1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52
53 /*
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
59 *
60 * we check for legacy (PERFFILE) format.
61 */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66 #define PERF_MAGIC __perf_magic2
67
68 const char perf_version_string[] = PERF_VERSION;
69
70 struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
73 };
74
perf_header__set_feat(struct perf_header * header,int feat)75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 set_bit(feat, header->adds_features);
78 }
79
perf_header__clear_feat(struct perf_header * header,int feat)80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 clear_bit(feat, header->adds_features);
83 }
84
perf_header__has_feat(const struct perf_header * header,int feat)85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 return test_bit(feat, header->adds_features);
88 }
89
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 ssize_t ret = writen(ff->fd, buf, size);
93
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
97 }
98
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
100 {
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
105
106 if (size + ff->offset > max_size)
107 return -E2BIG;
108
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
112
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
119 }
120
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
123
124 return 0;
125 }
126
127 /* Return: 0 if succeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
133 }
134
135 /* Return: 0 if succeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 u64 *p = (u64 *) set;
139 int i, ret;
140
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
144
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /* Return: 0 if succeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)155 int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
157 {
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
160
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
163
164 return err;
165 }
166
167 #define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170 /* Return: 0 if succeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 u32 len, olen;
174 int ret;
175
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
178
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
183
184 return write_padded(ff, str, olen, len);
185 }
186
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 ssize_t ret = readn(ff->fd, addr, size);
190
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
194 }
195
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
200
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
203
204 return 0;
205
206 }
207
__do_read(struct feat_fd * ff,void * addr,ssize_t size)208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
213 }
214
do_read_u32(struct feat_fd * ff,u32 * addr)215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 int ret;
218
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
222
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
226 }
227
do_read_u64(struct feat_fd * ff,u64 * addr)228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
239 }
240
do_read_string(struct feat_fd * ff)241 static char *do_read_string(struct feat_fd *ff)
242 {
243 u32 len;
244 char *buf;
245
246 if (do_read_u32(ff, &len))
247 return NULL;
248
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
252
253 if (!__do_read(ff, buf, len)) {
254 /*
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
258 */
259 return buf;
260 }
261
262 free(buf);
263 return NULL;
264 }
265
266 /* Return: 0 if succeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
272
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
276
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
280
281 p = (u64 *) set;
282
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
288 }
289 }
290
291 *pset = set;
292 *psize = size;
293 return 0;
294 }
295
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)296 static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
298 {
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
301
302 return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)305 static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
307 {
308 struct perf_session *session;
309 int err;
310
311 session = container_of(ff->ph, struct perf_session, header);
312
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
315
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
318
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
323 }
324 perf_session__cache_build_ids(session);
325
326 return 0;
327 }
328
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)329 static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
331 {
332 struct utsname uts;
333 int ret;
334
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
338
339 return do_write_string(ff, uts.nodename);
340 }
341
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344 {
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.release);
353 }
354
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357 {
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.machine);
366 }
367
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370 {
371 return do_write_string(ff, perf_version_string);
372 }
373
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
382
383 if (!search)
384 return -1;
385
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
389
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
394 }
395
396 if (ret) {
397 ret = -1;
398 goto done;
399 }
400
401 s = buf;
402
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
409
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
419 }
420 p++;
421 }
422 ret = do_write_string(ff, s);
423 done:
424 free(buf);
425 fclose(file);
426 return ret;
427 }
428
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)429 static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC { "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC { "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC { "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC { "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC { "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC { "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC { "core ID", }
446 #else
447 #define CPUINFO_PROC { "model name", }
448 #endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 unsigned int i;
452
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
458 }
459 return -1;
460 }
461
462
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)463 static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
465 {
466 long nr;
467 u32 nrc, nra;
468 int ret;
469
470 nrc = cpu__max_present_cpu();
471
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
475
476 nra = (u32)(nr & UINT_MAX);
477
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
481
482 return do_write(ff, &nra, sizeof(nra));
483 }
484
write_event_desc(struct feat_fd * ff,struct evlist * evlist)485 static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
487 {
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
491
492 nre = evlist->core.nr_entries;
493
494 /*
495 * write number of events
496 */
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
500
501 /*
502 * size of perf_event_attr struct
503 */
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
508
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
513 /*
514 * write number of unique id per event
515 * there is one id per instance of an event
516 *
517 * copy into an nri to be independent of the
518 * type of ids,
519 */
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
524
525 /*
526 * write event string as passed on cmdline
527 */
528 ret = do_write_string(ff, perf_evsel__name(evsel));
529 if (ret < 0)
530 return ret;
531 /*
532 * write unique ids for this event
533 */
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
537 }
538 return 0;
539 }
540
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)541 static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
543 {
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
546
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
549
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
552
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
556
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
560
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
565 }
566 return 0;
567 }
568
569
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)570 static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
572 {
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
576
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
580
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
584
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
589 }
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
593
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
598 }
599
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
603
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
613 }
614
615 if (!tp->die_sib)
616 goto done;
617
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
621
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
626 }
627
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
633 }
634
635 done:
636 cpu_topology__delete(tp);
637 return ret;
638 }
639
640
641
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)642 static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
644 {
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
650
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
654
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
659 }
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
669 }
670
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)671 static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
673 {
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
677
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
681
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
685
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
688
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
692
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
696
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
700
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
704 }
705
706 ret = 0;
707
708 err:
709 numa_topology__delete(tp);
710 return ret;
711 }
712
713 /*
714 * File format:
715 *
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
723 */
724
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)725 static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
727 {
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
731
732 /*
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
735 */
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
740 }
741
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
745
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
749
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
753
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
757 }
758
759 return 0;
760 }
761
762 /*
763 * File format:
764 *
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
773 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)774 static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
776 {
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
780
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
784
785 evlist__for_each_entry(evlist, evsel) {
786 if (perf_evsel__is_group_leader(evsel) &&
787 evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806 }
807
808 /*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845 }
846
847 /*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 return -1;
854 }
855
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)856 static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858 {
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867 }
868
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871 {
872 return 0;
873 }
874
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)875 static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877 {
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890 }
891
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)892 static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894 {
895 return do_write(ff, &ff->ph->env.clockid_res_ns,
896 sizeof(ff->ph->env.clockid_res_ns));
897 }
898
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)899 static int write_dir_format(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901 {
902 struct perf_session *session;
903 struct perf_data *data;
904
905 session = container_of(ff->ph, struct perf_session, header);
906 data = session->data;
907
908 if (WARN_ON(!perf_data__is_dir(data)))
909 return -1;
910
911 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913
914 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)915 static int write_bpf_prog_info(struct feat_fd *ff,
916 struct evlist *evlist __maybe_unused)
917 {
918 struct perf_env *env = &ff->ph->env;
919 struct rb_root *root;
920 struct rb_node *next;
921 int ret;
922
923 down_read(&env->bpf_progs.lock);
924
925 ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 sizeof(env->bpf_progs.infos_cnt));
927 if (ret < 0)
928 goto out;
929
