU. Required so host knows whether or not the memory
2632   * might need to be byte-swapped before returning value to caller.
2633   */
2634  #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2635  				mem_written_by_device) \
2636  ({ \
2637  	ktime_t __timeout; \
2638  	if (hdev->pdev) \
2639  		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2640  	else \
2641  		__timeout = ktime_add_us(ktime_get(),\
2642  				min((u64)(timeout_us * 100), \
2643  					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2644  	might_sleep_if(sleep_us); \
2645  	for (;;) { \
2646  		/* Verify we read updates done by other cores or by device */ \
2647  		mb(); \
2648  		(val) = *((u32 *)(addr)); \
2649  		if (mem_written_by_device) \
2650  			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2651  		if (cond) \
2652  			break; \
2653  		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2654  			(val) = *((u32 *)(addr)); \
2655  			if (mem_written_by_device) \
2656  				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2657  			break; \
2658  		} \
2659  		if (sleep_us) \
2660  			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2661  	} \
2662  	(cond) ? 0 : -ETIMEDOUT; \
2663  })
2664  
2665  #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2666  ({ \
2667  	struct user_mapped_block *p = blk; \
2668  \
2669  	p->address = base; \
2670  	p->size = sz; \
2671  })
2672  
2673  #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \
2674  ({ \
2675  	usr_intr.hdev = hdev; \
2676  	usr_intr.interrupt_id = intr_id; \
2677  	usr_intr.is_decoder = decoder; \
2678  	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2679  	spin_lock_init(&usr_intr.wait_list_lock); \
2680  })
2681  
2682  struct hwmon_chip_info;
2683  
2684  /**
2685   * struct hl_device_reset_work - reset workqueue task wrapper.
2686   * @wq: work queue for device reset procedure.
2687   * @reset_work: reset work to be done.
2688   * @hdev: habanalabs device structure.
2689   * @flags: reset flags.
2690   */
2691  struct hl_device_reset_work {
2692  	struct workqueue_struct		*wq;
2693  	struct delayed_work		reset_work;
2694  	struct hl_device		*hdev;
2695  	u32				flags;
2696  };
2697  
2698  /**
2699   * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2700   * page-table internal information.
2701   * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2702   *                allocating hops.
2703   * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2704   */
2705  struct hl_mmu_hr_priv {
2706  	struct gen_pool	*mmu_pgt_pool;
2707  	struct pgt_info	*mmu_asid_hop0;
2708  };
2709  
2710  /**
2711   * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2712   * page-table internal information.
2713   * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2714   * @mmu_shadow_hop0: shadow array of hop0 tables.
2715   */
2716  struct hl_mmu_dr_priv {
2717  	struct gen_pool *mmu_pgt_pool;
2718  	void *mmu_shadow_hop0;
2719  };
2720  
2721  /**
2722   * struct hl_mmu_priv - used for holding per-device mmu internal information.
2723   * @dr: information on the device-resident MMU, when exists.
2724   * @hr: information on the host-resident MMU, when exists.
2725   */
2726  struct hl_mmu_priv {
2727  	struct hl_mmu_dr_priv dr;
2728  	struct hl_mmu_hr_priv hr;
2729  };
2730  
2731  /**
2732   * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2733   *                that was created in order to translate a virtual address to a
2734   *                physical one.
2735   * @hop_addr: The address of the hop.
2736   * @hop_pte_addr: The address of the hop entry.
2737   * @hop_pte_val: The value in the hop entry.
2738   */
2739  struct hl_mmu_per_hop_info {
2740  	u64 hop_addr;
2741  	u64 hop_pte_addr;
2742  	u64 hop_pte_val;
2743  };
2744  
2745  /**
2746   * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2747   * hop-entries that were created in order to translate a virtual address to a
2748   * physical one.
2749   * @scrambled_vaddr: The value of the virtual address after scrambling. This
2750   *                   address replaces the original virtual-address when mapped
2751   *                   in the MMU tables.
2752   * @unscrambled_paddr: The un-scrambled physical address.
2753   * @hop_info: Array holding the per-hop information used for the translation.
2754   * @used_hops: The number of hops used for the translation.
2755   * @range_type: virtual address range type.
2756   */
2757  struct hl_mmu_hop_info {
2758  	u64 scrambled_vaddr;
2759  	u64 unscrambled_paddr;
2760  	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2761  	u32 used_hops;
2762  	enum hl_va_range_type range_type;
2763  };
2764  
2765  /**
2766   * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2767   * @get_hop0_pgt_info: get page table info structure for HOP0.
2768   * @get_pgt_info: get page table info structure for HOP other than HOP0.
2769   * @add_pgt_info: add page table info structure to hash.
2770   * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2771   */
2772  struct hl_hr_mmu_funcs {
2773  	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2774  	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2775  	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2776  	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2777  								struct hl_mmu_hop_info *hops,
2778  								u64 virt_addr, bool *is_huge);
2779  };
2780  
2781  /**
2782   * struct hl_mmu_funcs - Device related MMU functions.
2783   * @init: initialize the MMU module.
2784   * @fini: release the MMU module.
2785   * @ctx_init: Initialize a context for using the MMU module.
2786   * @ctx_fini: disable a ctx from using the mmu module.
2787   * @map: maps a virtual address to physical address for a context.
2788   * @unmap: unmap a virtual address of a context.
2789   * @flush: flush all writes from all cores to reach device MMU.
2790   * @swap_out: marks all mapping of the given context as swapped out.
2791   * @swap_in: marks all mapping of the given context as swapped in.
2792   * @get_tlb_info: returns the list of hops and hop-entries used that were
2793   *                created in order to translate the giver virtual address to a
2794   *                physical one.
2795   * @hr_funcs: functions specific to host resident MMU.
