1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52 
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65 
66 #define PERF_MAGIC	__perf_magic2
67 
68 const char perf_version_string[] = PERF_VERSION;
69 
70 struct perf_file_attr {
71 	struct perf_event_attr	attr;
72 	struct perf_file_section	ids;
73 };
74 
perf_header__set_feat(struct perf_header * header,int feat)75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 	set_bit(feat, header->adds_features);
78 }
79 
perf_header__clear_feat(struct perf_header * header,int feat)80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 	clear_bit(feat, header->adds_features);
83 }
84 
perf_header__has_feat(const struct perf_header * header,int feat)85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 	return test_bit(feat, header->adds_features);
88 }
89 
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 	ssize_t ret = writen(ff->fd, buf, size);
93 
94 	if (ret != (ssize_t)size)
95 		return ret < 0 ? (int)ret : -1;
96 	return 0;
97 }
98 
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101 	/* struct perf_event_header::size is u16 */
102 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 	size_t new_size = ff->size;
104 	void *addr;
105 
106 	if (size + ff->offset > max_size)
107 		return -E2BIG;
108 
109 	while (size > (new_size - ff->offset))
110 		new_size <<= 1;
111 	new_size = min(max_size, new_size);
112 
113 	if (ff->size < new_size) {
114 		addr = realloc(ff->buf, new_size);
115 		if (!addr)
116 			return -ENOMEM;
117 		ff->buf = addr;
118 		ff->size = new_size;
119 	}
120 
121 	memcpy(ff->buf + ff->offset, buf, size);
122 	ff->offset += size;
123 
124 	return 0;
125 }
126 
127 /* Return: 0 if succeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 	if (!ff->buf)
131 		return __do_write_fd(ff, buf, size);
132 	return __do_write_buf(ff, buf, size);
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 	u64 *p = (u64 *) set;
139 	int i, ret;
140 
141 	ret = do_write(ff, &size, sizeof(size));
142 	if (ret < 0)
143 		return ret;
144 
145 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 		ret = do_write(ff, p + i, sizeof(*p));
147 		if (ret < 0)
148 			return ret;
149 	}
150 
151 	return 0;
152 }
153 
154 /* Return: 0 if succeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)155 int write_padded(struct feat_fd *ff, const void *bf,
156 		 size_t count, size_t count_aligned)
157 {
158 	static const char zero_buf[NAME_ALIGN];
159 	int err = do_write(ff, bf, count);
160 
161 	if (!err)
162 		err = do_write(ff, zero_buf, count_aligned - count);
163 
164 	return err;
165 }
166 
167 #define string_size(str)						\
168 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169 
170 /* Return: 0 if succeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 	u32 len, olen;
174 	int ret;
175 
176 	olen = strlen(str) + 1;
177 	len = PERF_ALIGN(olen, NAME_ALIGN);
178 
179 	/* write len, incl. \0 */
180 	ret = do_write(ff, &len, sizeof(len));
181 	if (ret < 0)
182 		return ret;
183 
184 	return write_padded(ff, str, olen, len);
185 }
186 
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 	ssize_t ret = readn(ff->fd, addr, size);
190 
191 	if (ret != size)
192 		return ret < 0 ? (int)ret : -1;
193 	return 0;
194 }
195 
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 	if (size > (ssize_t)ff->size - ff->offset)
199 		return -1;
200 
201 	memcpy(addr, ff->buf + ff->offset, size);
202 	ff->offset += size;
203 
204 	return 0;
205 
206 }
207 
__do_read(struct feat_fd * ff,void * addr,ssize_t size)208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (!ff->buf)
211 		return __do_read_fd(ff, addr, size);
212 	return __do_read_buf(ff, addr, size);
213 }
214 
do_read_u32(struct feat_fd * ff,u32 * addr)215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 	int ret;
218 
219 	ret = __do_read(ff, addr, sizeof(*addr));
220 	if (ret)
221 		return ret;
222 
223 	if (ff->ph->needs_swap)
224 		*addr = bswap_32(*addr);
225 	return 0;
226 }
227 
do_read_u64(struct feat_fd * ff,u64 * addr)228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 	int ret;
231 
232 	ret = __do_read(ff, addr, sizeof(*addr));
233 	if (ret)
234 		return ret;
235 
236 	if (ff->ph->needs_swap)
237 		*addr = bswap_64(*addr);
238 	return 0;
239 }
240 
do_read_string(struct feat_fd * ff)241 static char *do_read_string(struct feat_fd *ff)
242 {
243 	u32 len;
244 	char *buf;
245 
246 	if (do_read_u32(ff, &len))
247 		return NULL;
248 
249 	buf = malloc(len);
250 	if (!buf)
251 		return NULL;
252 
253 	if (!__do_read(ff, buf, len)) {
254 		/*
255 		 * strings are padded by zeroes
256 		 * thus the actual strlen of buf
257 		 * may be less than len
258 		 */
259 		return buf;
260 	}
261 
262 	free(buf);
263 	return NULL;
264 }
265 
266 /* Return: 0 if succeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 	unsigned long *set;
270 	u64 size, *p;
271 	int i, ret;
272 
273 	ret = do_read_u64(ff, &size);
274 	if (ret)
275 		return ret;
276 
277 	set = bitmap_alloc(size);
278 	if (!set)
279 		return -ENOMEM;
280 
281 	p = (u64 *) set;
282 
283 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 		ret = do_read_u64(ff, p + i);
285 		if (ret < 0) {
286 			free(set);
287 			return ret;
288 		}
289 	}
290 
291 	*pset  = set;
292 	*psize = size;
293 	return 0;
294 }
295 
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)296 static int write_tracing_data(struct feat_fd *ff,
297 			      struct evlist *evlist)
298 {
299 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 		return -1;
301 
302 	return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304 
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)305 static int write_build_id(struct feat_fd *ff,
306 			  struct evlist *evlist __maybe_unused)
307 {
308 	struct perf_session *session;
309 	int err;
310 
311 	session = container_of(ff->ph, struct perf_session, header);
312 
313 	if (!perf_session__read_build_ids(session, true))
314 		return -1;
315 
316 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 		return -1;
318 
319 	err = perf_session__write_buildid_table(session, ff);
320 	if (err < 0) {
321 		pr_debug("failed to write buildid table\n");
322 		return err;
323 	}
324 	perf_session__cache_build_ids(session);
325 
326 	return 0;
327 }
328 
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)329 static int write_hostname(struct feat_fd *ff,
330 			  struct evlist *evlist __maybe_unused)
331 {
332 	struct utsname uts;
333 	int ret;
334 
335 	ret = uname(&uts);
336 	if (ret < 0)
337 		return -1;
338 
339 	return do_write_string(ff, uts.nodename);
340 }
341 
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342 static int write_osrelease(struct feat_fd *ff,
343 			   struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.release);
353 }
354 
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355 static int write_arch(struct feat_fd *ff,
356 		      struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.machine);
366 }
367 
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368 static int write_version(struct feat_fd *ff,
369 			 struct evlist *evlist __maybe_unused)
370 {
371 	return do_write_string(ff, perf_version_string);
372 }
373 
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 	FILE *file;
377 	char *buf = NULL;
378 	char *s, *p;
379 	const char *search = cpuinfo_proc;
380 	size_t len = 0;
381 	int ret = -1;
382 
383 	if (!search)
384 		return -1;
385 
386 	file = fopen("/proc/cpuinfo", "r");
387 	if (!file)
388 		return -1;
389 
390 	while (getline(&buf, &len, file) > 0) {
391 		ret = strncmp(buf, search, strlen(search));
392 		if (!ret)
393 			break;
394 	}
395 
396 	if (ret) {
397 		ret = -1;
398 		goto done;
399 	}
400 
401 	s = buf;
402 
403 	p = strchr(buf, ':');
404 	if (p && *(p+1) == ' ' && *(p+2))
405 		s = p + 2;
406 	p = strchr(s, '\n');
407 	if (p)
408 		*p = '\0';
409 
410 	/* squash extra space characters (branding string) */
411 	p = s;
412 	while (*p) {
413 		if (isspace(*p)) {
414 			char *r = p + 1;
415 			char *q = skip_spaces(r);
416 			*p = ' ';
417 			if (q != (p+1))
418 				while ((*r++ = *q++));
419 		}
420 		p++;
421 	}
422 	ret = do_write_string(ff, s);
423 done:
424 	free(buf);
425 	fclose(file);
426 	return ret;
427 }
428 
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)429 static int write_cpudesc(struct feat_fd *ff,
430 		       struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC	{ "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC	{ "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC	{ "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC	{ "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC	{ "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC	{ "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC	{ "core ID", }
446 #else
447 #define CPUINFO_PROC	{ "model name", }
448 #endif
449 	const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 	unsigned int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 		int ret;
455 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 		if (ret >= 0)
457 			return ret;
458 	}
459 	return -1;
460 }
461 
462 
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)463 static int write_nrcpus(struct feat_fd *ff,
464 			struct evlist *evlist __maybe_unused)
465 {
466 	long nr;
467 	u32 nrc, nra;
468 	int ret;
469 
470 	nrc = cpu__max_present_cpu();
471 
472 	nr = sysconf(_SC_NPROCESSORS_ONLN);
473 	if (nr < 0)
474 		return -1;
475 
476 	nra = (u32)(nr & UINT_MAX);
477 
478 	ret = do_write(ff, &nrc, sizeof(nrc));
479 	if (ret < 0)
480 		return ret;
481 
482 	return do_write(ff, &nra, sizeof(nra));
483 }
484 
write_event_desc(struct feat_fd * ff,struct evlist * evlist)485 static int write_event_desc(struct feat_fd *ff,
486 			    struct evlist *evlist)
487 {
488 	struct evsel *evsel;
489 	u32 nre, nri, sz;
490 	int ret;
491 
492 	nre = evlist->core.nr_entries;
493 
494 	/*
495 	 * write number of events
496 	 */
497 	ret = do_write(ff, &nre, sizeof(nre));
498 	if (ret < 0)
499 		return ret;
500 
501 	/*
502 	 * size of perf_event_attr struct
503 	 */
504 	sz = (u32)sizeof(evsel->core.attr);
505 	ret = do_write(ff, &sz, sizeof(sz));
506 	if (ret < 0)
507 		return ret;
508 
509 	evlist__for_each_entry(evlist, evsel) {
510 		ret = do_write(ff, &evsel->core.attr, sz);
511 		if (ret < 0)
512 			return ret;
513 		/*
514 		 * write number of unique id per event
515 		 * there is one id per instance of an event
516 		 *
517 		 * copy into an nri to be independent of the
518 		 * type of ids,
519 		 */
520 		nri = evsel->core.ids;
521 		ret = do_write(ff, &nri, sizeof(nri));
522 		if (ret < 0)
523 			return ret;
524 
525 		/*
526 		 * write event string as passed on cmdline
527 		 */
528 		ret = do_write_string(ff, perf_evsel__name(evsel));
529 		if (ret < 0)
530 			return ret;
531 		/*
532 		 * write unique ids for this event
533 		 */
534 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 		if (ret < 0)
536 			return ret;
537 	}
538 	return 0;
539 }
540 
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)541 static int write_cmdline(struct feat_fd *ff,
542 			 struct evlist *evlist __maybe_unused)
543 {
544 	char pbuf[MAXPATHLEN], *buf;
545 	int i, ret, n;
546 
547 	/* actual path to perf binary */
548 	buf = perf_exe(pbuf, MAXPATHLEN);
549 
550 	/* account for binary path */
551 	n = perf_env.nr_cmdline + 1;
552 
553 	ret = do_write(ff, &n, sizeof(n));
554 	if (ret < 0)
555 		return ret;
556 
557 	ret = do_write_string(ff, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 		if (ret < 0)
564 			return ret;
565 	}
566 	return 0;
567 }
568 
569 
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)570 static int write_cpu_topology(struct feat_fd *ff,
571 			      struct evlist *evlist __maybe_unused)
572 {
573 	struct cpu_topology *tp;
574 	u32 i;
575 	int ret, j;
576 
577 	tp = cpu_topology__new();
578 	if (!tp)
579 		return -1;
580 
581 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 	if (ret < 0)
583 		goto done;
584 
585 	for (i = 0; i < tp->core_sib; i++) {
586 		ret = do_write_string(ff, tp->core_siblings[i]);
587 		if (ret < 0)
588 			goto done;
589 	}
590 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 	if (ret < 0)
592 		goto done;
593 
594 	for (i = 0; i < tp->thread_sib; i++) {
595 		ret = do_write_string(ff, tp->thread_siblings[i]);
596 		if (ret < 0)
597 			break;
598 	}
599 
600 	ret = perf_env__read_cpu_topology_map(&perf_env);
601 	if (ret < 0)
602 		goto done;
603 
604 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 		ret = do_write(ff, &perf_env.cpu[j].core_id,
606 			       sizeof(perf_env.cpu[j].core_id));
607 		if (ret < 0)
608 			return ret;
609 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 			       sizeof(perf_env.cpu[j].socket_id));
611 		if (ret < 0)
612 			return ret;
613 	}
614 
615 	if (!tp->die_sib)
616 		goto done;
617 
618 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 	if (ret < 0)
620 		goto done;
621 
622 	for (i = 0; i < tp->die_sib; i++) {
623 		ret = do_write_string(ff, tp->die_siblings[i]);
624 		if (ret < 0)
625 			goto done;
626 	}
627 
628 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 		ret = do_write(ff, &perf_env.cpu[j].die_id,
630 			       sizeof(perf_env.cpu[j].die_id));
631 		if (ret < 0)
632 			return ret;
633 	}
634 
635 done:
636 	cpu_topology__delete(tp);
637 	return ret;
638 }
639 
640 
641 
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)642 static int write_total_mem(struct feat_fd *ff,
643 			   struct evlist *evlist __maybe_unused)
644 {
645 	char *buf = NULL;
646 	FILE *fp;
647 	size_t len = 0;
648 	int ret = -1, n;
649 	uint64_t mem;
650 
651 	fp = fopen("/proc/meminfo", "r");
652 	if (!fp)
653 		return -1;
654 
655 	while (getline(&buf, &len, fp) > 0) {
656 		ret = strncmp(buf, "MemTotal:", 9);
657 		if (!ret)
658 			break;
659 	}
660 	if (!ret) {
661 		n = sscanf(buf, "%*s %"PRIu64, &mem);
662 		if (n == 1)
663 			ret = do_write(ff, &mem, sizeof(mem));
664 	} else
665 		ret = -1;
666 	free(buf);
667 	fclose(fp);
668 	return ret;
669 }
670 
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)671 static int write_numa_topology(struct feat_fd *ff,
672 			       struct evlist *evlist __maybe_unused)
673 {
674 	struct numa_topology *tp;
675 	int ret = -1;
676 	u32 i;
677 
678 	tp = numa_topology__new();
679 	if (!tp)
680 		return -ENOMEM;
681 
682 	ret = do_write(ff, &tp->nr, sizeof(u32));
683 	if (ret < 0)
684 		goto err;
685 
686 	for (i = 0; i < tp->nr; i++) {
687 		struct numa_topology_node *n = &tp->nodes[i];
688 
689 		ret = do_write(ff, &n->node, sizeof(u32));
690 		if (ret < 0)
691 			goto err;
692 
693 		ret = do_write(ff, &n->mem_total, sizeof(u64));
694 		if (ret)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_free, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write_string(ff, n->cpus);
702 		if (ret < 0)
703 			goto err;
704 	}
705 
706 	ret = 0;
707 
708 err:
709 	numa_topology__delete(tp);
710 	return ret;
711 }
712 
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *	u32	pmu_num;
718  *	struct pmu_map {
719  *		u32	type;
720  *		char	name[];
721  *	}[pmu_num];
722  * };
723  */
724 
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)725 static int write_pmu_mappings(struct feat_fd *ff,
726 			      struct evlist *evlist __maybe_unused)
727 {
728 	struct perf_pmu *pmu = NULL;
729 	u32 pmu_num = 0;
730 	int ret;
731 
732 	/*
733 	 * Do a first pass to count number of pmu to avoid lseek so this
734 	 * works in pipe mode as well.