930 root = &env->bpf_progs.infos;
931 next = rb_first(root);
932 while (next) {
933 struct bpf_prog_info_node *node;
934 size_t len;
935
936 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 next = rb_next(&node->rb_node);
938 len = sizeof(struct bpf_prog_info_linear) +
939 node->info_linear->data_len;
940
941 /* before writing to file, translate address to offset */
942 bpf_program__bpil_addr_to_offs(node->info_linear);
943 ret = do_write(ff, node->info_linear, len);
944 /*
945 * translate back to address even when do_write() fails,
946 * so that this function never changes the data.
947 */
948 bpf_program__bpil_offs_to_addr(node->info_linear);
949 if (ret < 0)
950 goto out;
951 }
952 out:
953 up_read(&env->bpf_progs.lock);
954 return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 struct evlist *evlist __maybe_unused)
959 {
960 return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)964 static int write_bpf_btf(struct feat_fd *ff,
965 struct evlist *evlist __maybe_unused)
966 {
967 struct perf_env *env = &ff->ph->env;
968 struct rb_root *root;
969 struct rb_node *next;
970 int ret;
971
972 down_read(&env->bpf_progs.lock);
973
974 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 sizeof(env->bpf_progs.btfs_cnt));
976
977 if (ret < 0)
978 goto out;
979
980 root = &env->bpf_progs.btfs;
981 next = rb_first(root);
982 while (next) {
983 struct btf_node *node;
984
985 node = rb_entry(next, struct btf_node, rb_node);
986 next = rb_next(&node->rb_node);
987 ret = do_write(ff, &node->id,
988 sizeof(u32) * 2 + node->data_size);
989 if (ret < 0)
990 goto out;
991 }
992 out:
993 up_read(&env->bpf_progs.lock);
994 return ret;
995 }
996
cpu_cache_level__sort(const void * a,const void * b)997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002 return cache_a->level - cache_b->level;
1003 }
1004
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007 if (a->level != b->level)
1008 return false;
1009
1010 if (a->line_size != b->line_size)
1011 return false;
1012
1013 if (a->sets != b->sets)
1014 return false;
1015
1016 if (a->ways != b->ways)
1017 return false;
1018
1019 if (strcmp(a->type, b->type))
1020 return false;
1021
1022 if (strcmp(a->size, b->size))
1023 return false;
1024
1025 if (strcmp(a->map, b->map))
1026 return false;
1027
1028 return true;
1029 }
1030
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033 char path[PATH_MAX], file[PATH_MAX];
1034 struct stat st;
1035 size_t len;
1036
1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040 if (stat(file, &st))
1041 return 1;
1042
1043 scnprintf(file, PATH_MAX, "%s/level", path);
1044 if (sysfs__read_int(file, (int *) &cache->level))
1045 return -1;
1046
1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 if (sysfs__read_int(file, (int *) &cache->line_size))
1049 return -1;
1050
1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 if (sysfs__read_int(file, (int *) &cache->sets))
1053 return -1;
1054
1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 if (sysfs__read_int(file, (int *) &cache->ways))
1057 return -1;
1058
1059 scnprintf(file, PATH_MAX, "%s/type", path);
1060 if (sysfs__read_str(file, &cache->type, &len))
1061 return -1;
1062
1063 cache->type[len] = 0;
1064 cache->type = strim(cache->type);
1065
1066 scnprintf(file, PATH_MAX, "%s/size", path);
1067 if (sysfs__read_str(file, &cache->size, &len)) {
1068 zfree(&cache->type);
1069 return -1;
1070 }
1071
1072 cache->size[len] = 0;
1073 cache->size = strim(cache->size);
1074
1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 if (sysfs__read_str(file, &cache->map, &len)) {
1077 zfree(&cache->size);
1078 zfree(&cache->type);
1079 return -1;
1080 }
1081
1082 cache->map[len] = 0;
1083 cache->map = strim(cache->map);
1084 return 0;
1085 }
1086
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091
build_caches(struct cpu_cache_level caches[],u32 size,u32 * cntp)1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093 {
1094 u32 i, cnt = 0;
1095 long ncpus;
1096 u32 nr, cpu;
1097 u16 level;
1098
1099 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 if (ncpus < 0)
1101 return -1;
1102
1103 nr = (u32)(ncpus & UINT_MAX);
1104
1105 for (cpu = 0; cpu < nr; cpu++) {
1106 for (level = 0; level < 10; level++) {
1107 struct cpu_cache_level c;
1108 int err;
1109
1110 err = cpu_cache_level__read(&c, cpu, level);
1111 if (err < 0)
1112 return err;
1113
1114 if (err == 1)
1115 break;
1116
1117 for (i = 0; i < cnt; i++) {
1118 if (cpu_cache_level__cmp(&c, &caches[i]))
1119 break;
1120 }
1121
1122 if (i == cnt)
1123 caches[cnt++] = c;
1124 else
1125 cpu_cache_level__free(&c);
1126
1127 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 goto out;
1129 }
1130 }
1131 out:
1132 *cntp = cnt;
1133 return 0;
1134 }
1135
1136 #define MAX_CACHE_LVL 4
1137
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1138 static int write_cache(struct feat_fd *ff,
1139 struct evlist *evlist __maybe_unused)
1140 {
1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 struct cpu_cache_level caches[max_caches];
1143 u32 cnt = 0, i, version = 1;
1144 int ret;
1145
1146 ret = build_caches(caches, max_caches, &cnt);
1147 if (ret)
1148 goto out;
1149
1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152 ret = do_write(ff, &version, sizeof(u32));
1153 if (ret < 0)
1154 goto out;
1155
1156 ret = do_write(ff, &cnt, sizeof(u32));
1157 if (ret < 0)
1158 goto out;
1159
1160 for (i = 0; i < cnt; i++) {
1161 struct cpu_cache_level *c = &caches[i];
1162
1163 #define _W(v) \
1164 ret = do_write(ff, &c->v, sizeof(u32)); \
1165 if (ret < 0) \
1166 goto out;
1167
1168 _W(level)
1169 _W(line_size)
1170 _W(sets)
1171 _W(ways)
1172 #undef _W
1173
1174 #define _W(v) \
1175 ret = do_write_string(ff, (const char *) c->v); \
1176 if (ret < 0) \
1177 goto out;
1178
1179 _W(type)
1180 _W(size)
1181 _W(map)
1182 #undef _W
1183 }
1184
1185 out:
1186 for (i = 0; i < cnt; i++)
1187 cpu_cache_level__free(&caches[i]);
1188 return ret;
1189 }
1190
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1191 static int write_stat(struct feat_fd *ff __maybe_unused,
1192 struct evlist *evlist __maybe_unused)
1193 {
1194 return 0;
1195 }
1196
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1197 static int write_sample_time(struct feat_fd *ff,
1198 struct evlist *evlist)
1199 {
1200 int ret;
1201
1202 ret = do_write(ff, &evlist->first_sample_time,
1203 sizeof(evlist->first_sample_time));
1204 if (ret < 0)
1205 return ret;
1206
1207 return do_write(ff, &evlist->last_sample_time,
1208 sizeof(evlist->last_sample_time));
1209 }
1210
1211
memory_node__read(struct memory_node * n,unsigned long idx)1212 static int memory_node__read(struct memory_node *n, unsigned long idx)
1213 {
1214 unsigned int phys, size = 0;
1215 char path[PATH_MAX];
1216 struct dirent *ent;
1217 DIR *dir;
1218
1219 #define for_each_memory(mem, dir) \
1220 while ((ent = readdir(dir))) \
1221 if (strcmp(ent->d_name, ".") && \
1222 strcmp(ent->d_name, "..") && \
1223 sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225 scnprintf(path, PATH_MAX,
1226 "%s/devices/system/node/node%lu",
1227 sysfs__mountpoint(), idx);
1228
1229 dir = opendir(path);
1230 if (!dir) {
1231 pr_warning("failed: cant' open memory sysfs data\n");
1232 return -1;
1233 }
1234
1235 for_each_memory(phys, dir) {
1236 size = max(phys, size);
1237 }
1238
1239 size++;
1240
1241 n->set = bitmap_alloc(size);
1242 if (!n->set) {
1243 closedir(dir);
1244 return -ENOMEM;
1245 }
1246
1247 n->node = idx;
1248 n->size = size;
1249
1250 rewinddir(dir);
1251
1252 for_each_memory(phys, dir) {
1253 set_bit(phys, n->set);
1254 }
1255
1256 closedir(dir);
1257 return 0;
1258 }
1259
memory_node__sort(const void * a,const void * b)1260 static int memory_node__sort(const void *a, const void *b)
1261 {
1262 const struct memory_node *na = a;
1263 const struct memory_node *nb = b;
1264
1265 return na->node - nb->node;
1266 }
1267
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269 {
1270 char path[PATH_MAX];
1271 struct dirent *ent;
1272 DIR *dir;
1273 u64 cnt = 0;
1274 int ret = 0;
1275
1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 sysfs__mountpoint());
1278
1279 dir = opendir(path);
1280 if (!dir) {
1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 __func__, path);
1283 return -1;
1284 }
1285
1286 while (!ret && (ent = readdir(dir))) {
1287 unsigned int idx;
1288 int r;
1289
1290 if (!strcmp(ent->d_name, ".") ||
1291 !strcmp(ent->d_name, ".."))
1292 continue;
1293
1294 r = sscanf(ent->d_name, "node%u", &idx);
1295 if (r != 1)
1296 continue;
1297
1298 if (WARN_ONCE(cnt >= size,
1299 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300 closedir(dir);
1301 return -1;
1302 }
1303
1304 ret = memory_node__read(&nodes[cnt++], idx);
1305 }
1306
1307 *cntp = cnt;
1308 closedir(dir);
1309
1310 if (!ret)
1311 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312
1313 return ret;
1314 }
1315
1316 #define MAX_MEMORY_NODES 2000
1317
1318 /*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 * 0 - version | for future changes
1323 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id | node index
1330 * 40 - size | size of bitmap
1331 * 48 - bitmap | bitmap of memory indexes that belongs to node
1332 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1333 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334 struct evlist *evlist __maybe_unused)
1335 {
1336 static struct memory_node nodes[MAX_MEMORY_NODES];
1337 u64 bsize, version = 1, i, nr;
1338 int ret;
1339
1340 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341 (unsigned long long *) &bsize);
1342 if (ret)
1343 return ret;
1344
1345 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346 if (ret)
1347 return ret;
1348
1349 ret = do_write(ff, &version, sizeof(version));
1350 if (ret < 0)
1351 goto out;
1352
1353 ret = do_write(ff, &bsize, sizeof(bsize));
1354 if (ret < 0)
1355 goto out;
1356
1357 ret = do_write(ff, &nr, sizeof(nr));
1358 if (ret < 0)
1359 goto out;
1360
1361 for (i = 0; i < nr; i++) {
1362 struct memory_node *n = &nodes[i];
1363
1364 #define _W(v) \
1365 ret = do_write(ff, &n->v, sizeof(n->v)); \
1366 if (ret < 0) \
1367 goto out;
1368
1369 _W(node)
1370 _W(size)
1371
1372 #undef _W
1373
1374 ret = do_write_bitmap(ff, n->set, n->size);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379 out:
1380 return ret;
1381 }
1382
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1383 static int write_compressed(struct feat_fd *ff __maybe_unused,
1384 struct evlist *evlist __maybe_unused)
1385 {
1386 int ret;
1387
1388 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389 if (ret)
1390 return ret;
1391
1392 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393 if (ret)
1394 return ret;
1395
1396 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397 if (ret)
1398 return ret;
1399
1400 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401 if (ret)
1402 return ret;
1403
1404 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405 }
1406
print_hostname(struct feat_fd * ff,FILE * fp)1407 static void print_hostname(struct feat_fd *ff, FILE *fp)
1408 {
1409 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410 }
1411
print_osrelease(struct feat_fd * ff,FILE * fp)1412 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413 {
1414 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415 }
1416
print_arch(struct feat_fd * ff,FILE * fp)1417 static void print_arch(struct feat_fd *ff, FILE *fp)
1418 {
1419 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420 }
1421
print_cpudesc(struct feat_fd * ff,FILE * fp)1422 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423 {
1424 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425 }
1426
print_nrcpus(struct feat_fd * ff,FILE * fp)1427 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428 {
1429 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431 }
1432
print_version(struct feat_fd * ff,FILE * fp)1433 static void print_version(struct feat_fd *ff, FILE *fp)
1434 {
1435 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436 }
1437
print_cmdline(struct feat_fd * ff,FILE * fp)1438 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439 {
1440 int nr, i;
1441
1442 nr = ff->ph->env.nr_cmdline;
1443
1444 fprintf(fp, "# cmdline : ");
1445
1446 for (i = 0; i < nr; i++) {
1447 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448 if (!argv_i) {
1449 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450 } else {
1451 char *mem = argv_i;
1452 do {
1453 char *quote = strchr(argv_i, '\'');
1454 if (!quote)
1455 break;
1456 *quote++ = '\0';
1457 fprintf(fp, "%s\\\'", argv_i);
1458 argv_i = quote;
1459 } while (1);
1460 fprintf(fp, "%s ", argv_i);
1461 free(mem);
1462 }
1463 }
1464 fputc('\n', fp);
1465 }
1466
print_cpu_topology(struct feat_fd * ff,FILE * fp)1467 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468 {
1469 struct perf_header *ph = ff->ph;
1470 int cpu_nr = ph->env.nr_cpus_avail;
1471 int nr, i;
1472 char *str;
1473
1474 nr = ph->env.nr_sibling_cores;
1475 str = ph->env.sibling_cores;
1476
1477 for (i = 0; i < nr; i++) {
1478 fprintf(fp, "# sibling sockets : %s\n", str);
1479 str += strlen(str) + 1;
1480 }
1481
1482 if (ph->env.nr_sibling_dies) {
1483 nr = ph->env.nr_sibling_dies;
1484 str = ph->env.sibling_dies;
1485
1486 for (i = 0; i < nr; i++) {
