1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122 
123 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124 
125 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126 
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)				\
132 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133 
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)				\
136 	do {								\
137 		WARN_ON_ONCE(is_special_task_state(state_value));	\
138 		current->task_state_change = _THIS_IP_;			\
139 	} while (0)
140 
141 # define debug_special_state_change(state_value)			\
142 	do {								\
143 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
144 		current->task_state_change = _THIS_IP_;			\
145 	} while (0)
146 
147 # define debug_rtlock_wait_set_state()					\
148 	do {								 \
149 		current->saved_state_change = current->task_state_change;\
150 		current->task_state_change = _THIS_IP_;			 \
151 	} while (0)
152 
153 # define debug_rtlock_wait_restore_state()				\
154 	do {								 \
155 		current->task_state_change = current->saved_state_change;\
156 	} while (0)
157 
158 #else
159 # define debug_normal_state_change(cond)	do { } while (0)
160 # define debug_special_state_change(cond)	do { } while (0)
161 # define debug_rtlock_wait_set_state()		do { } while (0)
162 # define debug_rtlock_wait_restore_state()	do { } while (0)
163 #endif
164 
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *	set_current_state(TASK_UNINTERRUPTIBLE);
172  *	if (CONDITION)
173  *	   break;
174  *
175  *	schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)				\
203 	do {								\
204 		debug_normal_state_change((state_value));		\
205 		WRITE_ONCE(current->__state, (state_value));		\
206 	} while (0)
207 
208 #define set_current_state(state_value)					\
209 	do {								\
210 		debug_normal_state_change((state_value));		\
211 		smp_store_mb(current->__state, (state_value));		\
212 	} while (0)
213 
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)					\
221 	do {								\
222 		unsigned long flags; /* may shadow */			\
223 									\
224 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225 		debug_special_state_change((state_value));		\
226 		WRITE_ONCE(current->__state, (state_value));		\
227 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
228 	} while (0)
229 
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *	current_save_and_set_rtlock_wait_state();
245  *	for (;;) {
246  *		if (try_lock())
247  *			break;
248  *		raw_spin_unlock_irq(&lock->wait_lock);
249  *		schedule_rtlock();
250  *		raw_spin_lock_irq(&lock->wait_lock);
251  *		set_current_state(TASK_RTLOCK_WAIT);
252  *	}
253  *	current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()			\
256 	do {								\
257 		lockdep_assert_irqs_disabled();				\
258 		raw_spin_lock(&current->pi_lock);			\
259 		current->saved_state = current->__state;		\
260 		debug_rtlock_wait_set_state();				\
261 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
262 		raw_spin_unlock(&current->pi_lock);			\
263 	} while (0);
264 
265 #define current_restore_rtlock_saved_state()				\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		debug_rtlock_wait_restore_state();			\
270 		WRITE_ONCE(current->__state, current->saved_state);	\
271 		current->saved_state = TASK_RUNNING;			\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define get_current_state()	READ_ONCE(current->__state)
276 
277 /* Task command name length: */
278 #define TASK_COMM_LEN			16
279 
280 extern void scheduler_tick(void);
281 
282 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
283 
284 extern long schedule_timeout(long timeout);
285 extern long schedule_timeout_interruptible(long timeout);
286 extern long schedule_timeout_killable(long timeout);
287 extern long schedule_timeout_uninterruptible(long timeout);
288 extern long schedule_timeout_idle(long timeout);
289 asmlinkage void schedule(void);
290 extern void schedule_preempt_disabled(void);
291 asmlinkage void preempt_schedule_irq(void);
292 #ifdef CONFIG_PREEMPT_RT
293  extern void schedule_rtlock(void);
294 #endif
295 
296 extern int __must_check io_schedule_prepare(void);
297 extern void io_schedule_finish(int token);
298 extern long io_schedule_timeout(long timeout);
299 extern void io_schedule(void);
300 
301 /**
302  * struct prev_cputime - snapshot of system and user cputime
303  * @utime: time spent in user mode
304  * @stime: time spent in system mode
305  * @lock: protects the above two fields
306  *
307  * Stores previous user/system time values such that we can guarantee
308  * monotonicity.
309  */
310 struct prev_cputime {
311 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312 	u64				utime;
313 	u64				stime;
314 	raw_spinlock_t			lock;
315 #endif
316 };
317 
318 enum vtime_state {
319 	/* Task is sleeping or running in a CPU with VTIME inactive: */
320 	VTIME_INACTIVE = 0,
321 	/* Task is idle */
322 	VTIME_IDLE,
323 	/* Task runs in kernelspace in a CPU with VTIME active: */
324 	VTIME_SYS,
325 	/* Task runs in userspace in a CPU with VTIME active: */
326 	VTIME_USER,
327 	/* Task runs as guests in a CPU with VTIME active: */
328 	VTIME_GUEST,
329 };
330 
331 struct vtime {
332 	seqcount_t		seqcount;
333 	unsigned long long	starttime;
334 	enum vtime_state	state;
335 	unsigned int		cpu;
336 	u64			utime;
337 	u64			stime;
338 	u64			gtime;
339 };
340 
341 /*
342  * Utilization clamp constraints.
343  * @UCLAMP_MIN:	Minimum utilization
344  * @UCLAMP_MAX:	Maximum utilization
345  * @UCLAMP_CNT:	Utilization clamp constraints count
346  */
347 enum uclamp_id {
348 	UCLAMP_MIN = 0,
349 	UCLAMP_MAX,
350 	UCLAMP_CNT
351 };
352 
353 #ifdef CONFIG_SMP
354 extern struct root_domain def_root_domain;
355 extern struct mutex sched_domains_mutex;
356 #endif
357 
358 struct sched_info {
359 #ifdef CONFIG_SCHED_INFO
360 	/* Cumulative counters: */
361 
362 	/* # of times we have run on this CPU: */
363 	unsigned long			pcount;
364 
365 	/* Time spent waiting on a runqueue: */
366 	unsigned long long		run_delay;
367 
368 	/* Timestamps: */
369 
370 	/* When did we last run on a CPU? */
371 	unsigned long long		last_arrival;
372 
373 	/* When were we last queued to run? */
374 	unsigned long long		last_queued;
375 
376 #endif /* CONFIG_SCHED_INFO */
377 };
378 
379 /*
380  * Integer metrics need fixed point arithmetic, e.g., sched/fair
381  * has a few: load, load_avg, util_avg, freq, and capacity.
382  *
383  * We define a basic fixed point arithmetic range, and then formalize
384  * all these metrics based on that basic range.
385  */
386 # define SCHED_FIXEDPOINT_SHIFT		10
387 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
388 
389 /* Increase resolution of cpu_capacity calculations */
390 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
391 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
392 
393 struct load_weight {
394 	unsigned long			weight;
395 	u32				inv_weight;
396 };
397 
398 /**
399  * struct util_est - Estimation utilization of FAIR tasks
400  * @enqueued: instantaneous estimated utilization of a task/cpu
401  * @ewma:     the Exponential Weighted Moving Average (EWMA)
402  *            utilization of a task
403  *
404  * Support data structure to track an Exponential Weighted Moving Average
405  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406  * average each time a task completes an activation. Sample's weight is chosen
407  * so that the EWMA will be relatively insensitive to transient changes to the
408  * task's workload.
409  *
410  * The enqueued attribute has a slightly different meaning for tasks and cpus:
411  * - task:   the task's util_avg at last task dequeue time
412  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413  * Thus, the util_est.enqueued of a task represents the contribution on the
414  * estimated utilization of the CPU where that task is currently enqueued.
415  *
416  * Only for tasks we track a moving average of the past instantaneous
417  * estimated utilization. This allows to absorb sporadic drops in utilization
418  * of an otherwise almost periodic task.
419  *
420  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421  * updates. When a task is dequeued, its util_est should not be updated if its
422  * util_avg has not been updated in the meantime.
423  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425  * for a task) it is safe to use MSB.
426  */
427 struct util_est {
428 	unsigned int			enqueued;
429 	unsigned int			ewma;
430 #define UTIL_EST_WEIGHT_SHIFT		2
431 #define UTIL_AVG_UNCHANGED		0x80000000
432 } __attribute__((__aligned__(sizeof(u64))));
433 
434 /*
435  * The load/runnable/util_avg accumulates an infinite geometric series
436  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437  *
438  * [load_avg definition]
439  *
440  *   load_avg = runnable% * scale_load_down(load)
441  *
442  * [runnable_avg definition]
443  *
444  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445  *
446  * [util_avg definition]
447  *
448  *   util_avg = running% * SCHED_CAPACITY_SCALE
449  *
450  * where runnable% is the time ratio that a sched_entity is runnable and
451  * running% the time ratio that a sched_entity is running.