2796   */
2797  struct hl_mmu_funcs {
2798  	int (*init)(struct hl_device *hdev);
2799  	void (*fini)(struct hl_device *hdev);
2800  	int (*ctx_init)(struct hl_ctx *ctx);
2801  	void (*ctx_fini)(struct hl_ctx *ctx);
2802  	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2803  				bool is_dram_addr);
2804  	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2805  	void (*flush)(struct hl_ctx *ctx);
2806  	void (*swap_out)(struct hl_ctx *ctx);
2807  	void (*swap_in)(struct hl_ctx *ctx);
2808  	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2809  	struct hl_hr_mmu_funcs hr_funcs;
2810  };
2811  
2812  /**
2813   * struct hl_prefetch_work - prefetch work structure handler
2814   * @pf_work: actual work struct.
2815   * @ctx: compute context.
2816   * @va: virtual address to pre-fetch.
2817   * @size: pre-fetch size.
2818   * @flags: operation flags.
2819   * @asid: ASID for maintenance operation.
2820   */
2821  struct hl_prefetch_work {
2822  	struct work_struct	pf_work;
2823  	struct hl_ctx		*ctx;
2824  	u64			va;
2825  	u64			size;
2826  	u32			flags;
2827  	u32			asid;
2828  };
2829  
2830  /*
2831   * number of user contexts allowed to call wait_for_multi_cs ioctl in
2832   * parallel
2833   */
2834  #define MULTI_CS_MAX_USER_CTX	2
2835  
2836  /**
2837   * struct multi_cs_completion - multi CS wait completion.
2838   * @completion: completion of any of the CS in the list
2839   * @lock: spinlock for the completion structure
2840   * @timestamp: timestamp for the multi-CS completion
2841   * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2842   *                        is waiting
2843   * @used: 1 if in use, otherwise 0
2844   */
2845  struct multi_cs_completion {
2846  	struct completion	completion;
2847  	spinlock_t		lock;
2848  	s64			timestamp;
2849  	u32			stream_master_qid_map;
2850  	u8			used;
2851  };
2852  
2853  /**
2854   * struct multi_cs_data - internal data for multi CS call
2855   * @ctx: pointer to the context structure
2856   * @fence_arr: array of fences of all CSs
2857   * @seq_arr: array of CS sequence numbers
2858   * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2859   * @timestamp: timestamp of first completed CS
2860   * @wait_status: wait for CS status
2861   * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2862   * @arr_len: fence_arr and seq_arr array length
2863   * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2864   * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2865   */
2866  struct multi_cs_data {
2867  	struct hl_ctx	*ctx;
2868  	struct hl_fence	**fence_arr;
2869  	u64		*seq_arr;
2870  	s64		timeout_jiffies;
2871  	s64		timestamp;
2872  	long		wait_status;
2873  	u32		completion_bitmap;
2874  	u8		arr_len;
2875  	u8		gone_cs;
2876  	u8		update_ts;
2877  };
2878  
2879  /**
2880   * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2881   * @start: timestamp taken when 'start' event is received in driver
2882   * @end: timestamp taken when 'end' event is received in driver
2883   */
2884  struct hl_clk_throttle_timestamp {
2885  	ktime_t		start;
2886  	ktime_t		end;
2887  };
2888  
2889  /**
2890   * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2891   * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2892   *             index 1 refers to THERMAL
2893   * @lock: protects this structure as it can be accessed from both event queue
2894   *        context and info_ioctl context
2895   * @current_reason: bitmask represents the current clk throttling reasons
2896   * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2897   */
2898  struct hl_clk_throttle {
2899  	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2900  	struct mutex	lock;
2901  	u32		current_reason;
2902  	u32		aggregated_reason;
2903  };
2904  
2905  /**
2906   * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2907   * @address: physical HW block address
2908   * @size: allowed size for mmap
2909   */
2910  struct user_mapped_block {
2911  	u32 address;
2912  	u32 size;
2913  };
2914  
2915  /**
2916   * struct cs_timeout_info - info of last CS timeout occurred.
2917   * @timestamp: CS timeout timestamp.
2918   * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2919   *                so the first (root cause) CS timeout will not be overwritten.
2920   * @seq: CS timeout sequence number.
2921   */
2922  struct cs_timeout_info {
2923  	ktime_t		timestamp;
2924  	atomic_t	write_enable;
2925  	u64		seq;
2926  };
2927  
2928  /**
2929   * struct razwi_info - info about last razwi error occurred.
2930   * @timestamp: razwi timestamp.
2931   * @write_enable: if set writing to razwi parameters in the structure is enabled.
2932   *                otherwise - disabled, so the first (root cause) razwi will not be overwritten.
2933   * @addr: address that caused razwi.
2934   * @engine_id_1: engine id of the razwi initiator, if it was initiated by engine that does
2935   *               not have engine id it will be set to U16_MAX.
2936   * @engine_id_2: second engine id of razwi initiator. Might happen that razwi have 2 possible
2937   *               engines which one them caused the razwi. In that case, it will contain the
2938   *               second possible engine id, otherwise it will be set to U16_MAX.
2939   * @non_engine_initiator: in case the initiator of the razwi does not have engine id.
2940   * @type: cause of razwi, page fault or access error, otherwise it will be set to U8_MAX.
2941   */
2942  struct razwi_info {
2943  	ktime_t		timestamp;
2944  	atomic_t	write_enable;
2945  	u64		addr;
2946  	u16		engine_id_1;
2947  	u16		engine_id_2;
2948  	u8		non_engine_initiator;
2949  	u8		type;
2950  };
2951  
2952  #define MAX_QMAN_STREAMS_INFO		4
2953  #define OPCODE_INFO_MAX_ADDR_SIZE	8
2954  /**
2955   * struct undefined_opcode_info - info about last undefined opcode error
2956   * @timestamp: timestamp of the undefined opcode error
2957   * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2958   *                   entries. In case all streams array entries are
2959   *                   filled with values, it means the execution was in Lower-CP.
2960   * @cq_addr: the address of the current handled command buffer
2961   * @cq_size: the size of the current handled command buffer
2962   * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2963   *                       should be equal to 1 incase of undefined opcode
2964   *                       in Upper-CP (specific stream) and equal to 4 incase
2965   *                       of undefined opcode in Lower-CP.
2966   * @engine_id: engine-id that the error occurred on
2967   * @stream_id: the stream id the error occurred on. In case the stream equals to
2968   *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2969   * @write_enable: if set, writing to undefined opcode parameters in the structure
2970   *                 is enable so the first (root cause) undefined opcode will not be
2971   *                 overwritten.