735 	 */
736 	while ((pmu = perf_pmu__scan(pmu))) {
737 		if (!pmu->name)
738 			continue;
739 		pmu_num++;
740 	}
741 
742 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 	if (ret < 0)
744 		return ret;
745 
746 	while ((pmu = perf_pmu__scan(pmu))) {
747 		if (!pmu->name)
748 			continue;
749 
750 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 		if (ret < 0)
752 			return ret;
753 
754 		ret = do_write_string(ff, pmu->name);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *	u32	nr_groups;
767  *	struct group_desc {
768  *		char	name[];
769  *		u32	leader_idx;
770  *		u32	nr_members;
771  *	}[nr_groups];
772  * };
773  */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)774 static int write_group_desc(struct feat_fd *ff,
775 			    struct evlist *evlist)
776 {
777 	u32 nr_groups = evlist->nr_groups;
778 	struct evsel *evsel;
779 	int ret;
780 
781 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 	if (ret < 0)
783 		return ret;
784 
785 	evlist__for_each_entry(evlist, evsel) {
786 		if (perf_evsel__is_group_leader(evsel) &&
787 		    evsel->core.nr_members > 1) {
788 			const char *name = evsel->group_name ?: "{anon_group}";
789 			u32 leader_idx = evsel->idx;
790 			u32 nr_members = evsel->core.nr_members;
791 
792 			ret = do_write_string(ff, name);
793 			if (ret < 0)
794 				return ret;
795 
796 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 			if (ret < 0)
802 				return ret;
803 		}
804 	}
805 	return 0;
806 }
807 
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 	return NULL;
817 }
818 
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 	regex_t re;
826 	regmatch_t pmatch[1];
827 	int match;
828 
829 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 		/* Warn unable to generate match particular string. */
831 		pr_info("Invalid regular expression %s\n", mapcpuid);
832 		return 1;
833 	}
834 
835 	match = !regexec(&re, cpuid, 1, pmatch, 0);
836 	regfree(&re);
837 	if (match) {
838 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839 
840 		/* Verify the entire string matched. */
841 		if (match_len == strlen(cpuid))
842 			return 0;
843 	}
844 	return 1;
845 }
846 
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 	return -1;
854 }
855 
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)856 static int write_cpuid(struct feat_fd *ff,
857 		       struct evlist *evlist __maybe_unused)
858 {
859 	char buffer[64];
860 	int ret;
861 
862 	ret = get_cpuid(buffer, sizeof(buffer));
863 	if (ret)
864 		return -1;
865 
866 	return do_write_string(ff, buffer);
867 }
868 
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 			      struct evlist *evlist __maybe_unused)
871 {
872 	return 0;
873 }
874 
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)875 static int write_auxtrace(struct feat_fd *ff,
876 			  struct evlist *evlist __maybe_unused)
877 {
878 	struct perf_session *session;
879 	int err;
880 
881 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 		return -1;
883 
884 	session = container_of(ff->ph, struct perf_session, header);
885 
886 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 	if (err < 0)
888 		pr_err("Failed to write auxtrace index\n");
889 	return err;
890 }
891 
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)892 static int write_clockid(struct feat_fd *ff,
893 			 struct evlist *evlist __maybe_unused)
894 {
895 	return do_write(ff, &ff->ph->env.clockid_res_ns,
896 			sizeof(ff->ph->env.clockid_res_ns));
897 }
898 
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)899 static int write_dir_format(struct feat_fd *ff,
900 			    struct evlist *evlist __maybe_unused)
901 {
902 	struct perf_session *session;
903 	struct perf_data *data;
904 
905 	session = container_of(ff->ph, struct perf_session, header);
906 	data = session->data;
907 
908 	if (WARN_ON(!perf_data__is_dir(data)))
909 		return -1;
910 
911 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913 
914 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)915 static int write_bpf_prog_info(struct feat_fd *ff,
916 			       struct evlist *evlist __maybe_unused)
917 {
918 	struct perf_env *env = &ff->ph->env;
919 	struct rb_root *root;
920 	struct rb_node *next;
921 	int ret;
922 
923 	down_read(&env->bpf_progs.lock);
924 
925 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 		       sizeof(env->bpf_progs.infos_cnt));
927 	if (ret < 0)
928 		goto out;
929 
930 	root = &env->bpf_progs.infos;
931 	next = rb_first(root);
932 	while (next) {
933 		struct bpf_prog_info_node *node;
934 		size_t len;
935 
936 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 		next = rb_next(&node->rb_node);
938 		len = sizeof(struct bpf_prog_info_linear) +
939 			node->info_linear->data_len;
940 
941 		/* before writing to file, translate address to offset */
942 		bpf_program__bpil_addr_to_offs(node->info_linear);
943 		ret = do_write(ff, node->info_linear, len);
944 		/*
945 		 * translate back to address even when do_write() fails,
946 		 * so that this function never changes the data.
947 		 */
948 		bpf_program__bpil_offs_to_addr(node->info_linear);
949 		if (ret < 0)
950 			goto out;
951 	}
952 out:
953 	up_read(&env->bpf_progs.lock);
954 	return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 			       struct evlist *evlist __maybe_unused)
959 {
960 	return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963 
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)964 static int write_bpf_btf(struct feat_fd *ff,
965 			 struct evlist *evlist __maybe_unused)
966 {
967 	struct perf_env *env = &ff->ph->env;
968 	struct rb_root *root;
969 	struct rb_node *next;
970 	int ret;
971 
972 	down_read(&env->bpf_progs.lock);
973 
974 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 		       sizeof(env->bpf_progs.btfs_cnt));
976 
977 	if (ret < 0)
978 		goto out;
979 
980 	root = &env->bpf_progs.btfs;
981 	next = rb_first(root);
982 	while (next) {
983 		struct btf_node *node;
984 
985 		node = rb_entry(next, struct btf_node, rb_node);
986 		next = rb_next(&node->rb_node);
987 		ret = do_write(ff, &node->id,
988 			       sizeof(u32) * 2 + node->data_size);
989 		if (ret < 0)
990 			goto out;
991 	}
992 out:
993 	up_read(&env->bpf_progs.lock);
994 	return ret;
995 }
996 
cpu_cache_level__sort(const void * a,const void * b)997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001 
1002 	return cache_a->level - cache_b->level;
1003 }
1004 
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007 	if (a->level != b->level)
1008 		return false;
1009 
1010 	if (a->line_size != b->line_size)
1011 		return false;
1012 
1013 	if (a->sets != b->sets)
1014 		return false;
1015 
1016 	if (a->ways != b->ways)
1017 		return false;
1018 
1019 	if (strcmp(a->type, b->type))
1020 		return false;
1021 
1022 	if (strcmp(a->size, b->size))
1023 		return false;
1024 
1025 	if (strcmp(a->map, b->map))
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033 	char path[PATH_MAX], file[PATH_MAX];
1034 	struct stat st;
1035 	size_t len;
1036 
1037 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039 
1040 	if (stat(file, &st))
1041 		return 1;
1042 
1043 	scnprintf(file, PATH_MAX, "%s/level", path);
1044 	if (sysfs__read_int(file, (int *) &cache->level))
1045 		return -1;
1046 
1047 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 	if (sysfs__read_int(file, (int *) &cache->line_size))
1049 		return -1;
1050 
1051 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 	if (sysfs__read_int(file, (int *) &cache->sets))
1053 		return -1;
1054 
1055 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 	if (sysfs__read_int(file, (int *) &cache->ways))
1057 		return -1;
1058 
1059 	scnprintf(file, PATH_MAX, "%s/type", path);
1060 	if (sysfs__read_str(file, &cache->type, &len))
1061 		return -1;
1062 
1063 	cache->type[len] = 0;
1064 	cache->type = strim(cache->type);
1065 
1066 	scnprintf(file, PATH_MAX, "%s/size", path);
1067 	if (sysfs__read_str(file, &cache->size, &len)) {
1068 		zfree(&cache->type);
1069 		return -1;
1070 	}
1071 
1072 	cache->size[len] = 0;
1073 	cache->size = strim(cache->size);
1074 
1075 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 	if (sysfs__read_str(file, &cache->map, &len)) {
1077 		zfree(&cache->size);
1078 		zfree(&cache->type);
1079 		return -1;
1080 	}
1081 
1082 	cache->map[len] = 0;
1083 	cache->map = strim(cache->map);
1084 	return 0;
1085 }
1086 
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091 
build_caches(struct cpu_cache_level caches[],u32 size,u32 * cntp)1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093 {
1094 	u32 i, cnt = 0;
1095 	long ncpus;
1096 	u32 nr, cpu;
1097 	u16 level;
1098 
1099 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 	if (ncpus < 0)
1101 		return -1;
1102 
1103 	nr = (u32)(ncpus & UINT_MAX);
1104 
1105 	for (cpu = 0; cpu < nr; cpu++) {
1106 		for (level = 0; level < 10; level++) {
1107 			struct cpu_cache_level c;
1108 			int err;
1109 
1110 			err = cpu_cache_level__read(&c, cpu, level);
1111 			if (err < 0)
1112 				return err;
1113 
1114 			if (err == 1)
1115 				break;
1116 
1117 			for (i = 0; i < cnt; i++) {
1118 				if (cpu_cache_level__cmp(&c, &caches[i]))
1119 					break;
1120 			}
1121 
1122 			if (i == cnt)
1123 				caches[cnt++] = c;
1124 			else
1125 				cpu_cache_level__free(&c);
1126 
1127 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 				goto out;
1129 		}
1130 	}
1131  out:
1132 	*cntp = cnt;
1133 	return 0;
1134 }
1135 
1136 #define MAX_CACHE_LVL 4
1137 
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1138 static int write_cache(struct feat_fd *ff,
1139 		       struct evlist *evlist __maybe_unused)
1140 {
1141 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 	struct cpu_cache_level caches[max_caches];
1143 	u32 cnt = 0, i, version = 1;
1144 	int ret;
1145 
1146 	ret = build_caches(caches, max_caches, &cnt);
1147 	if (ret)
1148 		goto out;
1149 
1150 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151 
1152 	ret = do_write(ff, &version, sizeof(u32));
1153 	if (ret < 0)
1154 		goto out;
1155 
1156 	ret = do_write(ff, &cnt, sizeof(u32));
1157 	if (ret < 0)
1158 		goto out;
1159 
1160 	for (i = 0; i < cnt; i++) {
1161 		struct cpu_cache_level *c = &caches[i];
1162 
1163 		#define _W(v)					\
1164 			ret = do_write(ff, &c->v, sizeof(u32));	\
1165 			if (ret < 0)				\
1166 				goto out;
1167 
1168 		_W(level)
1169 		_W(line_size)
1170 		_W(sets)
1171 		_W(ways)
1172 		#undef _W
1173 
1174 		#define _W(v)						\
1175 			ret = do_write_string(ff, (const char *) c->v);	\
1176 			if (ret < 0)					\
1177 				goto out;
1178 
1179 		_W(type)
1180 		_W(size)
1181 		_W(map)
1182 		#undef _W
1183 	}
1184 
1185 out:
1186 	for (i = 0; i < cnt; i++)
1187 		cpu_cache_level__free(&caches[i]);
1188 	return ret;
1189 }
1190 
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1191 static int write_stat(struct feat_fd *ff __maybe_unused,
1192 		      struct evlist *evlist __maybe_unused)
1193 {
1194 	return 0;
1195 }
1196 
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1197 static int write_sample_time(struct feat_fd *ff,
1198 			     struct evlist *evlist)
1199 {
1200 	int ret;
1201 
1202 	ret = do_write(ff, &evlist->first_sample_time,
1203 		       sizeof(evlist->first_sample_time));
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	return do_write(ff, &evlist->last_sample_time,
1208 			sizeof(evlist->last_sample_time));
1209 }
1210 
1211 
memory_node__read(struct memory_node * n,unsigned long idx)1212 static int memory_node__read(struct memory_node *n, unsigned long idx)
1213 {
1214 	unsigned int phys, size = 0;
1215 	char path[PATH_MAX];
1216 	struct dirent *ent;
1217 	DIR *dir;
1218 
1219 #define for_each_memory(mem, dir)					\
1220 	while ((ent = readdir(dir)))					\
1221 		if (strcmp(ent->d_name, ".") &&				\
1222 		    strcmp(ent->d_name, "..") &&			\
1223 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1224 
1225 	scnprintf(path, PATH_MAX,
1226 		  "%s/devices/system/node/node%lu",
1227 		  sysfs__mountpoint(), idx);
1228 
1229 	dir = opendir(path);
1230 	if (!dir) {
1231 		pr_warning("failed: cant' open memory sysfs data\n");
1232 		return -1;
1233 	}
1234 
1235 	for_each_memory(phys, dir) {
1236 		size = max(phys, size);
1237 	}
1238 
1239 	size++;
1240 
1241 	n->set = bitmap_alloc(size);
1242 	if (!n->set) {
1243 		closedir(dir);
1244 		return -ENOMEM;
1245 	}
1246 
1247 	n->node = idx;
1248 	n->size = size;
1249 
1250 	rewinddir(dir);
1251 
1252 	for_each_memory(phys, dir) {
1253 		set_bit(phys, n->set);
1254 	}
1255 
1256 	closedir(dir);
1257 	return 0;
1258 }
1259 
memory_node__sort(const void * a,const void * b)1260 static int memory_node__sort(const void *a, const void *b)
1261 {
1262 	const struct memory_node *na = a;
1263 	const struct memory_node *nb = b;
1264 
1265 	return na->node - nb->node;
1266 }
1267 
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269 {
1270 	char path[PATH_MAX];
1271 	struct dirent *ent;
1272 	DIR *dir;
1273 	u64 cnt = 0;
1274 	int ret = 0;
1275 
1276 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 		  sysfs__mountpoint());
1278 
1279 	dir = opendir(path);
1280 	if (!dir) {
1281 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 			  __func__, path);
1283 		return -1;
1284 	}
1285 
1286 	while (!ret && (ent = readdir(dir))) {
1287 		unsigned int idx;
1288 		int r;
1289 
1290 		if (!strcmp(ent->d_name, ".") ||
1291 		    !strcmp(ent->d_name, ".."))