452  *
453  * For cfs_rq, they are the aggregated values of all runnable and blocked
454  * sched_entities.
455  *
456  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458  * for computing those signals (see update_rq_clock_pelt())
459  *
460  * N.B., the above ratios (runnable% and running%) themselves are in the
461  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462  * to as large a range as necessary. This is for example reflected by
463  * util_avg's SCHED_CAPACITY_SCALE.
464  *
465  * [Overflow issue]
466  *
467  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468  * with the highest load (=88761), always runnable on a single cfs_rq,
469  * and should not overflow as the number already hits PID_MAX_LIMIT.
470  *
471  * For all other cases (including 32-bit kernels), struct load_weight's
472  * weight will overflow first before we do, because:
473  *
474  *    Max(load_avg) <= Max(load.weight)
475  *
476  * Then it is the load_weight's responsibility to consider overflow
477  * issues.
478  */
479 struct sched_avg {
480 	u64				last_update_time;
481 	u64				load_sum;
482 	u64				runnable_sum;
483 	u32				util_sum;
484 	u32				period_contrib;
485 	unsigned long			load_avg;
486 	unsigned long			runnable_avg;
487 	unsigned long			util_avg;
488 	struct util_est			util_est;
489 } ____cacheline_aligned;
490 
491 struct sched_statistics {
492 #ifdef CONFIG_SCHEDSTATS
493 	u64				wait_start;
494 	u64				wait_max;
495 	u64				wait_count;
496 	u64				wait_sum;
497 	u64				iowait_count;
498 	u64				iowait_sum;
499 
500 	u64				sleep_start;
501 	u64				sleep_max;
502 	s64				sum_sleep_runtime;
503 
504 	u64				block_start;
505 	u64				block_max;
506 	u64				exec_max;
507 	u64				slice_max;
508 
509 	u64				nr_migrations_cold;
510 	u64				nr_failed_migrations_affine;
511 	u64				nr_failed_migrations_running;
512 	u64				nr_failed_migrations_hot;
513 	u64				nr_forced_migrations;
514 
515 	u64				nr_wakeups;
516 	u64				nr_wakeups_sync;
517 	u64				nr_wakeups_migrate;
518 	u64				nr_wakeups_local;
519 	u64				nr_wakeups_remote;
520 	u64				nr_wakeups_affine;
521 	u64				nr_wakeups_affine_attempts;
522 	u64				nr_wakeups_passive;
523 	u64				nr_wakeups_idle;
524 #endif
525 };
526 
527 struct sched_entity {
528 	/* For load-balancing: */
529 	struct load_weight		load;
530 	struct rb_node			run_node;
531 	struct list_head		group_node;
532 	unsigned int			on_rq;
533 
534 	u64				exec_start;
535 	u64				sum_exec_runtime;
536 	u64				vruntime;
537 	u64				prev_sum_exec_runtime;
538 
539 	u64				nr_migrations;
540 
541 	struct sched_statistics		statistics;
542 
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 	int				depth;
545 	struct sched_entity		*parent;
546 	/* rq on which this entity is (to be) queued: */
547 	struct cfs_rq			*cfs_rq;
548 	/* rq "owned" by this entity/group: */
549 	struct cfs_rq			*my_q;
550 	/* cached value of my_q->h_nr_running */
551 	unsigned long			runnable_weight;
552 #endif
553 
554 #ifdef CONFIG_SMP
555 	/*
556 	 * Per entity load average tracking.
557 	 *
558 	 * Put into separate cache line so it does not
559 	 * collide with read-mostly values above.
560 	 */
561 	struct sched_avg		avg;
562 #endif
563 };
564 
565 struct sched_rt_entity {
566 	struct list_head		run_list;
567 	unsigned long			timeout;
568 	unsigned long			watchdog_stamp;
569 	unsigned int			time_slice;
570 	unsigned short			on_rq;
571 	unsigned short			on_list;
572 
573 	struct sched_rt_entity		*back;
574 #ifdef CONFIG_RT_GROUP_SCHED
575 	struct sched_rt_entity		*parent;
576 	/* rq on which this entity is (to be) queued: */
577 	struct rt_rq			*rt_rq;
578 	/* rq "owned" by this entity/group: */
579 	struct rt_rq			*my_q;
580 #endif
581 } __randomize_layout;
582 
583 struct sched_dl_entity {
584 	struct rb_node			rb_node;
585 
586 	/*
587 	 * Original scheduling parameters. Copied here from sched_attr
588 	 * during sched_setattr(), they will remain the same until
589 	 * the next sched_setattr().
590 	 */
591 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
592 	u64				dl_deadline;	/* Relative deadline of each instance	*/
593 	u64				dl_period;	/* Separation of two instances (period) */
594 	u64				dl_bw;		/* dl_runtime / dl_period		*/
595 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
596 
597 	/*
598 	 * Actual scheduling parameters. Initialized with the values above,
599 	 * they are continuously updated during task execution. Note that
600 	 * the remaining runtime could be < 0 in case we are in overrun.
601 	 */
602 	s64				runtime;	/* Remaining runtime for this instance	*/
603 	u64				deadline;	/* Absolute deadline for this instance	*/
604 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
605 
606 	/*
607 	 * Some bool flags:
608 	 *
609 	 * @dl_throttled tells if we exhausted the runtime. If so, the
610 	 * task has to wait for a replenishment to be performed at the
611 	 * next firing of dl_timer.
612 	 *
613 	 * @dl_boosted tells if we are boosted due to DI. If so we are
614 	 * outside bandwidth enforcement mechanism (but only until we
615 	 * exit the critical section);
616 	 *
617 	 * @dl_yielded tells if task gave up the CPU before consuming
618 	 * all its available runtime during the last job.
619 	 *
620 	 * @dl_non_contending tells if the task is inactive while still
621 	 * contributing to the active utilization. In other words, it
622 	 * indicates if the inactive timer has been armed and its handler
623 	 * has not been executed yet. This flag is useful to avoid race
624 	 * conditions between the inactive timer handler and the wakeup
625 	 * code.
626 	 *
627 	 * @dl_overrun tells if the task asked to be informed about runtime
628 	 * overruns.
629 	 */
630 	unsigned int			dl_throttled      : 1;
631 	unsigned int			dl_yielded        : 1;
632 	unsigned int			dl_non_contending : 1;
633 	unsigned int			dl_overrun	  : 1;
634 
635 	/*
636 	 * Bandwidth enforcement timer. Each -deadline task has its
637 	 * own bandwidth to be enforced, thus we need one timer per task.
638 	 */
639 	struct hrtimer			dl_timer;
640 
641 	/*
642 	 * Inactive timer, responsible for decreasing the active utilization
643 	 * at the "0-lag time". When a -deadline task blocks, it contributes
644 	 * to GRUB's active utilization until the "0-lag time", hence a
645 	 * timer is needed to decrease the active utilization at the correct
646 	 * time.
647 	 */
648 	struct hrtimer inactive_timer;
649 
650 #ifdef CONFIG_RT_MUTEXES
651 	/*
652 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
654 	 * to (the original one/itself).
655 	 */
656 	struct sched_dl_entity *pi_se;
657 #endif
658 };
659 
660 #ifdef CONFIG_UCLAMP_TASK
661 /* Number of utilization clamp buckets (shorter alias) */
662 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663 
664 /*
665  * Utilization clamp for a scheduling entity
666  * @value:		clamp value "assigned" to a se
667  * @bucket_id:		bucket index corresponding to the "assigned" value
668  * @active:		the se is currently refcounted in a rq's bucket
669  * @user_defined:	the requested clamp value comes from user-space
670  *
671  * The bucket_id is the index of the clamp bucket matching the clamp value
672  * which is pre-computed and stored to avoid expensive integer divisions from
673  * the fast path.
674  *
675  * The active bit is set whenever a task has got an "effective" value assigned,
676  * which can be different from the clamp value "requested" from user-space.
677  * This allows to know a task is refcounted in the rq's bucket corresponding
678  * to the "effective" bucket_id.
679  *
680  * The user_defined bit is set whenever a task has got a task-specific clamp
681  * value requested from userspace, i.e. the system defaults apply to this task
682  * just as a restriction. This allows to relax default clamps when a less
683  * restrictive task-specific value has been requested, thus allowing to
684  * implement a "nice" semantic. For example, a task running with a 20%
685  * default boost can still drop its own boosting to 0%.