2972   */
2973  struct undefined_opcode_info {
2974  	ktime_t timestamp;
2975  	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2976  	u64 cq_addr;
2977  	u32 cq_size;
2978  	u32 cb_addr_streams_len;
2979  	u32 engine_id;
2980  	u32 stream_id;
2981  	bool write_enable;
2982  };
2983  
2984  /**
2985   * struct hl_error_info - holds information collected during an error.
2986   * @cs_timeout: CS timeout error information.
2987   * @razwi: razwi information.
2988   * @undef_opcode: undefined opcode information
2989   */
2990  struct hl_error_info {
2991  	struct cs_timeout_info		cs_timeout;
2992  	struct razwi_info		razwi;
2993  	struct undefined_opcode_info	undef_opcode;
2994  };
2995  
2996  /**
2997   * struct hl_reset_info - holds current device reset information.
2998   * @lock: lock to protect critical reset flows.
2999   * @compute_reset_cnt: number of compute resets since the driver was loaded.
3000   * @hard_reset_cnt: number of hard resets since the driver was loaded.
3001   * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3002   *                             here we hold the hard reset flags.
3003   * @in_reset: is device in reset flow.
3004   * @in_compute_reset: Device is currently in reset but not in hard-reset.
3005   * @needs_reset: true if reset_on_lockup is false and device should be reset
3006   *               due to lockup.
3007   * @hard_reset_pending: is there a hard reset work pending.
3008   * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3009   *                    triggered, and cleared after it is shared with preboot.
3010   * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3011   *                      with a new value on next reset
3012   * @reset_trigger_repeated: set if device reset is triggered more than once with
3013   *                          same cause.
3014   * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3015   *                         complete instead.
3016   */
3017  struct hl_reset_info {
3018  	spinlock_t	lock;
3019  	u32		compute_reset_cnt;
3020  	u32		hard_reset_cnt;
3021  	u32		hard_reset_schedule_flags;
3022  	u8		in_reset;
3023  	u8		in_compute_reset;
3024  	u8		needs_reset;
3025  	u8		hard_reset_pending;
3026  
3027  	u8		curr_reset_cause;
3028  	u8		prev_reset_trigger;
3029  	u8		reset_trigger_repeated;
3030  
3031  	u8		skip_reset_on_timeout;
3032  };
3033  
3034  /**
3035   * struct hl_device - habanalabs device structure.
3036   * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3037   * @pcie_bar_phys: array of available PCIe bars physical addresses.
3038   *		   (required only for PCI address match mode)
3039   * @pcie_bar: array of available PCIe bars virtual addresses.
3040   * @rmmio: configuration area address on SRAM.
3041   * @cdev: related char device.
3042   * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3043   * @dev: related kernel basic device structure.
3044   * @dev_ctrl: related kernel device structure for the control device
3045   * @work_heartbeat: delayed work for CPU-CP is-alive check.
3046   * @device_reset_work: delayed work which performs hard reset
3047   * @asic_name: ASIC specific name.
3048   * @asic_type: ASIC specific type.
3049   * @completion_queue: array of hl_cq.
3050   * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3051   *                  interrupt, driver will monitor the list of fences
3052   *                  registered to this interrupt.
3053   * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3054   *                         upon any user CQ interrupt, driver will monitor the
3055   *                         list of fences registered to this common structure.
3056   * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3057   * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3058   *                   outstanding command submissions.
3059   * @cq_wq: work queues of completion queues for executing work in process
3060   *         context.
3061   * @eq_wq: work queue of event queue for executing work in process context.
3062   * @cs_cmplt_wq: work queue of CS completions for executing work in process
3063   *               context.
3064   * @ts_free_obj_wq: work queue for timestamp registration objects release.
3065   * @pf_wq: work queue for MMU pre-fetch operations.
3066   * @kernel_ctx: Kernel driver context structure.
3067   * @kernel_queues: array of hl_hw_queue.
3068   * @cs_mirror_list: CS mirror list for TDR.
3069   * @cs_mirror_lock: protects cs_mirror_list.
3070   * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3071   * @event_queue: event queue for IRQ from CPU-CP.
3072   * @dma_pool: DMA pool for small allocations.
3073   * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3074   * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3075   * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3076   * @asid_bitmap: holds used/available ASIDs.
3077   * @asid_mutex: protects asid_bitmap.
3078   * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3079   * @debug_lock: protects critical section of setting debug mode for device
3080   * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3081   *            page tables are per context, the invalidation h/w is per MMU.
3082   *            Therefore, we can't allow multiple contexts (we only have two,
3083   *            user and kernel) to access the invalidation h/w at the same time.
3084   *            In addition, any change to the PGT, modifying the MMU hash or
3085   *            walking the PGT requires talking this lock.
3086   * @asic_prop: ASIC specific immutable properties.
3087   * @asic_funcs: ASIC specific functions.
3088   * @asic_specific: ASIC specific information to use only from ASIC files.
3089   * @vm: virtual memory manager for MMU.
3090   * @hwmon_dev: H/W monitor device.
3091   * @hl_chip_info: ASIC's sensors information.
3092   * @device_status_description: device status description.
3093   * @hl_debugfs: device's debugfs manager.
3094   * @cb_pool: list of pre allocated CBs.
3095   * @cb_pool_lock: protects the CB pool.
3096   * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3097   * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3098   * @internal_cb_pool: internal command buffer memory pool.
3099   * @internal_cb_va_base: internal cb pool mmu virtual address base
3100   * @fpriv_list: list of file private data structures. Each structure is created
3101   *              when a user opens the device
3102   * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3103   *              when a user opens the control device
3104   * @fpriv_list_lock: protects the fpriv_list
3105   * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3106   * @aggregated_cs_counters: aggregated cs counters among all contexts
3107   * @mmu_priv: device-specific MMU data.
3108   * @mmu_func: device-related MMU functions.
3109   * @dec: list of decoder sw instance
3110   * @fw_loader: FW loader manager.