1292 			continue;
1293 
1294 		r = sscanf(ent->d_name, "node%u", &idx);
1295 		if (r != 1)
1296 			continue;
1297 
1298 		if (WARN_ONCE(cnt >= size,
1299 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300 			closedir(dir);
1301 			return -1;
1302 		}
1303 
1304 		ret = memory_node__read(&nodes[cnt++], idx);
1305 	}
1306 
1307 	*cntp = cnt;
1308 	closedir(dir);
1309 
1310 	if (!ret)
1311 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312 
1313 	return ret;
1314 }
1315 
1316 #define MAX_MEMORY_NODES 2000
1317 
1318 /*
1319  * The MEM_TOPOLOGY holds physical memory map for every
1320  * node in system. The format of data is as follows:
1321  *
1322  *  0 - version          | for future changes
1323  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324  * 16 - count            | number of nodes
1325  *
1326  * For each node we store map of physical indexes for
1327  * each node:
1328  *
1329  * 32 - node id          | node index
1330  * 40 - size             | size of bitmap
1331  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1332  */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1333 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334 			      struct evlist *evlist __maybe_unused)
1335 {
1336 	static struct memory_node nodes[MAX_MEMORY_NODES];
1337 	u64 bsize, version = 1, i, nr;
1338 	int ret;
1339 
1340 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341 			      (unsigned long long *) &bsize);
1342 	if (ret)
1343 		return ret;
1344 
1345 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346 	if (ret)
1347 		return ret;
1348 
1349 	ret = do_write(ff, &version, sizeof(version));
1350 	if (ret < 0)
1351 		goto out;
1352 
1353 	ret = do_write(ff, &bsize, sizeof(bsize));
1354 	if (ret < 0)
1355 		goto out;
1356 
1357 	ret = do_write(ff, &nr, sizeof(nr));
1358 	if (ret < 0)
1359 		goto out;
1360 
1361 	for (i = 0; i < nr; i++) {
1362 		struct memory_node *n = &nodes[i];
1363 
1364 		#define _W(v)						\
1365 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1366 			if (ret < 0)					\
1367 				goto out;
1368 
1369 		_W(node)
1370 		_W(size)
1371 
1372 		#undef _W
1373 
1374 		ret = do_write_bitmap(ff, n->set, n->size);
1375 		if (ret < 0)
1376 			goto out;
1377 	}
1378 
1379 out:
1380 	return ret;
1381 }
1382 
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1383 static int write_compressed(struct feat_fd *ff __maybe_unused,
1384 			    struct evlist *evlist __maybe_unused)
1385 {
1386 	int ret;
1387 
1388 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389 	if (ret)
1390 		return ret;
1391 
1392 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393 	if (ret)
1394 		return ret;
1395 
1396 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397 	if (ret)
1398 		return ret;
1399 
1400 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401 	if (ret)
1402 		return ret;
1403 
1404 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405 }
1406 
print_hostname(struct feat_fd * ff,FILE * fp)1407 static void print_hostname(struct feat_fd *ff, FILE *fp)
1408 {
1409 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410 }
1411 
print_osrelease(struct feat_fd * ff,FILE * fp)1412 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413 {
1414 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415 }
1416 
print_arch(struct feat_fd * ff,FILE * fp)1417 static void print_arch(struct feat_fd *ff, FILE *fp)
1418 {
1419 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420 }
1421 
print_cpudesc(struct feat_fd * ff,FILE * fp)1422 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423 {
1424 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425 }
1426 
print_nrcpus(struct feat_fd * ff,FILE * fp)1427 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428 {
1429 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431 }
1432 
print_version(struct feat_fd * ff,FILE * fp)1433 static void print_version(struct feat_fd *ff, FILE *fp)
1434 {
1435 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436 }
1437 
print_cmdline(struct feat_fd * ff,FILE * fp)1438 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439 {
1440 	int nr, i;
1441 
1442 	nr = ff->ph->env.nr_cmdline;
1443 
1444 	fprintf(fp, "# cmdline : ");
1445 
1446 	for (i = 0; i < nr; i++) {
1447 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448 		if (!argv_i) {
1449 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450 		} else {
1451 			char *mem = argv_i;
1452 			do {
1453 				char *quote = strchr(argv_i, '\'');
1454 				if (!quote)
1455 					break;
1456 				*quote++ = '\0';
1457 				fprintf(fp, "%s\\\'", argv_i);
1458 				argv_i = quote;
1459 			} while (1);
1460 			fprintf(fp, "%s ", argv_i);
1461 			free(mem);
1462 		}
1463 	}
1464 	fputc('\n', fp);
1465 }
1466 
print_cpu_topology(struct feat_fd * ff,FILE * fp)1467 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468 {
1469 	struct perf_header *ph = ff->ph;
1470 	int cpu_nr = ph->env.nr_cpus_avail;
1471 	int nr, i;
1472 	char *str;
1473 
1474 	nr = ph->env.nr_sibling_cores;
1475 	str = ph->env.sibling_cores;
1476 
1477 	for (i = 0; i < nr; i++) {
1478 		fprintf(fp, "# sibling sockets : %s\n", str);
1479 		str += strlen(str) + 1;
1480 	}
1481 
1482 	if (ph->env.nr_sibling_dies) {
1483 		nr = ph->env.nr_sibling_dies;
1484 		str = ph->env.sibling_dies;
1485 
1486 		for (i = 0; i < nr; i++) {
1487 			fprintf(fp, "# sibling dies    : %s\n", str);
1488 			str += strlen(str) + 1;
1489 		}
1490 	}
1491 
1492 	nr = ph->env.nr_sibling_threads;
1493 	str = ph->env.sibling_threads;
1494 
1495 	for (i = 0; i < nr; i++) {
1496 		fprintf(fp, "# sibling threads : %s\n", str);
1497 		str += strlen(str) + 1;
1498 	}
1499 
1500 	if (ph->env.nr_sibling_dies) {
1501 		if (ph->env.cpu != NULL) {
1502 			for (i = 0; i < cpu_nr; i++)
1503 				fprintf(fp, "# CPU %d: Core ID %d, "
1504 					    "Die ID %d, Socket ID %d\n",
1505 					    i, ph->env.cpu[i].core_id,
1506 					    ph->env.cpu[i].die_id,
1507 					    ph->env.cpu[i].socket_id);
1508 		} else
1509 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1510 				    "information is not available\n");
1511 	} else {
1512 		if (ph->env.cpu != NULL) {
1513 			for (i = 0; i < cpu_nr; i++)
1514 				fprintf(fp, "# CPU %d: Core ID %d, "
1515 					    "Socket ID %d\n",
1516 					    i, ph->env.cpu[i].core_id,
1517 					    ph->env.cpu[i].socket_id);
1518 		} else
1519 			fprintf(fp, "# Core ID and Socket ID "
1520 				    "information is not available\n");
1521 	}
1522 }
1523 
print_clockid(struct feat_fd * ff,FILE * fp)1524 static void print_clockid(struct feat_fd *ff, FILE *fp)
1525 {
1526 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527 		ff->ph->env.clockid_res_ns * 1000);
1528 }
1529 
print_dir_format(struct feat_fd * ff,FILE * fp)1530 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531 {
1532 	struct perf_session *session;
1533 	struct perf_data *data;
1534 
1535 	session = container_of(ff->ph, struct perf_session, header);
1536 	data = session->data;
1537 
1538 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539 }
1540 
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1541 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542 {
1543 	struct perf_env *env = &ff->ph->env;
1544 	struct rb_root *root;
1545 	struct rb_node *next;
1546 
1547 	down_read(&env->bpf_progs.lock);
1548 
1549 	root = &env->bpf_progs.infos;
1550 	next = rb_first(root);
1551 
1552 	while (next) {
1553 		struct bpf_prog_info_node *node;
1554 
1555 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556 		next = rb_next(&node->rb_node);
1557 
1558 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559 					       env, fp);
1560 	}
1561 
1562 	up_read(&env->bpf_progs.lock);
1563 }
1564 
print_bpf_btf(struct feat_fd * ff,FILE * fp)1565 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566 {
1567 	struct perf_env *env = &ff->ph->env;
1568 	struct rb_root *root;
1569 	struct rb_node *next;
1570 
1571 	down_read(&env->bpf_progs.lock);
1572 
1573 	root = &env->bpf_progs.btfs;
1574 	next = rb_first(root);
1575 
1576 	while (next) {
1577 		struct btf_node *node;
1578 
1579 		node = rb_entry(next, struct btf_node, rb_node);
1580 		next = rb_next(&node->rb_node);
1581 		fprintf(fp, "# btf info of id %u\n", node->id);
1582 	}
1583 
1584 	up_read(&env->bpf_progs.lock);
1585 }
1586 
free_event_desc(struct evsel * events)1587 static void free_event_desc(struct evsel *events)
1588 {
1589 	struct evsel *evsel;
1590 
1591 	if (!events)
1592 		return;
1593 
1594 	for (evsel = events; evsel->core.attr.size; evsel++) {
1595 		zfree(&evsel->name);
1596 		zfree(&evsel->core.id);
1597 	}
1598 
1599 	free(events);
1600 }
1601 
read_event_desc(struct feat_fd * ff)1602 static struct evsel *read_event_desc(struct feat_fd *ff)
1603 {
1604 	struct evsel *evsel, *events = NULL;
1605 	u64 *id;
1606 	void *buf = NULL;
1607 	u32 nre, sz, nr, i, j;
1608 	size_t msz;
1609 
1610 	/* number of events */
1611 	if (do_read_u32(ff, &nre))
1612 		goto error;
1613 
1614 	if (do_read_u32(ff, &sz))
1615 		goto error;
1616 
1617 	/* buffer to hold on file attr struct */
1618 	buf = malloc(sz);
1619 	if (!buf)
1620 		goto error;
1621 
1622 	/* the last event terminates with evsel->core.attr.size == 0: */
1623 	events = calloc(nre + 1, sizeof(*events));
1624 	if (!events)
1625 		goto error;
1626 
1627 	msz = sizeof(evsel->core.attr);
1628 	if (sz < msz)
1629 		msz = sz;
1630 
1631 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632 		evsel->idx = i;
1633 
1634 		/*
1635 		 * must read entire on-file attr struct to
1636 		 * sync up with layout.