686  */
687 struct uclamp_se {
688 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
689 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
690 	unsigned int active		: 1;
691 	unsigned int user_defined	: 1;
692 };
693 #endif /* CONFIG_UCLAMP_TASK */
694 
695 union rcu_special {
696 	struct {
697 		u8			blocked;
698 		u8			need_qs;
699 		u8			exp_hint; /* Hint for performance. */
700 		u8			need_mb; /* Readers need smp_mb(). */
701 	} b; /* Bits. */
702 	u32 s; /* Set of bits. */
703 };
704 
705 enum perf_event_task_context {
706 	perf_invalid_context = -1,
707 	perf_hw_context = 0,
708 	perf_sw_context,
709 	perf_nr_task_contexts,
710 };
711 
712 struct wake_q_node {
713 	struct wake_q_node *next;
714 };
715 
716 struct kmap_ctrl {
717 #ifdef CONFIG_KMAP_LOCAL
718 	int				idx;
719 	pte_t				pteval[KM_MAX_IDX];
720 #endif
721 };
722 
723 struct task_struct {
724 #ifdef CONFIG_THREAD_INFO_IN_TASK
725 	/*
726 	 * For reasons of header soup (see current_thread_info()), this
727 	 * must be the first element of task_struct.
728 	 */
729 	struct thread_info		thread_info;
730 #endif
731 	unsigned int			__state;
732 
733 #ifdef CONFIG_PREEMPT_RT
734 	/* saved state for "spinlock sleepers" */
735 	unsigned int			saved_state;
736 #endif
737 
738 	/*
739 	 * This begins the randomizable portion of task_struct. Only
740 	 * scheduling-critical items should be added above here.
741 	 */
742 	randomized_struct_fields_start
743 
744 	void				*stack;
745 	refcount_t			usage;
746 	/* Per task flags (PF_*), defined further below: */
747 	unsigned int			flags;
748 	unsigned int			ptrace;
749 
750 #ifdef CONFIG_SMP
751 	int				on_cpu;
752 	struct __call_single_node	wake_entry;
753 #ifdef CONFIG_THREAD_INFO_IN_TASK
754 	/* Current CPU: */
755 	unsigned int			cpu;
756 #endif
757 	unsigned int			wakee_flips;
758 	unsigned long			wakee_flip_decay_ts;
759 	struct task_struct		*last_wakee;
760 
761 	/*
762 	 * recent_used_cpu is initially set as the last CPU used by a task
763 	 * that wakes affine another task. Waker/wakee relationships can
764 	 * push tasks around a CPU where each wakeup moves to the next one.
765 	 * Tracking a recently used CPU allows a quick search for a recently
766 	 * used CPU that may be idle.
767 	 */
768 	int				recent_used_cpu;
769 	int				wake_cpu;
770 #endif
771 	int				on_rq;
772 
773 	int				prio;
774 	int				static_prio;
775 	int				normal_prio;
776 	unsigned int			rt_priority;
777 
778 	const struct sched_class	*sched_class;
779 	struct sched_entity		se;
780 	struct sched_rt_entity		rt;
781 	struct sched_dl_entity		dl;
782 
783 #ifdef CONFIG_SCHED_CORE
784 	struct rb_node			core_node;
785 	unsigned long			core_cookie;
786 	unsigned int			core_occupation;
787 #endif
788 
789 #ifdef CONFIG_CGROUP_SCHED
790 	struct task_group		*sched_task_group;
791 #endif
792 
793 #ifdef CONFIG_UCLAMP_TASK
794 	/*
795 	 * Clamp values requested for a scheduling entity.
796 	 * Must be updated with task_rq_lock() held.
797 	 */
798 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
799 	/*
800 	 * Effective clamp values used for a scheduling entity.
801 	 * Must be updated with task_rq_lock() held.
802 	 */
803 	struct uclamp_se		uclamp[UCLAMP_CNT];
804 #endif
805 
806 #ifdef CONFIG_PREEMPT_NOTIFIERS
807 	/* List of struct preempt_notifier: */
808 	struct hlist_head		preempt_notifiers;
809 #endif
810 
811 #ifdef CONFIG_BLK_DEV_IO_TRACE
812 	unsigned int			btrace_seq;
813 #endif
814 
815 	unsigned int			policy;
816 	int				nr_cpus_allowed;
817 	const cpumask_t			*cpus_ptr;
818 	cpumask_t			*user_cpus_ptr;
819 	cpumask_t			cpus_mask;
820 	void				*migration_pending;
821 #ifdef CONFIG_SMP
822 	unsigned short			migration_disabled;
823 #endif
824 	unsigned short			migration_flags;
825 
826 #ifdef CONFIG_PREEMPT_RCU
827 	int				rcu_read_lock_nesting;
828 	union rcu_special		rcu_read_unlock_special;
829 	struct list_head		rcu_node_entry;
830 	struct rcu_node			*rcu_blocked_node;
831 #endif /* #ifdef CONFIG_PREEMPT_RCU */
832 
833 #ifdef CONFIG_TASKS_RCU
834 	unsigned long			rcu_tasks_nvcsw;
835 	u8				rcu_tasks_holdout;
836 	u8				rcu_tasks_idx;
837 	int				rcu_tasks_idle_cpu;
838 	struct list_head		rcu_tasks_holdout_list;
839 #endif /* #ifdef CONFIG_TASKS_RCU */
840 
841 #ifdef CONFIG_TASKS_TRACE_RCU
842 	int				trc_reader_nesting;
843 	int				trc_ipi_to_cpu;
844 	union rcu_special		trc_reader_special;
845 	bool				trc_reader_checked;
846 	struct list_head		trc_holdout_list;
847 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
848 
849 	struct sched_info		sched_info;
850 
851 	struct list_head		tasks;
852 #ifdef CONFIG_SMP
853 	struct plist_node		pushable_tasks;
854 	struct rb_node			pushable_dl_tasks;
855 #endif
856 
857 	struct mm_struct		*mm;
858 	struct mm_struct		*active_mm;
859 
860 	/* Per-thread vma caching: */
861 	struct vmacache			vmacache;
862 
863 #ifdef SPLIT_RSS_COUNTING
864 	struct task_rss_stat		rss_stat;
865 #endif
866 	int				exit_state;
867 	int				exit_code;
868 	int				exit_signal;
869 	/* The signal sent when the parent dies: */
870 	int				pdeath_signal;
871 	/* JOBCTL_*, siglock protected: */
872 	unsigned long			jobctl;
873 
874 	/* Used for emulating ABI behavior of previous Linux versions: */
875 	unsigned int			personality;
876 
877 	/* Scheduler bits, serialized by scheduler locks: */
878 	unsigned			sched_reset_on_fork:1;
879 	unsigned			sched_contributes_to_load:1;
880 	unsigned			sched_migrated:1;
881 #ifdef CONFIG_PSI
882 	unsigned			sched_psi_wake_requeue:1;
883 #endif
884 
885 	/* Force alignment to the next boundary: */
886 	unsigned			:0;
887 
888 	/* Unserialized, strictly 'current' */
889 
890 	/*
891 	 * This field must not be in the scheduler word above due to wakelist
892 	 * queueing no longer being serialized by p->on_cpu. However:
893 	 *
894 	 * p->XXX = X;			ttwu()
895 	 * schedule()			  if (p->on_rq && ..) // false
896 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
897 	 *   deactivate_task()		      ttwu_queue_wakelist())
898 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
899 	 *
900 	 * guarantees all stores of 'current' are visible before
901 	 * ->sched_remote_wakeup gets used, so it can be in this word.