1487 fprintf(fp, "# sibling dies : %s\n", str);
1488 str += strlen(str) + 1;
1489 }
1490 }
1491
1492 nr = ph->env.nr_sibling_threads;
1493 str = ph->env.sibling_threads;
1494
1495 for (i = 0; i < nr; i++) {
1496 fprintf(fp, "# sibling threads : %s\n", str);
1497 str += strlen(str) + 1;
1498 }
1499
1500 if (ph->env.nr_sibling_dies) {
1501 if (ph->env.cpu != NULL) {
1502 for (i = 0; i < cpu_nr; i++)
1503 fprintf(fp, "# CPU %d: Core ID %d, "
1504 "Die ID %d, Socket ID %d\n",
1505 i, ph->env.cpu[i].core_id,
1506 ph->env.cpu[i].die_id,
1507 ph->env.cpu[i].socket_id);
1508 } else
1509 fprintf(fp, "# Core ID, Die ID and Socket ID "
1510 "information is not available\n");
1511 } else {
1512 if (ph->env.cpu != NULL) {
1513 for (i = 0; i < cpu_nr; i++)
1514 fprintf(fp, "# CPU %d: Core ID %d, "
1515 "Socket ID %d\n",
1516 i, ph->env.cpu[i].core_id,
1517 ph->env.cpu[i].socket_id);
1518 } else
1519 fprintf(fp, "# Core ID and Socket ID "
1520 "information is not available\n");
1521 }
1522 }
1523
print_clockid(struct feat_fd * ff,FILE * fp)1524 static void print_clockid(struct feat_fd *ff, FILE *fp)
1525 {
1526 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527 ff->ph->env.clockid_res_ns * 1000);
1528 }
1529
print_dir_format(struct feat_fd * ff,FILE * fp)1530 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531 {
1532 struct perf_session *session;
1533 struct perf_data *data;
1534
1535 session = container_of(ff->ph, struct perf_session, header);
1536 data = session->data;
1537
1538 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539 }
1540
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1541 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542 {
1543 struct perf_env *env = &ff->ph->env;
1544 struct rb_root *root;
1545 struct rb_node *next;
1546
1547 down_read(&env->bpf_progs.lock);
1548
1549 root = &env->bpf_progs.infos;
1550 next = rb_first(root);
1551
1552 while (next) {
1553 struct bpf_prog_info_node *node;
1554
1555 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556 next = rb_next(&node->rb_node);
1557
1558 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559 env, fp);
1560 }
1561
1562 up_read(&env->bpf_progs.lock);
1563 }
1564
print_bpf_btf(struct feat_fd * ff,FILE * fp)1565 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566 {
1567 struct perf_env *env = &ff->ph->env;
1568 struct rb_root *root;
1569 struct rb_node *next;
1570
1571 down_read(&env->bpf_progs.lock);
1572
1573 root = &env->bpf_progs.btfs;
1574 next = rb_first(root);
1575
1576 while (next) {
1577 struct btf_node *node;
1578
1579 node = rb_entry(next, struct btf_node, rb_node);
1580 next = rb_next(&node->rb_node);
1581 fprintf(fp, "# btf info of id %u\n", node->id);
1582 }
1583
1584 up_read(&env->bpf_progs.lock);
1585 }
1586
free_event_desc(struct evsel * events)1587 static void free_event_desc(struct evsel *events)
1588 {
1589 struct evsel *evsel;
1590
1591 if (!events)
1592 return;
1593
1594 for (evsel = events; evsel->core.attr.size; evsel++) {
1595 zfree(&evsel->name);
1596 zfree(&evsel->core.id);
1597 }
1598
1599 free(events);
1600 }
1601
read_event_desc(struct feat_fd * ff)1602 static struct evsel *read_event_desc(struct feat_fd *ff)
1603 {
1604 struct evsel *evsel, *events = NULL;
1605 u64 *id;
1606 void *buf = NULL;
1607 u32 nre, sz, nr, i, j;
1608 size_t msz;
1609
1610 /* number of events */
1611 if (do_read_u32(ff, &nre))
1612 goto error;
1613
1614 if (do_read_u32(ff, &sz))
1615 goto error;
1616
1617 /* buffer to hold on file attr struct */
1618 buf = malloc(sz);
1619 if (!buf)
1620 goto error;
1621
1622 /* the last event terminates with evsel->core.attr.size == 0: */
1623 events = calloc(nre + 1, sizeof(*events));
1624 if (!events)
1625 goto error;
1626
1627 msz = sizeof(evsel->core.attr);
1628 if (sz < msz)
1629 msz = sz;
1630
1631 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632 evsel->idx = i;
1633
1634 /*
1635 * must read entire on-file attr struct to
1636 * sync up with layout.
1637 */
1638 if (__do_read(ff, buf, sz))
1639 goto error;
1640
1641 if (ff->ph->needs_swap)
1642 perf_event__attr_swap(buf);
1643
1644 memcpy(&evsel->core.attr, buf, msz);
1645
1646 if (do_read_u32(ff, &nr))
1647 goto error;
1648
1649 if (ff->ph->needs_swap)
1650 evsel->needs_swap = true;
1651
1652 evsel->name = do_read_string(ff);
1653 if (!evsel->name)
1654 goto error;
1655
1656 if (!nr)
1657 continue;
1658
1659 id = calloc(nr, sizeof(*id));
1660 if (!id)
1661 goto error;
1662 evsel->core.ids = nr;
1663 evsel->core.id = id;
1664
1665 for (j = 0 ; j < nr; j++) {
1666 if (do_read_u64(ff, id))
1667 goto error;
1668 id++;
1669 }
1670 }
1671 out:
1672 free(buf);
1673 return events;
1674 error:
1675 free_event_desc(events);
1676 events = NULL;
1677 goto out;
1678 }
1679
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1680 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681 void *priv __maybe_unused)
1682 {
1683 return fprintf(fp, ", %s = %s", name, val);
1684 }
1685
print_event_desc(struct feat_fd * ff,FILE * fp)1686 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687 {
1688 struct evsel *evsel, *events;
1689 u32 j;
1690 u64 *id;
1691
1692 if (ff->events)
1693 events = ff->events;
1694 else
1695 events = read_event_desc(ff);
1696
1697 if (!events) {
1698 fprintf(fp, "# event desc: not available or unable to read\n");
1699 return;
1700 }
1701
1702 for (evsel = events; evsel->core.attr.size; evsel++) {
1703 fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705 if (evsel->core.ids) {
1706 fprintf(fp, ", id = {");
1707 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708 if (j)
1709 fputc(',', fp);
1710 fprintf(fp, " %"PRIu64, *id);
1711 }
1712 fprintf(fp, " }");
1713 }
1714
1715 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717 fputc('\n', fp);
1718 }
1719
1720 free_event_desc(events);
1721 ff->events = NULL;
1722 }
1723
print_total_mem(struct feat_fd * ff,FILE * fp)1724 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725 {
1726 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727 }
1728
print_numa_topology(struct feat_fd * ff,FILE * fp)1729 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730 {
1731 int i;
1732 struct numa_node *n;
1733
1734 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735 n = &ff->ph->env.numa_nodes[i];
1736
1737 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1738 " free = %"PRIu64" kB\n",
1739 n->node, n->mem_total, n->mem_free);
1740
1741 fprintf(fp, "# node%u cpu list : ", n->node);
1742 cpu_map__fprintf(n->map, fp);
1743 }
1744 }
1745
print_cpuid(struct feat_fd * ff,FILE * fp)1746 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747 {
1748 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749 }
1750
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)1751 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752 {
1753 fprintf(fp, "# contains samples with branch stack\n");
1754 }
1755
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)1756 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757 {
1758 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759 }
1760
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)1761 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762 {
1763 fprintf(fp, "# contains stat data\n");
1764 }
1765
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)1766 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767 {
1768 int i;
1769
1770 fprintf(fp, "# CPU cache info:\n");
1771 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772 fprintf(fp, "# ");
1773 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774 }
1775 }
1776
print_compressed(struct feat_fd * ff,FILE * fp)1777 static void print_compressed(struct feat_fd *ff, FILE *fp)
1778 {
1779 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782 }
1783
print_pmu_mappings(struct feat_fd * ff,FILE * fp)1784 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785 {
1786 const char *delimiter = "# pmu mappings: ";
1787 char *str, *tmp;
1788 u32 pmu_num;
1789 u32 type;
1790
1791 pmu_num = ff->ph->env.nr_pmu_mappings;
1792 if (!pmu_num) {
1793 fprintf(fp, "# pmu mappings: not available\n");
1794 return;
1795 }
1796
1797 str = ff->ph->env.pmu_mappings;
1798
1799 while (pmu_num) {
1800 type = strtoul(str, &tmp, 0);
1801 if (*tmp != ':')
1802 goto error;
1803
1804 str = tmp + 1;
1805 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807 delimiter = ", ";
1808 str += strlen(str) + 1;
1809 pmu_num--;
1810 }
1811
1812 fprintf(fp, "\n");
1813
1814 if (!pmu_num)
1815 return;
1816 error:
1817 fprintf(fp, "# pmu mappings: unable to read\n");
1818 }
1819
print_group_desc(struct feat_fd * ff,FILE * fp)1820 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821 {
1822 struct perf_session *session;
1823 struct evsel *evsel;
1824 u32 nr = 0;
1825
1826 session = container_of(ff->ph, struct perf_session, header);
1827
1828 evlist__for_each_entry(session->evlist, evsel) {
1829 if (perf_evsel__is_group_leader(evsel) &&
1830 evsel->core.nr_members > 1) {
1831 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832 perf_evsel__name(evsel));
1833
1834 nr = evsel->core.nr_members - 1;
1835 } else if (nr) {
1836 fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838 if (--nr == 0)
1839 fprintf(fp, "}\n");
1840 }
1841 }
1842 }
1843
print_sample_time(struct feat_fd * ff,FILE * fp)1844 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845 {
1846 struct perf_session *session;
1847 char time_buf[32];
1848 double d;
1849
1850 session = container_of(ff->ph, struct perf_session, header);
1851
1852 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853 time_buf, sizeof(time_buf));
1854 fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857 time_buf, sizeof(time_buf));
1858 fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860 d = (double)(session->evlist->last_sample_time -
1861 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864 }
1865
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)1866 static void memory_node__fprintf(struct memory_node *n,
1867 unsigned long long bsize, FILE *fp)
1868 {
1869 char buf_map[100], buf_size[50];
1870 unsigned long long size;
1871
1872 size = bsize * bitmap_weight(n->set, n->size);
1873 unit_number__scnprintf(buf_size, 50, size);
1874
1875 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877 }
1878
print_mem_topology(struct feat_fd * ff,FILE * fp)1879 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880 {
1881 struct memory_node *nodes;
1882 int i, nr;
1883
1884 nodes = ff->ph->env.memory_nodes;
1885 nr = ff->ph->env.nr_memory_nodes;
1886
1887 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888 nr, ff->ph->env.memory_bsize);
1889
1890 for (i = 0; i < nr; i++) {
1891 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892 }
1893 }
1894
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)1895 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896 char *filename,
1897 struct perf_session *session)
1898 {
1899 int err = -1;
1900 struct machine *machine;
1901 u16 cpumode;
1902 struct dso *dso;
1903 enum dso_kernel_type dso_type;
1904
1905 machine = perf_session__findnew_machine(session, bev->pid);
1906 if (!machine)
1907 goto out;
1908
1909 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911 switch (cpumode) {
1912 case PERF_RECORD_MISC_KERNEL:
1913 dso_type = DSO_TYPE_KERNEL;
1914 break;
1915 case PERF_RECORD_MISC_GUEST_KERNEL:
1916 dso_type = DSO_TYPE_GUEST_KERNEL;
1917 break;
1918 case PERF_RECORD_MISC_USER:
1919 case PERF_RECORD_MISC_GUEST_USER:
1920 dso_type = DSO_TYPE_USER;
1921 break;
1922 default:
1923 goto out;
1924 }
1925
1926 dso = machine__findnew_dso(machine, filename);
1927 if (dso != NULL) {
1928 char sbuild_id[SBUILD_ID_SIZE];
1929
1930 dso__set_build_id(dso, &bev->build_id);
1931
1932 if (dso_type != DSO_TYPE_USER) {
1933 struct kmod_path m = { .name = NULL, };
1934
1935 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936 dso__set_module_info(dso, &m, machine);
1937 else
1938 dso->kernel = dso_type;
1939
1940 free(m.name);
1941 }
1942
1943 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944 sbuild_id);
1945 pr_debug("build id event received for %s: %s\n",
1946 dso->long_name, sbuild_id);
1947 dso__put(dso);
1948 }
1949
1950 err = 0;
1951 out:
1952 return err;
1953 }
1954
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)1955 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956 int input, u64 offset, u64 size)
1957 {
1958 struct perf_session *session = container_of(header, struct perf_session, header);
1959 struct {
1960 struct perf_event_header header;
1961 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962 char filename[0];
1963 } old_bev;
1964 struct perf_record_header_build_id bev;
1965 char filename[PATH_MAX];
1966 u64 limit = offset + size;
1967
1968 while (offset < limit) {
1969 ssize_t len;
1970
1971 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972 return -1;
1973
1974 if (header->needs_swap)
1975 perf_event_header__bswap(&old_bev.header);
1976
1977 len = old_bev.header.size - sizeof(old_bev);
1978 if (readn(input, filename, len) != len)
1979 return -1;
1980
1981 bev.header = old_bev.header;
1982
1983 /*
1984 * As the pid is the missing value, we need to fill
1985 * it properly. The header.misc value give us nice hint.
