1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <asm/local.h>
60 
61 struct perf_callchain_entry {
62 	__u64				nr;
63 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
64 };
65 
66 struct perf_callchain_entry_ctx {
67 	struct perf_callchain_entry *entry;
68 	u32			    max_stack;
69 	u32			    nr;
70 	short			    contexts;
71 	bool			    contexts_maxed;
72 };
73 
74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
75 				     unsigned long off, unsigned long len);
76 
77 struct perf_raw_frag {
78 	union {
79 		struct perf_raw_frag	*next;
80 		unsigned long		pad;
81 	};
82 	perf_copy_f			copy;
83 	void				*data;
84 	u32				size;
85 } __packed;
86 
87 struct perf_raw_record {
88 	struct perf_raw_frag		frag;
89 	u32				size;
90 };
91 
92 /*
93  * branch stack layout:
94  *  nr: number of taken branches stored in entries[]
95  *
96  * Note that nr can vary from sample to sample
97  * branches (to, from) are stored from most recent
98  * to least recent, i.e., entries[0] contains the most
99  * recent branch.
100  */
101 struct perf_branch_stack {
102 	__u64				nr;
103 	struct perf_branch_entry	entries[0];
104 };
105 
106 struct task_struct;
107 
108 /*
109  * extra PMU register associated with an event
110  */
111 struct hw_perf_event_extra {
112 	u64		config;	/* register value */
113 	unsigned int	reg;	/* register address or index */
114 	int		alloc;	/* extra register already allocated */
115 	int		idx;	/* index in shared_regs->regs[] */
116 };
117 
118 /**
119  * struct hw_perf_event - performance event hardware details:
120  */
121 struct hw_perf_event {
122 #ifdef CONFIG_PERF_EVENTS
123 	union {
124 		struct { /* hardware */
125 			u64		config;
126 			u64		last_tag;
127 			unsigned long	config_base;
128 			unsigned long	event_base;
129 			int		event_base_rdpmc;
130 			int		idx;
131 			int		last_cpu;
132 			int		flags;
133 
134 			struct hw_perf_event_extra extra_reg;
135 			struct hw_perf_event_extra branch_reg;
136 		};
137 		struct { /* software */
138 			struct hrtimer	hrtimer;
139 		};
140 		struct { /* tracepoint */
141 			/* for tp_event->class */
142 			struct list_head	tp_list;
143 		};
144 		struct { /* amd_power */
145 			u64	pwr_acc;
146 			u64	ptsc;
147 		};
148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
149 		struct { /* breakpoint */
150 			/*
151 			 * Crufty hack to avoid the chicken and egg
152 			 * problem hw_breakpoint has with context
153 			 * creation and event initalization.
154 			 */
155 			struct arch_hw_breakpoint	info;
156 			struct list_head		bp_list;
157 		};
158 #endif
159 		struct { /* amd_iommu */
160 			u8	iommu_bank;
161 			u8	iommu_cntr;
162 			u16	padding;
163 			u64	conf;
164 			u64	conf1;
165 		};
166 	};
167 	/*
168 	 * If the event is a per task event, this will point to the task in
169 	 * question. See the comment in perf_event_alloc().
170 	 */
171 	struct task_struct		*target;
172 
173 	/*
174 	 * PMU would store hardware filter configuration
175 	 * here.
176 	 */
177 	void				*addr_filters;
178 
179 	/* Last sync'ed generation of filters */
180 	unsigned long			addr_filters_gen;
181 
182 /*
183  * hw_perf_event::state flags; used to track the PERF_EF_* state.
184  */
185 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
186 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
187 #define PERF_HES_ARCH		0x04
188 
189 	int				state;
190 
191 	/*
192 	 * The last observed hardware counter value, updated with a
193 	 * local64_cmpxchg() such that pmu::read() can be called nested.
194 	 */
195 	local64_t			prev_count;
196 
197 	/*
198 	 * The period to start the next sample with.
199 	 */
200 	u64				sample_period;
201 
202 	/*
203 	 * The period we started this sample with.
204 	 */
205 	u64				last_period;
206 
207 	/*
208 	 * However much is left of the current period; note that this is
209 	 * a full 64bit value and allows for generation of periods longer
210 	 * than hardware might allow.
211 	 */
212 	local64_t			period_left;
213 
214 	/*
215 	 * State for throttling the event, see __perf_event_overflow() and
216 	 * perf_adjust_freq_unthr_context().
217 	 */
218 	u64                             interrupts_seq;
219 	u64				interrupts;
220 
221 	/*
222 	 * State for freq target events, see __perf_event_overflow() and
223 	 * perf_adjust_freq_unthr_context().
224 	 */
225 	u64				freq_time_stamp;
226 	u64				freq_count_stamp;
227 #endif
228 };
229 
230 struct perf_event;
231 
232 /*
233  * Common implementation detail of pmu::{start,commit,cancel}_txn
234  */
235 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
236 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
237 
238 /**
239  * pmu::capabilities flags
240  */
241 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
242 #define PERF_PMU_CAP_NO_NMI			0x02
243 #define PERF_PMU_CAP_AUX_NO_SG			0x04
244 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
245 #define PERF_PMU_CAP_EXCLUSIVE			0x10
246 #define PERF_PMU_CAP_ITRACE			0x20
247 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
248 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
249 #define PERF_PMU_CAP_AUX_OUTPUT			0x100
250 
251 /**
252  * struct pmu - generic performance monitoring unit
253  */
254 struct pmu {
255 	struct list_head		entry;
256 
257 	struct module			*module;
258 	struct device			*dev;
259 	const struct attribute_group	**attr_groups;
260 	const struct attribute_group	**attr_update;
261 	const char			*name;
262 	int				type;
263 
264 	/*
265 	 * various common per-pmu feature flags
266 	 */
267 	int				capabilities;
268 
269 	int __percpu			*pmu_disable_count;
270 	struct perf_cpu_context __percpu *pmu_cpu_context;
271 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
272 	int				task_ctx_nr;
273 	int				hrtimer_interval_ms;
274 
275 	/* number of address filters this PMU can do */
276 	unsigned int			nr_addr_filters;
277 
278 	/*
279 	 * Fully disable/enable this PMU, can be used to protect from the PMI
280 	 * as well as for lazy/batch writing of the MSRs.