902 	 */
903 	unsigned			sched_remote_wakeup:1;
904 
905 	/* Bit to tell LSMs we're in execve(): */
906 	unsigned			in_execve:1;
907 	unsigned			in_iowait:1;
908 #ifndef TIF_RESTORE_SIGMASK
909 	unsigned			restore_sigmask:1;
910 #endif
911 #ifdef CONFIG_MEMCG
912 	unsigned			in_user_fault:1;
913 #endif
914 #ifdef CONFIG_COMPAT_BRK
915 	unsigned			brk_randomized:1;
916 #endif
917 #ifdef CONFIG_CGROUPS
918 	/* disallow userland-initiated cgroup migration */
919 	unsigned			no_cgroup_migration:1;
920 	/* task is frozen/stopped (used by the cgroup freezer) */
921 	unsigned			frozen:1;
922 #endif
923 #ifdef CONFIG_BLK_CGROUP
924 	unsigned			use_memdelay:1;
925 #endif
926 #ifdef CONFIG_PSI
927 	/* Stalled due to lack of memory */
928 	unsigned			in_memstall:1;
929 #endif
930 #ifdef CONFIG_PAGE_OWNER
931 	/* Used by page_owner=on to detect recursion in page tracking. */
932 	unsigned			in_page_owner:1;
933 #endif
934 #ifdef CONFIG_EVENTFD
935 	/* Recursion prevention for eventfd_signal() */
936 	unsigned			in_eventfd_signal:1;
937 #endif
938 
939 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
940 
941 	struct restart_block		restart_block;
942 
943 	pid_t				pid;
944 	pid_t				tgid;
945 
946 #ifdef CONFIG_STACKPROTECTOR
947 	/* Canary value for the -fstack-protector GCC feature: */
948 	unsigned long			stack_canary;
949 #endif
950 	/*
951 	 * Pointers to the (original) parent process, youngest child, younger sibling,
952 	 * older sibling, respectively.  (p->father can be replaced with
953 	 * p->real_parent->pid)
954 	 */
955 
956 	/* Real parent process: */
957 	struct task_struct __rcu	*real_parent;
958 
959 	/* Recipient of SIGCHLD, wait4() reports: */
960 	struct task_struct __rcu	*parent;
961 
962 	/*
963 	 * Children/sibling form the list of natural children:
964 	 */
965 	struct list_head		children;
966 	struct list_head		sibling;
967 	struct task_struct		*group_leader;
968 
969 	/*
970 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
971 	 *
972 	 * This includes both natural children and PTRACE_ATTACH targets.
973 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
974 	 */
975 	struct list_head		ptraced;
976 	struct list_head		ptrace_entry;
977 
978 	/* PID/PID hash table linkage. */
979 	struct pid			*thread_pid;
980 	struct hlist_node		pid_links[PIDTYPE_MAX];
981 	struct list_head		thread_group;
982 	struct list_head		thread_node;
983 
984 	struct completion		*vfork_done;
985 
986 	/* CLONE_CHILD_SETTID: */
987 	int __user			*set_child_tid;
988 
989 	/* CLONE_CHILD_CLEARTID: */
990 	int __user			*clear_child_tid;
991 
992 	/* PF_IO_WORKER */
993 	void				*pf_io_worker;
994 
995 	u64				utime;
996 	u64				stime;
997 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
998 	u64				utimescaled;
999 	u64				stimescaled;
1000 #endif
1001 	u64				gtime;
1002 	struct prev_cputime		prev_cputime;
1003 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1004 	struct vtime			vtime;
1005 #endif
1006 
1007 #ifdef CONFIG_NO_HZ_FULL
1008 	atomic_t			tick_dep_mask;
1009 #endif
1010 	/* Context switch counts: */
1011 	unsigned long			nvcsw;
1012 	unsigned long			nivcsw;
1013 
1014 	/* Monotonic time in nsecs: */
1015 	u64				start_time;
1016 
1017 	/* Boot based time in nsecs: */
1018 	u64				start_boottime;
1019 
1020 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1021 	unsigned long			min_flt;
1022 	unsigned long			maj_flt;
1023 
1024 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1025 	struct posix_cputimers		posix_cputimers;
1026 
1027 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1028 	struct posix_cputimers_work	posix_cputimers_work;
1029 #endif
1030 
1031 	/* Process credentials: */
1032 
1033 	/* Tracer's credentials at attach: */
1034 	const struct cred __rcu		*ptracer_cred;
1035 
1036 	/* Objective and real subjective task credentials (COW): */
1037 	const struct cred __rcu		*real_cred;
1038 
1039 	/* Effective (overridable) subjective task credentials (COW): */
1040 	const struct cred __rcu		*cred;
1041 
1042 #ifdef CONFIG_KEYS
1043 	/* Cached requested key. */
1044 	struct key			*cached_requested_key;
1045 #endif
1046 
1047 	/*
1048 	 * executable name, excluding path.
1049 	 *
1050 	 * - normally initialized setup_new_exec()
1051 	 * - access it with [gs]et_task_comm()
1052 	 * - lock it with task_lock()
1053 	 */
1054 	char				comm[TASK_COMM_LEN];
1055 
1056 	struct nameidata		*nameidata;
1057 
1058 #ifdef CONFIG_SYSVIPC
1059 	struct sysv_sem			sysvsem;
1060 	struct sysv_shm			sysvshm;
1061 #endif
1062 #ifdef CONFIG_DETECT_HUNG_TASK
1063 	unsigned long			last_switch_count;
1064 	unsigned long			last_switch_time;
1065 #endif
1066 	/* Filesystem information: */
1067 	struct fs_struct		*fs;
1068 
1069 	/* Open file information: */
1070 	struct files_struct		*files;
1071 
1072 #ifdef CONFIG_IO_URING
1073 	struct io_uring_task		*io_uring;
1074 #endif
1075 
1076 	/* Namespaces: */
1077 	struct nsproxy			*nsproxy;
1078 
1079 	/* Signal handlers: */
1080 	struct signal_struct		*signal;
1081 	struct sighand_struct __rcu		*sighand;
1082 	sigset_t			blocked;
1083 	sigset_t			real_blocked;
1084 	/* Restored if set_restore_sigmask() was used: */
1085 	sigset_t			saved_sigmask;
1086 	struct sigpending		pending;
1087 	unsigned long			sas_ss_sp;
1088 	size_t				sas_ss_size;
1089 	unsigned int			sas_ss_flags;
1090 
1091 	struct callback_head		*task_works;
1092 
1093 #ifdef CONFIG_AUDIT
1094 #ifdef CONFIG_AUDITSYSCALL
1095 	struct audit_context		*audit_context;
1096 #endif
1097 	kuid_t				loginuid;
1098 	unsigned int			sessionid;
1099 #endif
1100 	struct seccomp			seccomp;
1101 	struct syscall_user_dispatch	syscall_dispatch;
1102 
1103 	/* Thread group tracking: */
1104 	u64				parent_exec_id;
1105 	u64				self_exec_id;
1106 
1107 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1108 	spinlock_t			alloc_lock;
1109 
1110 	/* Protection of the PI data structures: */
1111 	raw_spinlock_t			pi_lock;
1112 
1113 	struct wake_q_node		wake_q;
1114 
1115 #ifdef CONFIG_RT_MUTEXES
1116 	/* PI waiters blocked on a rt_mutex held by this task: */
1117 	struct rb_root_cached		pi_waiters;
1118 	/* Updated under owner's pi_lock and rq lock */
1119 	struct task_struct		*pi_top_task;
1120 	/* Deadlock detection and priority inheritance handling: */
1121 	struct rt_mutex_waiter		*pi_blocked_on;
1122 #endif
1123 
1124 #ifdef CONFIG_DEBUG_MUTEXES
1125 	/* Mutex deadlock detection: */
1126 	struct mutex_waiter		*blocked_on;
1127 #endif
1128 