1637 		 */
1638 		if (__do_read(ff, buf, sz))
1639 			goto error;
1640 
1641 		if (ff->ph->needs_swap)
1642 			perf_event__attr_swap(buf);
1643 
1644 		memcpy(&evsel->core.attr, buf, msz);
1645 
1646 		if (do_read_u32(ff, &nr))
1647 			goto error;
1648 
1649 		if (ff->ph->needs_swap)
1650 			evsel->needs_swap = true;
1651 
1652 		evsel->name = do_read_string(ff);
1653 		if (!evsel->name)
1654 			goto error;
1655 
1656 		if (!nr)
1657 			continue;
1658 
1659 		id = calloc(nr, sizeof(*id));
1660 		if (!id)
1661 			goto error;
1662 		evsel->core.ids = nr;
1663 		evsel->core.id = id;
1664 
1665 		for (j = 0 ; j < nr; j++) {
1666 			if (do_read_u64(ff, id))
1667 				goto error;
1668 			id++;
1669 		}
1670 	}
1671 out:
1672 	free(buf);
1673 	return events;
1674 error:
1675 	free_event_desc(events);
1676 	events = NULL;
1677 	goto out;
1678 }
1679 
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1680 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681 				void *priv __maybe_unused)
1682 {
1683 	return fprintf(fp, ", %s = %s", name, val);
1684 }
1685 
print_event_desc(struct feat_fd * ff,FILE * fp)1686 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687 {
1688 	struct evsel *evsel, *events;
1689 	u32 j;
1690 	u64 *id;
1691 
1692 	if (ff->events)
1693 		events = ff->events;
1694 	else
1695 		events = read_event_desc(ff);
1696 
1697 	if (!events) {
1698 		fprintf(fp, "# event desc: not available or unable to read\n");
1699 		return;
1700 	}
1701 
1702 	for (evsel = events; evsel->core.attr.size; evsel++) {
1703 		fprintf(fp, "# event : name = %s, ", evsel->name);
1704 
1705 		if (evsel->core.ids) {
1706 			fprintf(fp, ", id = {");
1707 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708 				if (j)
1709 					fputc(',', fp);
1710 				fprintf(fp, " %"PRIu64, *id);
1711 			}
1712 			fprintf(fp, " }");
1713 		}
1714 
1715 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716 
1717 		fputc('\n', fp);
1718 	}
1719 
1720 	free_event_desc(events);
1721 	ff->events = NULL;
1722 }
1723 
print_total_mem(struct feat_fd * ff,FILE * fp)1724 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725 {
1726 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727 }
1728 
print_numa_topology(struct feat_fd * ff,FILE * fp)1729 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730 {
1731 	int i;
1732 	struct numa_node *n;
1733 
1734 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735 		n = &ff->ph->env.numa_nodes[i];
1736 
1737 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1738 			    " free = %"PRIu64" kB\n",
1739 			n->node, n->mem_total, n->mem_free);
1740 
1741 		fprintf(fp, "# node%u cpu list : ", n->node);
1742 		cpu_map__fprintf(n->map, fp);
1743 	}
1744 }
1745 
print_cpuid(struct feat_fd * ff,FILE * fp)1746 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747 {
1748 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749 }
1750 
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)1751 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752 {
1753 	fprintf(fp, "# contains samples with branch stack\n");
1754 }
1755 
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)1756 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757 {
1758 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759 }
1760 
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)1761 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762 {
1763 	fprintf(fp, "# contains stat data\n");
1764 }
1765 
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)1766 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767 {
1768 	int i;
1769 
1770 	fprintf(fp, "# CPU cache info:\n");
1771 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772 		fprintf(fp, "#  ");
1773 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774 	}
1775 }
1776 
print_compressed(struct feat_fd * ff,FILE * fp)1777 static void print_compressed(struct feat_fd *ff, FILE *fp)
1778 {
1779 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782 }
1783 
print_pmu_mappings(struct feat_fd * ff,FILE * fp)1784 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785 {
1786 	const char *delimiter = "# pmu mappings: ";
1787 	char *str, *tmp;
1788 	u32 pmu_num;
1789 	u32 type;
1790 
1791 	pmu_num = ff->ph->env.nr_pmu_mappings;
1792 	if (!pmu_num) {
1793 		fprintf(fp, "# pmu mappings: not available\n");
1794 		return;
1795 	}
1796 
1797 	str = ff->ph->env.pmu_mappings;
1798 
1799 	while (pmu_num) {
1800 		type = strtoul(str, &tmp, 0);
1801 		if (*tmp != ':')
1802 			goto error;
1803 
1804 		str = tmp + 1;
1805 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806 
1807 		delimiter = ", ";
1808 		str += strlen(str) + 1;
1809 		pmu_num--;
1810 	}
1811 
1812 	fprintf(fp, "\n");
1813 
1814 	if (!pmu_num)
1815 		return;
1816 error:
1817 	fprintf(fp, "# pmu mappings: unable to read\n");
1818 }
1819 
print_group_desc(struct feat_fd * ff,FILE * fp)1820 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821 {
1822 	struct perf_session *session;
1823 	struct evsel *evsel;
1824 	u32 nr = 0;
1825 
1826 	session = container_of(ff->ph, struct perf_session, header);
1827 
1828 	evlist__for_each_entry(session->evlist, evsel) {
1829 		if (perf_evsel__is_group_leader(evsel) &&
1830 		    evsel->core.nr_members > 1) {
1831 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832 				perf_evsel__name(evsel));
1833 
1834 			nr = evsel->core.nr_members - 1;
1835 		} else if (nr) {
1836 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1837 
1838 			if (--nr == 0)
1839 				fprintf(fp, "}\n");
1840 		}
1841 	}
1842 }
1843 
print_sample_time(struct feat_fd * ff,FILE * fp)1844 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845 {
1846 	struct perf_session *session;
1847 	char time_buf[32];
1848 	double d;
1849 
1850 	session = container_of(ff->ph, struct perf_session, header);
1851 
1852 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853 				  time_buf, sizeof(time_buf));
1854 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1855 
1856 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857 				  time_buf, sizeof(time_buf));
1858 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1859 
1860 	d = (double)(session->evlist->last_sample_time -
1861 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862 
1863 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864 }
1865 
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)1866 static void memory_node__fprintf(struct memory_node *n,
1867 				 unsigned long long bsize, FILE *fp)
1868 {
1869 	char buf_map[100], buf_size[50];
1870 	unsigned long long size;
1871 
1872 	size = bsize * bitmap_weight(n->set, n->size);
1873 	unit_number__scnprintf(buf_size, 50, size);
1874 
1875 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877 }
1878 
print_mem_topology(struct feat_fd * ff,FILE * fp)1879 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880 {
1881 	struct memory_node *nodes;
1882 	int i, nr;
1883 
1884 	nodes = ff->ph->env.memory_nodes;
1885 	nr    = ff->ph->env.nr_memory_nodes;
1886 
1887 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888 		nr, ff->ph->env.memory_bsize);
1889 
1890 	for (i = 0; i < nr; i++) {
1891 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892 	}
1893 }
1894 
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)1895 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896 				    char *filename,
1897 				    struct perf_session *session)
1898 {
1899 	int err = -1;
1900 	struct machine *machine;
1901 	u16 cpumode;
1902 	struct dso *dso;
1903 	enum dso_kernel_type dso_type;
1904 
1905 	machine = perf_session__findnew_machine(session, bev->pid);
1906 	if (!machine)
1907 		goto out;
1908 
1909 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910 
1911 	switch (cpumode) {
1912 	case PERF_RECORD_MISC_KERNEL:
1913 		dso_type = DSO_TYPE_KERNEL;
1914 		break;
1915 	case PERF_RECORD_MISC_GUEST_KERNEL:
1916 		dso_type = DSO_TYPE_GUEST_KERNEL;
1917 		break;
1918 	case PERF_RECORD_MISC_USER:
1919 	case PERF_RECORD_MISC_GUEST_USER:
1920 		dso_type = DSO_TYPE_USER;
1921 		break;
1922 	default:
1923 		goto out;
1924 	}
1925 
1926 	dso = machine__findnew_dso(machine, filename);
1927 	if (dso != NULL) {
1928 		char sbuild_id[SBUILD_ID_SIZE];
1929 
1930 		dso__set_build_id(dso, &bev->build_id);
1931 
1932 		if (dso_type != DSO_TYPE_USER) {
1933 			struct kmod_path m = { .name = NULL, };
1934 
1935 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936 				dso__set_module_info(dso, &m, machine);
1937 			else
1938 				dso->kernel = dso_type;
1939 
1940 			free(m.name);
1941 		}
1942 
1943 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944 				  sbuild_id);
1945 		pr_debug("build id event received for %s: %s\n",
1946 			 dso->long_name, sbuild_id);
1947 		dso__put(dso);
1948 	}
1949 
1950 	err = 0;
1951 out:
1952 	return err;
1953 }
1954 
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)1955 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956 						 int input, u64 offset, u64 size)
1957 {
1958 	struct perf_session *session = container_of(header, struct perf_session, header);
1959 	struct {
1960 		struct perf_event_header   header;
1961 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962 		char			   filename[0];
1963 	} old_bev;
1964 	struct perf_record_header_build_id bev;
1965 	char filename[PATH_MAX];
1966 	u64 limit = offset + size;
1967 
1968 	while (offset < limit) {
1969 		ssize_t len;
1970 
1971 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972 			return -1;
1973 
1974 		if (header->needs_swap)
1975 			perf_event_header__bswap(&old_bev.header);
1976 
1977 		len = old_bev.header.size - sizeof(old_bev);
1978 		if (readn(input, filename, len) != len)
1979 			return -1;
1980 
1981 		bev.header = old_bev.header;
1982 
1983 		/*
1984 		 * As the pid is the missing value, we need to fill
1985 		 * it properly. The header.misc value give us nice hint.
1986 		 */
1987 		bev.pid	= HOST_KERNEL_ID;
1988 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1991 
1992 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993 		__event_process_build_id(&bev, filename, session);
1994 
1995 		offset += bev.header.size;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2001 static int perf_header__read_build_ids(struct perf_header *header,
2002 				       int input, u64 offset, u64 size)
2003 {
2004 	struct perf_session *session = container_of(header, struct perf_session, header);
2005 	struct perf_record_header_build_id bev;
2006 	char filename[PATH_MAX];
2007 	u64 limit = offset + size, orig_offset = offset;
2008 	int err = -1;
2009 
2010 	while (offset < limit) {
2011 		ssize_t len;
2012 
2013 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014 			goto out;
2015 
2016 		if (header->needs_swap)
2017 			perf_event_header__bswap(&bev.header);
2018 
2019 		len = bev.header.size - sizeof(bev);
2020 		if (readn(input, filename, len) != len)
2021 			goto out;
2022 		/*
2023 		 * The a1645ce1 changeset:
2024 		 *
2025 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026 		 *
2027 		 * Added a field to struct perf_record_header_build_id that broke the file
2028 		 * format.
2029 		 *
2030 		 * Since the kernel build-id is the first entry, process the
2031 		 * table using the old format if the well known
2032 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2033 		 * first 4 characters chopped off (where the pid_t sits).