1986 */
1987 bev.pid = HOST_KERNEL_ID;
1988 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1991
1992 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993 __event_process_build_id(&bev, filename, session);
1994
1995 offset += bev.header.size;
1996 }
1997
1998 return 0;
1999 }
2000
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2001 static int perf_header__read_build_ids(struct perf_header *header,
2002 int input, u64 offset, u64 size)
2003 {
2004 struct perf_session *session = container_of(header, struct perf_session, header);
2005 struct perf_record_header_build_id bev;
2006 char filename[PATH_MAX];
2007 u64 limit = offset + size, orig_offset = offset;
2008 int err = -1;
2009
2010 while (offset < limit) {
2011 ssize_t len;
2012
2013 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014 goto out;
2015
2016 if (header->needs_swap)
2017 perf_event_header__bswap(&bev.header);
2018
2019 len = bev.header.size - sizeof(bev);
2020 if (readn(input, filename, len) != len)
2021 goto out;
2022 /*
2023 * The a1645ce1 changeset:
2024 *
2025 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026 *
2027 * Added a field to struct perf_record_header_build_id that broke the file
2028 * format.
2029 *
2030 * Since the kernel build-id is the first entry, process the
2031 * table using the old format if the well known
2032 * '[kernel.kallsyms]' string for the kernel build-id has the
2033 * first 4 characters chopped off (where the pid_t sits).
2034 */
2035 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037 return -1;
2038 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039 }
2040
2041 __event_process_build_id(&bev, filename, session);
2042
2043 offset += bev.header.size;
2044 }
2045 err = 0;
2046 out:
2047 return err;
2048 }
2049
2050 /* Macro for features that simply need to read and store a string. */
2051 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053 {\
2054 ff->ph->env.__feat_env = do_read_string(ff); \
2055 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056 }
2057
2058 FEAT_PROCESS_STR_FUN(hostname, hostname);
2059 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060 FEAT_PROCESS_STR_FUN(version, version);
2061 FEAT_PROCESS_STR_FUN(arch, arch);
2062 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
process_tracing_data(struct feat_fd * ff,void * data)2065 static int process_tracing_data(struct feat_fd *ff, void *data)
2066 {
2067 ssize_t ret = trace_report(ff->fd, data, false);
2068
2069 return ret < 0 ? -1 : 0;
2070 }
2071
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2072 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073 {
2074 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075 pr_debug("Failed to read buildids, continuing...\n");
2076 return 0;
2077 }
2078
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2079 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080 {
2081 int ret;
2082 u32 nr_cpus_avail, nr_cpus_online;
2083
2084 ret = do_read_u32(ff, &nr_cpus_avail);
2085 if (ret)
2086 return ret;
2087
2088 ret = do_read_u32(ff, &nr_cpus_online);
2089 if (ret)
2090 return ret;
2091 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093 return 0;
2094 }
2095
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2096 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097 {
2098 u64 total_mem;
2099 int ret;
2100
2101 ret = do_read_u64(ff, &total_mem);
2102 if (ret)
2103 return -1;
2104 ff->ph->env.total_mem = (unsigned long long)total_mem;
2105 return 0;
2106 }
2107
2108 static struct evsel *
perf_evlist__find_by_index(struct evlist * evlist,int idx)2109 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110 {
2111 struct evsel *evsel;
2112
2113 evlist__for_each_entry(evlist, evsel) {
2114 if (evsel->idx == idx)
2115 return evsel;
2116 }
2117
2118 return NULL;
2119 }
2120
2121 static void
perf_evlist__set_event_name(struct evlist * evlist,struct evsel * event)2122 perf_evlist__set_event_name(struct evlist *evlist,
2123 struct evsel *event)
2124 {
2125 struct evsel *evsel;
2126
2127 if (!event->name)
2128 return;
2129
2130 evsel = perf_evlist__find_by_index(evlist, event->idx);
2131 if (!evsel)
2132 return;
2133
2134 if (evsel->name)
2135 return;
2136
2137 evsel->name = strdup(event->name);
2138 }
2139
2140 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2141 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142 {
2143 struct perf_session *session;
2144 struct evsel *evsel, *events = read_event_desc(ff);
2145
2146 if (!events)
2147 return 0;
2148
2149 session = container_of(ff->ph, struct perf_session, header);
2150
2151 if (session->data->is_pipe) {
2152 /* Save events for reading later by print_event_desc,
2153 * since they can't be read again in pipe mode. */
2154 ff->events = events;
2155 }
2156
2157 for (evsel = events; evsel->core.attr.size; evsel++)
2158 perf_evlist__set_event_name(session->evlist, evsel);
2159
2160 if (!session->data->is_pipe)
2161 free_event_desc(events);
2162
2163 return 0;
2164 }
2165
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2166 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167 {
2168 char *str, *cmdline = NULL, **argv = NULL;
2169 u32 nr, i, len = 0;
2170
2171 if (do_read_u32(ff, &nr))
2172 return -1;
2173
2174 ff->ph->env.nr_cmdline = nr;
2175
2176 cmdline = zalloc(ff->size + nr + 1);
2177 if (!cmdline)
2178 return -1;
2179
2180 argv = zalloc(sizeof(char *) * (nr + 1));
2181 if (!argv)
2182 goto error;
2183
2184 for (i = 0; i < nr; i++) {
2185 str = do_read_string(ff);
2186 if (!str)
2187 goto error;
2188
2189 argv[i] = cmdline + len;
2190 memcpy(argv[i], str, strlen(str) + 1);
2191 len += strlen(str) + 1;
2192 free(str);
2193 }
2194 ff->ph->env.cmdline = cmdline;
2195 ff->ph->env.cmdline_argv = (const char **) argv;
2196 return 0;
2197
2198 error:
2199 free(argv);
2200 free(cmdline);
2201 return -1;
2202 }
2203
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2204 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205 {
2206 u32 nr, i;
2207 char *str;
2208 struct strbuf sb;
2209 int cpu_nr = ff->ph->env.nr_cpus_avail;
2210 u64 size = 0;
2211 struct perf_header *ph = ff->ph;
2212 bool do_core_id_test = true;
2213
2214 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215 if (!ph->env.cpu)
2216 return -1;
2217
2218 if (do_read_u32(ff, &nr))
2219 goto free_cpu;
2220
2221 ph->env.nr_sibling_cores = nr;
2222 size += sizeof(u32);
2223 if (strbuf_init(&sb, 128) < 0)
2224 goto free_cpu;
2225
2226 for (i = 0; i < nr; i++) {
2227 str = do_read_string(ff);
2228 if (!str)
2229 goto error;
2230
2231 /* include a NULL character at the end */
2232 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233 goto error;
2234 size += string_size(str);
2235 free(str);
2236 }
2237 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239 if (do_read_u32(ff, &nr))
2240 return -1;
2241
2242 ph->env.nr_sibling_threads = nr;
2243 size += sizeof(u32);
2244
2245 for (i = 0; i < nr; i++) {
2246 str = do_read_string(ff);
2247 if (!str)
2248 goto error;
2249
2250 /* include a NULL character at the end */
2251 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252 goto error;
2253 size += string_size(str);
2254 free(str);
2255 }
2256 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258 /*
2259 * The header may be from old perf,
2260 * which doesn't include core id and socket id information.
2261 */
2262 if (ff->size <= size) {
2263 zfree(&ph->env.cpu);
2264 return 0;
2265 }
2266
2267 /* On s390 the socket_id number is not related to the numbers of cpus.
2268 * The socket_id number might be higher than the numbers of cpus.
2269 * This depends on the configuration.
2270 * AArch64 is the same.
2271 */
2272 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273 || !strncmp(ph->env.arch, "aarch64", 7)))
2274 do_core_id_test = false;
2275
2276 for (i = 0; i < (u32)cpu_nr; i++) {
2277 if (do_read_u32(ff, &nr))
2278 goto free_cpu;
2279
2280 ph->env.cpu[i].core_id = nr;
2281 size += sizeof(u32);
2282
2283 if (do_read_u32(ff, &nr))
2284 goto free_cpu;
2285
2286 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287 pr_debug("socket_id number is too big."
2288 "You may need to upgrade the perf tool.\n");
2289 goto free_cpu;
2290 }
2291
2292 ph->env.cpu[i].socket_id = nr;
2293 size += sizeof(u32);
2294 }
2295
2296 /*
2297 * The header may be from old perf,
2298 * which doesn't include die information.