281 	 */
282 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
283 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
284 
285 	/*
286 	 * Try and initialize the event for this PMU.
287 	 *
288 	 * Returns:
289 	 *  -ENOENT	-- @event is not for this PMU
290 	 *
291 	 *  -ENODEV	-- @event is for this PMU but PMU not present
292 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
293 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
294 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
295 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
296 	 *
297 	 *  0		-- @event is for this PMU and valid
298 	 *
299 	 * Other error return values are allowed.
300 	 */
301 	int (*event_init)		(struct perf_event *event);
302 
303 	/*
304 	 * Notification that the event was mapped or unmapped.  Called
305 	 * in the context of the mapping task.
306 	 */
307 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
308 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
309 
310 	/*
311 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
312 	 * matching hw_perf_event::state flags.
313 	 */
314 #define PERF_EF_START	0x01		/* start the counter when adding    */
315 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
316 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
317 
318 	/*
319 	 * Adds/Removes a counter to/from the PMU, can be done inside a
320 	 * transaction, see the ->*_txn() methods.
321 	 *
322 	 * The add/del callbacks will reserve all hardware resources required
323 	 * to service the event, this includes any counter constraint
324 	 * scheduling etc.
325 	 *
326 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
327 	 * is on.
328 	 *
329 	 * ->add() called without PERF_EF_START should result in the same state
330 	 *  as ->add() followed by ->stop().
331 	 *
332 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
333 	 *  ->stop() that must deal with already being stopped without
334 	 *  PERF_EF_UPDATE.
335 	 */
336 	int  (*add)			(struct perf_event *event, int flags);
337 	void (*del)			(struct perf_event *event, int flags);
338 
339 	/*
340 	 * Starts/Stops a counter present on the PMU.
341 	 *
342 	 * The PMI handler should stop the counter when perf_event_overflow()
343 	 * returns !0. ->start() will be used to continue.
344 	 *
345 	 * Also used to change the sample period.
346 	 *
347 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
348 	 * is on -- will be called from NMI context with the PMU generates
349 	 * NMIs.
350 	 *
351 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
352 	 *  period/count values like ->read() would.
353 	 *
354 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
355 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
356 	 */
357 	void (*start)			(struct perf_event *event, int flags);
358 	void (*stop)			(struct perf_event *event, int flags);
359 
360 	/*
361 	 * Updates the counter value of the event.
362 	 *
363 	 * For sampling capable PMUs this will also update the software period
364 	 * hw_perf_event::period_left field.
365 	 */
366 	void (*read)			(struct perf_event *event);
367 
368 	/*
369 	 * Group events scheduling is treated as a transaction, add
370 	 * group events as a whole and perform one schedulability test.
371 	 * If the test fails, roll back the whole group
372 	 *
373 	 * Start the transaction, after this ->add() doesn't need to
374 	 * do schedulability tests.
375 	 *
376 	 * Optional.
377 	 */
378 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
379 	/*
380 	 * If ->start_txn() disabled the ->add() schedulability test
381 	 * then ->commit_txn() is required to perform one. On success
382 	 * the transaction is closed. On error the transaction is kept
383 	 * open until ->cancel_txn() is called.
384 	 *
385 	 * Optional.
386 	 */
387 	int  (*commit_txn)		(struct pmu *pmu);
388 	/*
389 	 * Will cancel the transaction, assumes ->del() is called
390 	 * for each successful ->add() during the transaction.
391 	 *
392 	 * Optional.
393 	 */
394 	void (*cancel_txn)		(struct pmu *pmu);
395 
396 	/*
397 	 * Will return the value for perf_event_mmap_page::index for this event,
398 	 * if no implementation is provided it will default to: event->hw.idx + 1.
399 	 */
400 	int (*event_idx)		(struct perf_event *event); /*optional */
401 
402 	/*
403 	 * context-switches callback
404 	 */
405 	void (*sched_task)		(struct perf_event_context *ctx,
406 					bool sched_in);
407 	/*
408 	 * PMU specific data size
409 	 */
410 	size_t				task_ctx_size;
411 
412 
413 	/*
414 	 * Set up pmu-private data structures for an AUX area
415 	 */
416 	void *(*setup_aux)		(struct perf_event *event, void **pages,
417 					 int nr_pages, bool overwrite);
418 					/* optional */
419 
420 	/*
421 	 * Free pmu-private AUX data structures
422 	 */
423 	void (*free_aux)		(void *aux); /* optional */
424 
425 	/*
426 	 * Validate address range filters: make sure the HW supports the
427 	 * requested configuration and number of filters; return 0 if the
428 	 * supplied filters are valid, -errno otherwise.
429 	 *
430 	 * Runs in the context of the ioctl()ing process and is not serialized
431 	 * with the rest of the PMU callbacks.
432 	 */
433 	int (*addr_filters_validate)	(struct list_head *filters);
434 					/* optional */
435 
436 	/*
437 	 * Synchronize address range filter configuration:
438 	 * translate hw-agnostic filters into hardware configuration in
439 	 * event::hw::addr_filters.