2034 		 */
2035 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037 				return -1;
2038 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039 		}
2040 
2041 		__event_process_build_id(&bev, filename, session);
2042 
2043 		offset += bev.header.size;
2044 	}
2045 	err = 0;
2046 out:
2047 	return err;
2048 }
2049 
2050 /* Macro for features that simply need to read and store a string. */
2051 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053 {\
2054 	ff->ph->env.__feat_env = do_read_string(ff); \
2055 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056 }
2057 
2058 FEAT_PROCESS_STR_FUN(hostname, hostname);
2059 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060 FEAT_PROCESS_STR_FUN(version, version);
2061 FEAT_PROCESS_STR_FUN(arch, arch);
2062 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064 
process_tracing_data(struct feat_fd * ff,void * data)2065 static int process_tracing_data(struct feat_fd *ff, void *data)
2066 {
2067 	ssize_t ret = trace_report(ff->fd, data, false);
2068 
2069 	return ret < 0 ? -1 : 0;
2070 }
2071 
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2072 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073 {
2074 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075 		pr_debug("Failed to read buildids, continuing...\n");
2076 	return 0;
2077 }
2078 
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2079 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080 {
2081 	int ret;
2082 	u32 nr_cpus_avail, nr_cpus_online;
2083 
2084 	ret = do_read_u32(ff, &nr_cpus_avail);
2085 	if (ret)
2086 		return ret;
2087 
2088 	ret = do_read_u32(ff, &nr_cpus_online);
2089 	if (ret)
2090 		return ret;
2091 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093 	return 0;
2094 }
2095 
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2096 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097 {
2098 	u64 total_mem;
2099 	int ret;
2100 
2101 	ret = do_read_u64(ff, &total_mem);
2102 	if (ret)
2103 		return -1;
2104 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2105 	return 0;
2106 }
2107 
2108 static struct evsel *
perf_evlist__find_by_index(struct evlist * evlist,int idx)2109 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110 {
2111 	struct evsel *evsel;
2112 
2113 	evlist__for_each_entry(evlist, evsel) {
2114 		if (evsel->idx == idx)
2115 			return evsel;
2116 	}
2117 
2118 	return NULL;
2119 }
2120 
2121 static void
perf_evlist__set_event_name(struct evlist * evlist,struct evsel * event)2122 perf_evlist__set_event_name(struct evlist *evlist,
2123 			    struct evsel *event)
2124 {
2125 	struct evsel *evsel;
2126 
2127 	if (!event->name)
2128 		return;
2129 
2130 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2131 	if (!evsel)
2132 		return;
2133 
2134 	if (evsel->name)
2135 		return;
2136 
2137 	evsel->name = strdup(event->name);
2138 }
2139 
2140 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2141 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142 {
2143 	struct perf_session *session;
2144 	struct evsel *evsel, *events = read_event_desc(ff);
2145 
2146 	if (!events)
2147 		return 0;
2148 
2149 	session = container_of(ff->ph, struct perf_session, header);
2150 
2151 	if (session->data->is_pipe) {
2152 		/* Save events for reading later by print_event_desc,
2153 		 * since they can't be read again in pipe mode. */
2154 		ff->events = events;
2155 	}
2156 
2157 	for (evsel = events; evsel->core.attr.size; evsel++)
2158 		perf_evlist__set_event_name(session->evlist, evsel);
2159 
2160 	if (!session->data->is_pipe)
2161 		free_event_desc(events);
2162 
2163 	return 0;
2164 }
2165 
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2166 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167 {
2168 	char *str, *cmdline = NULL, **argv = NULL;
2169 	u32 nr, i, len = 0;
2170 
2171 	if (do_read_u32(ff, &nr))
2172 		return -1;
2173 
2174 	ff->ph->env.nr_cmdline = nr;
2175 
2176 	cmdline = zalloc(ff->size + nr + 1);
2177 	if (!cmdline)
2178 		return -1;
2179 
2180 	argv = zalloc(sizeof(char *) * (nr + 1));
2181 	if (!argv)
2182 		goto error;
2183 
2184 	for (i = 0; i < nr; i++) {
2185 		str = do_read_string(ff);
2186 		if (!str)
2187 			goto error;
2188 
2189 		argv[i] = cmdline + len;
2190 		memcpy(argv[i], str, strlen(str) + 1);
2191 		len += strlen(str) + 1;
2192 		free(str);
2193 	}
2194 	ff->ph->env.cmdline = cmdline;
2195 	ff->ph->env.cmdline_argv = (const char **) argv;
2196 	return 0;
2197 
2198 error:
2199 	free(argv);
2200 	free(cmdline);
2201 	return -1;
2202 }
2203 
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2204 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205 {
2206 	u32 nr, i;
2207 	char *str;
2208 	struct strbuf sb;
2209 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2210 	u64 size = 0;
2211 	struct perf_header *ph = ff->ph;
2212 	bool do_core_id_test = true;
2213 
2214 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215 	if (!ph->env.cpu)
2216 		return -1;
2217 
2218 	if (do_read_u32(ff, &nr))
2219 		goto free_cpu;
2220 
2221 	ph->env.nr_sibling_cores = nr;
2222 	size += sizeof(u32);
2223 	if (strbuf_init(&sb, 128) < 0)
2224 		goto free_cpu;
2225 
2226 	for (i = 0; i < nr; i++) {
2227 		str = do_read_string(ff);
2228 		if (!str)
2229 			goto error;
2230 
2231 		/* include a NULL character at the end */
2232 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233 			goto error;
2234 		size += string_size(str);
2235 		free(str);
2236 	}
2237 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238 
2239 	if (do_read_u32(ff, &nr))
2240 		return -1;
2241 
2242 	ph->env.nr_sibling_threads = nr;
2243 	size += sizeof(u32);
2244 
2245 	for (i = 0; i < nr; i++) {
2246 		str = do_read_string(ff);
2247 		if (!str)
2248 			goto error;
2249 
2250 		/* include a NULL character at the end */
2251 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252 			goto error;
2253 		size += string_size(str);
2254 		free(str);
2255 	}
2256 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257 
2258 	/*
2259 	 * The header may be from old perf,
2260 	 * which doesn't include core id and socket id information.
2261 	 */
2262 	if (ff->size <= size) {
2263 		zfree(&ph->env.cpu);
2264 		return 0;
2265 	}
2266 
2267 	/* On s390 the socket_id number is not related to the numbers of cpus.
2268 	 * The socket_id number might be higher than the numbers of cpus.
2269 	 * This depends on the configuration.
2270 	 * AArch64 is the same.
2271 	 */
2272 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2274 		do_core_id_test = false;
2275 
2276 	for (i = 0; i < (u32)cpu_nr; i++) {
2277 		if (do_read_u32(ff, &nr))
2278 			goto free_cpu;
2279 
2280 		ph->env.cpu[i].core_id = nr;
2281 		size += sizeof(u32);
2282 
2283 		if (do_read_u32(ff, &nr))
2284 			goto free_cpu;
2285 
2286 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287 			pr_debug("socket_id number is too big."
2288 				 "You may need to upgrade the perf tool.\n");
2289 			goto free_cpu;
2290 		}
2291 
2292 		ph->env.cpu[i].socket_id = nr;
2293 		size += sizeof(u32);
2294 	}
2295 
2296 	/*
2297 	 * The header may be from old perf,
2298 	 * which doesn't include die information.
2299 	 */
2300 	if (ff->size <= size)
2301 		return 0;
2302 
2303 	if (do_read_u32(ff, &nr))
2304 		return -1;
2305 
2306 	ph->env.nr_sibling_dies = nr;
2307 	size += sizeof(u32);
2308 
2309 	for (i = 0; i < nr; i++) {
2310 		str = do_read_string(ff);
2311 		if (!str)
2312 			goto error;
2313 
2314 		/* include a NULL character at the end */
2315 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316 			goto error;
2317 		size += string_size(str);
2318 		free(str);
2319 	}
2320 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321 
2322 	for (i = 0; i < (u32)cpu_nr; i++) {
2323 		if (do_read_u32(ff, &nr))
2324 			goto free_cpu;
2325 
2326 		ph->env.cpu[i].die_id = nr;
2327 	}
2328 
2329 	return 0;
2330 
2331 error:
2332 	strbuf_release(&sb);
2333 free_cpu:
2334 	zfree(&ph->env.cpu);
2335 	return -1;
2336 }
2337 
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2338 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339 {
2340 	struct numa_node *nodes, *n;
2341 	u32 nr, i;
2342 	char *str;
2343 
2344 	/* nr nodes */
2345 	if (do_read_u32(ff, &nr))
2346 		return -1;
2347 
2348 	nodes = zalloc(sizeof(*nodes) * nr);
2349 	if (!nodes)
2350 		return -ENOMEM;
2351 
2352 	for (i = 0; i < nr; i++) {
2353 		n = &nodes[i];
2354 
2355 		/* node number */
2356 		if (do_read_u32(ff, &n->node))
2357 			goto error;
2358 
2359 		if (do_read_u64(ff, &n->mem_total))
2360 			goto error;
2361 
2362 		if (do_read_u64(ff, &n->mem_free))
2363 			goto error;
2364 
2365 		str = do_read_string(ff);
2366 		if (!str)
2367 			goto error;
2368 
2369 		n->map = perf_cpu_map__new(str);
2370 		if (!n->map)
2371 			goto error;
2372 
2373 		free(str);
2374 	}
2375 	ff->ph->env.nr_numa_nodes = nr;
2376 	ff->ph->env.numa_nodes = nodes;
2377 	return 0;
2378 
2379 error:
2380 	free(nodes);
2381 	return -1;
2382 }
2383 
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2384 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385 {
2386 	char *name;
2387 	u32 pmu_num;
2388 	u32 type;
2389 	struct strbuf sb;
2390 
2391 	if (do_read_u32(ff, &pmu_num))
2392 		return -1;
2393 
2394 	if (!pmu_num) {
2395 		pr_debug("pmu mappings not available\n");
2396 		return 0;
2397 	}
2398 
2399 	ff->ph->env.nr_pmu_mappings = pmu_num;
2400 	if (strbuf_init(&sb, 128) < 0)
2401 		return -1;
2402 
2403 	while (pmu_num) {
2404 		if (do_read_u32(ff, &type))
2405 			goto error;
2406 
2407 		name = do_read_string(ff);
2408 		if (!name)
2409 			goto error;
2410 
2411 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412 			goto error;
2413 		/* include a NULL character at the end */
2414 		if (strbuf_add(&sb, "", 1) < 0)
2415 			goto error;
2416 
2417 		if (!strcmp(name, "msr"))
2418 			ff->ph->env.msr_pmu_type = type;
2419 
2420 		free(name);
2421 		pmu_num--;
2422 	}
2423 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424 	return 0;
2425 
2426 error:
2427 	strbuf_release(&sb);
2428 	return -1;
2429 }
2430 
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2431 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432 {
2433 	size_t ret = -1;
2434 	u32 i, nr, nr_groups;
2435 	struct perf_session *session;
2436 	struct evsel *evsel, *leader = NULL;
2437 	struct group_desc {
2438 		char *name;
2439 		u32 leader_idx;
2440 		u32 nr_members;
2441 	} *desc;
2442 
2443 	if (do_read_u32(ff, &nr_groups))
2444 		return -1;
2445 
2446 	ff->ph->env.nr_groups = nr_groups;
2447 	if (!nr_groups) {
2448 		pr_debug("group desc not available\n");
2449 		return 0;
2450 	}
2451 
2452 	desc = calloc(nr_groups, sizeof(*desc));
2453 	if (!desc)
2454 		return -1;
2455 
2456 	for (i = 0; i < nr_groups; i++) {
2457 		desc[i].name = do_read_string(ff);
2458 		if (!desc[i].name)
2459 			goto out_free;
2460 
2461 		if (do_read_u32(ff, &desc[i].leader_idx))
2462 			goto out_free;
2463 
2464 		if (do_read_u32(ff, &desc[i].nr_members))
2465 			goto out_free;
2466 	}
2467 
2468 	/*
2469 	 * Rebuild group relationship based on the group_desc
2470 	 */
2471 	session = container_of(ff->ph, struct perf_session, header);
2472 	session->evlist->nr_groups = nr_groups;
2473 
2474 	i = nr = 0;
2475 	evlist__for_each_entry(session->evlist, evsel) {
2476 		if (evsel->idx == (int) desc[i].leader_idx) {
2477 			evsel->leader = evsel;
2478 			/* {anon_group} is a dummy name */
2479 			if (strcmp(desc[i].name, "{anon_group}")) {
2480 				evsel->group_name = desc[i].name;
2481 				desc[i].name = NULL;
2482 			}
2483 			evsel->core.nr_members = desc[i].nr_members;
2484 
2485 			if (i >= nr_groups || nr > 0) {
2486 				pr_debug("invalid group desc\n");
2487 				goto out_free;
2488 			}
2489 
2490 			leader = evsel;
2491 			nr = evsel->core.nr_members - 1;
2492 			i++;
2493 		} else if (nr) {
2494 			/* This is a group member */
2495 			evsel->leader = leader;
2496 
2497 			nr--;
2498 		}
2499 	}
2500 
2501 	if (i != nr_groups || nr != 0) {
2502 		pr_debug("invalid group desc\n");
2503 		goto out_free;
2504 	}
2505 
2506 	ret = 0;
2507 out_free:
2508 	for (i = 0; i < nr_groups; i++)
2509 		zfree(&desc[i].name);
2510 	free(desc);
2511 
2512 	return ret;
2513 }
2514 
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2515 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516 {
2517 	struct perf_session *session;
2518 	int err;
2519 
2520 	session = container_of(ff->ph, struct perf_session, header);
2521 
2522 	err = auxtrace_index__process(ff->fd, ff->size, session,
2523 				      ff->ph->needs_swap);
2524 	if (err < 0)
2525 		pr_err("Failed to process auxtrace index\n");
2526 	return err;
2527 }
2528 
process_cache(struct feat_fd * ff,void * data __maybe_unused)2529 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530 {
2531 	struct cpu_cache_level *caches;
2532 	u32 cnt, i, version;
2533 
2534 	if (do_read_u32(ff, &version))
2535 		return -1;
2536 
2537 	if (version != 1)
2538 		return -1;
2539 
2540 	if (do_read_u32(ff, &cnt))
2541 		return -1;
2542 
2543 	caches = zalloc(sizeof(*caches) * cnt);
2544 	if (!caches)
2545 		return -1;
2546 
2547 	for (i = 0; i < cnt; i++) {
2548 		struct cpu_cache_level c;
2549 
2550 		#define _R(v)						\
2551 			if (do_read_u32(ff, &c.v))\
2552 				goto out_free_caches;			\
2553 
2554 		_R(level)
2555 		_R(line_size)
2556 		_R(sets)
2557 		_R(ways)
2558 		#undef _R
2559 
2560 		#define _R(v)					\
2561 			c.v = do_read_string(ff);		\
2562 			if (!c.v)				\
2563 				goto out_free_caches;
2564 
2565 		_R(type)
2566 		_R(size)
2567 		_R(map)
2568 		#undef _R
2569 
2570 		caches[i] = c;
2571 	}
2572 
2573 	ff->ph->env.caches = caches;
2574 	ff->ph->env.caches_cnt = cnt;
2575 	return 0;
2576 out_free_caches:
2577 	free(caches);
2578 	return -1;
2579 }
2580 
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2581 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582 {
2583 	struct perf_session *session;
2584 	u64 first_sample_time, last_sample_time;
2585 	int ret;
2586 
2587 	session = container_of(ff->ph, struct perf_session, header);
2588 
2589 	ret = do_read_u64(ff, &first_sample_time);
2590 	if (ret)
2591 		return -1;
2592 
2593 	ret = do_read_u64(ff, &last_sample_time);
2594 	if (ret)
2595 		return -1;
2596 
2597 	session->evlist->first_sample_time = first_sample_time;
2598 	session->evlist->last_sample_time = last_sample_time;
2599 	return 0;
2600 }
2601 
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2602 static int process_mem_topology(struct feat_fd *ff,
2603 				void *data __maybe_unused)
2604 {
2605 	struct memory_node *nodes;
2606 	u64 version, i, nr, bsize;
2607 	int ret = -1;
2608 
2609 	if (do_read_u64(ff, &version))
2610 		return -1;
2611 
2612 	if (version != 1)
2613 		return -1;
2614 
2615 	if (do_read_u64(ff, &bsize))
2616 		return -1;
2617 
2618 	if (do_read_u64(ff, &nr))
2619 		return -1;
2620 
2621 	nodes = zalloc(sizeof(*nodes) * nr);
2622 	if (!nodes)
2623 		return -1;
2624 
2625 	for (i = 0; i < nr; i++) {
2626 		struct memory_node n;
2627 
2628 		#define _R(v)				\
2629 			if (do_read_u64(ff, &n.v))	\
2630 				goto out;		\
2631 
2632 		_R(node)
2633 		_R(size)
2634 
2635 		#undef _R
2636 
2637 		if (do_read_bitmap(ff, &n.set, &n.size))
2638 			goto out;
2639 
2640 		nodes[i] = n;
2641 	}
2642 
2643 	ff->ph->env.memory_bsize    = bsize;
2644 	ff->ph->env.memory_nodes    = nodes;
2645 	ff->ph->env.nr_memory_nodes = nr;
2646 	ret = 0;
2647 
2648 out:
2649 	if (ret)
2650 		free(nodes);
2651 	return ret;
2652 }
2653 
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2654 static int process_clockid(struct feat_fd *ff,
2655 			   void *data __maybe_unused)
2656 {
2657 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2658 		return -1;
2659 
2660 	return 0;
2661 }
2662 
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)2663 static int process_dir_format(struct feat_fd *ff,
2664 			      void *_data __maybe_unused)
2665 {
2666 	struct perf_session *session;
2667 	struct perf_data *data;
2668 
2669 	session = container_of(ff->ph, struct perf_session, header);
2670 	data = session->data;
2671 
2672 	if (WARN_ON(!perf_data__is_dir(data)))
2673 		return -1;
2674 
2675 	return do_read_u64(ff, &data->dir.version);
2676 }
2677 
2678 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)2679 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680 {
2681 	struct bpf_prog_info_linear *info_linear;
2682 	struct bpf_prog_info_node *info_node;
2683 	struct perf_env *env = &ff->ph->env;
2684 	u32 count, i;
2685 	int err = -1;
2686 
2687 	if (ff->ph->needs_swap) {
2688 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689 		return 0;
2690 	}
2691 
2692 	if (do_read_u32(ff, &count))
2693 		return -1;
2694 
2695 	down_write(&env->bpf_progs.lock);
2696 
2697 	for (i = 0; i < count; ++i) {
2698 		u32 info_len, data_len;
2699 
2700 		info_linear = NULL;
2701 		info_node = NULL;
2702 		if (do_read_u32(ff, &info_len))
2703 			goto out;
2704 		if (do_read_u32(ff, &data_len))
2705 			goto out;
2706 
2707 		if (info_len > sizeof(struct bpf_prog_info)) {
2708 			pr_warning("detected invalid bpf_prog_info\n");
2709 			goto out;
2710 		}
2711 
2712 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713 				     data_len);
2714 		if (!info_linear)
2715 			goto out;
2716 		info_linear->info_len = sizeof(struct bpf_prog_info);
2717 		info_linear->data_len = data_len;
2718 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719 			goto out;
2720 		if (__do_read(ff, &info_linear->info, info_len))
2721 			goto out;
2722 		if (info_len < sizeof(struct bpf_prog_info))
2723 			memset(((void *)(&info_linear->info)) + info_len, 0,
2724 			       sizeof(struct bpf_prog_info) - info_len);
2725 
2726 		if (__do_read(ff, info_linear->data, data_len))
2727 			goto out;
2728 
2729 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2730 		if (!info_node)
2731 			goto out;
2732 
2733 		/* after reading from file, translate offset to address */
2734 		bpf_program__bpil_offs_to_addr(info_linear);
2735 		info_node->info_linear = info_linear;
2736 		perf_env__insert_bpf_prog_info(env, info_node);
2737 	}
2738 
2739 	up_write(&env->bpf_progs.lock);
2740 	return 0;
2741 out:
2742 	free(info_linear);
2743 	free(info_node);
2744 	up_write(&env->bpf_progs.lock);
2745 	return err;
2746 }
2747 #else // HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff __maybe_unused,void * data __maybe_unused)2748 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749 {
2750 	return 0;
2751 }
2752 #endif // HAVE_LIBBPF_SUPPORT
2753 
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)2754 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755 {
2756 	struct perf_env *env = &ff->ph->env;
2757 	struct btf_node *node = NULL;
2758 	u32 count, i;
2759 	int err = -1;
2760 
2761 	if (ff->ph->needs_swap) {
2762 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763 		return 0;
2764 	}
2765 
2766 	if (do_read_u32(ff, &count))
2767 		return -1;
2768 
2769 	down_write(&env->bpf_progs.lock);
2770 
2771 	for (i = 0; i < count; ++i) {
2772 		u32 id, data_size;
2773 
2774 		if (do_read_u32(ff, &id))
2775 			goto out;
2776 		if (do_read_u32(ff, &data_size))
2777 			goto out;
2778 
2779 		node = malloc(sizeof(struct btf_node) + data_size);
2780 		if (!node)
2781 			goto out;
2782 
2783 		node->id = id;
2784 		node->data_size = data_size;
2785 
2786 		if (__do_read(ff, node->data, data_size))
2787 			goto out;
2788 
2789 		perf_env__insert_btf(env, node);
2790 		node = NULL;
2791 	}
2792 
2793 	err = 0;
2794 out:
2795 	up_write(&env->bpf_progs.lock);
2796 	free(node);
2797 	return err;
2798 }
2799 
process_compressed(struct feat_fd * ff,void * data __maybe_unused)2800 static int process_compressed(struct feat_fd *ff,
2801 			      void *data __maybe_unused)
2802 {
2803 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804 		return -1;
2805 
2806 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807 		return -1;
2808 
2809 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810 		return -1;
2811 
2812 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813 		return -1;
2814 
2815 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816 		return -1;
2817 
2818 	return 0;
2819 }
2820 
2821 #define FEAT_OPR(n, func, __full_only) \
2822 	[HEADER_##n] = {					\
2823 		.name	    = __stringify(n),			\
2824 		.write	    = write_##func,			\
2825 		.print	    = print_##func,			\
2826 		.full_only  = __full_only,			\
2827 		.process    = process_##func,			\
2828 		.synthesize = true				\
2829 	}
2830 
2831 #define FEAT_OPN(n, func, __full_only) \
2832 	[HEADER_##n] = {					\
2833 		.name	    = __stringify(n),			\
2834 		.write	    = write_##func,			\
2835 		.print	    = print_##func,			\
2836 		.full_only  = __full_only,			\
2837 		.process    = process_##func			\
2838 	}
2839 
2840 /* feature_ops not implemented: */
2841 #define print_tracing_data	NULL
2842 #define print_build_id		NULL
2843 
2844 #define process_branch_stack	NULL
2845 #define process_stat		NULL
2846 
2847 // Only used in util/synthetic-events.c
2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849 
2850 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2852 	FEAT_OPN(BUILD_ID,	build_id,	false),
2853 	FEAT_OPR(HOSTNAME,	hostname,	false),
2854 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2855 	FEAT_OPR(VERSION,	version,	false),
2856 	FEAT_OPR(ARCH,		arch,		false),
2857 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2858 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2859 	FEAT_OPR(CPUID,		cpuid,		false),
2860 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2861 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2862 	FEAT_OPR(CMDLINE,	cmdline,	false),
2863 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2864 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2865 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2866 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2867 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2868 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2869 	FEAT_OPN(STAT,		stat,		false),
2870 	FEAT_OPN(CACHE,		cache,		true),
2871 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2872 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2873 	FEAT_OPR(CLOCKID,	clockid,	false),
2874 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2875 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2876 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2877 	FEAT_OPR(COMPRESSED,	compressed,	false),
2878 };
2879 
2880 struct header_print_data {
2881 	FILE *fp;
2882 	bool full; /* extended list of headers */
2883 };
2884 
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)2885 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886 					   struct perf_header *ph,
2887 					   int feat, int fd, void *data)
2888 {
2889 	struct header_print_data *hd = data;
2890 	struct feat_fd ff;
2891 
2892 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894 				"%d, continuing...\n", section->offset, feat);
2895 		return 0;
2896 	}
2897 	if (feat >= HEADER_LAST_FEATURE) {
2898 		pr_warning("unknown feature %d\n", feat);
2899 		return 0;
2900 	}
2901 	if (!feat_ops[feat].print)
2902 		return 0;
2903 
2904 	ff = (struct  feat_fd) {
2905 		.fd = fd,
2906 		.ph = ph,
2907 	};
2908 
2909 	if (!feat_ops[feat].full_only || hd->full)
2910 		feat_ops[feat].print(&ff, hd->fp);
2911 	else
2912 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2913 			feat_ops[feat].name);
2914 
2915 	return 0;
2916 }
2917 
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)2918 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919 {
2920 	struct header_print_data hd;
2921 	struct perf_header *header = &session->header;
2922 	int fd = perf_data__fd(session->data);
2923 	struct stat st;
2924 	time_t stctime;
2925 	int ret, bit;
2926 
2927 	hd.fp = fp;
2928 	hd.full = full;
2929 
2930 	ret = fstat(fd, &st);
2931 	if (ret == -1)
2932 		return -1;
2933 
2934 	stctime = st.st_ctime;
2935 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2936 
2937 	fprintf(fp, "# header version : %u\n", header->version);
2938 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2939 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2940 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2941 