2299 */
2300 if (ff->size <= size)
2301 return 0;
2302
2303 if (do_read_u32(ff, &nr))
2304 return -1;
2305
2306 ph->env.nr_sibling_dies = nr;
2307 size += sizeof(u32);
2308
2309 for (i = 0; i < nr; i++) {
2310 str = do_read_string(ff);
2311 if (!str)
2312 goto error;
2313
2314 /* include a NULL character at the end */
2315 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316 goto error;
2317 size += string_size(str);
2318 free(str);
2319 }
2320 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322 for (i = 0; i < (u32)cpu_nr; i++) {
2323 if (do_read_u32(ff, &nr))
2324 goto free_cpu;
2325
2326 ph->env.cpu[i].die_id = nr;
2327 }
2328
2329 return 0;
2330
2331 error:
2332 strbuf_release(&sb);
2333 free_cpu:
2334 zfree(&ph->env.cpu);
2335 return -1;
2336 }
2337
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2338 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339 {
2340 struct numa_node *nodes, *n;
2341 u32 nr, i;
2342 char *str;
2343
2344 /* nr nodes */
2345 if (do_read_u32(ff, &nr))
2346 return -1;
2347
2348 nodes = zalloc(sizeof(*nodes) * nr);
2349 if (!nodes)
2350 return -ENOMEM;
2351
2352 for (i = 0; i < nr; i++) {
2353 n = &nodes[i];
2354
2355 /* node number */
2356 if (do_read_u32(ff, &n->node))
2357 goto error;
2358
2359 if (do_read_u64(ff, &n->mem_total))
2360 goto error;
2361
2362 if (do_read_u64(ff, &n->mem_free))
2363 goto error;
2364
2365 str = do_read_string(ff);
2366 if (!str)
2367 goto error;
2368
2369 n->map = perf_cpu_map__new(str);
2370 if (!n->map)
2371 goto error;
2372
2373 free(str);
2374 }
2375 ff->ph->env.nr_numa_nodes = nr;
2376 ff->ph->env.numa_nodes = nodes;
2377 return 0;
2378
2379 error:
2380 free(nodes);
2381 return -1;
2382 }
2383
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2384 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385 {
2386 char *name;
2387 u32 pmu_num;
2388 u32 type;
2389 struct strbuf sb;
2390
2391 if (do_read_u32(ff, &pmu_num))
2392 return -1;
2393
2394 if (!pmu_num) {
2395 pr_debug("pmu mappings not available\n");
2396 return 0;
2397 }
2398
2399 ff->ph->env.nr_pmu_mappings = pmu_num;
2400 if (strbuf_init(&sb, 128) < 0)
2401 return -1;
2402
2403 while (pmu_num) {
2404 if (do_read_u32(ff, &type))
2405 goto error;
2406
2407 name = do_read_string(ff);
2408 if (!name)
2409 goto error;
2410
2411 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412 goto error;
2413 /* include a NULL character at the end */
2414 if (strbuf_add(&sb, "", 1) < 0)
2415 goto error;
2416
2417 if (!strcmp(name, "msr"))
2418 ff->ph->env.msr_pmu_type = type;
2419
2420 free(name);
2421 pmu_num--;
2422 }
2423 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424 return 0;
2425
2426 error:
2427 strbuf_release(&sb);
2428 return -1;
2429 }
2430
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2431 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432 {
2433 size_t ret = -1;
2434 u32 i, nr, nr_groups;
2435 struct perf_session *session;
2436 struct evsel *evsel, *leader = NULL;
2437 struct group_desc {
2438 char *name;
2439 u32 leader_idx;
2440 u32 nr_members;
2441 } *desc;
2442
2443 if (do_read_u32(ff, &nr_groups))
2444 return -1;
2445
2446 ff->ph->env.nr_groups = nr_groups;
2447 if (!nr_groups) {
2448 pr_debug("group desc not available\n");
2449 return 0;
2450 }
2451
2452 desc = calloc(nr_groups, sizeof(*desc));
2453 if (!desc)
2454 return -1;
2455
2456 for (i = 0; i < nr_groups; i++) {
2457 desc[i].name = do_read_string(ff);
2458 if (!desc[i].name)
2459 goto out_free;
2460
2461 if (do_read_u32(ff, &desc[i].leader_idx))
2462 goto out_free;
2463
2464 if (do_read_u32(ff, &desc[i].nr_members))
2465 goto out_free;
2466 }
2467
2468 /*
2469 * Rebuild group relationship based on the group_desc
2470 */
2471 session = container_of(ff->ph, struct perf_session, header);
2472 session->evlist->nr_groups = nr_groups;
2473
2474 i = nr = 0;
2475 evlist__for_each_entry(session->evlist, evsel) {
2476 if (evsel->idx == (int) desc[i].leader_idx) {
2477 evsel->leader = evsel;
2478 /* {anon_group} is a dummy name */
2479 if (strcmp(desc[i].name, "{anon_group}")) {
2480 evsel->group_name = desc[i].name;
2481 desc[i].name = NULL;
2482 }
2483 evsel->core.nr_members = desc[i].nr_members;
2484
2485 if (i >= nr_groups || nr > 0) {
2486 pr_debug("invalid group desc\n");
2487 goto out_free;
2488 }
2489
2490 leader = evsel;
2491 nr = evsel->core.nr_members - 1;
2492 i++;
2493 } else if (nr) {
2494 /* This is a group member */
2495 evsel->leader = leader;
2496
2497 nr--;
2498 }
2499 }
2500
2501 if (i != nr_groups || nr != 0) {
2502 pr_debug("invalid group desc\n");
2503 goto out_free;
2504 }
2505
2506 ret = 0;
2507 out_free:
2508 for (i = 0; i < nr_groups; i++)
2509 zfree(&desc[i].name);
2510 free(desc);
2511
2512 return ret;
2513 }
2514
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2515 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516 {
2517 struct perf_session *session;
2518 int err;
2519
2520 session = container_of(ff->ph, struct perf_session, header);
2521
2522 err = auxtrace_index__process(ff->fd, ff->size, session,
2523 ff->ph->needs_swap);
2524 if (err < 0)
2525 pr_err("Failed to process auxtrace index\n");
2526 return err;
2527 }
2528
process_cache(struct feat_fd * ff,void * data __maybe_unused)2529 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530 {
2531 struct cpu_cache_level *caches;
2532 u32 cnt, i, version;
2533
2534 if (do_read_u32(ff, &version))
2535 return -1;
2536
2537 if (version != 1)
2538 return -1;
2539
2540 if (do_read_u32(ff, &cnt))
2541 return -1;
2542
2543 caches = zalloc(sizeof(*caches) * cnt);
2544 if (!caches)
2545 return -1;
2546
2547 for (i = 0; i < cnt; i++) {
2548 struct cpu_cache_level c;
2549
2550 #define _R(v) \
2551 if (do_read_u32(ff, &c.v))\
2552 goto out_free_caches; \
2553
2554 _R(level)
2555 _R(line_size)
2556 _R(sets)
2557 _R(ways)
2558 #undef _R
2559
2560 #define _R(v) \
2561 c.v = do_read_string(ff); \
2562 if (!c.v) \
2563 goto out_free_caches;
2564
2565 _R(type)
2566 _R(size)
2567 _R(map)
2568 #undef _R
2569
2570 caches[i] = c;
2571 }
2572
2573 ff->ph->env.caches = caches;
2574 ff->ph->env.caches_cnt = cnt;
2575 return 0;
2576 out_free_caches:
2577 free(caches);
2578 return -1;
2579 }
2580
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2581 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582 {
2583 struct perf_session *session;
2584 u64 first_sample_time, last_sample_time;
2585 int ret;
2586
2587 session = container_of(ff->ph, struct perf_session, header);
2588
2589 ret = do_read_u64(ff, &first_sample_time);
2590 if (ret)
2591 return -1;
2592
2593 ret = do_read_u64(ff, &last_sample_time);
2594 if (ret)
2595 return -1;
2596
2597 session->evlist->first_sample_time = first_sample_time;
2598 session->evlist->last_sample_time = last_sample_time;
2599 return 0;
2600 }
2601
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2602 static int process_mem_topology(struct feat_fd *ff,
2603 void *data __maybe_unused)
2604 {
2605 struct memory_node *nodes;
2606 u64 version, i, nr, bsize;
2607 int ret = -1;
2608
2609 if (do_read_u64(ff, &version))
2610 return -1;
2611
2612 if (version != 1)
2613 return -1;
2614
2615 if (do_read_u64(ff, &bsize))
2616 return -1;
2617
2618 if (do_read_u64(ff, &nr))
2619 return -1;
2620
2621 nodes = zalloc(sizeof(*nodes) * nr);
2622 if (!nodes)
2623 return -1;
2624
2625 for (i = 0; i < nr; i++) {
2626 struct memory_node n;
2627
2628 #define _R(v) \
2629 if (do_read_u64(ff, &n.v)) \
2630 goto out; \
2631
2632 _R(node)
2633 _R(size)
2634
2635 #undef _R
2636
2637 if (do_read_bitmap(ff, &n.set, &n.size))
2638 goto out;
2639
2640 nodes[i] = n;
2641 }
2642
2643 ff->ph->env.memory_bsize = bsize;
2644 ff->ph->env.memory_nodes = nodes;
2645 ff->ph->env.nr_memory_nodes = nr;
2646 ret = 0;
2647
2648 out:
2649 if (ret)
2650 free(nodes);
2651 return ret;
2652 }
2653
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2654 static int process_clockid(struct feat_fd *ff,
2655 void *data __maybe_unused)
2656 {
2657 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2658 return -1;
2659
2660 return 0;
2661 }
2662
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)2663 static int process_dir_format(struct feat_fd *ff,
2664 void *_data __maybe_unused)
2665 {
2666 struct perf_session *session;
2667 struct perf_data *data;
2668
2669 session = container_of(ff->ph, struct perf_session, header);
2670 data = session->data;
2671
2672 if (WARN_ON(!perf_data__is_dir(data)))
2673 return -1;
2674
2675 return do_read_u64(ff, &data->dir.version);
2676 }
2677
2678 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)2679 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680 {
2681 struct bpf_prog_info_linear *info_linear;
2682 struct bpf_prog_info_node *info_node;
2683 struct perf_env *env = &ff->ph->env;
2684 u32 count, i;
2685 int err = -1;
2686
2687 if (ff->ph->needs_swap) {
2688 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689 return 0;
2690 }
2691
2692 if (do_read_u32(ff, &count))
2693 return -1;
2694
2695 down_write(&env->bpf_progs.lock);
2696
2697 for (i = 0; i < count; ++i) {
2698 u32 info_len, data_len;
2699
2700 info_linear = NULL;
2701 info_node = NULL;
2702 if (do_read_u32(ff, &info_len))
2703 goto out;
2704 if (do_read_u32(ff, &data_len))
2705 goto out;
2706
2707 if (info_len > sizeof(struct bpf_prog_info)) {
2708 pr_warning("detected invalid bpf_prog_info\n");
2709 goto out;
2710 }
2711
2712 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713 data_len);
2714 if (!info_linear)
2715 goto out;
2716 info_linear->info_len = sizeof(struct bpf_prog_info);
2717 info_linear->data_len = data_len;
2718 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719 goto out;
2720 if (__do_read(ff, &info_linear->info, info_len))
2721 goto out;
2722 if (info_len < sizeof(struct bpf_prog_info))
2723 memset(((void *)(&info_linear->info)) + info_len, 0,
2724 sizeof(struct bpf_prog_info) - info_len);
2725
2726 if (__do_read(ff, info_linear->data, data_len))
2727 goto out;
2728
2729 info_node = malloc(sizeof(struct bpf_prog_info_node));
2730 if (!info_node)
2731 goto out;
2732
2733 /* after reading from file, translate offset to address */
2734 bpf_program__bpil_offs_to_addr(info_linear);
2735 info_node->info_linear = info_linear;
2736 perf_env__insert_bpf_prog_info(env, info_node);
2737 }
2738
2739 up_write(&env->bpf_progs.lock);
2740 return 0;
2741 out:
2742 free(info_linear);
2743 free(info_node);
2744 up_write(&env->bpf_progs.lock);
2745 return err;
2746 }
2747 #else // HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff __maybe_unused,void * data __maybe_unused)2748 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749 {
2750 return 0;
2751 }
2752 #endif // HAVE_LIBBPF_SUPPORT
2753
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)2754 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755 {
2756 struct perf_env *env = &ff->ph->env;
2757 struct btf_node *node = NULL;
2758 u32 count, i;
