1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34 };
35
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <asm/local.h>
60
61 struct perf_callchain_entry {
62 __u64 nr;
63 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
64 };
65
66 struct perf_callchain_entry_ctx {
67 struct perf_callchain_entry *entry;
68 u32 max_stack;
69 u32 nr;
70 short contexts;
71 bool contexts_maxed;
72 };
73
74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
75 unsigned long off, unsigned long len);
76
77 struct perf_raw_frag {
78 union {
79 struct perf_raw_frag *next;
80 unsigned long pad;
81 };
82 perf_copy_f copy;
83 void *data;
84 u32 size;
85 } __packed;
86
87 struct perf_raw_record {
88 struct perf_raw_frag frag;
89 u32 size;
90 };
91
92 /*
93 * branch stack layout:
94 * nr: number of taken branches stored in entries[]
95 *
96 * Note that nr can vary from sample to sample
97 * branches (to, from) are stored from most recent
98 * to least recent, i.e., entries[0] contains the most
99 * recent branch.
100 */
101 struct perf_branch_stack {
102 __u64 nr;
103 struct perf_branch_entry entries[0];
104 };
105
106 struct task_struct;
107
108 /*
109 * extra PMU register associated with an event
110 */
111 struct hw_perf_event_extra {
112 u64 config; /* register value */
113 unsigned int reg; /* register address or index */
114 int alloc; /* extra register already allocated */
115 int idx; /* index in shared_regs->regs[] */
116 };
117
118 /**
119 * struct hw_perf_event - performance event hardware details:
120 */
121 struct hw_perf_event {
122 #ifdef CONFIG_PERF_EVENTS
123 union {
124 struct { /* hardware */
125 u64 config;
126 u64 last_tag;
127 unsigned long config_base;
128 unsigned long event_base;
129 int event_base_rdpmc;
130 int idx;
131 int last_cpu;
132 int flags;
133
134 struct hw_perf_event_extra extra_reg;
135 struct hw_perf_event_extra branch_reg;
136 };
137 struct { /* software */
138 struct hrtimer hrtimer;
139 };
140 struct { /* tracepoint */
141 /* for tp_event->class */
142 struct list_head tp_list;
143 };
144 struct { /* amd_power */
145 u64 pwr_acc;
146 u64 ptsc;
147 };
148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
149 struct { /* breakpoint */
150 /*
151 * Crufty hack to avoid the chicken and egg
152 * problem hw_breakpoint has with context
153 * creation and event initalization.
154 */
155 struct arch_hw_breakpoint info;
156 struct list_head bp_list;
157 };
158 #endif
159 struct { /* amd_iommu */
160 u8 iommu_bank;
161 u8 iommu_cntr;
162 u16 padding;
163 u64 conf;
164 u64 conf1;
165 };
166 };
167 /*
168 * If the event is a per task event, this will point to the task in
169 * question. See the comment in perf_event_alloc().
170 */
171 struct task_struct *target;
172
173 /*
174 * PMU would store hardware filter configuration
175 * here.
176 */
177 void *addr_filters;
178
179 /* Last sync'ed generation of filters */
180 unsigned long addr_filters_gen;
181
182 /*
183 * hw_perf_event::state flags; used to track the PERF_EF_* state.
184 */
185 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
186 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
187 #define PERF_HES_ARCH 0x04
188
189 int state;
190
191 /*
192 * The last observed hardware counter value, updated with a
193 * local64_cmpxchg() such that pmu::read() can be called nested.
194 */
195 local64_t prev_count;
196
197 /*
198 * The period to start the next sample with.
199 */
200 u64 sample_period;
201
202 /*
203 * The period we started this sample with.
204 */
205 u64 last_period;
206
207 /*
208 * However much is left of the current period; note that this is
209 * a full 64bit value and allows for generation of periods longer
210 * than hardware might allow.
211 */
212 local64_t period_left;
213
214 /*
215 * State for throttling the event, see __perf_event_overflow() and
216 * perf_adjust_freq_unthr_context().
217 */
218 u64 interrupts_seq;
219 u64 interrupts;
220
221 /*
222 * State for freq target events, see __perf_event_overflow() and
223 * perf_adjust_freq_unthr_context().
224 */
225 u64 freq_time_stamp;
226 u64 freq_count_stamp;
227 #endif
228 };
229
230 struct perf_event;
231
232 /*
233 * Common implementation detail of pmu::{start,commit,cancel}_txn
234 */
235 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
236 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
237
238 /**
239 * pmu::capabilities flags
240 */
241 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
242 #define PERF_PMU_CAP_NO_NMI 0x02
243 #define PERF_PMU_CAP_AUX_NO_SG 0x04
244 #define PERF_PMU_CAP_EXTENDED_REGS 0x08
245 #define PERF_PMU_CAP_EXCLUSIVE 0x10
246 #define PERF_PMU_CAP_ITRACE 0x20
247 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
248 #define PERF_PMU_CAP_NO_EXCLUDE 0x80
249 #define PERF_PMU_CAP_AUX_OUTPUT 0x100
250
251 /**
252 * struct pmu - generic performance monitoring unit
253 */
254 struct pmu {
255 struct list_head entry;
256
257 struct module *module;
258 struct device *dev;
259 const struct attribute_group **attr_groups;
260 const struct attribute_group **attr_update;
261 const char *name;
262 int type;
263
264 /*
265 * various common per-pmu feature flags
266 */
267 int capabilities;
268
269 int __percpu *pmu_disable_count;
270 struct perf_cpu_context __percpu *pmu_cpu_context;
271 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
272 int task_ctx_nr;
273 int hrtimer_interval_ms;
274
275 /* number of address filters this PMU can do */
276 unsigned int nr_addr_filters;
277
278 /*
279 * Fully disable/enable this PMU, can be used to protect from the PMI
280 * as well as for lazy/batch writing of the MSRs.