1129 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1130 	int				non_block_count;
1131 #endif
1132 
1133 #ifdef CONFIG_TRACE_IRQFLAGS
1134 	struct irqtrace_events		irqtrace;
1135 	unsigned int			hardirq_threaded;
1136 	u64				hardirq_chain_key;
1137 	int				softirqs_enabled;
1138 	int				softirq_context;
1139 	int				irq_config;
1140 #endif
1141 #ifdef CONFIG_PREEMPT_RT
1142 	int				softirq_disable_cnt;
1143 #endif
1144 
1145 #ifdef CONFIG_LOCKDEP
1146 # define MAX_LOCK_DEPTH			48UL
1147 	u64				curr_chain_key;
1148 	int				lockdep_depth;
1149 	unsigned int			lockdep_recursion;
1150 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1151 #endif
1152 
1153 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1154 	unsigned int			in_ubsan;
1155 #endif
1156 
1157 	/* Journalling filesystem info: */
1158 	void				*journal_info;
1159 
1160 	/* Stacked block device info: */
1161 	struct bio_list			*bio_list;
1162 
1163 #ifdef CONFIG_BLOCK
1164 	/* Stack plugging: */
1165 	struct blk_plug			*plug;
1166 #endif
1167 
1168 	/* VM state: */
1169 	struct reclaim_state		*reclaim_state;
1170 
1171 	struct backing_dev_info		*backing_dev_info;
1172 
1173 	struct io_context		*io_context;
1174 
1175 #ifdef CONFIG_COMPACTION
1176 	struct capture_control		*capture_control;
1177 #endif
1178 	/* Ptrace state: */
1179 	unsigned long			ptrace_message;
1180 	kernel_siginfo_t		*last_siginfo;
1181 
1182 	struct task_io_accounting	ioac;
1183 #ifdef CONFIG_PSI
1184 	/* Pressure stall state */
1185 	unsigned int			psi_flags;
1186 #endif
1187 #ifdef CONFIG_TASK_XACCT
1188 	/* Accumulated RSS usage: */
1189 	u64				acct_rss_mem1;
1190 	/* Accumulated virtual memory usage: */
1191 	u64				acct_vm_mem1;
1192 	/* stime + utime since last update: */
1193 	u64				acct_timexpd;
1194 #endif
1195 #ifdef CONFIG_CPUSETS
1196 	/* Protected by ->alloc_lock: */
1197 	nodemask_t			mems_allowed;
1198 	/* Sequence number to catch updates: */
1199 	seqcount_spinlock_t		mems_allowed_seq;
1200 	int				cpuset_mem_spread_rotor;
1201 	int				cpuset_slab_spread_rotor;
1202 #endif
1203 #ifdef CONFIG_CGROUPS
1204 	/* Control Group info protected by css_set_lock: */
1205 	struct css_set __rcu		*cgroups;
1206 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1207 	struct list_head		cg_list;
1208 #endif
1209 #ifdef CONFIG_X86_CPU_RESCTRL
1210 	u32				closid;
1211 	u32				rmid;
1212 #endif
1213 #ifdef CONFIG_FUTEX
1214 	struct robust_list_head __user	*robust_list;
1215 #ifdef CONFIG_COMPAT
1216 	struct compat_robust_list_head __user *compat_robust_list;
1217 #endif
1218 	struct list_head		pi_state_list;
1219 	struct futex_pi_state		*pi_state_cache;
1220 	struct mutex			futex_exit_mutex;
1221 	unsigned int			futex_state;
1222 #endif
1223 #ifdef CONFIG_PERF_EVENTS
1224 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1225 	struct mutex			perf_event_mutex;
1226 	struct list_head		perf_event_list;
1227 #endif
1228 #ifdef CONFIG_DEBUG_PREEMPT
1229 	unsigned long			preempt_disable_ip;
1230 #endif
1231 #ifdef CONFIG_NUMA
1232 	/* Protected by alloc_lock: */
1233 	struct mempolicy		*mempolicy;
1234 	short				il_prev;
1235 	short				pref_node_fork;
1236 #endif
1237 #ifdef CONFIG_NUMA_BALANCING
1238 	int				numa_scan_seq;
1239 	unsigned int			numa_scan_period;
1240 	unsigned int			numa_scan_period_max;
1241 	int				numa_preferred_nid;
1242 	unsigned long			numa_migrate_retry;
1243 	/* Migration stamp: */
1244 	u64				node_stamp;
1245 	u64				last_task_numa_placement;
1246 	u64				last_sum_exec_runtime;
1247 	struct callback_head		numa_work;
1248 
1249 	/*
1250 	 * This pointer is only modified for current in syscall and
1251 	 * pagefault context (and for tasks being destroyed), so it can be read
1252 	 * from any of the following contexts:
1253 	 *  - RCU read-side critical section
1254 	 *  - current->numa_group from everywhere
1255 	 *  - task's runqueue locked, task not running
1256 	 */
1257 	struct numa_group __rcu		*numa_group;
1258 
1259 	/*
1260 	 * numa_faults is an array split into four regions:
1261 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1262 	 * in this precise order.
1263 	 *
1264 	 * faults_memory: Exponential decaying average of faults on a per-node
1265 	 * basis. Scheduling placement decisions are made based on these
1266 	 * counts. The values remain static for the duration of a PTE scan.
1267 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1268 	 * hinting fault was incurred.
1269 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1270 	 * during the current scan window. When the scan completes, the counts
1271 	 * in faults_memory and faults_cpu decay and these values are copied.
1272 	 */
1273 	unsigned long			*numa_faults;
1274 	unsigned long			total_numa_faults;
1275 
1276 	/*
1277 	 * numa_faults_locality tracks if faults recorded during the last
1278 	 * scan window were remote/local or failed to migrate. The task scan
1279 	 * period is adapted based on the locality of the faults with different
1280 	 * weights depending on whether they were shared or private faults
1281 	 */
1282 	unsigned long			numa_faults_locality[3];
1283 
1284 	unsigned long			numa_pages_migrated;
1285 #endif /* CONFIG_NUMA_BALANCING */
1286 
1287 #ifdef CONFIG_RSEQ
1288 	struct rseq __user *rseq;
1289 	u32 rseq_sig;
1290 	/*
1291 	 * RmW on rseq_event_mask must be performed atomically
1292 	 * with respect to preemption.
1293 	 */
1294 	unsigned long rseq_event_mask;
1295 #endif
1296 
1297 	struct tlbflush_unmap_batch	tlb_ubc;
1298 
1299 	union {
1300 		refcount_t		rcu_users;
1301 		struct rcu_head		rcu;
1302 	};
1303 
1304 	/* Cache last used pipe for splice(): */
1305 	struct pipe_inode_info		*splice_pipe;
1306 
1307 	struct page_frag		task_frag;
1308 
1309 #ifdef CONFIG_TASK_DELAY_ACCT
1310 	struct task_delay_info		*delays;
1311 #endif
1312 
1313 #ifdef CONFIG_FAULT_INJECTION
1314 	int				make_it_fail;
1315 	unsigned int			fail_nth;
1316 #endif
1317 	/*
1318 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1319 	 * balance_dirty_pages() for a dirty throttling pause:
1320 	 */
1321 	int				nr_dirtied;
1322 	int				nr_dirtied_pause;
1323 	/* Start of a write-and-pause period: */
1324 	unsigned long			dirty_paused_when;
1325 
1326 #ifdef CONFIG_LATENCYTOP
1327 	int				latency_record_count;
1328 	struct latency_record		latency_record[LT_SAVECOUNT];
1329 #endif
1330 	/*
1331 	 * Time slack values; these are used to round up poll() and
1332 	 * select() etc timeout values. These are in nanoseconds.