2759 int err = -1;
2760
2761 if (ff->ph->needs_swap) {
2762 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763 return 0;
2764 }
2765
2766 if (do_read_u32(ff, &count))
2767 return -1;
2768
2769 down_write(&env->bpf_progs.lock);
2770
2771 for (i = 0; i < count; ++i) {
2772 u32 id, data_size;
2773
2774 if (do_read_u32(ff, &id))
2775 goto out;
2776 if (do_read_u32(ff, &data_size))
2777 goto out;
2778
2779 node = malloc(sizeof(struct btf_node) + data_size);
2780 if (!node)
2781 goto out;
2782
2783 node->id = id;
2784 node->data_size = data_size;
2785
2786 if (__do_read(ff, node->data, data_size))
2787 goto out;
2788
2789 perf_env__insert_btf(env, node);
2790 node = NULL;
2791 }
2792
2793 err = 0;
2794 out:
2795 up_write(&env->bpf_progs.lock);
2796 free(node);
2797 return err;
2798 }
2799
process_compressed(struct feat_fd * ff,void * data __maybe_unused)2800 static int process_compressed(struct feat_fd *ff,
2801 void *data __maybe_unused)
2802 {
2803 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804 return -1;
2805
2806 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807 return -1;
2808
2809 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810 return -1;
2811
2812 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813 return -1;
2814
2815 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816 return -1;
2817
2818 return 0;
2819 }
2820
2821 #define FEAT_OPR(n, func, __full_only) \
2822 [HEADER_##n] = { \
2823 .name = __stringify(n), \
2824 .write = write_##func, \
2825 .print = print_##func, \
2826 .full_only = __full_only, \
2827 .process = process_##func, \
2828 .synthesize = true \
2829 }
2830
2831 #define FEAT_OPN(n, func, __full_only) \
2832 [HEADER_##n] = { \
2833 .name = __stringify(n), \
2834 .write = write_##func, \
2835 .print = print_##func, \
2836 .full_only = __full_only, \
2837 .process = process_##func \
2838 }
2839
2840 /* feature_ops not implemented: */
2841 #define print_tracing_data NULL
2842 #define print_build_id NULL
2843
2844 #define process_branch_stack NULL
2845 #define process_stat NULL
2846
2847 // Only used in util/synthetic-events.c
2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851 FEAT_OPN(TRACING_DATA, tracing_data, false),
2852 FEAT_OPN(BUILD_ID, build_id, false),
2853 FEAT_OPR(HOSTNAME, hostname, false),
2854 FEAT_OPR(OSRELEASE, osrelease, false),
2855 FEAT_OPR(VERSION, version, false),
2856 FEAT_OPR(ARCH, arch, false),
2857 FEAT_OPR(NRCPUS, nrcpus, false),
2858 FEAT_OPR(CPUDESC, cpudesc, false),
2859 FEAT_OPR(CPUID, cpuid, false),
2860 FEAT_OPR(TOTAL_MEM, total_mem, false),
2861 FEAT_OPR(EVENT_DESC, event_desc, false),
2862 FEAT_OPR(CMDLINE, cmdline, false),
2863 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2864 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2865 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2866 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2867 FEAT_OPR(GROUP_DESC, group_desc, false),
2868 FEAT_OPN(AUXTRACE, auxtrace, false),
2869 FEAT_OPN(STAT, stat, false),
2870 FEAT_OPN(CACHE, cache, true),
2871 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2872 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2873 FEAT_OPR(CLOCKID, clockid, false),
2874 FEAT_OPN(DIR_FORMAT, dir_format, false),
2875 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2876 FEAT_OPR(BPF_BTF, bpf_btf, false),
2877 FEAT_OPR(COMPRESSED, compressed, false),
2878 };
2879
2880 struct header_print_data {
2881 FILE *fp;
2882 bool full; /* extended list of headers */
2883 };
2884
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)2885 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886 struct perf_header *ph,
2887 int feat, int fd, void *data)
2888 {
2889 struct header_print_data *hd = data;
2890 struct feat_fd ff;
2891
2892 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894 "%d, continuing...\n", section->offset, feat);
2895 return 0;
2896 }
2897 if (feat >= HEADER_LAST_FEATURE) {
2898 pr_warning("unknown feature %d\n", feat);
2899 return 0;
2900 }
2901 if (!feat_ops[feat].print)
2902 return 0;
2903
2904 ff = (struct feat_fd) {
2905 .fd = fd,
2906 .ph = ph,
2907 };
2908
2909 if (!feat_ops[feat].full_only || hd->full)
2910 feat_ops[feat].print(&ff, hd->fp);
2911 else
2912 fprintf(hd->fp, "# %s info available, use -I to display\n",
2913 feat_ops[feat].name);
2914
2915 return 0;
2916 }
2917
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)2918 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919 {
2920 struct header_print_data hd;
2921 struct perf_header *header = &session->header;
2922 int fd = perf_data__fd(session->data);
2923 struct stat st;
2924 time_t stctime;
2925 int ret, bit;
2926
2927 hd.fp = fp;
2928 hd.full = full;
2929
2930 ret = fstat(fd, &st);
2931 if (ret == -1)
2932 return -1;
2933
2934 stctime = st.st_ctime;
2935 fprintf(fp, "# captured on : %s", ctime(&stctime));
2936
2937 fprintf(fp, "# header version : %u\n", header->version);
2938 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2939 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2940 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2941
2942 perf_header__process_sections(header, fd, &hd,
2943 perf_file_section__fprintf_info);
2944
2945 if (session->data->is_pipe)
2946 return 0;
2947
2948 fprintf(fp, "# missing features: ");
2949 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950 if (bit)
2951 fprintf(fp, "%s ", feat_ops[bit].name);
2952 }
2953
2954 fprintf(fp, "\n");
2955 return 0;
2956 }
2957
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist)2958 static int do_write_feat(struct feat_fd *ff, int type,
2959 struct perf_file_section **p,
2960 struct evlist *evlist)
2961 {
2962 int err;
2963 int ret = 0;
2964
2965 if (perf_header__has_feat(ff->ph, type)) {
2966 if (!feat_ops[type].write)
2967 return -1;
2968
2969 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970 return -1;
2971
2972 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974 err = feat_ops[type].write(ff, evlist);
2975 if (err < 0) {
2976 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978 /* undo anything written */
2979 lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981 return -1;
2982 }
2983 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984 (*p)++;
2985 }
2986 return ret;
2987 }
2988
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd)2989 static int perf_header__adds_write(struct perf_header *header,
2990 struct evlist *evlist, int fd)
2991 {
2992 int nr_sections;
2993 struct feat_fd ff;
2994 struct perf_file_section *feat_sec, *p;
2995 int sec_size;
2996 u64 sec_start;
2997 int feat;
2998 int err;
2999
3000 ff = (struct feat_fd){
3001 .fd = fd,
3002 .ph = header,
3003 };
3004
3005 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006 if (!nr_sections)
3007 return 0;
3008
3009 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010 if (feat_sec == NULL)
3011 return -ENOMEM;
3012
3013 sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015 sec_start = header->feat_offset;
3016 lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019 if (do_write_feat(&ff, feat, &p, evlist))
3020 perf_header__clear_feat(header, feat);
3021 }
3022
3023 lseek(fd, sec_start, SEEK_SET);
3024 /*
3025 * may write more than needed due to dropped feature, but
3026 * this is okay, reader will skip the missing entries
3027 */
3028 err = do_write(&ff, feat_sec, sec_size);
3029 if (err < 0)
3030 pr_debug("failed to write feature section\n");
3031 free(feat_sec);
3032 return err;
3033 }
3034
perf_header__write_pipe(int fd)3035 int perf_header__write_pipe(int fd)
3036 {
3037 struct perf_pipe_file_header f_header;
3038 struct feat_fd ff;
3039 int err;
3040
3041 ff = (struct feat_fd){ .fd = fd };
3042
3043 f_header = (struct perf_pipe_file_header){
3044 .magic = PERF_MAGIC,
3045 .size = sizeof(f_header),
3046 };
3047
3048 err = do_write(&ff, &f_header, sizeof(f_header));
3049 if (err < 0) {
3050 pr_debug("failed to write perf pipe header\n");
3051 return err;
3052 }
3053
3054 return 0;
3055 }
3056
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3057 int perf_session__write_header(struct perf_session *session,
3058 struct evlist *evlist,
3059 int fd, bool at_exit)
3060 {
3061 struct perf_file_header f_header;
3062 struct perf_file_attr f_attr;
3063 struct perf_header *header = &session->header;
3064 struct evsel *evsel;
3065 struct feat_fd ff;
3066 u64 attr_offset;
3067 int err;
3068
3069 ff = (struct feat_fd){ .fd = fd};
3070 lseek(fd, sizeof(f_header), SEEK_SET);
3071
3072 evlist__for_each_entry(session->evlist, evsel) {
3073 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075 if (err < 0) {
3076 pr_debug("failed to write perf header\n");
3077 return err;
3078 }
3079 }
3080
3081 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083 evlist__for_each_entry(evlist, evsel) {
3084 f_attr = (struct perf_file_attr){
3085 .attr = evsel->core.attr,
3086 .ids = {
3087 .offset = evsel->id_offset,
3088 .size = evsel->core.ids * sizeof(u64),
3089 }
3090 };
3091 err = do_write(&ff, &f_attr, sizeof(f_attr));
3092 if (err < 0) {
3093 pr_debug("failed to write perf header attribute\n");
3094 return err;
3095 }
3096 }
3097
3098 if (!header->data_offset)
3099 header->data_offset = lseek(fd, 0, SEEK_CUR);
3100 header->feat_offset = header->data_offset + header->data_size;
3101
3102 if (at_exit) {
3103 err = perf_header__adds_write(header, evlist, fd);
3104 if (err < 0)
3105 return err;
3106 }
3107
3108 f_header = (struct perf_file_header){
3109 .magic = PERF_MAGIC,
3110 .size = sizeof(f_header),
3111 .attr_size = sizeof(f_attr),
3112 .attrs = {
3113 .offset = attr_offset,
3114 .size = evlist->core.nr_entries * sizeof(f_attr),
3115 },
3116 .data = {
3117 .offset = header->data_offset,
3118 .size = header->data_size,
3119 },
3120 /* event_types is ignored, store zeros */
3121 };
3122
3123 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125 lseek(fd, 0, SEEK_SET);
3126 err = do_write(&ff, &f_header, sizeof(f_header));
3127 if (err < 0) {
3128 pr_debug("failed to write perf header\n");
3129 return err;
3130 }
3131 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132
3133 return 0;
3134 }
3135
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3136 static int perf_header__getbuffer64(struct perf_header *header,
3137 int fd, void *buf, size_t size)
3138 {
3139 if (readn(fd, buf, size) <= 0)
3140 return -1;
3141
3142 if (header->needs_swap)
3143 mem_bswap_64(buf, size);
3144
3145 return 0;
3146 }
3147
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3148 int perf_header__process_sections(struct perf_header *header, int fd,
3149 void *data,
3150 int (*process)(struct perf_file_section *section,
3151 struct perf_header *ph,
3152 int feat, int fd, void *data))
3153 {
3154 struct perf_file_section *feat_sec, *sec;
3155 int nr_sections;
3156 int sec_size;
3157 int feat;
3158 int err;
3159