281 */
282 void (*pmu_enable) (struct pmu *pmu); /* optional */
283 void (*pmu_disable) (struct pmu *pmu); /* optional */
284
285 /*
286 * Try and initialize the event for this PMU.
287 *
288 * Returns:
289 * -ENOENT -- @event is not for this PMU
290 *
291 * -ENODEV -- @event is for this PMU but PMU not present
292 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
293 * -EINVAL -- @event is for this PMU but @event is not valid
294 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
295 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
296 *
297 * 0 -- @event is for this PMU and valid
298 *
299 * Other error return values are allowed.
300 */
301 int (*event_init) (struct perf_event *event);
302
303 /*
304 * Notification that the event was mapped or unmapped. Called
305 * in the context of the mapping task.
306 */
307 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
308 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
309
310 /*
311 * Flags for ->add()/->del()/ ->start()/->stop(). There are
312 * matching hw_perf_event::state flags.
313 */
314 #define PERF_EF_START 0x01 /* start the counter when adding */
315 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
316 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
317
318 /*
319 * Adds/Removes a counter to/from the PMU, can be done inside a
320 * transaction, see the ->*_txn() methods.
321 *
322 * The add/del callbacks will reserve all hardware resources required
323 * to service the event, this includes any counter constraint
324 * scheduling etc.
325 *
326 * Called with IRQs disabled and the PMU disabled on the CPU the event
327 * is on.
328 *
329 * ->add() called without PERF_EF_START should result in the same state
330 * as ->add() followed by ->stop().
331 *
332 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
333 * ->stop() that must deal with already being stopped without
334 * PERF_EF_UPDATE.
335 */
336 int (*add) (struct perf_event *event, int flags);
337 void (*del) (struct perf_event *event, int flags);
338
339 /*
340 * Starts/Stops a counter present on the PMU.
341 *
342 * The PMI handler should stop the counter when perf_event_overflow()
343 * returns !0. ->start() will be used to continue.
344 *
345 * Also used to change the sample period.
346 *
347 * Called with IRQs disabled and the PMU disabled on the CPU the event
348 * is on -- will be called from NMI context with the PMU generates
349 * NMIs.
350 *
351 * ->stop() with PERF_EF_UPDATE will read the counter and update
352 * period/count values like ->read() would.
353 *
354 * ->start() with PERF_EF_RELOAD will reprogram the the counter
355 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
356 */
357 void (*start) (struct perf_event *event, int flags);
358 void (*stop) (struct perf_event *event, int flags);
359
360 /*
361 * Updates the counter value of the event.
362 *
363 * For sampling capable PMUs this will also update the software period
364 * hw_perf_event::period_left field.
365 */
366 void (*read) (struct perf_event *event);
367
368 /*
369 * Group events scheduling is treated as a transaction, add
370 * group events as a whole and perform one schedulability test.
371 * If the test fails, roll back the whole group
372 *
373 * Start the transaction, after this ->add() doesn't need to
374 * do schedulability tests.
375 *
376 * Optional.
377 */
378 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
379 /*
380 * If ->start_txn() disabled the ->add() schedulability test
381 * then ->commit_txn() is required to perform one. On success
382 * the transaction is closed. On error the transaction is kept
383 * open until ->cancel_txn() is called.
384 *
385 * Optional.
386 */
387 int (*commit_txn) (struct pmu *pmu);
388 /*
389 * Will cancel the transaction, assumes ->del() is called
390 * for each successful ->add() during the transaction.
391 *
392 * Optional.
393 */
394 void (*cancel_txn) (struct pmu *pmu);
395
396 /*
397 * Will return the value for perf_event_mmap_page::index for this event,
398 * if no implementation is provided it will default to: event->hw.idx + 1.
399 */
400 int (*event_idx) (struct perf_event *event); /*optional */
401
402 /*
403 * context-switches callback
404 */
405 void (*sched_task) (struct perf_event_context *ctx,
406 bool sched_in);
407 /*
408 * PMU specific data size
409 */
410 size_t task_ctx_size;
411
412
413 /*
414 * Set up pmu-private data structures for an AUX area
415 */
416 void *(*setup_aux) (struct perf_event *event, void **pages,
417 int nr_pages, bool overwrite);
418 /* optional */
419
420 /*
421 * Free pmu-private AUX data structures
422 */
423 void (*free_aux) (void *aux); /* optional */
424
425 /*
426 * Validate address range filters: make sure the HW supports the
427 * requested configuration and number of filters; return 0 if the
428 * supplied filters are valid, -errno otherwise.
429 *
430 * Runs in the context of the ioctl()ing process and is not serialized
431 * with the rest of the PMU callbacks.
432 */
433 int (*addr_filters_validate) (struct list_head *filters);
434 /* optional */
435
436 /*
437 * Synchronize address range filter configuration:
438 * translate hw-agnostic filters into hardware configuration in
439 * event::hw::addr_filters.