440 	 *
441 	 * Runs as a part of filter sync sequence that is done in ->start()
442 	 * callback by calling perf_event_addr_filters_sync().
443 	 *
444 	 * May (and should) traverse event::addr_filters::list, for which its
445 	 * caller provides necessary serialization.
446 	 */
447 	void (*addr_filters_sync)	(struct perf_event *event);
448 					/* optional */
449 
450 	/*
451 	 * Check if event can be used for aux_output purposes for
452 	 * events of this PMU.
453 	 *
454 	 * Runs from perf_event_open(). Should return 0 for "no match"
455 	 * or non-zero for "match".
456 	 */
457 	int (*aux_output_match)		(struct perf_event *event);
458 					/* optional */
459 
460 	/*
461 	 * Filter events for PMU-specific reasons.
462 	 */
463 	int (*filter_match)		(struct perf_event *event); /* optional */
464 
465 	/*
466 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
467 	 */
468 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
469 };
470 
471 enum perf_addr_filter_action_t {
472 	PERF_ADDR_FILTER_ACTION_STOP = 0,
473 	PERF_ADDR_FILTER_ACTION_START,
474 	PERF_ADDR_FILTER_ACTION_FILTER,
475 };
476 
477 /**
478  * struct perf_addr_filter - address range filter definition
479  * @entry:	event's filter list linkage
480  * @path:	object file's path for file-based filters
481  * @offset:	filter range offset
482  * @size:	filter range size (size==0 means single address trigger)
483  * @action:	filter/start/stop
484  *
485  * This is a hardware-agnostic filter configuration as specified by the user.
486  */
487 struct perf_addr_filter {
488 	struct list_head	entry;
489 	struct path		path;
490 	unsigned long		offset;
491 	unsigned long		size;
492 	enum perf_addr_filter_action_t	action;
493 };
494 
495 /**
496  * struct perf_addr_filters_head - container for address range filters
497  * @list:	list of filters for this event
498  * @lock:	spinlock that serializes accesses to the @list and event's
499  *		(and its children's) filter generations.
500  * @nr_file_filters:	number of file-based filters
501  *
502  * A child event will use parent's @list (and therefore @lock), so they are
503  * bundled together; see perf_event_addr_filters().
504  */
505 struct perf_addr_filters_head {
506 	struct list_head	list;
507 	raw_spinlock_t		lock;
508 	unsigned int		nr_file_filters;
509 };
510 
511 struct perf_addr_filter_range {
512 	unsigned long		start;
513 	unsigned long		size;
514 };
515 
516 /**
517  * enum perf_event_state - the states of an event:
518  */
519 enum perf_event_state {
520 	PERF_EVENT_STATE_DEAD		= -4,
521 	PERF_EVENT_STATE_EXIT		= -3,
522 	PERF_EVENT_STATE_ERROR		= -2,
523 	PERF_EVENT_STATE_OFF		= -1,
524 	PERF_EVENT_STATE_INACTIVE	=  0,
525 	PERF_EVENT_STATE_ACTIVE		=  1,
526 };
527 
528 struct file;
529 struct perf_sample_data;
530 
531 typedef void (*perf_overflow_handler_t)(struct perf_event *,
532 					struct perf_sample_data *,
533 					struct pt_regs *regs);
534 
535 /*
536  * Event capabilities. For event_caps and groups caps.
537  *
538  * PERF_EV_CAP_SOFTWARE: Is a software event.
539  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
540  * from any CPU in the package where it is active.
541  */
542 #define PERF_EV_CAP_SOFTWARE		BIT(0)
543 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
544 
545 #define SWEVENT_HLIST_BITS		8
546 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
547 
548 struct swevent_hlist {
549 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
550 	struct rcu_head			rcu_head;
551 };
552 
553 #define PERF_ATTACH_CONTEXT	0x01
554 #define PERF_ATTACH_GROUP	0x02
555 #define PERF_ATTACH_TASK	0x04
556 #define PERF_ATTACH_TASK_DATA	0x08
557 #define PERF_ATTACH_ITRACE	0x10
558 
559 struct perf_cgroup;
560 struct ring_buffer;
561 
562 struct pmu_event_list {
563 	raw_spinlock_t		lock;
564 	struct list_head	list;
565 };
566 
567 #define for_each_sibling_event(sibling, event)			\
568 	if ((event)->group_leader == (event))			\
569 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
570 
571 /**
572  * struct perf_event - performance event kernel representation:
573  */
574 struct perf_event {
575 #ifdef CONFIG_PERF_EVENTS
576 	/*
577 	 * entry onto perf_event_context::event_list;
578 	 *   modifications require ctx->lock
579 	 *   RCU safe iterations.
580 	 */
581 	struct list_head		event_entry;
582 
583 	/*
584 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
585 	 * either sufficies for read.
586 	 */
587 	struct list_head		sibling_list;
588 	struct list_head		active_list;
589 	/*
590 	 * Node on the pinned or flexible tree located at the event context;
591 	 */
592 	struct rb_node			group_node;
593 	u64				group_index;
594 	/*
595 	 * We need storage to track the entries in perf_pmu_migrate_context; we
596 	 * cannot use the event_entry because of RCU and we want to keep the
597 	 * group in tact which avoids us using the other two entries.
598 	 */
599 	struct list_head		migrate_entry;
600 
601 	struct hlist_node		hlist_entry;
602 	struct list_head		active_entry;
603 	int				nr_siblings;
604 
605 	/* Not serialized. Only written during event initialization. */
606 	int				event_caps;
607 	/* The cumulative AND of all event_caps for events in this group. */
608 	int				group_caps;
609 
610 	struct perf_event		*group_leader;
611 	struct pmu			*pmu;
612 	void				*pmu_private;
613 
614 	enum perf_event_state		state;
615 	unsigned int			attach_state;
616 	local64_t			count;
617 	atomic64_t			child_count;
618 
619 	/*
620 	 * These are the total time in nanoseconds that the event
621 	 * has been enabled (i.e. eligible to run, and the task has
622 	 * been scheduled in, if this is a per-task event)
623 	 * and running (scheduled onto the CPU), respectively.