3111   * @pci_mem_region: array of memory regions in the PCI
3112   * @state_dump_specs: constants and dictionaries needed to dump system state.
3113   * @multi_cs_completion: array of multi-CS completion.
3114   * @clk_throttling: holds information about current/previous clock throttling events
3115   * @captured_err_info: holds information about errors.
3116   * @reset_info: holds current device reset information.
3117   * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3118   * @fw_major_version: major version of current loaded preboot.
3119   * @fw_minor_version: minor version of current loaded preboot.
3120   * @dram_used_mem: current DRAM memory consumption.
3121   * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3122   * @timeout_jiffies: device CS timeout value.
3123   * @max_power: the max power of the device, as configured by the sysadmin. This
3124   *             value is saved so in case of hard-reset, the driver will restore
3125   *             this value and update the F/W after the re-initialization
3126   * @boot_error_status_mask: contains a mask of the device boot error status.
3127   *                          Each bit represents a different error, according to
3128   *                          the defines in hl_boot_if.h. If the bit is cleared,
3129   *                          the error will be ignored by the driver during
3130   *                          device initialization. Mainly used to debug and
3131   *                          workaround firmware bugs
3132   * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3133   * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3134   * @last_successful_open_jif: timestamp (jiffies) of the last successful
3135   *                            device open.
3136   * @last_open_session_duration_jif: duration (jiffies) of the last device open
3137   *                                  session.
3138   * @open_counter: number of successful device open operations.
3139   * @fw_poll_interval_usec: FW status poll interval in usec.
3140   *                         used for CPU boot status
3141   * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3142   *                                  used for COMMs protocols cmds(COMMS_STS_*)
3143   * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3144   *                drams are binned-out
3145   * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3146   *               tpc engines are binned-out
3147   * @card_type: Various ASICs have several card types. This indicates the card
3148   *             type of the current device.
3149   * @major: habanalabs kernel driver major.
3150   * @high_pll: high PLL profile frequency.
3151   * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3152   *                   indicates which decoder engines are binned-out
3153   * @edma_binning: contains mask of edma engines that is received from the f/w which
3154   *                   indicates which edma engines are binned-out
3155   * @id: device minor.
3156   * @id_control: minor of the control device.
3157   * @cdev_idx: char device index. Used for setting its name.
3158   * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3159   *                    addresses.
3160   * @is_in_dram_scrub: true if dram scrub operation is on going.
3161   * @disabled: is device disabled.
3162   * @late_init_done: is late init stage was done during initialization.
3163   * @hwmon_initialized: is H/W monitor sensors was initialized.
3164   * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3165   *                   otherwise.
3166   * @dram_default_page_mapping: is DRAM default page mapping enabled.
3167   * @memory_scrub: true to perform device memory scrub in various locations,
3168   *                such as context-switch, context close, page free, etc.
3169   * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3170   *                   huge pages.
3171   * @init_done: is the initialization of the device done.
3172   * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3173   * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3174   *            can be used. This indication is needed because in some ASICs we need to do
3175   *            specific operations to enable that infrastructure.
3176   * @cdev_sysfs_created: were char devices and sysfs nodes created.
3177   * @stop_on_err: true if engines should stop on error.
3178   * @supports_sync_stream: is sync stream supported.
3179   * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3180   * @collective_mon_idx: helper index for collective initialization
3181   * @supports_coresight: is CoreSight supported.
3182   * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3183   * @process_kill_trial_cnt: number of trials reset thread tried killing
3184   *                          user processes
3185   * @device_fini_pending: true if device_fini was called and might be
3186   *                       waiting for the reset thread to finish
3187   * @supports_staged_submission: true if staged submissions are supported
3188   * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3189   *                        halted. We can't halt it again because the COMMS
3190   *                        protocol will throw an error. Relevant only for
3191   *                        cases where Linux was not loaded to device CPU
3192   * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3193   * @is_compute_ctx_active: Whether there is an active compute context executing.
3194   * @compute_ctx_in_release: true if the current compute context is being released.
3195   * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3196   * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3197   *                             device.
3198   * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3199   * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3200   *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
3201   * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
3202   * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3203   * @pldm: Whether we are running in Palladium environment. Used only for testing.
3204   * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3205   *                           the f/w. Used only for testing.
3206   * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3207   * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3208   *                         Used only for testing.
3209   * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3210   *             that the f/w is always alive. Used only for testing.