440 *
441 * Runs as a part of filter sync sequence that is done in ->start()
442 * callback by calling perf_event_addr_filters_sync().
443 *
444 * May (and should) traverse event::addr_filters::list, for which its
445 * caller provides necessary serialization.
446 */
447 void (*addr_filters_sync) (struct perf_event *event);
448 /* optional */
449
450 /*
451 * Check if event can be used for aux_output purposes for
452 * events of this PMU.
453 *
454 * Runs from perf_event_open(). Should return 0 for "no match"
455 * or non-zero for "match".
456 */
457 int (*aux_output_match) (struct perf_event *event);
458 /* optional */
459
460 /*
461 * Filter events for PMU-specific reasons.
462 */
463 int (*filter_match) (struct perf_event *event); /* optional */
464
465 /*
466 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
467 */
468 int (*check_period) (struct perf_event *event, u64 value); /* optional */
469 };
470
471 enum perf_addr_filter_action_t {
472 PERF_ADDR_FILTER_ACTION_STOP = 0,
473 PERF_ADDR_FILTER_ACTION_START,
474 PERF_ADDR_FILTER_ACTION_FILTER,
475 };
476
477 /**
478 * struct perf_addr_filter - address range filter definition
479 * @entry: event's filter list linkage
480 * @path: object file's path for file-based filters
481 * @offset: filter range offset
482 * @size: filter range size (size==0 means single address trigger)
483 * @action: filter/start/stop
484 *
485 * This is a hardware-agnostic filter configuration as specified by the user.
486 */
487 struct perf_addr_filter {
488 struct list_head entry;
489 struct path path;
490 unsigned long offset;
491 unsigned long size;
492 enum perf_addr_filter_action_t action;
493 };
494
495 /**
496 * struct perf_addr_filters_head - container for address range filters
497 * @list: list of filters for this event
498 * @lock: spinlock that serializes accesses to the @list and event's
499 * (and its children's) filter generations.
500 * @nr_file_filters: number of file-based filters
501 *
502 * A child event will use parent's @list (and therefore @lock), so they are
503 * bundled together; see perf_event_addr_filters().
504 */
505 struct perf_addr_filters_head {
506 struct list_head list;
507 raw_spinlock_t lock;
508 unsigned int nr_file_filters;
509 };
510
511 struct perf_addr_filter_range {
512 unsigned long start;
513 unsigned long size;
514 };
515
516 /**
517 * enum perf_event_state - the states of an event:
518 */
519 enum perf_event_state {
520 PERF_EVENT_STATE_DEAD = -4,
521 PERF_EVENT_STATE_EXIT = -3,
522 PERF_EVENT_STATE_ERROR = -2,
523 PERF_EVENT_STATE_OFF = -1,
524 PERF_EVENT_STATE_INACTIVE = 0,
525 PERF_EVENT_STATE_ACTIVE = 1,
526 };
527
528 struct file;
529 struct perf_sample_data;
530
531 typedef void (*perf_overflow_handler_t)(struct perf_event *,
532 struct perf_sample_data *,
533 struct pt_regs *regs);
534
535 /*
536 * Event capabilities. For event_caps and groups caps.
537 *
538 * PERF_EV_CAP_SOFTWARE: Is a software event.
539 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
540 * from any CPU in the package where it is active.
541 */
542 #define PERF_EV_CAP_SOFTWARE BIT(0)
543 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
544
545 #define SWEVENT_HLIST_BITS 8
546 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
547
548 struct swevent_hlist {
549 struct hlist_head heads[SWEVENT_HLIST_SIZE];
550 struct rcu_head rcu_head;
551 };
552
553 #define PERF_ATTACH_CONTEXT 0x01
554 #define PERF_ATTACH_GROUP 0x02
555 #define PERF_ATTACH_TASK 0x04
556 #define PERF_ATTACH_TASK_DATA 0x08
557 #define PERF_ATTACH_ITRACE 0x10
558
559 struct perf_cgroup;
560 struct ring_buffer;
561
562 struct pmu_event_list {
563 raw_spinlock_t lock;
564 struct list_head list;
565 };
566
567 #define for_each_sibling_event(sibling, event) \
568 if ((event)->group_leader == (event)) \
569 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
570
571 /**
572 * struct perf_event - performance event kernel representation:
573 */
574 struct perf_event {
575 #ifdef CONFIG_PERF_EVENTS
576 /*
577 * entry onto perf_event_context::event_list;
578 * modifications require ctx->lock
579 * RCU safe iterations.
580 */
581 struct list_head event_entry;
582
583 /*
584 * Locked for modification by both ctx->mutex and ctx->lock; holding
585 * either sufficies for read.
586 */
587 struct list_head sibling_list;
588 struct list_head active_list;
589 /*
590 * Node on the pinned or flexible tree located at the event context;
591 */
592 struct rb_node group_node;
593 u64 group_index;
594 /*
595 * We need storage to track the entries in perf_pmu_migrate_context; we
596 * cannot use the event_entry because of RCU and we want to keep the
597 * group in tact which avoids us using the other two entries.
598 */
599 struct list_head migrate_entry;
600
601 struct hlist_node hlist_entry;
602 struct list_head active_entry;
603 int nr_siblings;
604
605 /* Not serialized. Only written during event initialization. */
606 int event_caps;
607 /* The cumulative AND of all event_caps for events in this group. */
608 int group_caps;
609
610 struct perf_event *group_leader;
611 struct pmu *pmu;
612 void *pmu_private;
613
614 enum perf_event_state state;
615 unsigned int attach_state;
616 local64_t count;
617 atomic64_t child_count;
618
619 /*
620 * These are the total time in nanoseconds that the event
621 * has been enabled (i.e. eligible to run, and the task has
622 * been scheduled in, if this is a per-task event)
623 * and running (scheduled onto the CPU), respectively.