624 	 */
625 	u64				total_time_enabled;
626 	u64				total_time_running;
627 	u64				tstamp;
628 
629 	/*
630 	 * timestamp shadows the actual context timing but it can
631 	 * be safely used in NMI interrupt context. It reflects the
632 	 * context time as it was when the event was last scheduled in.
633 	 *
634 	 * ctx_time already accounts for ctx->timestamp. Therefore to
635 	 * compute ctx_time for a sample, simply add perf_clock().
636 	 */
637 	u64				shadow_ctx_time;
638 
639 	struct perf_event_attr		attr;
640 	u16				header_size;
641 	u16				id_header_size;
642 	u16				read_size;
643 	struct hw_perf_event		hw;
644 
645 	struct perf_event_context	*ctx;
646 	atomic_long_t			refcount;
647 
648 	/*
649 	 * These accumulate total time (in nanoseconds) that children
650 	 * events have been enabled and running, respectively.
651 	 */
652 	atomic64_t			child_total_time_enabled;
653 	atomic64_t			child_total_time_running;
654 
655 	/*
656 	 * Protect attach/detach and child_list:
657 	 */
658 	struct mutex			child_mutex;
659 	struct list_head		child_list;
660 	struct perf_event		*parent;
661 
662 	int				oncpu;
663 	int				cpu;
664 
665 	struct list_head		owner_entry;
666 	struct task_struct		*owner;
667 
668 	/* mmap bits */
669 	struct mutex			mmap_mutex;
670 	atomic_t			mmap_count;
671 
672 	struct ring_buffer		*rb;
673 	struct list_head		rb_entry;
674 	unsigned long			rcu_batches;
675 	int				rcu_pending;
676 
677 	/* poll related */
678 	wait_queue_head_t		waitq;
679 	struct fasync_struct		*fasync;
680 
681 	/* delayed work for NMIs and such */
682 	int				pending_wakeup;
683 	int				pending_kill;
684 	int				pending_disable;
685 	struct irq_work			pending;
686 
687 	atomic_t			event_limit;
688 
689 	/* address range filters */
690 	struct perf_addr_filters_head	addr_filters;
691 	/* vma address array for file-based filders */
692 	struct perf_addr_filter_range	*addr_filter_ranges;
693 	unsigned long			addr_filters_gen;
694 
695 	/* for aux_output events */
696 	struct perf_event		*aux_event;
697 
698 	void (*destroy)(struct perf_event *);
699 	struct rcu_head			rcu_head;
700 
701 	struct pid_namespace		*ns;
702 	u64				id;
703 
704 	u64				(*clock)(void);
705 	perf_overflow_handler_t		overflow_handler;
706 	void				*overflow_handler_context;
707 #ifdef CONFIG_BPF_SYSCALL
708 	perf_overflow_handler_t		orig_overflow_handler;
709 	struct bpf_prog			*prog;
710 #endif
711 
712 #ifdef CONFIG_EVENT_TRACING
713 	struct trace_event_call		*tp_event;
714 	struct event_filter		*filter;
715 #ifdef CONFIG_FUNCTION_TRACER
716 	struct ftrace_ops               ftrace_ops;
717 #endif
718 #endif
719 
720 #ifdef CONFIG_CGROUP_PERF
721 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
722 #endif
723 
724 	struct list_head		sb_list;
725 #endif /* CONFIG_PERF_EVENTS */
726 };
727 
728 
729 struct perf_event_groups {
730 	struct rb_root	tree;
731 	u64		index;
732 };
733 
734 /**
735  * struct perf_event_context - event context structure
736  *
737  * Used as a container for task events and CPU events as well:
738  */
739 struct perf_event_context {
740 	struct pmu			*pmu;
741 	/*
742 	 * Protect the states of the events in the list,
743 	 * nr_active, and the list:
744 	 */
745 	raw_spinlock_t			lock;
746 	/*
747 	 * Protect the list of events.  Locking either mutex or lock
748 	 * is sufficient to ensure the list doesn't change; to change
749 	 * the list you need to lock both the mutex and the spinlock.
750 	 */
751 	struct mutex			mutex;
752 
753 	struct list_head		active_ctx_list;
754 	struct perf_event_groups	pinned_groups;
755 	struct perf_event_groups	flexible_groups;
756 	struct list_head		event_list;
757 
758 	struct list_head		pinned_active;
759 	struct list_head		flexible_active;
760 
761 	int				nr_events;
762 	int				nr_active;
763 	int				is_active;
764 	int				nr_stat;
765 	int				nr_freq;
766 	int				rotate_disable;
767 	/*
768 	 * Set when nr_events != nr_active, except tolerant to events not
769 	 * necessary to be active due to scheduling constraints, such as cgroups.
770 	 */
771 	int				rotate_necessary;
772 	refcount_t			refcount;
773 	struct task_struct		*task;
774 
775 	/*
776 	 * Context clock, runs when context enabled.
777 	 */
778 	u64				time;
779 	u64				timestamp;
780 
781 	/*
782 	 * These fields let us detect when two contexts have both
783 	 * been cloned (inherited) from a common ancestor.