2942 	perf_header__process_sections(header, fd, &hd,
2943 				      perf_file_section__fprintf_info);
2944 
2945 	if (session->data->is_pipe)
2946 		return 0;
2947 
2948 	fprintf(fp, "# missing features: ");
2949 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950 		if (bit)
2951 			fprintf(fp, "%s ", feat_ops[bit].name);
2952 	}
2953 
2954 	fprintf(fp, "\n");
2955 	return 0;
2956 }
2957 
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist)2958 static int do_write_feat(struct feat_fd *ff, int type,
2959 			 struct perf_file_section **p,
2960 			 struct evlist *evlist)
2961 {
2962 	int err;
2963 	int ret = 0;
2964 
2965 	if (perf_header__has_feat(ff->ph, type)) {
2966 		if (!feat_ops[type].write)
2967 			return -1;
2968 
2969 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970 			return -1;
2971 
2972 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973 
2974 		err = feat_ops[type].write(ff, evlist);
2975 		if (err < 0) {
2976 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977 
2978 			/* undo anything written */
2979 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2980 
2981 			return -1;
2982 		}
2983 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984 		(*p)++;
2985 	}
2986 	return ret;
2987 }
2988 
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd)2989 static int perf_header__adds_write(struct perf_header *header,
2990 				   struct evlist *evlist, int fd)
2991 {
2992 	int nr_sections;
2993 	struct feat_fd ff;
2994 	struct perf_file_section *feat_sec, *p;
2995 	int sec_size;
2996 	u64 sec_start;
2997 	int feat;
2998 	int err;
2999 
3000 	ff = (struct feat_fd){
3001 		.fd  = fd,
3002 		.ph = header,
3003 	};
3004 
3005 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006 	if (!nr_sections)
3007 		return 0;
3008 
3009 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010 	if (feat_sec == NULL)
3011 		return -ENOMEM;
3012 
3013 	sec_size = sizeof(*feat_sec) * nr_sections;
3014 
3015 	sec_start = header->feat_offset;
3016 	lseek(fd, sec_start + sec_size, SEEK_SET);
3017 
3018 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019 		if (do_write_feat(&ff, feat, &p, evlist))
3020 			perf_header__clear_feat(header, feat);
3021 	}
3022 
3023 	lseek(fd, sec_start, SEEK_SET);
3024 	/*
3025 	 * may write more than needed due to dropped feature, but
3026 	 * this is okay, reader will skip the missing entries
3027 	 */
3028 	err = do_write(&ff, feat_sec, sec_size);
3029 	if (err < 0)
3030 		pr_debug("failed to write feature section\n");
3031 	free(feat_sec);
3032 	return err;
3033 }
3034 
perf_header__write_pipe(int fd)3035 int perf_header__write_pipe(int fd)
3036 {
3037 	struct perf_pipe_file_header f_header;
3038 	struct feat_fd ff;
3039 	int err;
3040 
3041 	ff = (struct feat_fd){ .fd = fd };
3042 
3043 	f_header = (struct perf_pipe_file_header){
3044 		.magic	   = PERF_MAGIC,
3045 		.size	   = sizeof(f_header),
3046 	};
3047 
3048 	err = do_write(&ff, &f_header, sizeof(f_header));
3049 	if (err < 0) {
3050 		pr_debug("failed to write perf pipe header\n");
3051 		return err;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3057 int perf_session__write_header(struct perf_session *session,
3058 			       struct evlist *evlist,
3059 			       int fd, bool at_exit)
3060 {
3061 	struct perf_file_header f_header;
3062 	struct perf_file_attr   f_attr;
3063 	struct perf_header *header = &session->header;
3064 	struct evsel *evsel;
3065 	struct feat_fd ff;
3066 	u64 attr_offset;
3067 	int err;
3068 
3069 	ff = (struct feat_fd){ .fd = fd};
3070 	lseek(fd, sizeof(f_header), SEEK_SET);
3071 
3072 	evlist__for_each_entry(session->evlist, evsel) {
3073 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075 		if (err < 0) {
3076 			pr_debug("failed to write perf header\n");
3077 			return err;
3078 		}
3079 	}
3080 
3081 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082 
3083 	evlist__for_each_entry(evlist, evsel) {
3084 		f_attr = (struct perf_file_attr){
3085 			.attr = evsel->core.attr,
3086 			.ids  = {
3087 				.offset = evsel->id_offset,
3088 				.size   = evsel->core.ids * sizeof(u64),
3089 			}
3090 		};
3091 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3092 		if (err < 0) {
3093 			pr_debug("failed to write perf header attribute\n");
3094 			return err;
3095 		}
3096 	}
3097 
3098 	if (!header->data_offset)
3099 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3100 	header->feat_offset = header->data_offset + header->data_size;
3101 
3102 	if (at_exit) {
3103 		err = perf_header__adds_write(header, evlist, fd);
3104 		if (err < 0)
3105 			return err;
3106 	}
3107 
3108 	f_header = (struct perf_file_header){
3109 		.magic	   = PERF_MAGIC,
3110 		.size	   = sizeof(f_header),
3111 		.attr_size = sizeof(f_attr),
3112 		.attrs = {
3113 			.offset = attr_offset,
3114 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3115 		},
3116 		.data = {
3117 			.offset = header->data_offset,
3118 			.size	= header->data_size,
3119 		},
3120 		/* event_types is ignored, store zeros */
3121 	};
3122 
3123 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124 
3125 	lseek(fd, 0, SEEK_SET);
3126 	err = do_write(&ff, &f_header, sizeof(f_header));
3127 	if (err < 0) {
3128 		pr_debug("failed to write perf header\n");
3129 		return err;
3130 	}
3131 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132 
3133 	return 0;
3134 }
3135 
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3136 static int perf_header__getbuffer64(struct perf_header *header,
3137 				    int fd, void *buf, size_t size)
3138 {
3139 	if (readn(fd, buf, size) <= 0)
3140 		return -1;
3141 
3142 	if (header->needs_swap)
3143 		mem_bswap_64(buf, size);
3144 
3145 	return 0;
3146 }
3147 
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3148 int perf_header__process_sections(struct perf_header *header, int fd,
3149 				  void *data,
3150 				  int (*process)(struct perf_file_section *section,
3151 						 struct perf_header *ph,
3152 						 int feat, int fd, void *data))
3153 {
3154 	struct perf_file_section *feat_sec, *sec;
3155 	int nr_sections;
3156 	int sec_size;
3157 	int feat;
3158 	int err;
3159 
3160 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161 	if (!nr_sections)
3162 		return 0;
3163 
3164 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165 	if (!feat_sec)
3166 		return -1;
3167 
3168 	sec_size = sizeof(*feat_sec) * nr_sections;
3169 
3170 	lseek(fd, header->feat_offset, SEEK_SET);
3171 
3172 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173 	if (err < 0)
3174 		goto out_free;
3175 
3176 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177 		err = process(sec++, header, feat, fd, data);
3178 		if (err < 0)
3179 			goto out_free;
3180 	}
3181 	err = 0;
3182 out_free:
3183 	free(feat_sec);
3184 	return err;
3185 }
3186 
3187 static const int attr_file_abi_sizes[] = {
3188 	[0] = PERF_ATTR_SIZE_VER0,
3189 	[1] = PERF_ATTR_SIZE_VER1,
3190 	[2] = PERF_ATTR_SIZE_VER2,
3191 	[3] = PERF_ATTR_SIZE_VER3,
3192 	[4] = PERF_ATTR_SIZE_VER4,
3193 	0,
3194 };
3195 
3196 /*
3197  * In the legacy file format, the magic number is not used to encode endianness.
3198  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199  * on ABI revisions, we need to try all combinations for all endianness to
3200  * detect the endianness.
3201  */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3202 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203 {
3204 	uint64_t ref_size, attr_size;
3205 	int i;
3206 
3207 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208 		ref_size = attr_file_abi_sizes[i]
3209 			 + sizeof(struct perf_file_section);
3210 		if (hdr_sz != ref_size) {
3211 			attr_size = bswap_64(hdr_sz);
3212 			if (attr_size != ref_size)
3213 				continue;
3214 
3215 			ph->needs_swap = true;
3216 		}
3217 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218 			 i,
3219 			 ph->needs_swap);
3220 		return 0;
3221 	}
3222 	/* could not determine endianness */
3223 	return -1;
3224 }
3225 
3226 #define PERF_PIPE_HDR_VER0	16
3227 
3228 static const size_t attr_pipe_abi_sizes[] = {
3229 	[0] = PERF_PIPE_HDR_VER0,
3230 	0,
3231 };
3232 
3233 /*
3234  * In the legacy pipe format, there is an implicit assumption that endiannesss
3235  * between host recording the samples, and host parsing the samples is the
3236  * same. This is not always the case given that the pipe output may always be
3237  * redirected into a file and analyzed on a different machine with possibly a
3238  * different endianness and perf_event ABI revsions in the perf tool itself.
3239  */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3240 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241 {
3242 	u64 attr_size;
3243 	int i;
3244 
3245 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247 			attr_size = bswap_64(hdr_sz);
3248 			if (attr_size != hdr_sz)
3249 				continue;
3250 
3251 			ph->needs_swap = true;
3252 		}
3253 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254 		return 0;
3255 	}
3256 	return -1;
3257 }
3258 
is_perf_magic(u64 magic)3259 bool is_perf_magic(u64 magic)
3260 {
3261 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262 		|| magic == __perf_magic2
3263 		|| magic == __perf_magic2_sw)
3264 		return true;
3265 
3266 	return false;
3267 }
3268 
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3269 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270 			      bool is_pipe, struct perf_header *ph)
3271 {
3272 	int ret;
3273 
3274 	/* check for legacy format */
3275 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276 	if (ret == 0) {
3277 		ph->version = PERF_HEADER_VERSION_1;
3278 		pr_debug("legacy perf.data format\n");
3279 		if (is_pipe)
3280 			return try_all_pipe_abis(hdr_sz, ph);
3281 
3282 		return try_all_file_abis(hdr_sz, ph);
3283 	}
3284 	/*
3285 	 * the new magic number serves two purposes:
3286 	 * - unique number to identify actual perf.data files
3287 	 * - encode endianness of file
3288 	 */
3289 	ph->version = PERF_HEADER_VERSION_2;
3290 
3291 	/* check magic number with one endianness */
3292 	if (magic == __perf_magic2)
3293 		return 0;
3294 
3295 	/* check magic number with opposite endianness */
3296 	if (magic != __perf_magic2_sw)
3297 		return -1;
3298 
3299 	ph->needs_swap = true;
3300 
3301 	return 0;
3302 }
3303 
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3304 int perf_file_header__read(struct perf_file_header *header,
3305 			   struct perf_header *ph, int fd)
3306 {
3307 	ssize_t ret;
3308 
3309 	lseek(fd, 0, SEEK_SET);
3310 
3311 	ret = readn(fd, header, sizeof(*header));
3312 	if (ret <= 0)
3313 		return -1;
3314 
3315 	if (check_magic_endian(header->magic,
3316 			       header->attr_size, false, ph) < 0) {
3317 		pr_debug("magic/endian check failed\n");
3318 		return -1;
3319 	}
3320 
3321 	if (ph->needs_swap) {
3322 		mem_bswap_64(header, offsetof(struct perf_file_header,
3323 			     adds_features));
3324 	}
3325 
3326 	if (header->size != sizeof(*header)) {
3327 		/* Support the previous format */
3328 		if (header->size == offsetof(typeof(*header), adds_features))
3329 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330 		else
3331 			return -1;
3332 	} else if (ph->needs_swap) {
3333 		/*
3334 		 * feature bitmap is declared as an array of unsigned longs --
3335 		 * not good since its size can differ between the host that
3336 		 * generated the data file and the host analyzing the file.
3337 		 *
3338 		 * We need to handle endianness, but we don't know the size of
3339 		 * the unsigned long where the file was generated. Take a best
3340 		 * guess at determining it: try 64-bit swap first (ie., file
3341 		 * created on a 64-bit host), and check if the hostname feature
3342 		 * bit is set (this feature bit is forced on as of fbe96f2).
3343 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344 		 * swap. If the hostname bit is still not set (e.g., older data
3345 		 * file), punt and fallback to the original behavior --
3346 		 * clearing all feature bits and setting buildid.