624 */
625 u64 total_time_enabled;
626 u64 total_time_running;
627 u64 tstamp;
628
629 /*
630 * timestamp shadows the actual context timing but it can
631 * be safely used in NMI interrupt context. It reflects the
632 * context time as it was when the event was last scheduled in.
633 *
634 * ctx_time already accounts for ctx->timestamp. Therefore to
635 * compute ctx_time for a sample, simply add perf_clock().
636 */
637 u64 shadow_ctx_time;
638
639 struct perf_event_attr attr;
640 u16 header_size;
641 u16 id_header_size;
642 u16 read_size;
643 struct hw_perf_event hw;
644
645 struct perf_event_context *ctx;
646 atomic_long_t refcount;
647
648 /*
649 * These accumulate total time (in nanoseconds) that children
650 * events have been enabled and running, respectively.
651 */
652 atomic64_t child_total_time_enabled;
653 atomic64_t child_total_time_running;
654
655 /*
656 * Protect attach/detach and child_list:
657 */
658 struct mutex child_mutex;
659 struct list_head child_list;
660 struct perf_event *parent;
661
662 int oncpu;
663 int cpu;
664
665 struct list_head owner_entry;
666 struct task_struct *owner;
667
668 /* mmap bits */
669 struct mutex mmap_mutex;
670 atomic_t mmap_count;
671
672 struct ring_buffer *rb;
673 struct list_head rb_entry;
674 unsigned long rcu_batches;
675 int rcu_pending;
676
677 /* poll related */
678 wait_queue_head_t waitq;
679 struct fasync_struct *fasync;
680
681 /* delayed work for NMIs and such */
682 int pending_wakeup;
683 int pending_kill;
684 int pending_disable;
685 struct irq_work pending;
686
687 atomic_t event_limit;
688
689 /* address range filters */
690 struct perf_addr_filters_head addr_filters;
691 /* vma address array for file-based filders */
692 struct perf_addr_filter_range *addr_filter_ranges;
693 unsigned long addr_filters_gen;
694
695 /* for aux_output events */
696 struct perf_event *aux_event;
697
698 void (*destroy)(struct perf_event *);
699 struct rcu_head rcu_head;
700
701 struct pid_namespace *ns;
702 u64 id;
703
704 u64 (*clock)(void);
705 perf_overflow_handler_t overflow_handler;
706 void *overflow_handler_context;
707 #ifdef CONFIG_BPF_SYSCALL
708 perf_overflow_handler_t orig_overflow_handler;
709 struct bpf_prog *prog;
710 #endif
711
712 #ifdef CONFIG_EVENT_TRACING
713 struct trace_event_call *tp_event;
714 struct event_filter *filter;
715 #ifdef CONFIG_FUNCTION_TRACER
716 struct ftrace_ops ftrace_ops;
717 #endif
718 #endif
719
720 #ifdef CONFIG_CGROUP_PERF
721 struct perf_cgroup *cgrp; /* cgroup event is attach to */
722 #endif
723
724 struct list_head sb_list;
725 #endif /* CONFIG_PERF_EVENTS */
726 };
727
728
729 struct perf_event_groups {
730 struct rb_root tree;
731 u64 index;
732 };
733
734 /**
735 * struct perf_event_context - event context structure
736 *
737 * Used as a container for task events and CPU events as well:
738 */
739 struct perf_event_context {
740 struct pmu *pmu;
741 /*
742 * Protect the states of the events in the list,
743 * nr_active, and the list:
744 */
745 raw_spinlock_t lock;
746 /*
747 * Protect the list of events. Locking either mutex or lock
748 * is sufficient to ensure the list doesn't change; to change
749 * the list you need to lock both the mutex and the spinlock.
750 */
751 struct mutex mutex;
752
753 struct list_head active_ctx_list;
754 struct perf_event_groups pinned_groups;
755 struct perf_event_groups flexible_groups;
756 struct list_head event_list;
757
758 struct list_head pinned_active;
759 struct list_head flexible_active;
760
761 int nr_events;
762 int nr_active;
763 int is_active;
764 int nr_stat;
765 int nr_freq;
766 int rotate_disable;
767 /*
768 * Set when nr_events != nr_active, except tolerant to events not
769 * necessary to be active due to scheduling constraints, such as cgroups.
770 */
771 int rotate_necessary;
772 refcount_t refcount;
773 struct task_struct *task;
774
775 /*
776 * Context clock, runs when context enabled.
777 */
778 u64 time;
779 u64 timestamp;
780
781 /*
782 * These fields let us detect when two contexts have both
783 * been cloned (inherited) from a common ancestor.
784 */
785 struct perf_event_context *parent_ctx;
786 u64 parent_gen;
787 u64 generation;
788 int pin_count;
789 #ifdef CONFIG_CGROUP_PERF
790 int nr_cgroups; /* cgroup evts */
791 #endif
792 void *task_ctx_data; /* pmu specific data */
793 struct rcu_head rcu_head;
794 };
795
796 /*
797 * Number of contexts where an event can trigger:
798 * task, softirq, hardirq, nmi.