3211   * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3212   */
3213  struct hl_device {
3214  	struct pci_dev			*pdev;
3215  	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
3216  	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
3217  	void __iomem			*rmmio;
3218  	struct cdev			cdev;
3219  	struct cdev			cdev_ctrl;
3220  	struct device			*dev;
3221  	struct device			*dev_ctrl;
3222  	struct delayed_work		work_heartbeat;
3223  	struct hl_device_reset_work	device_reset_work;
3224  	char				asic_name[HL_STR_MAX];
3225  	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
3226  	enum hl_asic_type		asic_type;
3227  	struct hl_cq			*completion_queue;
3228  	struct hl_user_interrupt	*user_interrupt;
3229  	struct hl_user_interrupt	common_user_cq_interrupt;
3230  	struct hl_user_interrupt	common_decoder_interrupt;
3231  	struct hl_cs			**shadow_cs_queue;
3232  	struct workqueue_struct		**cq_wq;
3233  	struct workqueue_struct		*eq_wq;
3234  	struct workqueue_struct		*cs_cmplt_wq;
3235  	struct workqueue_struct		*ts_free_obj_wq;
3236  	struct workqueue_struct		*pf_wq;
3237  	struct hl_ctx			*kernel_ctx;
3238  	struct hl_hw_queue		*kernel_queues;
3239  	struct list_head		cs_mirror_list;
3240  	spinlock_t			cs_mirror_lock;
3241  	struct hl_mem_mgr		kernel_mem_mgr;
3242  	struct hl_eq			event_queue;
3243  	struct dma_pool			*dma_pool;
3244  	void				*cpu_accessible_dma_mem;
3245  	dma_addr_t			cpu_accessible_dma_address;
3246  	struct gen_pool			*cpu_accessible_dma_pool;
3247  	unsigned long			*asid_bitmap;
3248  	struct mutex			asid_mutex;
3249  	struct mutex			send_cpu_message_lock;
3250  	struct mutex			debug_lock;
3251  	struct mutex			mmu_lock;
3252  	struct asic_fixed_properties	asic_prop;
3253  	const struct hl_asic_funcs	*asic_funcs;
3254  	void				*asic_specific;
3255  	struct hl_vm			vm;
3256  	struct device			*hwmon_dev;
3257  	struct hwmon_chip_info		*hl_chip_info;
3258  
3259  	struct hl_dbg_device_entry	hl_debugfs;
3260  
3261  	struct list_head		cb_pool;
3262  	spinlock_t			cb_pool_lock;
3263  
3264  	void				*internal_cb_pool_virt_addr;
3265  	dma_addr_t			internal_cb_pool_dma_addr;
3266  	struct gen_pool			*internal_cb_pool;
3267  	u64				internal_cb_va_base;
3268  
3269  	struct list_head		fpriv_list;
3270  	struct list_head		fpriv_ctrl_list;
3271  	struct mutex			fpriv_list_lock;
3272  	struct mutex			fpriv_ctrl_list_lock;
3273  
3274  	struct hl_cs_counters_atomic	aggregated_cs_counters;
3275  
3276  	struct hl_mmu_priv		mmu_priv;
3277  	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
3278  
3279  	struct hl_dec			*dec;
3280  
3281  	struct fw_load_mgr		fw_loader;
3282  
3283  	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
3284  
3285  	struct hl_state_dump_specs	state_dump_specs;
3286  
3287  	struct multi_cs_completion	multi_cs_completion[
3288  							MULTI_CS_MAX_USER_CTX];
3289  	struct hl_clk_throttle		clk_throttling;
3290  	struct hl_error_info		captured_err_info;
3291  
3292  	struct hl_reset_info		reset_info;
3293  
3294  	u32				*stream_master_qid_arr;
3295  	u32				fw_major_version;
3296  	u32				fw_minor_version;
3297  	atomic64_t			dram_used_mem;
3298  	u64				memory_scrub_val;
3299  	u64				timeout_jiffies;
3300  	u64				max_power;
3301  	u64				boot_error_status_mask;
3302  	u64				dram_pci_bar_start;
3303  	u64				last_successful_open_jif;
3304  	u64				last_open_session_duration_jif;
3305  	u64				open_counter;
3306  	u64				fw_poll_interval_usec;
3307  	ktime_t				last_successful_open_ktime;
3308  	u64				fw_comms_poll_interval_usec;
3309  	u64				dram_binning;
3310  	u64				tpc_binning;
3311  
3312  	enum cpucp_card_types		card_type;
3313  	u32				major;
3314  	u32				high_pll;
3315  	u32				decoder_binning;
3316  	u32				edma_binning;
3317  	u16				id;
3318  	u16				id_control;
3319  	u16				cdev_idx;
3320  	u16				cpu_pci_msb_addr;
3321  	u8				is_in_dram_scrub;
3322  	u8				disabled;
3323  	u8				late_init_done;
3324  	u8				hwmon_initialized;
3325  	u8				reset_on_lockup;
3326  	u8				dram_default_page_mapping;
3327  	u8				memory_scrub;
3328  	u8				pmmu_huge_range;
3329  	u8				init_done;
3330  	u8				device_cpu_disabled;
3331  	u8				in_debug;
3332  	u8				cdev_sysfs_created;
3333  	u8				stop_on_err;
3334  	u8				supports_sync_stream;
3335  	u8				sync_stream_queue_idx;
3336  	u8				collective_mon_idx;
3337  	u8				supports_coresight;
3338  	u8				supports_cb_mapping;
3339  	u8				process_kill_trial_cnt;
3340  	u8				device_fini_pending;
3341  	u8				supports_staged_submission;
3342  	u8				device_cpu_is_halted;
3343  	u8				supports_wait_for_multi_cs;
3344  	u8				stream_master_qid_arr_size;
3345  	u8				is_compute_ctx_active;
3346  	u8				compute_ctx_in_release;
3347  	u8				supports_mmu_prefetch;
3348  	u8				reset_upon_device_release;
3349  	u8				supports_ctx_switch;
3350  
3351  	/* Parameters for bring-up */
3352  	u64				nic_ports_mask;
3353  	u64				fw_components;
3354  	u8				mmu_enable;
3355  	u8				cpu_queues_enable;
3356  	u8				pldm;
3357  	u8				hard_reset_on_fw_events;
3358  	u8				bmc_enable;
3359  	u8				reset_on_preboot_fail;
3360  	u8				heartbeat;
3361  };
3362  
3363  
3364  /**
3365   * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3366   * @refcount: refcount used to protect removing this id when several
3367   *            wait cs are used to wait of the reserved encaps signals.
3368   * @hdev: pointer to habanalabs device structure.
3369   * @hw_sob: pointer to  H/W SOB used in the reservation.
3370   * @ctx: pointer to the user's context data structure
3371   * @cs_seq: staged cs sequence which contains encapsulated signals
3372   * @id: idr handler id to be used to fetch the handler info
3373   * @q_idx: stream queue index
3374   * @pre_sob_val: current SOB value before reservation
3375   * @count: signals number
3376   */
3377  struct hl_cs_encaps_sig_handle {
3378  	struct kref refcount;
3379  	struct hl_device *hdev;
3380  	struct hl_hw_sob *hw_sob;
3381  	struct hl_ctx *ctx;
3382  	u64  cs_seq;
3383  	u32  id;
3384  	u32  q_idx;
3385  	u32  pre_sob_val;
3386  	u32  count;
3387  };
3388  
3389  /*
3390   * IOCTLs
3391   */
3392  
3393  /**
3394   * typedef hl_ioctl_t - typedef for ioctl function in the driver
3395   * @hpriv: pointer to the FD's private data, which contains state of
3396   *		user process
3397   * @data: pointer to the input/output arguments structure of the IOCTL
3398   *
3399   * Return: 0 for success, negative value for error
3400   */
3401  typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3402  
3403  /**
3404   * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3405   * @cmd: the IOCTL code as created by the kernel macros.