784 	 */
785 	struct perf_event_context	*parent_ctx;
786 	u64				parent_gen;
787 	u64				generation;
788 	int				pin_count;
789 #ifdef CONFIG_CGROUP_PERF
790 	int				nr_cgroups;	 /* cgroup evts */
791 #endif
792 	void				*task_ctx_data; /* pmu specific data */
793 	struct rcu_head			rcu_head;
794 };
795 
796 /*
797  * Number of contexts where an event can trigger:
798  *	task, softirq, hardirq, nmi.
799  */
800 #define PERF_NR_CONTEXTS	4
801 
802 /**
803  * struct perf_event_cpu_context - per cpu event context structure
804  */
805 struct perf_cpu_context {
806 	struct perf_event_context	ctx;
807 	struct perf_event_context	*task_ctx;
808 	int				active_oncpu;
809 	int				exclusive;
810 
811 	raw_spinlock_t			hrtimer_lock;
812 	struct hrtimer			hrtimer;
813 	ktime_t				hrtimer_interval;
814 	unsigned int			hrtimer_active;
815 
816 #ifdef CONFIG_CGROUP_PERF
817 	struct perf_cgroup		*cgrp;
818 	struct list_head		cgrp_cpuctx_entry;
819 #endif
820 
821 	struct list_head		sched_cb_entry;
822 	int				sched_cb_usage;
823 
824 	int				online;
825 };
826 
827 struct perf_output_handle {
828 	struct perf_event		*event;
829 	struct ring_buffer		*rb;
830 	unsigned long			wakeup;
831 	unsigned long			size;
832 	u64				aux_flags;
833 	union {
834 		void			*addr;
835 		unsigned long		head;
836 	};
837 	int				page;
838 };
839 
840 struct bpf_perf_event_data_kern {
841 	bpf_user_pt_regs_t *regs;
842 	struct perf_sample_data *data;
843 	struct perf_event *event;
844 };
845 
846 #ifdef CONFIG_CGROUP_PERF
847 
848 /*
849  * perf_cgroup_info keeps track of time_enabled for a cgroup.
850  * This is a per-cpu dynamically allocated data structure.
851  */
852 struct perf_cgroup_info {
853 	u64				time;
854 	u64				timestamp;
855 };
856 
857 struct perf_cgroup {
858 	struct cgroup_subsys_state	css;
859 	struct perf_cgroup_info	__percpu *info;
860 };
861 
862 /*
863  * Must ensure cgroup is pinned (css_get) before calling
864  * this function. In other words, we cannot call this function
865  * if there is no cgroup event for the current CPU context.
866  */
867 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)868 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
869 {
870 	return container_of(task_css_check(task, perf_event_cgrp_id,
871 					   ctx ? lockdep_is_held(&ctx->lock)
872 					       : true),
873 			    struct perf_cgroup, css);
874 }
875 #endif /* CONFIG_CGROUP_PERF */
876 
877 #ifdef CONFIG_PERF_EVENTS
878 
879 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
880 				   struct perf_event *event);
881 extern void perf_aux_output_end(struct perf_output_handle *handle,
882 				unsigned long size);
883 extern int perf_aux_output_skip(struct perf_output_handle *handle,
884 				unsigned long size);
885 extern void *perf_get_aux(struct perf_output_handle *handle);
886 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
887 extern void perf_event_itrace_started(struct perf_event *event);
888 
889 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
890 extern void perf_pmu_unregister(struct pmu *pmu);
891 
892 extern int perf_num_counters(void);
893 extern const char *perf_pmu_name(void);
894 extern void __perf_event_task_sched_in(struct task_struct *prev,
895 				       struct task_struct *task);
896 extern void __perf_event_task_sched_out(struct task_struct *prev,
897 					struct task_struct *next);
898 extern int perf_event_init_task(struct task_struct *child);
899 extern void perf_event_exit_task(struct task_struct *child);
900 extern void perf_event_free_task(struct task_struct *task);
901 extern void perf_event_delayed_put(struct task_struct *task);
902 extern struct file *perf_event_get(unsigned int fd);
903 extern const struct perf_event *perf_get_event(struct file *file);
904 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
905 extern void perf_event_print_debug(void);
906 extern void perf_pmu_disable(struct pmu *pmu);
907 extern void perf_pmu_enable(struct pmu *pmu);
908 extern void perf_sched_cb_dec(struct pmu *pmu);
909 extern void perf_sched_cb_inc(struct pmu *pmu);
910 extern int perf_event_task_disable(void);
911 extern int perf_event_task_enable(void);
912 
913 extern void perf_pmu_resched(struct pmu *pmu);
914 
915 extern int perf_event_refresh(struct perf_event *event, int refresh);
916 extern void perf_event_update_userpage(struct perf_event *event);
917 extern int perf_event_release_kernel(struct perf_event *event);
918 extern struct perf_event *
919 perf_event_create_kernel_counter(struct perf_event_attr *attr,
920 				int cpu,
921 				struct task_struct *task,
922 				perf_overflow_handler_t callback,
923 				void *context);
924 extern void perf_pmu_migrate_context(struct pmu *pmu,
925 				int src_cpu, int dst_cpu);
926 int perf_event_read_local(struct perf_event *event, u64 *value,
927 			  u64 *enabled, u64 *running);
928 extern u64 perf_event_read_value(struct perf_event *event,
929 				 u64 *enabled, u64 *running);
930 
931 
932 struct perf_sample_data {
933 	/*
934 	 * Fields set by perf_sample_data_init(), group so as to
935 	 * minimize the cachelines touched.
936 	 */
937 	u64				addr;
938 	struct perf_raw_record		*raw;
939 	struct perf_branch_stack	*br_stack;
940 	u64				period;
941 	u64				weight;
942 	u64				txn;
943 	union  perf_mem_data_src	data_src;
944 
945 	/*
946 	 * The other fields, optionally {set,used} by
947 	 * perf_{prepare,output}_sample().