799 */
800 #define PERF_NR_CONTEXTS 4
801
802 /**
803 * struct perf_event_cpu_context - per cpu event context structure
804 */
805 struct perf_cpu_context {
806 struct perf_event_context ctx;
807 struct perf_event_context *task_ctx;
808 int active_oncpu;
809 int exclusive;
810
811 raw_spinlock_t hrtimer_lock;
812 struct hrtimer hrtimer;
813 ktime_t hrtimer_interval;
814 unsigned int hrtimer_active;
815
816 #ifdef CONFIG_CGROUP_PERF
817 struct perf_cgroup *cgrp;
818 struct list_head cgrp_cpuctx_entry;
819 #endif
820
821 struct list_head sched_cb_entry;
822 int sched_cb_usage;
823
824 int online;
825 };
826
827 struct perf_output_handle {
828 struct perf_event *event;
829 struct ring_buffer *rb;
830 unsigned long wakeup;
831 unsigned long size;
832 u64 aux_flags;
833 union {
834 void *addr;
835 unsigned long head;
836 };
837 int page;
838 };
839
840 struct bpf_perf_event_data_kern {
841 bpf_user_pt_regs_t *regs;
842 struct perf_sample_data *data;
843 struct perf_event *event;
844 };
845
846 #ifdef CONFIG_CGROUP_PERF
847
848 /*
849 * perf_cgroup_info keeps track of time_enabled for a cgroup.
850 * This is a per-cpu dynamically allocated data structure.
851 */
852 struct perf_cgroup_info {
853 u64 time;
854 u64 timestamp;
855 };
856
857 struct perf_cgroup {
858 struct cgroup_subsys_state css;
859 struct perf_cgroup_info __percpu *info;
860 };
861
862 /*
863 * Must ensure cgroup is pinned (css_get) before calling
864 * this function. In other words, we cannot call this function
865 * if there is no cgroup event for the current CPU context.
866 */
867 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)868 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
869 {
870 return container_of(task_css_check(task, perf_event_cgrp_id,
871 ctx ? lockdep_is_held(&ctx->lock)
872 : true),
873 struct perf_cgroup, css);
874 }
875 #endif /* CONFIG_CGROUP_PERF */
876
877 #ifdef CONFIG_PERF_EVENTS
878
879 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
880 struct perf_event *event);
881 extern void perf_aux_output_end(struct perf_output_handle *handle,
882 unsigned long size);
883 extern int perf_aux_output_skip(struct perf_output_handle *handle,
884 unsigned long size);
885 extern void *perf_get_aux(struct perf_output_handle *handle);
886 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
887 extern void perf_event_itrace_started(struct perf_event *event);
888
889 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
890 extern void perf_pmu_unregister(struct pmu *pmu);
891
892 extern int perf_num_counters(void);
893 extern const char *perf_pmu_name(void);
894 extern void __perf_event_task_sched_in(struct task_struct *prev,
895 struct task_struct *task);
896 extern void __perf_event_task_sched_out(struct task_struct *prev,
897 struct task_struct *next);
898 extern int perf_event_init_task(struct task_struct *child);
899 extern void perf_event_exit_task(struct task_struct *child);
900 extern void perf_event_free_task(struct task_struct *task);
901 extern void perf_event_delayed_put(struct task_struct *task);
902 extern struct file *perf_event_get(unsigned int fd);
903 extern const struct perf_event *perf_get_event(struct file *file);
904 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
905 extern void perf_event_print_debug(void);
906 extern void perf_pmu_disable(struct pmu *pmu);
907 extern void perf_pmu_enable(struct pmu *pmu);
908 extern void perf_sched_cb_dec(struct pmu *pmu);
909 extern void perf_sched_cb_inc(struct pmu *pmu);
910 extern int perf_event_task_disable(void);
911 extern int perf_event_task_enable(void);
912
913 extern void perf_pmu_resched(struct pmu *pmu);
914
915 extern int perf_event_refresh(struct perf_event *event, int refresh);
916 extern void perf_event_update_userpage(struct perf_event *event);
917 extern int perf_event_release_kernel(struct perf_event *event);
918 extern struct perf_event *
919 perf_event_create_kernel_counter(struct perf_event_attr *attr,
920 int cpu,
921 struct task_struct *task,
922 perf_overflow_handler_t callback,
923 void *context);
924 extern void perf_pmu_migrate_context(struct pmu *pmu,
925 int src_cpu, int dst_cpu);
926 int perf_event_read_local(struct perf_event *event, u64 *value,
927 u64 *enabled, u64 *running);
928 extern u64 perf_event_read_value(struct perf_event *event,
929 u64 *enabled, u64 *running);
930
931
932 struct perf_sample_data {
933 /*
934 * Fields set by perf_sample_data_init(), group so as to
935 * minimize the cachelines touched.
936 */
937 u64 addr;
938 struct perf_raw_record *raw;
939 struct perf_branch_stack *br_stack;
940 u64 period;
941 u64 weight;
942 u64 txn;
943 union perf_mem_data_src data_src;
944
945 /*
946 * The other fields, optionally {set,used} by
947 * perf_{prepare,output}_sample().
948 */
949 u64 type;
950 u64 ip;
951 struct {
952 u32 pid;
953 u32 tid;
954 } tid_entry;
955 u64 time;
956 u64 id;
957 u64 stream_id;
958 struct {
959 u32 cpu;
960 u32 reserved;
961 } cpu_entry;
962 struct perf_callchain_entry *callchain;
963
964 /*
965 * regs_user may point to task_pt_regs or to regs_user_copy, depending
966 * on arch details.