3406   * @func: pointer to the driver's function that should be called for this IOCTL.
3407   */
3408  struct hl_ioctl_desc {
3409  	unsigned int cmd;
3410  	hl_ioctl_t *func;
3411  };
3412  
3413  
3414  /*
3415   * Kernel module functions that can be accessed by entire module
3416   */
3417  
3418  /**
3419   * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3420   * @sg: the SG list.
3421   * @dma_addr: pointer to DMA address to return.
3422   *
3423   * Calculate the number of consecutive pages described by the SG list. Take the
3424   * offset of the address in the first page, add to it the length and round it up
3425   * to the number of needed pages.
3426   */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3427  static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3428  {
3429  	*dma_addr = sg_dma_address(sg);
3430  
3431  	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3432  			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3433  }
3434  
3435  /**
3436   * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3437   * @address: The start address of the area we want to validate.
3438   * @size: The size in bytes of the area we want to validate.
3439   * @range_start_address: The start address of the valid range.
3440   * @range_end_address: The end address of the valid range.
3441   *
3442   * Return: true if the area is inside the valid range, false otherwise.
3443   */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3444  static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3445  				u64 range_start_address, u64 range_end_address)
3446  {
3447  	u64 end_address = address + size;
3448  
3449  	if ((address >= range_start_address) &&
3450  			(end_address <= range_end_address) &&
3451  			(end_address > address))
3452  		return true;
3453  
3454  	return false;
3455  }
3456  
3457  /**
3458   * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3459   * @address: The start address of the area we want to validate.
3460   * @size: The size in bytes of the area we want to validate.
3461   * @range_start_address: The start address of the valid range.
3462   * @range_end_address: The end address of the valid range.
3463   *
3464   * Return: true if the area overlaps part or all of the valid range,
3465   *		false otherwise.
3466   */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3467  static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3468  				u64 range_start_address, u64 range_end_address)
3469  {
3470  	u64 end_address = address + size - 1;
3471  
3472  	return ((address <= range_end_address) && (range_start_address <= end_address));
3473  }
3474  
3475  uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3476  void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3477  					gfp_t flag, const char *caller);
3478  void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3479  					dma_addr_t dma_handle, const char *caller);
3480  void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
3481  						dma_addr_t *dma_handle, const char *caller);
3482  void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
3483  						const char *caller);
3484  void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3485  					dma_addr_t *dma_handle, const char *caller);
3486  void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3487  					const char *caller);
3488  int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3489  void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3490  				enum dma_data_direction dir);
3491  int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3492  	enum debugfs_access_type acc_type);
3493  int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3494  			u64 addr, u64 *val, enum debugfs_access_type acc_type);
3495  int hl_device_open(struct inode *inode, struct file *filp);
3496  int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3497  bool hl_device_operational(struct hl_device *hdev,
3498  		enum hl_device_status *status);
3499  enum hl_device_status hl_device_status(struct hl_device *hdev);
3500  int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3501  int hl_hw_queues_create(struct hl_device *hdev);
3502  void hl_hw_queues_destroy(struct hl_device *hdev);
3503  int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3504  		u32 cb_size, u64 cb_ptr);
3505  void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3506  		u32 ctl, u32 len, u64 ptr);
3507  int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3508  u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3509  void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3510  void hl_hw_queue_update_ci(struct hl_cs *cs);
3511  void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3512  
3513  #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
3514  #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
3515  
3516  int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3517  void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3518  int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3519  void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3520  void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3521  void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3522  irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3523  irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3524  irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3525  irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3526  irqreturn_t hl_irq_handler_default(int irq, void *arg);
3527  u32 hl_cq_inc_ptr(u32 ptr);
3528  
3529  int hl_asid_init(struct hl_device *hdev);
3530  void hl_asid_fini(struct hl_device *hdev);
3531  unsigned long hl_asid_alloc(struct hl_device *hdev);
3532  void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3533  
3534  int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3535  void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3536  int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3537  void hl_ctx_do_release(struct kref *ref);
3538  void hl_ctx_get(struct hl_ctx *ctx);
3539  int hl_ctx_put(struct hl_ctx *ctx);
3540  struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3541  struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3542  int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3543  				struct hl_fence **fence, u32 arr_len);
3544  void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3545  void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3546  
3547  int hl_device_init(struct hl_device *hdev, struct class *hclass);
3548  void hl_device_fini(struct hl_device *hdev);
3549  int hl_device_suspend(struct hl_device *hdev);
3550  int hl_device_resume(struct hl_device *hdev);
3551  int hl_device_reset(struct hl_device *hdev, u32 flags);
3552  void hl_hpriv_get(struct hl_fpriv *hpriv);
3553  int hl_hpriv_put(struct hl_fpriv *hpriv);
3554  int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3555  
3556  int hl_build_hwmon_channel_info(struct hl_device *hdev,
3557  		struct cpucp_sensor *sensors_arr);
3558  
3559  void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3560  
3561  int hl_sysfs_init(struct hl_device *hdev);
3562  void hl_sysfs_fini(struct hl_device *hdev);
3563  
3564  int hl_hwmon_init(struct hl_device *hdev);
3565  void hl_hwmon_fini(struct hl_device *hdev);
3566  void hl_hwmon_release_resources(struct hl_device *hdev);
3567  
3568  int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3569  			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3570  			bool map_cb, u64 *handle);
3571  int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3572  int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3573  struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3574  void hl_cb_put(struct hl_cb *cb);
3575  struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3576  					bool internal_cb);
3577  int hl_cb_pool_init(struct hl_device *hdev);
3578  int hl_cb_pool_fini(struct hl_device *hdev);
3579  int hl_cb_va_pool_init(struct hl_ctx *ctx);
3580  void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3581  
3582  void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3583  struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3584  		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3585  void hl_sob_reset_error(struct kref *ref);
3586  int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3587  void hl_fence_put(struct hl_fence *fence);
3588  void hl_fences_put(struct hl_fence **fence, int len);
3589  void hl_fence_get(struct hl_fence *fence);
3590  void cs_get(struct hl_cs *cs);
3591  bool cs_needs_completion(struct hl_cs *cs);