1333 	 */
1334 	u64				timer_slack_ns;
1335 	u64				default_timer_slack_ns;
1336 
1337 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1338 	unsigned int			kasan_depth;
1339 #endif
1340 
1341 #ifdef CONFIG_KCSAN
1342 	struct kcsan_ctx		kcsan_ctx;
1343 #ifdef CONFIG_TRACE_IRQFLAGS
1344 	struct irqtrace_events		kcsan_save_irqtrace;
1345 #endif
1346 #endif
1347 
1348 #if IS_ENABLED(CONFIG_KUNIT)
1349 	struct kunit			*kunit_test;
1350 #endif
1351 
1352 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1353 	/* Index of current stored address in ret_stack: */
1354 	int				curr_ret_stack;
1355 	int				curr_ret_depth;
1356 
1357 	/* Stack of return addresses for return function tracing: */
1358 	struct ftrace_ret_stack		*ret_stack;
1359 
1360 	/* Timestamp for last schedule: */
1361 	unsigned long long		ftrace_timestamp;
1362 
1363 	/*
1364 	 * Number of functions that haven't been traced
1365 	 * because of depth overrun:
1366 	 */
1367 	atomic_t			trace_overrun;
1368 
1369 	/* Pause tracing: */
1370 	atomic_t			tracing_graph_pause;
1371 #endif
1372 
1373 #ifdef CONFIG_TRACING
1374 	/* State flags for use by tracers: */
1375 	unsigned long			trace;
1376 
1377 	/* Bitmask and counter of trace recursion: */
1378 	unsigned long			trace_recursion;
1379 #endif /* CONFIG_TRACING */
1380 
1381 #ifdef CONFIG_KCOV
1382 	/* See kernel/kcov.c for more details. */
1383 
1384 	/* Coverage collection mode enabled for this task (0 if disabled): */
1385 	unsigned int			kcov_mode;
1386 
1387 	/* Size of the kcov_area: */
1388 	unsigned int			kcov_size;
1389 
1390 	/* Buffer for coverage collection: */
1391 	void				*kcov_area;
1392 
1393 	/* KCOV descriptor wired with this task or NULL: */
1394 	struct kcov			*kcov;
1395 
1396 	/* KCOV common handle for remote coverage collection: */
1397 	u64				kcov_handle;
1398 
1399 	/* KCOV sequence number: */
1400 	int				kcov_sequence;
1401 
1402 	/* Collect coverage from softirq context: */
1403 	unsigned int			kcov_softirq;
1404 #endif
1405 
1406 #ifdef CONFIG_MEMCG
1407 	struct mem_cgroup		*memcg_in_oom;
1408 	gfp_t				memcg_oom_gfp_mask;
1409 	int				memcg_oom_order;
1410 
1411 	/* Number of pages to reclaim on returning to userland: */
1412 	unsigned int			memcg_nr_pages_over_high;
1413 
1414 	/* Used by memcontrol for targeted memcg charge: */
1415 	struct mem_cgroup		*active_memcg;
1416 #endif
1417 
1418 #ifdef CONFIG_BLK_CGROUP
1419 	struct request_queue		*throttle_queue;
1420 #endif
1421 
1422 #ifdef CONFIG_UPROBES
1423 	struct uprobe_task		*utask;
1424 #endif
1425 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1426 	unsigned int			sequential_io;
1427 	unsigned int			sequential_io_avg;
1428 #endif
1429 	struct kmap_ctrl		kmap_ctrl;
1430 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1431 	unsigned long			task_state_change;
1432 # ifdef CONFIG_PREEMPT_RT
1433 	unsigned long			saved_state_change;
1434 # endif
1435 #endif
1436 	int				pagefault_disabled;
1437 #ifdef CONFIG_MMU
1438 	struct task_struct		*oom_reaper_list;
1439 #endif
1440 #ifdef CONFIG_VMAP_STACK
1441 	struct vm_struct		*stack_vm_area;
1442 #endif
1443 #ifdef CONFIG_THREAD_INFO_IN_TASK
1444 	/* A live task holds one reference: */
1445 	refcount_t			stack_refcount;
1446 #endif
1447 #ifdef CONFIG_LIVEPATCH
1448 	int patch_state;
1449 #endif
1450 #ifdef CONFIG_SECURITY
1451 	/* Used by LSM modules for access restriction: */
1452 	void				*security;
1453 #endif
1454 #ifdef CONFIG_BPF_SYSCALL
1455 	/* Used by BPF task local storage */
1456 	struct bpf_local_storage __rcu	*bpf_storage;
1457 	/* Used for BPF run context */
1458 	struct bpf_run_ctx		*bpf_ctx;
1459 #endif
1460 
1461 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1462 	unsigned long			lowest_stack;
1463 	unsigned long			prev_lowest_stack;
1464 #endif
1465 
1466 #ifdef CONFIG_X86_MCE
1467 	void __user			*mce_vaddr;
1468 	__u64				mce_kflags;
1469 	u64				mce_addr;
1470 	__u64				mce_ripv : 1,
1471 					mce_whole_page : 1,
1472 					__mce_reserved : 62;
1473 	struct callback_head		mce_kill_me;
1474 	int				mce_count;
1475 #endif
1476 
1477 #ifdef CONFIG_KRETPROBES
1478 	struct llist_head               kretprobe_instances;
1479 #endif
1480 
1481 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1482 	/*
1483 	 * If L1D flush is supported on mm context switch
1484 	 * then we use this callback head to queue kill work
1485 	 * to kill tasks that are not running on SMT disabled
1486 	 * cores
1487 	 */
1488 	struct callback_head		l1d_flush_kill;
1489 #endif
1490 
1491 	/*
1492 	 * New fields for task_struct should be added above here, so that
1493 	 * they are included in the randomized portion of task_struct.
1494 	 */
1495 	randomized_struct_fields_end
1496 
1497 	/* CPU-specific state of this task: */
1498 	struct thread_struct		thread;
1499 
1500 	/*
1501 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1502 	 * structure.  It *MUST* be at the end of 'task_struct'.
1503 	 *
1504 	 * Do not put anything below here!
1505 	 */
1506 };
1507 
task_pid(struct task_struct * task)1508 static inline struct pid *task_pid(struct task_struct *task)
1509 {
1510 	return task->thread_pid;
1511 }
1512 
1513 /*
1514  * the helpers to get the task's different pids as they are seen
1515  * from various namespaces
1516  *
1517  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1518  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1519  *                     current.
1520  * task_xid_nr_ns()  : id seen from the ns specified;
1521  *
1522  * see also pid_nr() etc in include/linux/pid.h
1523  */
1524 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1525 
task_pid_nr(struct task_struct * tsk)1526 static inline pid_t task_pid_nr(struct task_struct *tsk)
1527 {
1528 	return tsk->pid;
1529 }
1530 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1531 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1532 {
1533 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1534 }
1535 
task_pid_vnr(struct task_struct * tsk)1536 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1537 {
1538 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1539 }
1540 
1541 
task_tgid_nr(struct task_struct * tsk)1542 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1543 {
1544 	return tsk->tgid;
1545 }
1546 
1547 /**
1548  * pid_alive - check that a task structure is not stale
1549  * @p: Task structure to be checked.
1550  *
1551  * Test if a process is not yet dead (at most zombie state)
1552  * If pid_alive fails, then pointers within the task structure
1553  * can be stale and must not be dereferenced.
1554  *
1555  * Return: 1 if the process is alive. 0 otherwise.
1556  */
pid_alive(const struct task_struct * p)1557 static inline int pid_alive(const struct task_struct *p)
1558 {
1559 	return p->thread_pid != NULL;
1560 }
1561 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1562 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1563 {
1564 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1565 }
1566 
task_pgrp_vnr(struct task_struct * tsk)1567 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1568 {
1569 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1570 }
1571 
1572 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1573 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1574 {
1575 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1576 }
1577 
task_session_vnr(struct task_struct * tsk)1578 static inline pid_t task_session_vnr(struct task_struct *tsk)
1579 {
1580 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1581 }
1582 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1583 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1584 {
1585 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1586 }
1587 
task_tgid_vnr(struct task_struct * tsk)1588 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1589 {
1590 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1591 }
1592 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1593 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1594 {
1595 	pid_t pid = 0;
1596 
1597 	rcu_read_lock();
1598 	if (pid_alive(tsk))
1599 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1600 	rcu_read_unlock();
1601 
1602 	return pid;
1603 }
1604 
task_ppid_nr(const struct task_struct * tsk)1605 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1606 {
1607 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1608 }
1609 
1610 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1611 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1612 {
1613 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1614 }
1615 
1616 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1617 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1618 
task_state_index(struct task_struct * tsk)1619 static inline unsigned int task_state_index(struct task_struct *tsk)
1620 {
1621 	unsigned int tsk_state = READ_ONCE(tsk->__state);
1622 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1623 
1624 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1625 
1626 	if (tsk_state == TASK_IDLE)
1627 		state = TASK_REPORT_IDLE;
1628 
1629 	return fls(state);
1630 }
1631 
task_index_to_char(unsigned int state)1632 static inline char task_index_to_char(unsigned int state)
1633 {
1634 	static const char state_char[] = "RSDTtXZPI";
1635 
1636 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1637 
1638 	return state_char[state];
1639 }
1640 
task_state_to_char(struct task_struct * tsk)1641 static inline char task_state_to_char(struct task_struct *tsk)
1642 {
1643 	return task_index_to_char(task_state_index(tsk));
1644 }
1645 
1646 /**
1647  * is_global_init - check if a task structure is init. Since init
1648  * is free to have sub-threads we need to check tgid.
1649  * @tsk: Task structure to be checked.
1650  *
1651  * Check if a task structure is the first user space task the kernel created.
1652  *
1653  * Return: 1 if the task structure is init. 0 otherwise.
1654  */
is_global_init(struct task_struct * tsk)1655 static inline int is_global_init(struct task_struct *tsk)
1656 {
1657 	return task_tgid_nr(tsk) == 1;
1658 }
1659 
1660 extern struct pid *cad_pid;
1661 
1662 /*
1663  * Per process flags
1664  */
1665 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1666 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1667 #define PF_EXITING		0x00000004	/* Getting shut down */
1668 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1669 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1671 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1672 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1673 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1674 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1675 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1676 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1678 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1679 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1680 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1681 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1682 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1683 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1684 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1685 						 * I am cleaning dirty pages from some other bdi. */
1686 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1687 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1688 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1689 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1690 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1691 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1692 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1693 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1694 
1695 /*
1696  * Only the _current_ task can read/write to tsk->flags, but other
1697  * tasks can access tsk->flags in readonly mode for example
1698  * with tsk_used_math (like during threaded core dumping).