3160 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161 if (!nr_sections)
3162 return 0;
3163
3164 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165 if (!feat_sec)
3166 return -1;
3167
3168 sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170 lseek(fd, header->feat_offset, SEEK_SET);
3171
3172 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173 if (err < 0)
3174 goto out_free;
3175
3176 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177 err = process(sec++, header, feat, fd, data);
3178 if (err < 0)
3179 goto out_free;
3180 }
3181 err = 0;
3182 out_free:
3183 free(feat_sec);
3184 return err;
3185 }
3186
3187 static const int attr_file_abi_sizes[] = {
3188 [0] = PERF_ATTR_SIZE_VER0,
3189 [1] = PERF_ATTR_SIZE_VER1,
3190 [2] = PERF_ATTR_SIZE_VER2,
3191 [3] = PERF_ATTR_SIZE_VER3,
3192 [4] = PERF_ATTR_SIZE_VER4,
3193 0,
3194 };
3195
3196 /*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3202 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203 {
3204 uint64_t ref_size, attr_size;
3205 int i;
3206
3207 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208 ref_size = attr_file_abi_sizes[i]
3209 + sizeof(struct perf_file_section);
3210 if (hdr_sz != ref_size) {
3211 attr_size = bswap_64(hdr_sz);
3212 if (attr_size != ref_size)
3213 continue;
3214
3215 ph->needs_swap = true;
3216 }
3217 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218 i,
3219 ph->needs_swap);
3220 return 0;
3221 }
3222 /* could not determine endianness */
3223 return -1;
3224 }
3225
3226 #define PERF_PIPE_HDR_VER0 16
3227
3228 static const size_t attr_pipe_abi_sizes[] = {
3229 [0] = PERF_PIPE_HDR_VER0,
3230 0,
3231 };
3232
3233 /*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3240 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241 {
3242 u64 attr_size;
3243 int i;
3244
3245 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247 attr_size = bswap_64(hdr_sz);
3248 if (attr_size != hdr_sz)
3249 continue;
3250
3251 ph->needs_swap = true;
3252 }
3253 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254 return 0;
3255 }
3256 return -1;
3257 }
3258
is_perf_magic(u64 magic)3259 bool is_perf_magic(u64 magic)
3260 {
3261 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262 || magic == __perf_magic2
3263 || magic == __perf_magic2_sw)
3264 return true;
3265
3266 return false;
3267 }
3268
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3269 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270 bool is_pipe, struct perf_header *ph)
3271 {
3272 int ret;
3273
3274 /* check for legacy format */
3275 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276 if (ret == 0) {
3277 ph->version = PERF_HEADER_VERSION_1;
3278 pr_debug("legacy perf.data format\n");
3279 if (is_pipe)
3280 return try_all_pipe_abis(hdr_sz, ph);
3281
3282 return try_all_file_abis(hdr_sz, ph);
3283 }
3284 /*
3285 * the new magic number serves two purposes:
3286 * - unique number to identify actual perf.data files
3287 * - encode endianness of file
3288 */
3289 ph->version = PERF_HEADER_VERSION_2;
3290
3291 /* check magic number with one endianness */
3292 if (magic == __perf_magic2)
3293 return 0;
3294
3295 /* check magic number with opposite endianness */
3296 if (magic != __perf_magic2_sw)
3297 return -1;
3298
3299 ph->needs_swap = true;
3300
3301 return 0;
3302 }
3303
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3304 int perf_file_header__read(struct perf_file_header *header,
3305 struct perf_header *ph, int fd)
3306 {
3307 ssize_t ret;
3308
3309 lseek(fd, 0, SEEK_SET);
3310
3311 ret = readn(fd, header, sizeof(*header));
3312 if (ret <= 0)
3313 return -1;
3314
3315 if (check_magic_endian(header->magic,
3316 header->attr_size, false, ph) < 0) {
3317 pr_debug("magic/endian check failed\n");
3318 return -1;
3319 }
3320
3321 if (ph->needs_swap) {
3322 mem_bswap_64(header, offsetof(struct perf_file_header,
3323 adds_features));
3324 }
3325
3326 if (header->size != sizeof(*header)) {
3327 /* Support the previous format */
3328 if (header->size == offsetof(typeof(*header), adds_features))
3329 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330 else
3331 return -1;
3332 } else if (ph->needs_swap) {
3333 /*
3334 * feature bitmap is declared as an array of unsigned longs --
3335 * not good since its size can differ between the host that
3336 * generated the data file and the host analyzing the file.
3337 *
3338 * We need to handle endianness, but we don't know the size of
3339 * the unsigned long where the file was generated. Take a best
3340 * guess at determining it: try 64-bit swap first (ie., file
3341 * created on a 64-bit host), and check if the hostname feature
3342 * bit is set (this feature bit is forced on as of fbe96f2).
3343 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344 * swap. If the hostname bit is still not set (e.g., older data
3345 * file), punt and fallback to the original behavior --
3346 * clearing all feature bits and setting buildid.
3347 */
3348 mem_bswap_64(&header->adds_features,
3349 BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 /* unswap as u64 */
3353 mem_bswap_64(&header->adds_features,
3354 BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356 /* unswap as u32 */
3357 mem_bswap_32(&header->adds_features,
3358 BITS_TO_U32(HEADER_FEAT_BITS));
3359 }
3360
3361 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363 set_bit(HEADER_BUILD_ID, header->adds_features);
3364 }
3365 }
3366
3367 memcpy(&ph->adds_features, &header->adds_features,
3368 sizeof(ph->adds_features));
3369
3370 ph->data_offset = header->data.offset;
3371 ph->data_size = header->data.size;
3372 ph->feat_offset = header->data.offset + header->data.size;
3373 return 0;
3374 }
3375
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3376 static int perf_file_section__process(struct perf_file_section *section,
3377 struct perf_header *ph,
3378 int feat, int fd, void *data)
3379 {
3380 struct feat_fd fdd = {
3381 .fd = fd,
3382 .ph = ph,
3383 .size = section->size,
3384 .offset = section->offset,
3385 };
3386
3387 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389 "%d, continuing...\n", section->offset, feat);
3390 return 0;
3391 }
3392
3393 if (feat >= HEADER_LAST_FEATURE) {
3394 pr_debug("unknown feature %d, continuing...\n", feat);
3395 return 0;
3396 }
3397
3398 if (!feat_ops[feat].process)
3399 return 0;
3400
3401 return feat_ops[feat].process(&fdd, data);
3402 }
3403
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,int fd,bool repipe)3404 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405 struct perf_header *ph, int fd,
3406 bool repipe)
3407 {
3408 struct feat_fd ff = {
3409 .fd = STDOUT_FILENO,
3410 .ph = ph,
3411 };
3412 ssize_t ret;
3413
3414 ret = readn(fd, header, sizeof(*header));
3415 if (ret <= 0)
3416 return -1;
3417
3418 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419 pr_debug("endian/magic failed\n");
3420 return -1;
3421 }
3422
3423 if (ph->needs_swap)
3424 header->size = bswap_64(header->size);
3425
3426 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427 return -1;
3428
3429 return 0;
3430 }
3431
perf_header__read_pipe(struct perf_session * session)3432 static int perf_header__read_pipe(struct perf_session *session)
3433 {
3434 struct perf_header *header = &session->header;
3435 struct perf_pipe_file_header f_header;
3436
3437 if (perf_file_header__read_pipe(&f_header, header,
3438 perf_data__fd(session->data),
3439 session->repipe) < 0) {
3440 pr_debug("incompatible file format\n");
3441 return -EINVAL;
3442 }
3443
3444 return 0;
3445 }
3446
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)3447 static int read_attr(int fd, struct perf_header *ph,
3448 struct perf_file_attr *f_attr)
3449 {
3450 struct perf_event_attr *attr = &f_attr->attr;
3451 size_t sz, left;
3452 size_t our_sz = sizeof(f_attr->attr);
3453 ssize_t ret;
3454
3455 memset(f_attr, 0, sizeof(*f_attr));
3456
3457 /* read minimal guaranteed structure */
3458 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459 if (ret <= 0) {
3460 pr_debug("cannot read %d bytes of header attr\n",
3461 PERF_ATTR_SIZE_VER0);
3462 return -1;
3463 }
3464
3465 /* on file perf_event_attr size */
3466 sz = attr->size;
3467
3468 if (ph->needs_swap)
3469 sz = bswap_32(sz);
3470
3471 if (sz == 0) {
3472 /* assume ABI0 */
3473 sz = PERF_ATTR_SIZE_VER0;
3474 } else if (sz > our_sz) {
3475 pr_debug("file uses a more recent and unsupported ABI"
3476 " (%zu bytes extra)\n", sz - our_sz);
3477 return -1;
3478 }
3479 /* what we have not yet read and that we know about */
3480 left = sz - PERF_ATTR_SIZE_VER0;
3481 if (left) {
3482 void *ptr = attr;
3483 ptr += PERF_ATTR_SIZE_VER0;
3484
3485 ret = readn(fd, ptr, left);
3486 }
3487 /* read perf_file_section, ids are read in caller */
3488 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490 return ret <= 0 ? -1 : 0;
3491 }
3492
perf_evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)3493 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494 struct tep_handle *pevent)
3495 {
3496 struct tep_event *event;
3497 char bf[128];
3498
3499 /* already prepared */
3500 if (evsel->tp_format)
3501 return 0;
3502
3503 if (pevent == NULL) {
3504 pr_debug("broken or missing trace data\n");
3505 return -1;
3506 }
3507
3508 event = tep_find_event(pevent, evsel->core.attr.config);
3509 if (event == NULL) {
3510 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511 return -1;
3512 }
3513
3514 if (!evsel->name) {
3515 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516 evsel->name = strdup(bf);
3517 if (evsel->name == NULL)
3518 return -1;
3519 }
3520
3521 evsel->tp_format = event;
3522 return 0;
3523 }
3524
perf_evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)3525 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526 struct tep_handle *pevent)
3527 {
3528 struct evsel *pos;
3529
3530 evlist__for_each_entry(evlist, pos) {
3531 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532 perf_evsel__prepare_tracepoint_event(pos, pevent))
3533 return -1;
3534 }
3535
3536 return 0;
3537 }
3538
perf_session__read_header(struct perf_session * session)3539 int perf_session__read_header(struct perf_session *session)
3540 {
3541 struct perf_data *data = session->data;
3542 struct perf_header *header = &session->header;
3543 struct perf_file_header f_header;
3544 struct perf_file_attr f_attr;
3545 u64 f_id;
3546 int nr_attrs, nr_ids, i, j;
3547 int fd = perf_data__fd(data);
3548
3549 session->evlist = evlist__new();
3550 if (session->evlist == NULL)
3551 return -ENOMEM;
3552
3553 session->evlist->env = &header->env;
3554 session->machines.host.env = &header->env;
3555 if (perf_data__is_pipe(data))
3556 return perf_header__read_pipe(session);
3557
3558 if (perf_file_header__read(&f_header, header, fd) < 0)
3559 return -EINVAL;
3560
3561 /*
3562 * Sanity check that perf.data was written cleanly; data size is
3563 * initialized to 0 and updated only if the on_exit function is run.