3592  bool cs_needs_timeout(struct hl_cs *cs);
3593  bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3594  struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3595  void hl_multi_cs_completion_init(struct hl_device *hdev);
3596  
3597  void goya_set_asic_funcs(struct hl_device *hdev);
3598  void gaudi_set_asic_funcs(struct hl_device *hdev);
3599  void gaudi2_set_asic_funcs(struct hl_device *hdev);
3600  
3601  int hl_vm_ctx_init(struct hl_ctx *ctx);
3602  void hl_vm_ctx_fini(struct hl_ctx *ctx);
3603  
3604  int hl_vm_init(struct hl_device *hdev);
3605  void hl_vm_fini(struct hl_device *hdev);
3606  
3607  void hl_hw_block_mem_init(struct hl_ctx *ctx);
3608  void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3609  
3610  u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3611  		enum hl_va_range_type type, u64 size, u32 alignment);
3612  int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3613  		u64 start_addr, u64 size);
3614  int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3615  			struct hl_userptr *userptr);
3616  void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3617  void hl_userptr_delete_list(struct hl_device *hdev,
3618  				struct list_head *userptr_list);
3619  bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3620  				struct list_head *userptr_list,
3621  				struct hl_userptr **userptr);
3622  
3623  int hl_mmu_init(struct hl_device *hdev);
3624  void hl_mmu_fini(struct hl_device *hdev);
3625  int hl_mmu_ctx_init(struct hl_ctx *ctx);
3626  void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3627  int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3628  		u32 page_size, bool flush_pte);
3629  int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3630  				u32 page_size, u32 *real_page_size, bool is_dram_addr);
3631  int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3632  		bool flush_pte);
3633  int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3634  					u64 phys_addr, u32 size);
3635  int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3636  int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3637  int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3638  					u32 flags, u32 asid, u64 va, u64 size);
3639  int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3640  u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3641  u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3642  					u8 hop_idx, u64 hop_addr, u64 virt_addr);
3643  void hl_mmu_hr_flush(struct hl_ctx *ctx);
3644  int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3645  			u64 pgt_size);
3646  void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3647  void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3648  				u32 hop_table_size);
3649  u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3650  							u32 hop_table_size);
3651  void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3652  							u64 val, u32 hop_table_size);
3653  void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3654  							u32 hop_table_size);
3655  int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3656  							u32 hop_table_size);
3657  void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3658  struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3659  							struct hl_hr_mmu_funcs *hr_func,
3660  							u64 curr_pte);
3661  struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3662  							struct hl_hr_mmu_funcs *hr_func,
3663  							struct hl_mmu_properties *mmu_prop);
3664  struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3665  							struct hl_mmu_hr_priv *hr_priv,
3666  							struct hl_hr_mmu_funcs *hr_func,
3667  							struct hl_mmu_properties *mmu_prop,
3668  							u64 curr_pte, bool *is_new_hop);
3669  int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3670  							struct hl_hr_mmu_funcs *hr_func);
3671  void hl_mmu_swap_out(struct hl_ctx *ctx);
3672  void hl_mmu_swap_in(struct hl_ctx *ctx);
3673  int hl_mmu_if_set_funcs(struct hl_device *hdev);
3674  void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3675  void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3676  int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3677  int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3678  			struct hl_mmu_hop_info *hops);
3679  u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3680  u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3681  bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3682  
3683  int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3684  				void __iomem *dst, u32 src_offset, u32 size);
3685  int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3686  int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3687  				u16 len, u32 timeout, u64 *result);
3688  int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3689  int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3690  		size_t irq_arr_size);
3691  int hl_fw_test_cpu_queue(struct hl_device *hdev);
3692  void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3693  						dma_addr_t *dma_handle);
3694  void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3695  					void *vaddr);
3696  int hl_fw_send_heartbeat(struct hl_device *hdev);
3697  int hl_fw_cpucp_info_get(struct hl_device *hdev,
3698  				u32 sts_boot_dev_sts0_reg,
3699  				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3700  				u32 boot_err1_reg);
3701  int hl_fw_cpucp_handshake(struct hl_device *hdev,
3702  				u32 sts_boot_dev_sts0_reg,
3703  				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3704  				u32 boot_err1_reg);
3705  int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3706  int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3707  int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3708  		struct hl_info_pci_counters *counters);
3709  int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3710  			u64 *total_energy);
3711  int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3712  						enum pll_index *pll_index);
3713  int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3714  		u16 *pll_freq_arr);
3715  int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3716  void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3717  void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3718  int hl_fw_init_cpu(struct hl_device *hdev);
3719  int hl_fw_read_preboot_status(struct hl_device *hdev);
3720  int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3721  				struct fw_load_mgr *fw_loader,
3722  				enum comms_cmd cmd, unsigned int size,
3723  				bool wait_ok, u32 timeout);
3724  int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3725  				struct cpucp_hbm_row_info *info);
3726  int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3727  int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3728  int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3729  int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3730  			bool is_wc[3]);
3731  int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3732  int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3733  int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3734  		struct hl_inbound_pci_region *pci_region);
3735  int hl_pci_set_outbound_region(struct hl_device *hdev,
3736  		struct hl_outbound_pci_region *pci_region);
3737  enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3738  int hl_pci_init(struct hl_device *hdev);
3739  void hl_pci_fini(struct hl_device *hdev);
3740  
3741  long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3742  void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3743  int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3744  int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3745  int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3746  int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3747  int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3748  int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3749  void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3750  long hl_fw_get_max_power(struct hl_device *hdev);
3751  void hl_fw_set_max_power(struct hl_device *hdev);
3752  int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3753  				u32 nonce);
3754  int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3755  int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3756  int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3757  int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3758  int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3759  void hl_fw_set_pll_profile(struct hl_device *hdev);