1699  * There is however an exception to this rule during ptrace
1700  * or during fork: the ptracer task is allowed to write to the
1701  * child->flags of its traced child (same goes for fork, the parent
1702  * can write to the child->flags), because we're guaranteed the
1703  * child is not running and in turn not changing child->flags
1704  * at the same time the parent does it.
1705  */
1706 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1707 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1708 #define clear_used_math()			clear_stopped_child_used_math(current)
1709 #define set_used_math()				set_stopped_child_used_math(current)
1710 
1711 #define conditional_stopped_child_used_math(condition, child) \
1712 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1713 
1714 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1715 
1716 #define copy_to_stopped_child_used_math(child) \
1717 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1718 
1719 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1720 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1721 #define used_math()				tsk_used_math(current)
1722 
is_percpu_thread(void)1723 static __always_inline bool is_percpu_thread(void)
1724 {
1725 #ifdef CONFIG_SMP
1726 	return (current->flags & PF_NO_SETAFFINITY) &&
1727 		(current->nr_cpus_allowed  == 1);
1728 #else
1729 	return true;
1730 #endif
1731 }
1732 
1733 /* Per-process atomic flags. */
1734 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1735 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1736 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1737 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1738 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1739 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1740 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1741 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1742 
1743 #define TASK_PFA_TEST(name, func)					\
1744 	static inline bool task_##func(struct task_struct *p)		\
1745 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1746 
1747 #define TASK_PFA_SET(name, func)					\
1748 	static inline void task_set_##func(struct task_struct *p)	\
1749 	{ set_bit(PFA_##name, &p->atomic_flags); }
1750 
1751 #define TASK_PFA_CLEAR(name, func)					\
1752 	static inline void task_clear_##func(struct task_struct *p)	\
1753 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1754 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1755 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1756 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1757 
1758 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1759 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1760 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1761 
1762 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1763 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1764 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1765 
1766 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1767 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1768 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1769 
1770 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1771 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1772 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1773 
1774 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1775 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1776 
1777 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1778 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1779 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1780 
1781 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1782 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1783 
1784 static inline void
1785 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1786 {
1787 	current->flags &= ~flags;
1788 	current->flags |= orig_flags & flags;
1789 }
1790 
1791 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1792 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1793 #ifdef CONFIG_SMP
1794 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1795 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1796 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1797 extern void release_user_cpus_ptr(struct task_struct *p);
1798 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1799 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1800 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1801 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1802 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1803 {
1804 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1805 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1806 {
1807 	if (!cpumask_test_cpu(0, new_mask))
1808 		return -EINVAL;
1809 	return 0;
1810 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1811 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1812 {
1813 	if (src->user_cpus_ptr)
1814 		return -EINVAL;
1815 	return 0;
1816 }
release_user_cpus_ptr(struct task_struct * p)1817 static inline void release_user_cpus_ptr(struct task_struct *p)
1818 {
1819 	WARN_ON(p->user_cpus_ptr);
1820 }
1821 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1822 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1823 {
1824 	return 0;
1825 }
1826 #endif
1827 
1828 extern int yield_to(struct task_struct *p, bool preempt);
1829 extern void set_user_nice(struct task_struct *p, long nice);
1830 extern int task_prio(const struct task_struct *p);
1831 
1832 /**
1833  * task_nice - return the nice value of a given task.
1834  * @p: the task in question.
1835  *
1836  * Return: The nice value [ -20 ... 0 ... 19 ].
1837  */
task_nice(const struct task_struct * p)1838 static inline int task_nice(const struct task_struct *p)
1839 {
1840 	return PRIO_TO_NICE((p)->static_prio);
1841 }
1842 
1843 extern int can_nice(const struct task_struct *p, const int nice);
1844 extern int task_curr(const struct task_struct *p);
1845 extern int idle_cpu(int cpu);
1846 extern int available_idle_cpu(int cpu);
1847 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1848 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1849 extern void sched_set_fifo(struct task_struct *p);
1850 extern void sched_set_fifo_low(struct task_struct *p);
1851 extern void sched_set_normal(struct task_struct *p, int nice);
1852 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1853 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1854 extern struct task_struct *idle_task(int cpu);
1855 
1856 /**
1857  * is_idle_task - is the specified task an idle task?
1858  * @p: the task in question.
1859  *
1860  * Return: 1 if @p is an idle task. 0 otherwise.
1861  */
is_idle_task(const struct task_struct * p)1862 static __always_inline bool is_idle_task(const struct task_struct *p)
1863 {
1864 	return !!(p->flags & PF_IDLE);
1865 }
1866 
1867 extern struct task_struct *curr_task(int cpu);
1868 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1869 
1870 void yield(void);
1871 
1872 union thread_union {
1873 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1874 	struct task_struct task;
1875 #endif
1876 #ifndef CONFIG_THREAD_INFO_IN_TASK
1877 	struct thread_info thread_info;
1878 #endif
1879 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1880 };
1881 
1882 #ifndef CONFIG_THREAD_INFO_IN_TASK
1883 extern struct thread_info init_thread_info;
1884 #endif
1885 
1886 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1887 
1888 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1889 static inline struct thread_info *task_thread_info(struct task_struct *task)
1890 {
1891 	return &task->thread_info;
1892 }
1893 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1894 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1895 #endif
1896 
1897 /*
1898  * find a task by one of its numerical ids
1899  *
1900  * find_task_by_pid_ns():
1901  *      finds a task by its pid in the specified namespace
1902  * find_task_by_vpid():
1903  *      finds a task by its virtual pid
1904  *
1905  * see also find_vpid() etc in include/linux/pid.h
1906  */
1907 
1908 extern struct task_struct *find_task_by_vpid(pid_t nr);
1909 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1910 
1911 /*
1912  * find a task by its virtual pid and get the task struct
1913  */
1914 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1915 
1916 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1917 extern int wake_up_process(struct task_struct *tsk);
1918 extern void wake_up_new_task(struct task_struct *tsk);
1919 
1920 #ifdef CONFIG_SMP
1921 extern void kick_process(struct task_struct *tsk);
1922 #else
kick_process(struct task_struct * tsk)1923 static inline void kick_process(struct task_struct *tsk) { }
1924 #endif
1925 
1926 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1927 
set_task_comm(struct task_struct * tsk,const char * from)1928 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1929 {
1930 	__set_task_comm(tsk, from, false);
1931 }
1932 
1933 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1934 #define get_task_comm(buf, tsk) ({			\
1935 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1936 	__get_task_comm(buf, sizeof(buf), tsk);		\
1937 })
1938 
1939 #ifdef CONFIG_SMP
scheduler_ipi(void)1940 static __always_inline void scheduler_ipi(void)
1941 {
1942 	/*
1943 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1944 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1945 	 * this IPI.
1946 	 */
1947 	preempt_fold_need_resched();
1948 }
1949 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1950 #else
scheduler_ipi(void)1951 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,unsigned int match_state)1952 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1953 {
1954 	return 1;
1955 }
1956 #endif
1957 
1958 /*
1959  * Set thread flags in other task's structures.
1960  * See asm/thread_info.h for TIF_xxxx flags available:
1961  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1962 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1963 {
1964 	set_ti_thread_flag(task_thread_info(tsk), flag);
1965 }
1966 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1967 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1968 {
1969 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1970 }
1971 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1972 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1973 					  bool value)
1974 {
1975 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1976 }
1977 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1978 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1979 {
1980 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1981 }
1982 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1983 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 {
1985 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1986 }
1987 
test_tsk_thread_flag(struct task_struct * tsk,int flag)1988 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 {
1990 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1991 }
1992 
set_tsk_need_resched(struct task_struct * tsk)1993 static inline void set_tsk_need_resched(struct task_struct *tsk)
1994 {
1995 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1996 }
1997 
clear_tsk_need_resched(struct task_struct * tsk)1998 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1999 {
2000 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2001 }
2002 
test_tsk_need_resched(struct task_struct * tsk)2003 static inline int test_tsk_need_resched(struct task_struct *tsk)
2004 {
2005 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2006 }
2007 
2008 /*
2009  * cond_resched() and cond_resched_lock(): latency reduction via
2010  * explicit rescheduling in places that are safe. The return
2011  * value indicates whether a reschedule was done in fact.