3564 * If data size is still 0 then the file contains only partial
3565 * information. Just warn user and process it as much as it can.
3566 */
3567 if (f_header.data.size == 0) {
3568 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569 "Was the 'perf record' command properly terminated?\n",
3570 data->file.path);
3571 }
3572
3573 if (f_header.attr_size == 0) {
3574 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575 "Was the 'perf record' command properly terminated?\n",
3576 data->file.path);
3577 return -EINVAL;
3578 }
3579
3580 nr_attrs = f_header.attrs.size / f_header.attr_size;
3581 lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583 for (i = 0; i < nr_attrs; i++) {
3584 struct evsel *evsel;
3585 off_t tmp;
3586
3587 if (read_attr(fd, header, &f_attr) < 0)
3588 goto out_errno;
3589
3590 if (header->needs_swap) {
3591 f_attr.ids.size = bswap_64(f_attr.ids.size);
3592 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593 perf_event__attr_swap(&f_attr.attr);
3594 }
3595
3596 tmp = lseek(fd, 0, SEEK_CUR);
3597 evsel = evsel__new(&f_attr.attr);
3598
3599 if (evsel == NULL)
3600 goto out_delete_evlist;
3601
3602 evsel->needs_swap = header->needs_swap;
3603 /*
3604 * Do it before so that if perf_evsel__alloc_id fails, this
3605 * entry gets purged too at evlist__delete().
3606 */
3607 evlist__add(session->evlist, evsel);
3608
3609 nr_ids = f_attr.ids.size / sizeof(u64);
3610 /*
3611 * We don't have the cpu and thread maps on the header, so
3612 * for allocating the perf_sample_id table we fake 1 cpu and
3613 * hattr->ids threads.
3614 */
3615 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616 goto out_delete_evlist;
3617
3618 lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620 for (j = 0; j < nr_ids; j++) {
3621 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622 goto out_errno;
3623
3624 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625 }
3626
3627 lseek(fd, tmp, SEEK_SET);
3628 }
3629
3630 perf_header__process_sections(header, fd, &session->tevent,
3631 perf_file_section__process);
3632
3633 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634 session->tevent.pevent))
3635 goto out_delete_evlist;
3636
3637 return 0;
3638 out_errno:
3639 return -errno;
3640
3641 out_delete_evlist:
3642 evlist__delete(session->evlist);
3643 session->evlist = NULL;
3644 return -ENOMEM;
3645 }
3646
perf_event__process_feature(struct perf_session * session,union perf_event * event)3647 int perf_event__process_feature(struct perf_session *session,
3648 union perf_event *event)
3649 {
3650 struct perf_tool *tool = session->tool;
3651 struct feat_fd ff = { .fd = 0 };
3652 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653 int type = fe->header.type;
3654 u64 feat = fe->feat_id;
3655
3656 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657 pr_warning("invalid record type %d in pipe-mode\n", type);
3658 return 0;
3659 }
3660 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661 pr_warning("invalid record type %d in pipe-mode\n", type);
3662 return -1;
3663 }
3664
3665 if (!feat_ops[feat].process)
3666 return 0;
3667
3668 ff.buf = (void *)fe->data;
3669 ff.size = event->header.size - sizeof(*fe);
3670 ff.ph = &session->header;
3671
3672 if (feat_ops[feat].process(&ff, NULL))
3673 return -1;
3674
3675 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676 return 0;
3677
3678 if (!feat_ops[feat].full_only ||
3679 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680 feat_ops[feat].print(&ff, stdout);
3681 } else {
3682 fprintf(stdout, "# %s info available, use -I to display\n",
3683 feat_ops[feat].name);
3684 }
3685
3686 return 0;
3687 }
3688
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)3689 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690 {
3691 struct perf_record_event_update *ev = &event->event_update;
3692 struct perf_record_event_update_scale *ev_scale;
3693 struct perf_record_event_update_cpus *ev_cpus;
3694 struct perf_cpu_map *map;
3695 size_t ret;
3696
3697 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3698
3699 switch (ev->type) {
3700 case PERF_EVENT_UPDATE__SCALE:
3701 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703 break;
3704 case PERF_EVENT_UPDATE__UNIT:
3705 ret += fprintf(fp, "... unit: %s\n", ev->data);
3706 break;
3707 case PERF_EVENT_UPDATE__NAME:
3708 ret += fprintf(fp, "... name: %s\n", ev->data);
3709 break;
3710 case PERF_EVENT_UPDATE__CPUS:
3711 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712 ret += fprintf(fp, "... ");
3713
3714 map = cpu_map__new_data(&ev_cpus->cpus);
3715 if (map)
3716 ret += cpu_map__fprintf(map, fp);
3717 else
3718 ret += fprintf(fp, "failed to get cpus\n");
3719 break;
3720 default:
3721 ret += fprintf(fp, "... unknown type\n");
3722 break;
3723 }
3724
3725 return ret;
3726 }
3727
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3728 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729 union perf_event *event,
3730 struct evlist **pevlist)
3731 {
3732 u32 i, ids, n_ids;
3733 struct evsel *evsel;
3734 struct evlist *evlist = *pevlist;
3735
3736 if (evlist == NULL) {
3737 *pevlist = evlist = evlist__new();
3738 if (evlist == NULL)
3739 return -ENOMEM;
3740 }
3741
3742 evsel = evsel__new(&event->attr.attr);
3743 if (evsel == NULL)
3744 return -ENOMEM;
3745
3746 evlist__add(evlist, evsel);
3747
3748 ids = event->header.size;
3749 ids -= (void *)&event->attr.id - (void *)event;
3750 n_ids = ids / sizeof(u64);
3751 /*
3752 * We don't have the cpu and thread maps on the header, so
3753 * for allocating the perf_sample_id table we fake 1 cpu and
3754 * hattr->ids threads.
3755 */
3756 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757 return -ENOMEM;
3758
3759 for (i = 0; i < n_ids; i++) {
3760 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761 }
3762
3763 return 0;
3764 }
3765
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3766 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767 union perf_event *event,
3768 struct evlist **pevlist)
3769 {
3770 struct perf_record_event_update *ev = &event->event_update;
3771 struct perf_record_event_update_scale *ev_scale;
3772 struct perf_record_event_update_cpus *ev_cpus;
3773 struct evlist *evlist;
3774 struct evsel *evsel;
3775 struct perf_cpu_map *map;
3776
3777 if (!pevlist || *pevlist == NULL)
3778 return -EINVAL;
3779
3780 evlist = *pevlist;
3781
3782 evsel = perf_evlist__id2evsel(evlist, ev->id);
3783 if (evsel == NULL)
3784 return -EINVAL;
3785
3786 switch (ev->type) {
3787 case PERF_EVENT_UPDATE__UNIT:
3788 evsel->unit = strdup(ev->data);
3789 break;
3790 case PERF_EVENT_UPDATE__NAME:
3791 evsel->name = strdup(ev->data);
3792 break;
3793 case PERF_EVENT_UPDATE__SCALE:
3794 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795 evsel->scale = ev_scale->scale;
3796 break;
3797 case PERF_EVENT_UPDATE__CPUS:
3798 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800 map = cpu_map__new_data(&ev_cpus->cpus);
3801 if (map)
3802 evsel->core.own_cpus = map;
3803 else
3804 pr_err("failed to get event_update cpus\n");
3805 default:
3806 break;
3807 }
3808
3809 return 0;
3810 }
3811
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)3812 int perf_event__process_tracing_data(struct perf_session *session,
3813 union perf_event *event)
3814 {
3815 ssize_t size_read, padding, size = event->tracing_data.size;
3816 int fd = perf_data__fd(session->data);
3817 off_t offset = lseek(fd, 0, SEEK_CUR);
3818 char buf[BUFSIZ];
3819
3820 /* setup for reading amidst mmap */
3821 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822 SEEK_SET);
3823
3824 size_read = trace_report(fd, &session->tevent,
3825 session->repipe);
3826 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828 if (readn(fd, buf, padding) < 0) {
3829 pr_err("%s: reading input file", __func__);
3830 return -1;
3831 }
3832 if (session->repipe) {
3833 int retw = write(STDOUT_FILENO, buf, padding);
3834 if (retw <= 0 || retw != padding) {
3835 pr_err("%s: repiping tracing data padding", __func__);
3836 return -1;
3837 }
3838 }
3839
3840 if (size_read + padding != size) {
3841 pr_err("%s: tracing data size mismatch", __func__);
3842 return -1;
3843 }
3844
3845 perf_evlist__prepare_tracepoint_events(session->evlist,
3846 session->tevent.pevent);
3847
3848 return size_read + padding;
3849 }
3850
perf_event__process_build_id(struct perf_session * session,union perf_event * event)3851 int perf_event__process_build_id(struct perf_session *session,
3852 union perf_event *event)
3853 {
3854 __event_process_build_id(&event->build_id,
3855 event->build_id.filename,
3856 session);
3857 return 0;
3858 }
3859