948 	 */
949 	u64				type;
950 	u64				ip;
951 	struct {
952 		u32	pid;
953 		u32	tid;
954 	}				tid_entry;
955 	u64				time;
956 	u64				id;
957 	u64				stream_id;
958 	struct {
959 		u32	cpu;
960 		u32	reserved;
961 	}				cpu_entry;
962 	struct perf_callchain_entry	*callchain;
963 
964 	/*
965 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
966 	 * on arch details.
967 	 */
968 	struct perf_regs		regs_user;
969 	struct pt_regs			regs_user_copy;
970 
971 	struct perf_regs		regs_intr;
972 	u64				stack_user_size;
973 
974 	u64				phys_addr;
975 } ____cacheline_aligned;
976 
977 /* default value for data source */
978 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
979 		    PERF_MEM_S(LVL, NA)   |\
980 		    PERF_MEM_S(SNOOP, NA) |\
981 		    PERF_MEM_S(LOCK, NA)  |\
982 		    PERF_MEM_S(TLB, NA))
983 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)984 static inline void perf_sample_data_init(struct perf_sample_data *data,
985 					 u64 addr, u64 period)
986 {
987 	/* remaining struct members initialized in perf_prepare_sample() */
988 	data->addr = addr;
989 	data->raw  = NULL;
990 	data->br_stack = NULL;
991 	data->period = period;
992 	data->weight = 0;
993 	data->data_src.val = PERF_MEM_NA;
994 	data->txn = 0;
995 }
996 
997 extern void perf_output_sample(struct perf_output_handle *handle,
998 			       struct perf_event_header *header,
999 			       struct perf_sample_data *data,
1000 			       struct perf_event *event);
1001 extern void perf_prepare_sample(struct perf_event_header *header,
1002 				struct perf_sample_data *data,
1003 				struct perf_event *event,
1004 				struct pt_regs *regs);
1005 
1006 extern int perf_event_overflow(struct perf_event *event,
1007 				 struct perf_sample_data *data,
1008 				 struct pt_regs *regs);
1009 
1010 extern void perf_event_output_forward(struct perf_event *event,
1011 				     struct perf_sample_data *data,
1012 				     struct pt_regs *regs);
1013 extern void perf_event_output_backward(struct perf_event *event,
1014 				       struct perf_sample_data *data,
1015 				       struct pt_regs *regs);
1016 extern int perf_event_output(struct perf_event *event,
1017 			     struct perf_sample_data *data,
1018 			     struct pt_regs *regs);
1019 
1020 static inline bool
is_default_overflow_handler(struct perf_event * event)1021 is_default_overflow_handler(struct perf_event *event)
1022 {
1023 	if (likely(event->overflow_handler == perf_event_output_forward))
1024 		return true;
1025 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1026 		return true;
1027 	return false;
1028 }
1029 
1030 extern void
1031 perf_event_header__init_id(struct perf_event_header *header,
1032 			   struct perf_sample_data *data,
1033 			   struct perf_event *event);
1034 extern void
1035 perf_event__output_id_sample(struct perf_event *event,
1036 			     struct perf_output_handle *handle,
1037 			     struct perf_sample_data *sample);
1038 
1039 extern void
1040 perf_log_lost_samples(struct perf_event *event, u64 lost);
1041 
event_has_any_exclude_flag(struct perf_event * event)1042 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1043 {
1044 	struct perf_event_attr *attr = &event->attr;
1045 
1046 	return attr->exclude_idle || attr->exclude_user ||
1047 	       attr->exclude_kernel || attr->exclude_hv ||
1048 	       attr->exclude_guest || attr->exclude_host;
1049 }
1050 
is_sampling_event(struct perf_event * event)1051 static inline bool is_sampling_event(struct perf_event *event)
1052 {
1053 	return event->attr.sample_period != 0;
1054 }
1055 
1056 /*
1057  * Return 1 for a software event, 0 for a hardware event
1058  */
is_software_event(struct perf_event * event)1059 static inline int is_software_event(struct perf_event *event)
1060 {
1061 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1062 }
1063 
1064 /*
1065  * Return 1 for event in sw context, 0 for event in hw context
1066  */
in_software_context(struct perf_event * event)1067 static inline int in_software_context(struct perf_event *event)
1068 {
1069 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1070 }
1071 
is_exclusive_pmu(struct pmu * pmu)1072 static inline int is_exclusive_pmu(struct pmu *pmu)
1073 {
1074 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1075 }
1076 
1077 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1078 
1079 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1080 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1081 
1082 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1083 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1084 #endif
1085 
1086 /*
1087  * When generating a perf sample in-line, instead of from an interrupt /
1088  * exception, we lack a pt_regs. This is typically used from software events
1089  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1090  *
1091  * We typically don't need a full set, but (for x86) do require:
1092  * - ip for PERF_SAMPLE_IP
1093  * - cs for user_mode() tests
1094  * - sp for PERF_SAMPLE_CALLCHAIN
1095  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1096  *
1097  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1098  * things like PERF_SAMPLE_REGS_INTR.
1099  */
perf_fetch_caller_regs(struct pt_regs * regs)1100 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1101 {
1102 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1103 }
1104 
1105 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1106 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1107 {
1108 	if (static_key_false(&perf_swevent_enabled[event_id]))
1109 		__perf_sw_event(event_id, nr, regs, addr);
1110 }
1111 
1112 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1113 
1114 /*
1115  * 'Special' version for the scheduler, it hard assumes no recursion,
1116  * which is guaranteed by us not actually scheduling inside other swevents
1117  * because those disable preemption.