967 */
968 struct perf_regs regs_user;
969 struct pt_regs regs_user_copy;
970
971 struct perf_regs regs_intr;
972 u64 stack_user_size;
973
974 u64 phys_addr;
975 } ____cacheline_aligned;
976
977 /* default value for data source */
978 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
979 PERF_MEM_S(LVL, NA) |\
980 PERF_MEM_S(SNOOP, NA) |\
981 PERF_MEM_S(LOCK, NA) |\
982 PERF_MEM_S(TLB, NA))
983
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)984 static inline void perf_sample_data_init(struct perf_sample_data *data,
985 u64 addr, u64 period)
986 {
987 /* remaining struct members initialized in perf_prepare_sample() */
988 data->addr = addr;
989 data->raw = NULL;
990 data->br_stack = NULL;
991 data->period = period;
992 data->weight = 0;
993 data->data_src.val = PERF_MEM_NA;
994 data->txn = 0;
995 }
996
997 extern void perf_output_sample(struct perf_output_handle *handle,
998 struct perf_event_header *header,
999 struct perf_sample_data *data,
1000 struct perf_event *event);
1001 extern void perf_prepare_sample(struct perf_event_header *header,
1002 struct perf_sample_data *data,
1003 struct perf_event *event,
1004 struct pt_regs *regs);
1005
1006 extern int perf_event_overflow(struct perf_event *event,
1007 struct perf_sample_data *data,
1008 struct pt_regs *regs);
1009
1010 extern void perf_event_output_forward(struct perf_event *event,
1011 struct perf_sample_data *data,
1012 struct pt_regs *regs);
1013 extern void perf_event_output_backward(struct perf_event *event,
1014 struct perf_sample_data *data,
1015 struct pt_regs *regs);
1016 extern int perf_event_output(struct perf_event *event,
1017 struct perf_sample_data *data,
1018 struct pt_regs *regs);
1019
1020 static inline bool
is_default_overflow_handler(struct perf_event * event)1021 is_default_overflow_handler(struct perf_event *event)
1022 {
1023 if (likely(event->overflow_handler == perf_event_output_forward))
1024 return true;
1025 if (unlikely(event->overflow_handler == perf_event_output_backward))
1026 return true;
1027 return false;
1028 }
1029
1030 extern void
1031 perf_event_header__init_id(struct perf_event_header *header,
1032 struct perf_sample_data *data,
1033 struct perf_event *event);
1034 extern void
1035 perf_event__output_id_sample(struct perf_event *event,
1036 struct perf_output_handle *handle,
1037 struct perf_sample_data *sample);
1038
1039 extern void
1040 perf_log_lost_samples(struct perf_event *event, u64 lost);
1041
event_has_any_exclude_flag(struct perf_event * event)1042 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1043 {
1044 struct perf_event_attr *attr = &event->attr;
1045
1046 return attr->exclude_idle || attr->exclude_user ||
1047 attr->exclude_kernel || attr->exclude_hv ||
1048 attr->exclude_guest || attr->exclude_host;
1049 }
1050
is_sampling_event(struct perf_event * event)1051 static inline bool is_sampling_event(struct perf_event *event)
1052 {
1053 return event->attr.sample_period != 0;
1054 }
1055
1056 /*
1057 * Return 1 for a software event, 0 for a hardware event
1058 */
is_software_event(struct perf_event * event)1059 static inline int is_software_event(struct perf_event *event)
1060 {
1061 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1062 }
1063
1064 /*
1065 * Return 1 for event in sw context, 0 for event in hw context
1066 */
in_software_context(struct perf_event * event)1067 static inline int in_software_context(struct perf_event *event)
1068 {
1069 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1070 }
1071
is_exclusive_pmu(struct pmu * pmu)1072 static inline int is_exclusive_pmu(struct pmu *pmu)
1073 {
1074 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1075 }
1076
1077 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1078
1079 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1080 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1081
1082 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1083 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1084 #endif
1085
1086 /*
1087 * When generating a perf sample in-line, instead of from an interrupt /
1088 * exception, we lack a pt_regs. This is typically used from software events
1089 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1090 *
1091 * We typically don't need a full set, but (for x86) do require:
1092 * - ip for PERF_SAMPLE_IP
1093 * - cs for user_mode() tests
1094 * - sp for PERF_SAMPLE_CALLCHAIN
1095 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1096 *
1097 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1098 * things like PERF_SAMPLE_REGS_INTR.
1099 */
perf_fetch_caller_regs(struct pt_regs * regs)1100 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1101 {
1102 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1103 }
1104
1105 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1106 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1107 {
1108 if (static_key_false(&perf_swevent_enabled[event_id]))
1109 __perf_sw_event(event_id, nr, regs, addr);
1110 }
1111
1112 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1113
1114 /*
1115 * 'Special' version for the scheduler, it hard assumes no recursion,
1116 * which is guaranteed by us not actually scheduling inside other swevents
1117 * because those disable preemption.