3347 		 */
3348 		mem_bswap_64(&header->adds_features,
3349 			    BITS_TO_U64(HEADER_FEAT_BITS));
3350 
3351 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 			/* unswap as u64 */
3353 			mem_bswap_64(&header->adds_features,
3354 				    BITS_TO_U64(HEADER_FEAT_BITS));
3355 
3356 			/* unswap as u32 */
3357 			mem_bswap_32(&header->adds_features,
3358 				    BITS_TO_U32(HEADER_FEAT_BITS));
3359 		}
3360 
3361 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363 			set_bit(HEADER_BUILD_ID, header->adds_features);
3364 		}
3365 	}
3366 
3367 	memcpy(&ph->adds_features, &header->adds_features,
3368 	       sizeof(ph->adds_features));
3369 
3370 	ph->data_offset  = header->data.offset;
3371 	ph->data_size	 = header->data.size;
3372 	ph->feat_offset  = header->data.offset + header->data.size;
3373 	return 0;
3374 }
3375 
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3376 static int perf_file_section__process(struct perf_file_section *section,
3377 				      struct perf_header *ph,
3378 				      int feat, int fd, void *data)
3379 {
3380 	struct feat_fd fdd = {
3381 		.fd	= fd,
3382 		.ph	= ph,
3383 		.size	= section->size,
3384 		.offset	= section->offset,
3385 	};
3386 
3387 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389 			  "%d, continuing...\n", section->offset, feat);
3390 		return 0;
3391 	}
3392 
3393 	if (feat >= HEADER_LAST_FEATURE) {
3394 		pr_debug("unknown feature %d, continuing...\n", feat);
3395 		return 0;
3396 	}
3397 
3398 	if (!feat_ops[feat].process)
3399 		return 0;
3400 
3401 	return feat_ops[feat].process(&fdd, data);
3402 }
3403 
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,int fd,bool repipe)3404 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405 				       struct perf_header *ph, int fd,
3406 				       bool repipe)
3407 {
3408 	struct feat_fd ff = {
3409 		.fd = STDOUT_FILENO,
3410 		.ph = ph,
3411 	};
3412 	ssize_t ret;
3413 
3414 	ret = readn(fd, header, sizeof(*header));
3415 	if (ret <= 0)
3416 		return -1;
3417 
3418 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419 		pr_debug("endian/magic failed\n");
3420 		return -1;
3421 	}
3422 
3423 	if (ph->needs_swap)
3424 		header->size = bswap_64(header->size);
3425 
3426 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427 		return -1;
3428 
3429 	return 0;
3430 }
3431 
perf_header__read_pipe(struct perf_session * session)3432 static int perf_header__read_pipe(struct perf_session *session)
3433 {
3434 	struct perf_header *header = &session->header;
3435 	struct perf_pipe_file_header f_header;
3436 
3437 	if (perf_file_header__read_pipe(&f_header, header,
3438 					perf_data__fd(session->data),
3439 					session->repipe) < 0) {
3440 		pr_debug("incompatible file format\n");
3441 		return -EINVAL;
3442 	}
3443 
3444 	return 0;
3445 }
3446 
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)3447 static int read_attr(int fd, struct perf_header *ph,
3448 		     struct perf_file_attr *f_attr)
3449 {
3450 	struct perf_event_attr *attr = &f_attr->attr;
3451 	size_t sz, left;
3452 	size_t our_sz = sizeof(f_attr->attr);
3453 	ssize_t ret;
3454 
3455 	memset(f_attr, 0, sizeof(*f_attr));
3456 
3457 	/* read minimal guaranteed structure */
3458 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459 	if (ret <= 0) {
3460 		pr_debug("cannot read %d bytes of header attr\n",
3461 			 PERF_ATTR_SIZE_VER0);
3462 		return -1;
3463 	}
3464 
3465 	/* on file perf_event_attr size */
3466 	sz = attr->size;
3467 
3468 	if (ph->needs_swap)
3469 		sz = bswap_32(sz);
3470 
3471 	if (sz == 0) {
3472 		/* assume ABI0 */
3473 		sz =  PERF_ATTR_SIZE_VER0;
3474 	} else if (sz > our_sz) {
3475 		pr_debug("file uses a more recent and unsupported ABI"
3476 			 " (%zu bytes extra)\n", sz - our_sz);
3477 		return -1;
3478 	}
3479 	/* what we have not yet read and that we know about */
3480 	left = sz - PERF_ATTR_SIZE_VER0;
3481 	if (left) {
3482 		void *ptr = attr;
3483 		ptr += PERF_ATTR_SIZE_VER0;
3484 
3485 		ret = readn(fd, ptr, left);
3486 	}
3487 	/* read perf_file_section, ids are read in caller */
3488 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489 
3490 	return ret <= 0 ? -1 : 0;
3491 }
3492 
perf_evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)3493 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494 						struct tep_handle *pevent)
3495 {
3496 	struct tep_event *event;
3497 	char bf[128];
3498 
3499 	/* already prepared */
3500 	if (evsel->tp_format)
3501 		return 0;
3502 
3503 	if (pevent == NULL) {
3504 		pr_debug("broken or missing trace data\n");
3505 		return -1;
3506 	}
3507 
3508 	event = tep_find_event(pevent, evsel->core.attr.config);
3509 	if (event == NULL) {
3510 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511 		return -1;
3512 	}
3513 
3514 	if (!evsel->name) {
3515 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516 		evsel->name = strdup(bf);
3517 		if (evsel->name == NULL)
3518 			return -1;
3519 	}
3520 
3521 	evsel->tp_format = event;
3522 	return 0;
3523 }
3524 
perf_evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)3525 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526 						  struct tep_handle *pevent)
3527 {
3528 	struct evsel *pos;
3529 
3530 	evlist__for_each_entry(evlist, pos) {
3531 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3533 			return -1;
3534 	}
3535 
3536 	return 0;
3537 }
3538 
perf_session__read_header(struct perf_session * session)3539 int perf_session__read_header(struct perf_session *session)
3540 {
3541 	struct perf_data *data = session->data;
3542 	struct perf_header *header = &session->header;
3543 	struct perf_file_header	f_header;
3544 	struct perf_file_attr	f_attr;
3545 	u64			f_id;
3546 	int nr_attrs, nr_ids, i, j;
3547 	int fd = perf_data__fd(data);
3548 
3549 	session->evlist = evlist__new();
3550 	if (session->evlist == NULL)
3551 		return -ENOMEM;
3552 
3553 	session->evlist->env = &header->env;
3554 	session->machines.host.env = &header->env;
3555 	if (perf_data__is_pipe(data))
3556 		return perf_header__read_pipe(session);
3557 
3558 	if (perf_file_header__read(&f_header, header, fd) < 0)
3559 		return -EINVAL;
3560 
3561 	/*
3562 	 * Sanity check that perf.data was written cleanly; data size is
3563 	 * initialized to 0 and updated only if the on_exit function is run.
3564 	 * If data size is still 0 then the file contains only partial
3565 	 * information.  Just warn user and process it as much as it can.
3566 	 */
3567 	if (f_header.data.size == 0) {
3568 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569 			   "Was the 'perf record' command properly terminated?\n",
3570 			   data->file.path);
3571 	}
3572 
3573 	if (f_header.attr_size == 0) {
3574 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575 		       "Was the 'perf record' command properly terminated?\n",
3576 		       data->file.path);
3577 		return -EINVAL;
3578 	}
3579 
3580 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3581 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3582 
3583 	for (i = 0; i < nr_attrs; i++) {
3584 		struct evsel *evsel;
3585 		off_t tmp;
3586 
3587 		if (read_attr(fd, header, &f_attr) < 0)
3588 			goto out_errno;
3589 
3590 		if (header->needs_swap) {
3591 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3592 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593 			perf_event__attr_swap(&f_attr.attr);
3594 		}
3595 
3596 		tmp = lseek(fd, 0, SEEK_CUR);
3597 		evsel = evsel__new(&f_attr.attr);
3598 
3599 		if (evsel == NULL)
3600 			goto out_delete_evlist;
3601 
3602 		evsel->needs_swap = header->needs_swap;
3603 		/*
3604 		 * Do it before so that if perf_evsel__alloc_id fails, this
3605 		 * entry gets purged too at evlist__delete().
3606 		 */
3607 		evlist__add(session->evlist, evsel);
3608 
3609 		nr_ids = f_attr.ids.size / sizeof(u64);
3610 		/*
3611 		 * We don't have the cpu and thread maps on the header, so
3612 		 * for allocating the perf_sample_id table we fake 1 cpu and
3613 		 * hattr->ids threads.
3614 		 */
3615 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616 			goto out_delete_evlist;
3617 
3618 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3619 
3620 		for (j = 0; j < nr_ids; j++) {
3621 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622 				goto out_errno;
3623 
3624 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625 		}
3626 
3627 		lseek(fd, tmp, SEEK_SET);
3628 	}
3629 
3630 	perf_header__process_sections(header, fd, &session->tevent,
3631 				      perf_file_section__process);
3632 
3633 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634 						   session->tevent.pevent))
3635 		goto out_delete_evlist;
3636 
3637 	return 0;
3638 out_errno:
3639 	return -errno;
3640 
3641 out_delete_evlist:
3642 	evlist__delete(session->evlist);
3643 	session->evlist = NULL;
3644 	return -ENOMEM;
3645 }
3646 
perf_event__process_feature(struct perf_session * session,union perf_event * event)3647 int perf_event__process_feature(struct perf_session *session,
3648 				union perf_event *event)
3649 {
3650 	struct perf_tool *tool = session->tool;
3651 	struct feat_fd ff = { .fd = 0 };
3652 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653 	int type = fe->header.type;
3654 	u64 feat = fe->feat_id;
3655 
3656 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657 		pr_warning("invalid record type %d in pipe-mode\n", type);
3658 		return 0;
3659 	}
3660 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661 		pr_warning("invalid record type %d in pipe-mode\n", type);
3662 		return -1;
3663 	}
3664 
3665 	if (!feat_ops[feat].process)
3666 		return 0;
3667 
3668 	ff.buf  = (void *)fe->data;
3669 	ff.size = event->header.size - sizeof(*fe);
3670 	ff.ph = &session->header;
3671 
3672 	if (feat_ops[feat].process(&ff, NULL))
3673 		return -1;
3674 
3675 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676 		return 0;
3677 
3678 	if (!feat_ops[feat].full_only ||
3679 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680 		feat_ops[feat].print(&ff, stdout);
3681 	} else {
3682 		fprintf(stdout, "# %s info available, use -I to display\n",
3683 			feat_ops[feat].name);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)3689 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690 {
3691 	struct perf_record_event_update *ev = &event->event_update;
3692 	struct perf_record_event_update_scale *ev_scale;
3693 	struct perf_record_event_update_cpus *ev_cpus;
3694 	struct perf_cpu_map *map;
3695 	size_t ret;
3696 
3697 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3698 
3699 	switch (ev->type) {
3700 	case PERF_EVENT_UPDATE__SCALE:
3701 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703 		break;
3704 	case PERF_EVENT_UPDATE__UNIT:
3705 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3706 		break;
3707 	case PERF_EVENT_UPDATE__NAME:
3708 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3709 		break;
3710 	case PERF_EVENT_UPDATE__CPUS:
3711 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712 		ret += fprintf(fp, "... ");
3713 
3714 		map = cpu_map__new_data(&ev_cpus->cpus);
3715 		if (map)
3716 			ret += cpu_map__fprintf(map, fp);
3717 		else
3718 			ret += fprintf(fp, "failed to get cpus\n");
3719 		break;
3720 	default:
3721 		ret += fprintf(fp, "... unknown type\n");
3722 		break;
3723 	}
3724 
3725 	return ret;
3726 }
3727 
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3728 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729 			     union perf_event *event,
3730 			     struct evlist **pevlist)
3731 {
3732 	u32 i, ids, n_ids;
3733 	struct evsel *evsel;
3734 	struct evlist *evlist = *pevlist;
3735 
3736 	if (evlist == NULL) {
3737 		*pevlist = evlist = evlist__new();
3738 		if (evlist == NULL)
3739 			return -ENOMEM;
3740 	}
3741 
3742 	evsel = evsel__new(&event->attr.attr);
3743 	if (evsel == NULL)
3744 		return -ENOMEM;
3745 
3746 	evlist__add(evlist, evsel);
3747 
3748 	ids = event->header.size;
3749 	ids -= (void *)&event->attr.id - (void *)event;
3750 	n_ids = ids / sizeof(u64);
3751 	/*
3752 	 * We don't have the cpu and thread maps on the header, so
3753 	 * for allocating the perf_sample_id table we fake 1 cpu and
3754 	 * hattr->ids threads.
3755 	 */
3756 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757 		return -ENOMEM;
3758 
3759 	for (i = 0; i < n_ids; i++) {
3760 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761 	}
3762 
3763 	return 0;
3764 }
3765 
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)3766 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767 				     union perf_event *event,
3768 				     struct evlist **pevlist)
3769 {
3770 	struct perf_record_event_update *ev = &event->event_update;
3771 	struct perf_record_event_update_scale *ev_scale;
3772 	struct perf_record_event_update_cpus *ev_cpus;
3773 	struct evlist *evlist;
3774 	struct evsel *evsel;
3775 	struct perf_cpu_map *map;
3776 
3777 	if (!pevlist || *pevlist == NULL)
3778 		return -EINVAL;
3779 
3780 	evlist = *pevlist;
3781 
3782 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3783 	if (evsel == NULL)
3784 		return -EINVAL;
3785 
3786 	switch (ev->type) {
3787 	case PERF_EVENT_UPDATE__UNIT:
3788 		evsel->unit = strdup(ev->data);
3789 		break;
3790 	case PERF_EVENT_UPDATE__NAME:
3791 		evsel->name = strdup(ev->data);
3792 		break;
3793 	case PERF_EVENT_UPDATE__SCALE:
3794 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795 		evsel->scale = ev_scale->scale;
3796 		break;
3797 	case PERF_EVENT_UPDATE__CPUS:
3798 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799 
3800 		map = cpu_map__new_data(&ev_cpus->cpus);
3801 		if (map)
3802 			evsel->core.own_cpus = map;
3803 		else
3804 			pr_err("failed to get event_update cpus\n");
3805 	default:
3806 		break;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)3812 int perf_event__process_tracing_data(struct perf_session *session,
3813 				     union perf_event *event)
3814 {
3815 	ssize_t size_read, padding, size = event->tracing_data.size;
3816 	int fd = perf_data__fd(session->data);
3817 	off_t offset = lseek(fd, 0, SEEK_CUR);
3818 	char buf[BUFSIZ];
3819 
3820 	/* setup for reading amidst mmap */
3821 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822 	      SEEK_SET);
3823 
3824 	size_read = trace_report(fd, &session->tevent,
3825 				 session->repipe);
3826 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827 
3828 	if (readn(fd, buf, padding) < 0) {
3829 		pr_err("%s: reading input file", __func__);
3830 		return -1;
3831 	}
3832 	if (session->repipe) {
3833 		int retw = write(STDOUT_FILENO, buf, padding);
3834 		if (retw <= 0 || retw != padding) {
3835 			pr_err("%s: repiping tracing data padding", __func__);
3836 			return -1;
3837 		}
3838 	}
3839 
3840 	if (size_read + padding != size) {
3841 		pr_err("%s: tracing data size mismatch", __func__);
3842 		return -1;
3843 	}
3844 
3845 	perf_evlist__prepare_tracepoint_events(session->evlist,
3846 					       session->tevent.pevent);
3847 
3848 	return size_read + padding;
3849 }
3850 
perf_event__process_build_id(struct perf_session * session,union perf_event * event)3851 int perf_event__process_build_id(struct perf_session *session,
3852 				 union perf_event *event)
3853 {
3854 	__event_process_build_id(&event->build_id,
3855 				 event->build_id.filename,
3856 				 session);
3857 	return 0;
3858 }
3859