1118  */
1119 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1120 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1121 {
1122 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1123 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1124 
1125 		perf_fetch_caller_regs(regs);
1126 		___perf_sw_event(event_id, nr, regs, addr);
1127 	}
1128 }
1129 
1130 extern struct static_key_false perf_sched_events;
1131 
1132 static __always_inline bool
perf_sw_migrate_enabled(void)1133 perf_sw_migrate_enabled(void)
1134 {
1135 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1136 		return true;
1137 	return false;
1138 }
1139 
perf_event_task_migrate(struct task_struct * task)1140 static inline void perf_event_task_migrate(struct task_struct *task)
1141 {
1142 	if (perf_sw_migrate_enabled())
1143 		task->sched_migrated = 1;
1144 }
1145 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1146 static inline void perf_event_task_sched_in(struct task_struct *prev,
1147 					    struct task_struct *task)
1148 {
1149 	if (static_branch_unlikely(&perf_sched_events))
1150 		__perf_event_task_sched_in(prev, task);
1151 
1152 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1153 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1154 
1155 		perf_fetch_caller_regs(regs);
1156 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1157 		task->sched_migrated = 0;
1158 	}
1159 }
1160 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1161 static inline void perf_event_task_sched_out(struct task_struct *prev,
1162 					     struct task_struct *next)
1163 {
1164 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1165 
1166 	if (static_branch_unlikely(&perf_sched_events))
1167 		__perf_event_task_sched_out(prev, next);
1168 }
1169 
1170 extern void perf_event_mmap(struct vm_area_struct *vma);
1171 
1172 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1173 			       bool unregister, const char *sym);
1174 extern void perf_event_bpf_event(struct bpf_prog *prog,
1175 				 enum perf_bpf_event_type type,
1176 				 u16 flags);
1177 
1178 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1179 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1180 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1181 
1182 extern void perf_event_exec(void);
1183 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1184 extern void perf_event_namespaces(struct task_struct *tsk);
1185 extern void perf_event_fork(struct task_struct *tsk);
1186 
1187 /* Callchains */
1188 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1189 
1190 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1191 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1192 extern struct perf_callchain_entry *
1193 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1194 		   u32 max_stack, bool crosstask, bool add_mark);
1195 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1196 extern int get_callchain_buffers(int max_stack);
1197 extern void put_callchain_buffers(void);
1198 
1199 extern int sysctl_perf_event_max_stack;
1200 extern int sysctl_perf_event_max_contexts_per_stack;
1201 
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1202 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1203 {
1204 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1205 		struct perf_callchain_entry *entry = ctx->entry;
1206 		entry->ip[entry->nr++] = ip;
1207 		++ctx->contexts;
1208 		return 0;
1209 	} else {
1210 		ctx->contexts_maxed = true;
1211 		return -1; /* no more room, stop walking the stack */
1212 	}
1213 }
1214 
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1215 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1216 {
1217 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1218 		struct perf_callchain_entry *entry = ctx->entry;
1219 		entry->ip[entry->nr++] = ip;
1220 		++ctx->nr;
1221 		return 0;
1222 	} else {
1223 		return -1; /* no more room, stop walking the stack */
1224 	}
1225 }
1226 
1227 extern int sysctl_perf_event_paranoid;
1228 extern int sysctl_perf_event_mlock;
1229 extern int sysctl_perf_event_sample_rate;
1230 extern int sysctl_perf_cpu_time_max_percent;
1231 
1232 extern void perf_sample_event_took(u64 sample_len_ns);
1233 
1234 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1235 		void __user *buffer, size_t *lenp,
1236 		loff_t *ppos);
1237 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1238 		void __user *buffer, size_t *lenp,
1239 		loff_t *ppos);
1240 
1241 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1242 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1243 
perf_paranoid_tracepoint_raw(void)1244 static inline bool perf_paranoid_tracepoint_raw(void)
1245 {
1246 	return sysctl_perf_event_paranoid > -1;
1247 }
1248 
perf_paranoid_cpu(void)1249 static inline bool perf_paranoid_cpu(void)
1250 {
1251 	return sysctl_perf_event_paranoid > 0;
1252 }
1253 
perf_paranoid_kernel(void)1254 static inline bool perf_paranoid_kernel(void)
1255 {
1256 	return sysctl_perf_event_paranoid > 1;
1257 }
1258 
1259 extern void perf_event_init(void);
1260 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1261 			  int entry_size, struct pt_regs *regs,
1262 			  struct hlist_head *head, int rctx,
1263 			  struct task_struct *task);
1264 extern void perf_bp_event(struct perf_event *event, void *data);
1265 
1266 #ifndef perf_misc_flags
1267 # define perf_misc_flags(regs) \
1268 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1269 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1270 #endif
1271 #ifndef perf_arch_bpf_user_pt_regs
1272 # define perf_arch_bpf_user_pt_regs(regs) regs
1273 #endif
1274 
has_branch_stack(struct perf_event * event)1275 static inline bool has_branch_stack(struct perf_event *event)
1276 {
1277 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1278 }
1279 
needs_branch_stack(struct perf_event * event)1280 static inline bool needs_branch_stack(struct perf_event *event)
1281 {
1282 	return event->attr.branch_sample_type != 0;
1283 }
1284 
has_aux(struct perf_event * event)1285 static inline bool has_aux(struct perf_event *event)
1286 {
1287 	return event->pmu->setup_aux;
1288 }
1289 
is_write_backward(struct perf_event * event)1290 static inline bool is_write_backward(struct perf_event *event)
1291 {
1292 	return !!event->attr.write_backward;
1293 }
1294 
has_addr_filter(struct perf_event * event)1295 static inline bool has_addr_filter(struct perf_event *event)
1296 {
1297 	return event->pmu->nr_addr_filters;
1298 }
1299 
1300 /*
1301  * An inherited event uses parent's filters
1302  */
1303 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1304 perf_event_addr_filters(struct perf_event *event)
1305 {
1306 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1307 
1308 	if (event->parent)
1309 		ifh = &event->parent->addr_filters;
1310 
1311 	return ifh;
1312 }
1313 
1314 extern void perf_event_addr_filters_sync(struct perf_event *event);
1315 
1316 extern int perf_output_begin(struct perf_output_handle *handle,
1317 			     struct perf_event *event, unsigned int size);
1318 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1319 				    struct perf_event *event,
1320 				    unsigned int size);