1118 */
1119 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1120 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1121 {
1122 if (static_key_false(&perf_swevent_enabled[event_id])) {
1123 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1124
1125 perf_fetch_caller_regs(regs);
1126 ___perf_sw_event(event_id, nr, regs, addr);
1127 }
1128 }
1129
1130 extern struct static_key_false perf_sched_events;
1131
1132 static __always_inline bool
perf_sw_migrate_enabled(void)1133 perf_sw_migrate_enabled(void)
1134 {
1135 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1136 return true;
1137 return false;
1138 }
1139
perf_event_task_migrate(struct task_struct * task)1140 static inline void perf_event_task_migrate(struct task_struct *task)
1141 {
1142 if (perf_sw_migrate_enabled())
1143 task->sched_migrated = 1;
1144 }
1145
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1146 static inline void perf_event_task_sched_in(struct task_struct *prev,
1147 struct task_struct *task)
1148 {
1149 if (static_branch_unlikely(&perf_sched_events))
1150 __perf_event_task_sched_in(prev, task);
1151
1152 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1153 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1154
1155 perf_fetch_caller_regs(regs);
1156 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1157 task->sched_migrated = 0;
1158 }
1159 }
1160
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1161 static inline void perf_event_task_sched_out(struct task_struct *prev,
1162 struct task_struct *next)
1163 {
1164 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1165
1166 if (static_branch_unlikely(&perf_sched_events))
1167 __perf_event_task_sched_out(prev, next);
1168 }
1169
1170 extern void perf_event_mmap(struct vm_area_struct *vma);
1171
1172 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1173 bool unregister, const char *sym);
1174 extern void perf_event_bpf_event(struct bpf_prog *prog,
1175 enum perf_bpf_event_type type,
1176 u16 flags);
1177
1178 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1179 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1180 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1181
1182 extern void perf_event_exec(void);
1183 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1184 extern void perf_event_namespaces(struct task_struct *tsk);
1185 extern void perf_event_fork(struct task_struct *tsk);
1186
1187 /* Callchains */
1188 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1189
1190 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1191 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1192 extern struct perf_callchain_entry *
1193 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1194 u32 max_stack, bool crosstask, bool add_mark);
1195 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1196 extern int get_callchain_buffers(int max_stack);
1197 extern void put_callchain_buffers(void);
1198
1199 extern int sysctl_perf_event_max_stack;
1200 extern int sysctl_perf_event_max_contexts_per_stack;
1201
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1202 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1203 {
1204 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1205 struct perf_callchain_entry *entry = ctx->entry;
1206 entry->ip[entry->nr++] = ip;
1207 ++ctx->contexts;
1208 return 0;
1209 } else {
1210 ctx->contexts_maxed = true;
1211 return -1; /* no more room, stop walking the stack */
1212 }
1213 }
1214
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1215 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1216 {
1217 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1218 struct perf_callchain_entry *entry = ctx->entry;
1219 entry->ip[entry->nr++] = ip;
1220 ++ctx->nr;
1221 return 0;
1222 } else {
1223 return -1; /* no more room, stop walking the stack */
1224 }
1225 }
1226
1227 extern int sysctl_perf_event_paranoid;
1228 extern int sysctl_perf_event_mlock;
1229 extern int sysctl_perf_event_sample_rate;
1230 extern int sysctl_perf_cpu_time_max_percent;
1231
1232 extern void perf_sample_event_took(u64 sample_len_ns);
1233
1234 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1235 void __user *buffer, size_t *lenp,
1236 loff_t *ppos);
1237 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1238 void __user *buffer, size_t *lenp,
1239 loff_t *ppos);
1240
1241 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1242 void __user *buffer, size_t *lenp, loff_t *ppos);
1243
perf_paranoid_tracepoint_raw(void)1244 static inline bool perf_paranoid_tracepoint_raw(void)
1245 {
1246 return sysctl_perf_event_paranoid > -1;
1247 }
1248
perf_paranoid_cpu(void)1249 static inline bool perf_paranoid_cpu(void)
1250 {
1251 return sysctl_perf_event_paranoid > 0;
1252 }
1253
perf_paranoid_kernel(void)1254 static inline bool perf_paranoid_kernel(void)
1255 {
1256 return sysctl_perf_event_paranoid > 1;
1257 }
1258
1259 extern void perf_event_init(void);
1260 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1261 int entry_size, struct pt_regs *regs,
1262 struct hlist_head *head, int rctx,
1263 struct task_struct *task);
1264 extern void perf_bp_event(struct perf_event *event, void *data);
1265
1266 #ifndef perf_misc_flags
1267 # define perf_misc_flags(regs) \
1268 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1269 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1270 #endif
1271 #ifndef perf_arch_bpf_user_pt_regs
1272 # define perf_arch_bpf_user_pt_regs(regs) regs
1273 #endif
1274
has_branch_stack(struct perf_event * event)1275 static inline bool has_branch_stack(struct perf_event *event)
1276 {
1277 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1278 }
1279
needs_branch_stack(struct perf_event * event)1280 static inline bool needs_branch_stack(struct perf_event *event)
1281 {
1282 return event->attr.branch_sample_type != 0;
1283 }
1284
has_aux(struct perf_event * event)1285 static inline bool has_aux(struct perf_event *event)
1286 {
1287 return event->pmu->setup_aux;
1288 }
1289
is_write_backward(struct perf_event * event)1290 static inline bool is_write_backward(struct perf_event *event)
1291 {
1292 return !!event->attr.write_backward;
1293 }
1294
has_addr_filter(struct perf_event * event)1295 static inline bool has_addr_filter(struct perf_event *event)
1296 {
1297 return event->pmu->nr_addr_filters;
1298 }
1299
1300 /*
1301 * An inherited event uses parent's filters
1302 */
1303 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1304 perf_event_addr_filters(struct perf_event *event)
1305 {
1306 struct perf_addr_filters_head *ifh = &event->addr_filters;
1307
1308 if (event->parent)
1309 ifh = &event->parent->addr_filters;
1310
1311 return ifh;
1312 }
1313
1314 extern void perf_event_addr_filters_sync(struct perf_event *event);
1315
1316 extern int perf_output_begin(struct perf_output_handle *handle,
1317 struct perf_event *event, unsigned int size);