2012  * cond_resched_lock() will drop the spinlock before scheduling,
2013  */
2014 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2015 extern int __cond_resched(void);
2016 
2017 #ifdef CONFIG_PREEMPT_DYNAMIC
2018 
2019 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2020 
_cond_resched(void)2021 static __always_inline int _cond_resched(void)
2022 {
2023 	return static_call_mod(cond_resched)();
2024 }
2025 
2026 #else
2027 
_cond_resched(void)2028 static inline int _cond_resched(void)
2029 {
2030 	return __cond_resched();
2031 }
2032 
2033 #endif /* CONFIG_PREEMPT_DYNAMIC */
2034 
2035 #else
2036 
_cond_resched(void)2037 static inline int _cond_resched(void) { return 0; }
2038 
2039 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2040 
2041 #define cond_resched() ({			\
2042 	___might_sleep(__FILE__, __LINE__, 0);	\
2043 	_cond_resched();			\
2044 })
2045 
2046 extern int __cond_resched_lock(spinlock_t *lock);
2047 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2048 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2049 
2050 #define cond_resched_lock(lock) ({				\
2051 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2052 	__cond_resched_lock(lock);				\
2053 })
2054 
2055 #define cond_resched_rwlock_read(lock) ({			\
2056 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2057 	__cond_resched_rwlock_read(lock);			\
2058 })
2059 
2060 #define cond_resched_rwlock_write(lock) ({			\
2061 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2062 	__cond_resched_rwlock_write(lock);			\
2063 })
2064 
cond_resched_rcu(void)2065 static inline void cond_resched_rcu(void)
2066 {
2067 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2068 	rcu_read_unlock();
2069 	cond_resched();
2070 	rcu_read_lock();
2071 #endif
2072 }
2073 
2074 /*
2075  * Does a critical section need to be broken due to another
2076  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2077  * but a general need for low latency)
2078  */
spin_needbreak(spinlock_t * lock)2079 static inline int spin_needbreak(spinlock_t *lock)
2080 {
2081 #ifdef CONFIG_PREEMPTION
2082 	return spin_is_contended(lock);
2083 #else
2084 	return 0;
2085 #endif
2086 }
2087 
2088 /*
2089  * Check if a rwlock is contended.
2090  * Returns non-zero if there is another task waiting on the rwlock.
2091  * Returns zero if the lock is not contended or the system / underlying
2092  * rwlock implementation does not support contention detection.
2093  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2094  * for low latency.
2095  */
rwlock_needbreak(rwlock_t * lock)2096 static inline int rwlock_needbreak(rwlock_t *lock)
2097 {
2098 #ifdef CONFIG_PREEMPTION
2099 	return rwlock_is_contended(lock);
2100 #else
2101 	return 0;
2102 #endif
2103 }
2104 
need_resched(void)2105 static __always_inline bool need_resched(void)
2106 {
2107 	return unlikely(tif_need_resched());
2108 }
2109 
2110 /*
2111  * Wrappers for p->thread_info->cpu access. No-op on UP.
2112  */
2113 #ifdef CONFIG_SMP
2114 
task_cpu(const struct task_struct * p)2115 static inline unsigned int task_cpu(const struct task_struct *p)
2116 {
2117 #ifdef CONFIG_THREAD_INFO_IN_TASK
2118 	return READ_ONCE(p->cpu);
2119 #else
2120 	return READ_ONCE(task_thread_info(p)->cpu);
2121 #endif
2122 }
2123 
2124 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2125 
2126 #else
2127 
task_cpu(const struct task_struct * p)2128 static inline unsigned int task_cpu(const struct task_struct *p)
2129 {
2130 	return 0;
2131 }
2132 
set_task_cpu(struct task_struct * p,unsigned int cpu)2133 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2134 {
2135 }
2136 
2137 #endif /* CONFIG_SMP */
2138 
2139 extern bool sched_task_on_rq(struct task_struct *p);
2140 
2141 /*
2142  * In order to reduce various lock holder preemption latencies provide an
2143  * interface to see if a vCPU is currently running or not.
2144  *
2145  * This allows us to terminate optimistic spin loops and block, analogous to
2146  * the native optimistic spin heuristic of testing if the lock owner task is
2147  * running or not.
2148  */
2149 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2150 static inline bool vcpu_is_preempted(int cpu)
2151 {
2152 	return false;
2153 }
2154 #endif
2155 
2156 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2157 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2158 
2159 #ifndef TASK_SIZE_OF
2160 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2161 #endif
2162 
2163 #ifdef CONFIG_SMP
2164 /* Returns effective CPU energy utilization, as seen by the scheduler */
2165 unsigned long sched_cpu_util(int cpu, unsigned long max);
2166 #endif /* CONFIG_SMP */
2167 
2168 #ifdef CONFIG_RSEQ
2169 
2170 /*
2171  * Map the event mask on the user-space ABI enum rseq_cs_flags
2172  * for direct mask checks.
2173  */
2174 enum rseq_event_mask_bits {
2175 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2176 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2177 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2178 };
2179 
2180 enum rseq_event_mask {
2181 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2182 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2183 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2184 };
2185 
rseq_set_notify_resume(struct task_struct * t)2186 static inline void rseq_set_notify_resume(struct task_struct *t)
2187 {
2188 	if (t->rseq)
2189 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2190 }
2191 
2192 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2193 
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2194 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2195 					     struct pt_regs *regs)
2196 {
2197 	if (current->rseq)
2198 		__rseq_handle_notify_resume(ksig, regs);
2199 }
2200 
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2201 static inline void rseq_signal_deliver(struct ksignal *ksig,
2202 				       struct pt_regs *regs)
2203 {
2204 	preempt_disable();
2205 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2206 	preempt_enable();
2207 	rseq_handle_notify_resume(ksig, regs);
2208 }
2209 
2210 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2211 static inline void rseq_preempt(struct task_struct *t)
2212 {
2213 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2214 	rseq_set_notify_resume(t);
2215 }
2216 
2217 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2218 static inline void rseq_migrate(struct task_struct *t)
2219 {
2220 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2221 	rseq_set_notify_resume(t);
2222 }
2223 
2224 /*
2225  * If parent process has a registered restartable sequences area, the
2226  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2227  */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2228 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2229 {
2230 	if (clone_flags & CLONE_VM) {
2231 		t->rseq = NULL;
2232 		t->rseq_sig = 0;
2233 		t->rseq_event_mask = 0;
2234 	} else {
2235 		t->rseq = current->rseq;
2236 		t->rseq_sig = current->rseq_sig;
2237 		t->rseq_event_mask = current->rseq_event_mask;
2238 	}
2239 }
2240 
rseq_execve(struct task_struct * t)2241 static inline void rseq_execve(struct task_struct *t)
2242 {
2243 	t->rseq = NULL;
2244 	t->rseq_sig = 0;
2245 	t->rseq_event_mask = 0;
2246 }
2247 
2248 #else
2249 
rseq_set_notify_resume(struct task_struct * t)2250 static inline void rseq_set_notify_resume(struct task_struct *t)
2251 {
2252 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2253 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2254 					     struct pt_regs *regs)
2255 {
2256 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2257 static inline void rseq_signal_deliver(struct ksignal *ksig,
2258 				       struct pt_regs *regs)
2259 {
2260 }
rseq_preempt(struct task_struct * t)2261 static inline void rseq_preempt(struct task_struct *t)
2262 {
2263 }
rseq_migrate(struct task_struct * t)2264 static inline void rseq_migrate(struct task_struct *t)
2265 {
2266 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2267 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2268 {
2269 }
rseq_execve(struct task_struct * t)2270 static inline void rseq_execve(struct task_struct *t)
2271 {
2272 }
2273 
2274 #endif
2275 
2276 #ifdef CONFIG_DEBUG_RSEQ
2277 
2278 void rseq_syscall(struct pt_regs *regs);
2279 
2280 #else
2281 
rseq_syscall(struct pt_regs * regs)2282 static inline void rseq_syscall(struct pt_regs *regs)
2283 {
2284 }
2285 
2286 #endif
2287 
2288 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2289 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2290 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2291 
2292 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2293 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2294 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2295 
2296 int sched_trace_rq_cpu(struct rq *rq);
2297 int sched_trace_rq_cpu_capacity(struct rq *rq);
2298 int sched_trace_rq_nr_running(struct rq *rq);
2299 
2300 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2301 
2302 #ifdef CONFIG_SCHED_CORE
2303 extern void sched_core_free(struct task_struct *tsk);
2304 extern void sched_core_fork(struct task_struct *p);
2305 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2306 				unsigned long uaddr);
2307 #else
sched_core_free(struct task_struct * tsk)2308 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2309 static inline void sched_core_fork(struct task_struct *p) { }
2310 #endif
2311 
2312 #endif
2313