1321 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1322 				      struct perf_event *event,
1323 				      unsigned int size);
1324 
1325 extern void perf_output_end(struct perf_output_handle *handle);
1326 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1327 			     const void *buf, unsigned int len);
1328 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1329 				     unsigned int len);
1330 extern int perf_swevent_get_recursion_context(void);
1331 extern void perf_swevent_put_recursion_context(int rctx);
1332 extern u64 perf_swevent_set_period(struct perf_event *event);
1333 extern void perf_event_enable(struct perf_event *event);
1334 extern void perf_event_disable(struct perf_event *event);
1335 extern void perf_event_disable_local(struct perf_event *event);
1336 extern void perf_event_disable_inatomic(struct perf_event *event);
1337 extern void perf_event_task_tick(void);
1338 extern int perf_event_account_interrupt(struct perf_event *event);
1339 #else /* !CONFIG_PERF_EVENTS: */
1340 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1341 perf_aux_output_begin(struct perf_output_handle *handle,
1342 		      struct perf_event *event)				{ return NULL; }
1343 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1344 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1345 									{ }
1346 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1347 perf_aux_output_skip(struct perf_output_handle *handle,
1348 		     unsigned long size)				{ return -EINVAL; }
1349 static inline void *
perf_get_aux(struct perf_output_handle * handle)1350 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1351 static inline void
perf_event_task_migrate(struct task_struct * task)1352 perf_event_task_migrate(struct task_struct *task)			{ }
1353 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1354 perf_event_task_sched_in(struct task_struct *prev,
1355 			 struct task_struct *task)			{ }
1356 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1357 perf_event_task_sched_out(struct task_struct *prev,
1358 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1359 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1360 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1361 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1362 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1363 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1364 static inline const struct perf_event *perf_get_event(struct file *file)
1365 {
1366 	return ERR_PTR(-EINVAL);
1367 }
perf_event_attrs(struct perf_event * event)1368 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1369 {
1370 	return ERR_PTR(-EINVAL);
1371 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1372 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1373 					u64 *enabled, u64 *running)
1374 {
1375 	return -EINVAL;
1376 }
perf_event_print_debug(void)1377 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1378 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1379 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1380 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1381 {
1382 	return -EINVAL;
1383 }
1384 
1385 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1386 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1387 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1388 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1389 static inline void
perf_bp_event(struct perf_event * event,void * data)1390 perf_bp_event(struct perf_event *event, void *data)			{ }
1391 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1392 static inline int perf_register_guest_info_callbacks
1393 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1394 static inline int perf_unregister_guest_info_callbacks
1395 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1396 
perf_event_mmap(struct vm_area_struct * vma)1397 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1398 
1399 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1400 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1401 				      bool unregister, const char *sym)	{ }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1402 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1403 					enum perf_bpf_event_type type,
1404 					u16 flags)			{ }
perf_event_exec(void)1405 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1406 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_namespaces(struct task_struct * tsk)1407 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
perf_event_fork(struct task_struct * tsk)1408 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1409 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1410 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1411 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1412 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1413 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1414 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1415 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1416 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1417 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1418 #endif
1419 
1420 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1421 extern void perf_restore_debug_store(void);
1422 #else
perf_restore_debug_store(void)1423 static inline void perf_restore_debug_store(void)			{ }
1424 #endif
1425 
perf_raw_frag_last(const struct perf_raw_frag * frag)1426 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1427 {
1428 	return frag->pad < sizeof(u64);
1429 }
1430 
1431 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1432 
1433 struct perf_pmu_events_attr {
1434 	struct device_attribute attr;
1435 	u64 id;
1436 	const char *event_str;
1437 };
1438 
1439 struct perf_pmu_events_ht_attr {
1440 	struct device_attribute			attr;
1441 	u64					id;
1442 	const char				*event_str_ht;
1443 	const char				*event_str_noht;
1444 };
1445 
1446 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1447 			      char *page);
1448 
1449 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1450 static struct perf_pmu_events_attr _var = {				\
1451 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1452 	.id   =  _id,							\
1453 };
1454 
1455 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1456 static struct perf_pmu_events_attr _var = {				    \
1457 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1458 	.id		= 0,						    \
1459 	.event_str	= _str,						    \
1460 };
1461 
1462 #define PMU_FORMAT_ATTR(_name, _format)					\
1463 static ssize_t								\
1464 _name##_show(struct device *dev,					\
1465 			       struct device_attribute *attr,		\
1466 			       char *page)				\
1467 {									\
1468 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1469 	return sprintf(page, _format "\n");				\
1470 }									\
1471 									\
1472 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1473 
1474 /* Performance counter hotplug functions */
1475 #ifdef CONFIG_PERF_EVENTS
1476 int perf_event_init_cpu(unsigned int cpu);
1477 int perf_event_exit_cpu(unsigned int cpu);
1478 #else
1479 #define perf_event_init_cpu	NULL
1480 #define perf_event_exit_cpu	NULL
1481 #endif
1482 
1483 #endif /* _LINUX_PERF_EVENT_H */
1484