1318 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1319 struct perf_event *event,
1320 unsigned int size);
1321 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1322 struct perf_event *event,
1323 unsigned int size);
1324
1325 extern void perf_output_end(struct perf_output_handle *handle);
1326 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1327 const void *buf, unsigned int len);
1328 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1329 unsigned int len);
1330 extern int perf_swevent_get_recursion_context(void);
1331 extern void perf_swevent_put_recursion_context(int rctx);
1332 extern u64 perf_swevent_set_period(struct perf_event *event);
1333 extern void perf_event_enable(struct perf_event *event);
1334 extern void perf_event_disable(struct perf_event *event);
1335 extern void perf_event_disable_local(struct perf_event *event);
1336 extern void perf_event_disable_inatomic(struct perf_event *event);
1337 extern void perf_event_task_tick(void);
1338 extern int perf_event_account_interrupt(struct perf_event *event);
1339 #else /* !CONFIG_PERF_EVENTS: */
1340 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1341 perf_aux_output_begin(struct perf_output_handle *handle,
1342 struct perf_event *event) { return NULL; }
1343 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1344 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1345 { }
1346 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1347 perf_aux_output_skip(struct perf_output_handle *handle,
1348 unsigned long size) { return -EINVAL; }
1349 static inline void *
perf_get_aux(struct perf_output_handle * handle)1350 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1351 static inline void
perf_event_task_migrate(struct task_struct * task)1352 perf_event_task_migrate(struct task_struct *task) { }
1353 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1354 perf_event_task_sched_in(struct task_struct *prev,
1355 struct task_struct *task) { }
1356 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1357 perf_event_task_sched_out(struct task_struct *prev,
1358 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)1359 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)1360 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1361 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1362 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1363 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1364 static inline const struct perf_event *perf_get_event(struct file *file)
1365 {
1366 return ERR_PTR(-EINVAL);
1367 }
perf_event_attrs(struct perf_event * event)1368 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1369 {
1370 return ERR_PTR(-EINVAL);
1371 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1372 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1373 u64 *enabled, u64 *running)
1374 {
1375 return -EINVAL;
1376 }
perf_event_print_debug(void)1377 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1378 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1379 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1380 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1381 {
1382 return -EINVAL;
1383 }
1384
1385 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1386 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1387 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1388 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1389 static inline void
perf_bp_event(struct perf_event * event,void * data)1390 perf_bp_event(struct perf_event *event, void *data) { }
1391
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1392 static inline int perf_register_guest_info_callbacks
1393 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1394 static inline int perf_unregister_guest_info_callbacks
1395 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1396
perf_event_mmap(struct vm_area_struct * vma)1397 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1398
1399 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1400 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1401 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1402 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1403 enum perf_bpf_event_type type,
1404 u16 flags) { }
perf_event_exec(void)1405 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1406 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1407 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1408 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)1409 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1410 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1411 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1412 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1413 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1414 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1415 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1416 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1417 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1418 #endif
1419
1420 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1421 extern void perf_restore_debug_store(void);
1422 #else
perf_restore_debug_store(void)1423 static inline void perf_restore_debug_store(void) { }
1424 #endif
1425
perf_raw_frag_last(const struct perf_raw_frag * frag)1426 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1427 {
1428 return frag->pad < sizeof(u64);
1429 }
1430
1431 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1432
1433 struct perf_pmu_events_attr {
1434 struct device_attribute attr;
1435 u64 id;
1436 const char *event_str;
1437 };
1438
1439 struct perf_pmu_events_ht_attr {
1440 struct device_attribute attr;
1441 u64 id;
1442 const char *event_str_ht;
1443 const char *event_str_noht;
1444 };
1445
1446 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1447 char *page);
1448
1449 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1450 static struct perf_pmu_events_attr _var = { \
1451 .attr = __ATTR(_name, 0444, _show, NULL), \
1452 .id = _id, \
1453 };
1454
1455 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1456 static struct perf_pmu_events_attr _var = { \
1457 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1458 .id = 0, \
1459 .event_str = _str, \
1460 };
1461
1462 #define PMU_FORMAT_ATTR(_name, _format) \
1463 static ssize_t \
1464 _name##_show(struct device *dev, \
1465 struct device_attribute *attr, \
1466 char *page) \
1467 { \
1468 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1469 return sprintf(page, _format "\n"); \
1470 } \
1471 \
1472 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1473
1474 /* Performance counter hotplug functions */
1475 #ifdef CONFIG_PERF_EVENTS
1476 int perf_event_init_cpu(unsigned int cpu);
1477 int perf_event_exit_cpu(unsigned int cpu);
1478 #else
1479 #define perf_event_init_cpu NULL
1480 #define perf_event_exit_cpu NULL
1481 #endif
1482
1483 #endif /* _LINUX_PERF_EVENT_H */
1484