3760  void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3761  void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3762  
3763  void hw_sob_get(struct hl_hw_sob *hw_sob);
3764  void hw_sob_put(struct hl_hw_sob *hw_sob);
3765  void hl_encaps_handle_do_release(struct kref *ref);
3766  void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3767  			struct hl_cs *cs, struct hl_cs_job *job,
3768  			struct hl_cs_compl *cs_cmpl);
3769  
3770  int hl_dec_init(struct hl_device *hdev);
3771  void hl_dec_fini(struct hl_device *hdev);
3772  void hl_dec_ctx_fini(struct hl_ctx *ctx);
3773  
3774  void hl_release_pending_user_interrupts(struct hl_device *hdev);
3775  int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3776  			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3777  
3778  int hl_state_dump(struct hl_device *hdev);
3779  const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3780  const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3781  					struct hl_mon_state_dump *mon);
3782  void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3783  __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3784  					const char *format, ...);
3785  char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3786  const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3787  
3788  void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3789  void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3790  int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3791  		    void *args);
3792  struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3793  						   u64 handle);
3794  int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3795  int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3796  struct hl_mmap_mem_buf *
3797  hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3798  		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3799  		      void *args);
3800  __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3801  
3802  #ifdef CONFIG_DEBUG_FS
3803  
3804  void hl_debugfs_init(void);
3805  void hl_debugfs_fini(void);
3806  void hl_debugfs_add_device(struct hl_device *hdev);
3807  void hl_debugfs_remove_device(struct hl_device *hdev);
3808  void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3809  void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3810  void hl_debugfs_add_cb(struct hl_cb *cb);
3811  void hl_debugfs_remove_cb(struct hl_cb *cb);
3812  void hl_debugfs_add_cs(struct hl_cs *cs);
3813  void hl_debugfs_remove_cs(struct hl_cs *cs);
3814  void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3815  void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3816  void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3817  void hl_debugfs_remove_userptr(struct hl_device *hdev,
3818  				struct hl_userptr *userptr);
3819  void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3820  void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3821  void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3822  					unsigned long length);
3823  
3824  #else
3825  
hl_debugfs_init(void)3826  static inline void __init hl_debugfs_init(void)
3827  {
3828  }
3829  
hl_debugfs_fini(void)3830  static inline void hl_debugfs_fini(void)
3831  {
3832  }
3833  
hl_debugfs_add_device(struct hl_device * hdev)3834  static inline void hl_debugfs_add_device(struct hl_device *hdev)
3835  {
3836  }
3837  
hl_debugfs_remove_device(struct hl_device * hdev)3838  static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3839  {
3840  }
3841  
hl_debugfs_add_file(struct hl_fpriv * hpriv)3842  static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3843  {
3844  }
3845  
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3846  static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3847  {
3848  }
3849  
hl_debugfs_add_cb(struct hl_cb * cb)3850  static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3851  {
3852  }
3853  
hl_debugfs_remove_cb(struct hl_cb * cb)3854  static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3855  {
3856  }
3857  
hl_debugfs_add_cs(struct hl_cs * cs)3858  static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3859  {
3860  }
3861  
hl_debugfs_remove_cs(struct hl_cs * cs)3862  static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3863  {
3864  }
3865  
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3866  static inline void hl_debugfs_add_job(struct hl_device *hdev,
3867  					struct hl_cs_job *job)
3868  {
3869  }
3870  
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3871  static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3872  					struct hl_cs_job *job)
3873  {
3874  }
3875  
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3876  static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3877  					struct hl_userptr *userptr)
3878  {
3879  }
3880  
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3881  static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3882  					struct hl_userptr *userptr)
3883  {
3884  }
3885  
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3886  static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3887  					struct hl_ctx *ctx)
3888  {
3889  }
3890  
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3891  static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3892  					struct hl_ctx *ctx)
3893  {
3894  }
3895  
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3896  static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3897  					char *data, unsigned long length)
3898  {
3899  }
3900  
3901  #endif
3902  
3903  /* Security */
3904  int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
3905  		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
3906  		int array_size);
3907  int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
3908  		int mm_array_size, int offset, const u32 pb_blocks[],
3909  		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
3910  void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
3911  		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
3912  		int array_size);
3913  void hl_secure_block(struct hl_device *hdev,
3914  		struct hl_block_glbl_sec sgs_array[], int array_size);
3915  int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3916  		u32 dcore_offset, u32 num_instances, u32 instance_offset,
3917  		const u32 pb_blocks[], u32 blocks_array_size,
3918  		const u32 *regs_array, u32 regs_array_size, u64 mask);
3919  int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3920  		u32 num_instances, u32 instance_offset,
3921  		const u32 pb_blocks[], u32 blocks_array_size,
3922  		const u32 *regs_array, u32 regs_array_size);
3923  int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
3924  		u32 dcore_offset, u32 num_instances, u32 instance_offset,
3925  		const u32 pb_blocks[], u32 blocks_array_size,
3926  		const struct range *regs_range_array, u32 regs_range_array_size,
3927  		u64 mask);
3928  int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
3929  		u32 dcore_offset, u32 num_instances, u32 instance_offset,
3930  		const u32 pb_blocks[], u32 blocks_array_size,
3931  		const struct range *regs_range_array,
3932  		u32 regs_range_array_size);
3933  int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3934  		u32 num_instances, u32 instance_offset,
3935  		const u32 pb_blocks[], u32 blocks_array_size,
3936  		const u32 *regs_array, u32 regs_array_size);
3937  int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3938  		u32 num_instances, u32 instance_offset,
3939  		const u32 pb_blocks[], u32 blocks_array_size,
3940  		const struct range *regs_range_array,
3941  		u32 regs_range_array_size);
3942  void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
3943  		u32 num_instances, u32 instance_offset,
3944  		const u32 pb_blocks[], u32 blocks_array_size);
3945  void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
3946  		u32 dcore_offset, u32 num_instances, u32 instance_offset,
3947  		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
3948  void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
3949  		u32 num_instances, u32 instance_offset,
3950  		const u32 pb_blocks[], u32 blocks_array_size);
3951  
3952  /* IOCTLs */
3953  long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3954  long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3955  int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3956  int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3957  int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3958  int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3959  
3960  #endif /* HABANALABSP_H_ */
3961